A WIDE SPECTRUM TEXTUAL LANGUAGE FOR MODELING AND IMPLEMENTATION

Bradley Clement, Chris Delp, Klaus Havelund, Rahul Kumar

Going to Europa

aua Jet Propulsion Laboratory
S L @Iifornia Institute of Technology

Perhaps in some future:

MISSION TO EUROPA

Europa Clipper

How are missions normally
designed?

Alt '
erative pursued @ JPL

ag - Chkd out

8 Tims Package - Class di

UML/SysML

A path to acceptance

-- Add More --

. 1..* instruments

& Instrument
-- Add More

flightSoftware 1

1 groundSoftware

& GroundSoftware
-- Add More --

Add More

1. Hardware
1.1 Instruments

Instruments provide science results.

1.2 Radio

The radio is crucial for communication with ground.

2. Software

2.1 Flight Software

Flight software is on board the spacecraft.

2.2 Ground Software

Ground software is on ground.

Observation 1

class diagrams + constraints

» Model based engineering community
» UML, SysML, Visual languages
» Semantics difficult to find/use

» No analysis

» Formal methods community T —

Y(oz,uml) : project o
{c : 0z N Classdef o c.name} = {c : uml.classes

» Formal and Textual languages o cname}

» Semantics clearly defined

co.name € {t : ran cy.state.decpart o t.name} =
) ! ch o e = ¢j.name
3,(cq. ¢ cj.name = €

» Analysis (model checking, th. proving, ..)

cp.name €

i o =c me
3](1"]A ch): uml.inh e c|.name = c1.NG

A ch.name = cz.name

But the goals are the same

» Create models “

» Analyze for correctness

» Possibly produce implementation

» Verify implementation

implementation .

Observation 2

» Programming languages
» Modern programming languages moving in the direction of spec L.
» Combining object oriented and functional programming

» Supporting collections, such as sets, lists and maps

[Person |
String name
void

speak(:

m
rin

Functional Object Oriented
Programming Programming

Conclusion

project : OZSpec — UMLDiagram

Y(oz,uml) : project o SN
o () 1\('11“& o I Case ‘TR
.na nl.classes “
e c.name} e Vey, 0t 3 ¢ c“‘ c\ S Bra
uml.classes .name = cj.name “‘ \ [nch(lef
c'.attris = {cls : Classdef | cls € 0z @ cls.name} va\ tr oy (H h § t 4 T
<ci.state.decpart . i B - nt) 'Xtee'
Suy en

+ c.ops ={o: Opdef | 0 € ci.ops ® 0.name } ch(;
w.name € {t : ran cy.state.decpart o t.name} = + Cone t ‘ran. h ¢
3,(c}, ¢}) : uml.agg ® cj.name = cj.name t. s
(a 9 1 (1

A e = Co.name 8\
.) >
t e inh.name} = N 1t

co.name € {inh : dom cy.inheri
. s o)
3](1" ch): uml.inh o cj.name = |.name

ame _y"(”lll'

Obvious questions

» Why not pick an existing formal specification language?

» Why not pick an existing programming language?

Some possible answers

» Desirable to , full control over syntax, parser, type checker, analysis
support.

» Keeping it as as possible. Scala is complex, for tool builders and for modelers.

» Full required. No interactive theorem proving.

» But: there is no really good reason for not choosing a
programming language like for example Scala.

Modeling as programming

» They want to be able to mix modeling and programming, for
example by going from requirements to test scripts.

» As management pointed out at a presentation:

Most people are been taught programming at some point and will
find it much easier than all this diagramming.

K Language Constructs

» Packages
» Classes
» Inheritance
» Properties (fields): Bool, Int, Real, Sets, Bags, Lists, ..
» Functions (with subtyping)
» Constraints
» Rich expression language (predicate logic)
» Side effects eventually (programming)
» Relations
» Multiplicities

» Annotations On wish list:
Full reflection: write a static

analyzer for K in K as a library.

Properties

Spacecraft » Class Spacecraft is said to have the
“instruments™.

name:String

» MBE refers to this as a “relation”

o » FM refers to this as a “field”

1..* instruments

Instrument s.nstruments={i:/nstrument [(s,[)ER

weight : Int

Relational

Spacecraft

name:String

1..* instruments

Instrument

weight : Int

View

Given are sets of atomic values:

SpaceCraft
Instrument

and the relations:

R C Spacecraft x Instrument
name C Spacecraft x String
weight C Instrument X int

with the constraints:

Vi : Instrument e card{s : SpaceCraft | (s,i) € R} <1
Vi : Instrument e card{z : Int | (s,x) € weight} =1
Vs : Spacecraft e card{x : String | (s,z) € name} =1

Domains

» Domain specific theories encoded as K libraries

Libraries

Mechanical

Europa

Spacecraftt Example

Spacecraftinstrument

1..10
instrument

name - String
id - Int

powerConsumption : Real
currentPowerConsumption - Real
weight : Real

operating - Boolean

toggleOperating

name - String
weight : Real

getinstrumentsNameWeight
addinstrumentis
isinstrumentAdded

spacecraft

Batteryilnstrument

speed : Real
acceleration : Real
distanceToEarth : Real

1
angularPosition

angle1 - Real
angle2 - Real
angle3 : Real

Spacecraftt Example

@name("InstrumentClass")
@id("_GHSZ3432")
@doc("This class describes the basic instrument for a spacecraft.")

class Instrument {

name : String

id : Int

@owner("Rahul")

powerConsumption : Int = 1000

@owner("Bjorn")

weight : Real

currentPowerConsumption : Int

operating : Bool = false 1.10
instrum e-'nt

fun toggleOperating

post(operating = !operating~)
{ name : String
. . id - Int
operating := !operating powerConsumption : Real
. . currentPowerConsumption - Real
if loperating then weight : Real

(7] operating - Boolean

currentPowerConsumption :
else
currentPowerConsumption := powerConsumption

toggleOperating

}

@name("OperatingPowerOfInstrument")
@doc("The current power consumption of an instrument should either be O,
when it is turned off, or if it is on,
it should be what the operating power is specified to be.™)
req OperatingPower:
(!operating=> currentPowerConsumption = @) &&
(operating => currentPowerConsumption = powerConsumption)

req idId: id >= ©

req OperatingPowerl:
currentPowerConsumption = powerConsumption

Spacecraftt Example

class Camera extends Instrument {
fps : 1nt

¥

class Battery {}

S —
1

class AngularVector { atitude

anglel : Rreal | | mme |

1 . - speed : Real
ang e2 : Real acceleration : Real
angle3 * Real distanceToEarth : Real
class Attitude { ;
angularPosition : AngularVector angularPosition
S p ee d + Real |2s; Batterylnstrument
acceleration : Rreal anglel - Rea
. angle2 : Real
distanceToEarth : Rreal angle3 - Rea

} IIII

assoc BatteryInstrument {

bat : Battery

inst : Instrument [0,%*] fos - Int

Spacecraftt Example

class Spacecraft {
name : string

weight : Rreal

name : String
weight : Real
req EarthSafeDistance:
attitude.distanceToEarth > 50000 && getinstrumentsNameWeight
attitude.distanceToEarth < 350000 addinstruments

isinstrumentAdded

req notTooHeavy: totalWeight() <= maxWeight spacecral
fun totalWeight : real {
instrument.collect(i -> i.weight).sum()

¥

fun getInstrumentsNameWeight : Seq[string * Real]
post $result.length() = instrument.size()

{

instrument.collect(i -> Tuple(i.name, i.weight)).toSeq()

¥

fun addInstruments(insts : Set[Instrument])
pre insts.size() <= 10
pre forall i : insts . i !isin instrument
{

instrument := instrument union insts

b

fun isInstrumentAdded(instr : Instrument) : sool {
instr isin instrument

¥
¥

assoc SpacecraftInstrument {
spacecraft : Spacecraft
part instrument: Instrument[1,10]

}

Extensible Keywords

class ModelElement{

}...

class <view> View extends ModelElement {
h

view MyView { You can use view instead of class.

3 This is the same as writing

class MyView extends View {

Examples of K models
and generated Z3 formulas

A simple planning scenario

Schedule 1

Schedule 2

Allen’s 1nterval logic

Relation Symbol Inverse Meaning

x before y b bi —

. X Yy
X meets y m mi

x overlaps y oi
X during y di
X starts y

x finishes y

x equal y

—
X
v
—_
X
——
—_
X
J
(N S—
v
—
X
V
—

ey VvV Vv

Further...

Mapping from SysML diagrams (MagicDraw) to K and back

Translation to Latex

Translation to Z3, Mathematica, ..

Runtime environment

And .. determine relationship to existing programming language(s)

> is used by even system engineers (solar system model in Python exists)
> is used all over the place, but mostly by software engineers

would be the closest match from a language point of view

More questions

