Note

This document is a pre-release produced for the VDM '90 RAISE tutorial.
RSL and RAISE are trademarks of Computer Resources International A/S

UNIX is a registered trademark of Bell Laboratories

Sun Workstation is a registered trademark of Sun Microsystems

DISCLAIMER

The information contained in this document has been carefully produced and checked. However, Computer Resources International A/S does not warrant correctness or appropriateness of the information contained and is not responsible for any loss, damage or inconvenience resulting from its use.
Contents

1 Introduction 1
 1.1 Purpose .. 1
 1.2 Target group ... 1
 1.3 Relations to other documents 1
 1.4 Structure of document 1
 1.5 Document conventions 2

2 Declarative constructs and visibility rules 7

3 Overloading 11

4 Specifications 15
 4.1 Object declarations 15
 4.2 Scheme declarations 17
 4.3 Class expressions .. 18
 4.3.1 Basic class expressions 19
 4.3.2 Importing class expression 20
 4.3.3 Extending class expressions 20
 4.3.4 Hiding class expressions 21
 4.3.5 Renaming class expression 22
 4.3.6 Scheme instantiations 22
 4.4 Object expressions .. 26
 4.4.1 Names .. 26
 4.4.2 Element object expressions 26
 4.4.3 Array object expressions 27
 4.4.4 Fitting object expressions 28
 4.5 Renamings ... 29

5 Declarations 31
 5.1 Type declarations .. 31
 5.1.1 Sort definitions 32
 5.1.2 Variant definitions 33
 5.1.3 Union definitions..................................... 40
 5.1.4 Short record definitions 41
 5.1.5 Abbreviation definitions 42
 5.2 Value declarations ... 42
 5.2.1 Explicit value definitions 43
 5.2.2 Implicit value definitions 44
 5.2.3 Explicit function definitions 45
 5.2.4 Implicit function definitions 48
 5.3 Variable declarations 50
 5.4 Channel declarations 52
 5.5 Axiom declarations .. 53
6 Type expressions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Names</td>
<td>58</td>
</tr>
<tr>
<td>6.2 Type literals</td>
<td>59</td>
</tr>
<tr>
<td>6.3 Product type expressions</td>
<td>60</td>
</tr>
<tr>
<td>6.4 Set type expressions</td>
<td>61</td>
</tr>
<tr>
<td>6.5 List type expressions</td>
<td>62</td>
</tr>
<tr>
<td>6.6 Map type expressions</td>
<td>62</td>
</tr>
<tr>
<td>6.7 Function type expressions</td>
<td>63</td>
</tr>
<tr>
<td>6.7.1 Access descriptions</td>
<td>66</td>
</tr>
<tr>
<td>6.8 Subtype expressions</td>
<td>68</td>
</tr>
<tr>
<td>6.9 Bracketted type expressions</td>
<td>68</td>
</tr>
</tbody>
</table>

7 Expressions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Value literals</td>
<td>73</td>
</tr>
<tr>
<td>7.2 Names</td>
<td>74</td>
</tr>
<tr>
<td>7.3 Pre names</td>
<td>74</td>
</tr>
<tr>
<td>7.4 Basic expressions</td>
<td>75</td>
</tr>
<tr>
<td>7.5 Product expressions</td>
<td>76</td>
</tr>
<tr>
<td>7.6 Set expressions</td>
<td>76</td>
</tr>
<tr>
<td>7.6.1 Ranged set expressions</td>
<td>77</td>
</tr>
<tr>
<td>7.6.2 Enumerated set expressions</td>
<td>77</td>
</tr>
<tr>
<td>7.6.3 Comprehended set expressions</td>
<td>78</td>
</tr>
<tr>
<td>7.7 List expressions</td>
<td>79</td>
</tr>
<tr>
<td>7.7.1 Ranged list expressions</td>
<td>80</td>
</tr>
<tr>
<td>7.7.2 Enumerated list expressions</td>
<td>80</td>
</tr>
<tr>
<td>7.7.3 Comprehended list expressions</td>
<td>81</td>
</tr>
<tr>
<td>7.8 Map expressions</td>
<td>82</td>
</tr>
<tr>
<td>7.8.1 Enumerated map expression</td>
<td>83</td>
</tr>
<tr>
<td>7.8.2 Comprehended map expressions</td>
<td>84</td>
</tr>
<tr>
<td>7.9 Function expressions</td>
<td>84</td>
</tr>
<tr>
<td>7.10 Application expressions</td>
<td>85</td>
</tr>
<tr>
<td>7.11 Quantified expressions</td>
<td>88</td>
</tr>
<tr>
<td>7.12 Equivalence expressions</td>
<td>89</td>
</tr>
<tr>
<td>7.13 Post expressions</td>
<td>90</td>
</tr>
<tr>
<td>7.14 Disambiguation expressions</td>
<td>91</td>
</tr>
<tr>
<td>7.15 Bracketted expressions</td>
<td>91</td>
</tr>
<tr>
<td>7.16 Infix expressions</td>
<td>92</td>
</tr>
<tr>
<td>7.16.1 Statement infix expressions</td>
<td>92</td>
</tr>
<tr>
<td>7.16.2 Axiom infix expressions</td>
<td>93</td>
</tr>
<tr>
<td>7.16.3 Value infix expressions</td>
<td>94</td>
</tr>
<tr>
<td>7.17 Prefix expressions</td>
<td>94</td>
</tr>
<tr>
<td>7.17.1 Axiom prefix expressions</td>
<td>95</td>
</tr>
<tr>
<td>7.17.2 Value prefix expressions</td>
<td>95</td>
</tr>
<tr>
<td>7.18 Comprehended expressions</td>
<td>96</td>
</tr>
<tr>
<td>7.19 Initialise expressions</td>
<td>97</td>
</tr>
<tr>
<td>7.20 Assignment expressions</td>
<td>98</td>
</tr>
<tr>
<td>7.21 Input expressions</td>
<td>98</td>
</tr>
</tbody>
</table>
C Syntax summary

157
1 Introduction

1.1 Purpose

The purpose of this document is to describe the RAISE Specification Language, RSL. The description is supposed to be suited for ‘looking up’ information rather than for ‘sequential reading’. It is a manual rather than a tutorial.

1.2 Target group

The target group of this document is users of RSL.

1.3 Relations to other documents

A prerequisite for reading this document is familiarity with the RSL tutorial [1].

1.4 Structure of document

The document is formally structured over the syntax of RSL (see below). The introduction is followed by a special section on declarative constructs and a special section on overloading, and after that a section on each of the main syntax categories of RSL:

- Declarative constructs and visibility rules
- Overloading
- Specifications
- Declarations
- Type expressions
- Expressions
- Bindings
- Typings
- Patterns
- Names
- Infix combinators
• Connectives

Finally, the document contains a list of literature references, an index and three appendices. The first appendix describes lexical matters for RSL, the second appendix describes precedence and associativity of RSL operators and the third appendix contains an RSL syntax summary.

1.5 Document conventions

The language description is centered around the syntax for RSL. The syntax defines the syntactically correct strings of the language. The strings are divided into syntax categories with the top syntax category containing all syntactically correct RSL specifications. Each syntax category is defined by a rule. The rules of the syntax are grouped into sections in the manual. Each section consists of some or all of the following subsections:

Syntax
Terminology
Meaning
Context conditions
Properties

Below the contents of these subsections is described and the used conventions are explained.

Syntax Contains one or more syntax rules each of the form

\[
\text{category} _\text{name} ::= \\
\text{alternative}_1 | \\
\vdots \\
\text{alternative}_n
\]

where \(n \geq 1 \). This rule introduces the syntax category named \text{category} _\text{name} and defines that category as the union of the strings generated by the alternatives. As an example consider

\[
\text{set} _\text{type} _\text{expr} ::= \\
\text{finite set} _\text{type} _\text{expr} | \\
\text{infinite set} _\text{type} _\text{expr}
\]

Each alternative consists of a sequence of tokens where a token is of one of three kinds
• A keyword in bolded font such as ‘**Bool**’
• A symbol such as ‘(‘.
• A sub-category name such as ‘**expr**’, possibly prefixed with a text such as ‘**logical-**’ in italics.

The strings generated by an alternative are those obtained by concatenating keywords, symbols and strings from sub-categories – in the order of appearance. As examples consider

\[
\text{finite_set_type_expr ::= type_expr_set}
\]

\[
\text{map_type_expr ::= type_expr \rightarrow type_expr}
\]

The below convention is used for defining optional presence (\(\epsilon\) represents absence): For any syntax category name ‘x’ the following rule is assumed.

\[
\text{opt_x ::= \epsilon | x}
\]

The below conventions are used for defining repetition: For any syntax category name ‘x’ the following rules are assumed.

\[
\text{x_string ::= x | x _string}
\]

\[
\text{x_list ::= x | x , x_list}
\]

\[
\text{x_list2 ::= x , x_list}
\]

\[
\text{x_choice ::= x | x _choice}
\]

\[
\text{x_choice2 ::= x | x _choice}
\]

\[
\text{x_product2 ::= x \times x _product}
\]
The below conventions are used for indicating context conditions:

If a category name appearing in an alternative is prefixed with a word in italics, then this word conveys a context condition, as explained in the tables 1 - 7. As an example consider the following syntax rule, where the conveyed context condition is that the maximal type of the constituent expression must be \textbf{Bool}:

\[
\text{axiom} _ \text{prefix} _ \text{expr} ::= \\
\quad \bullet \text{logical} _ \text{-expr}
\]

If a category name appearing in an alternative is prefixed with several words in italics separated by underscores, then each of the words convey a context condition. As an example consider the following syntax rule, where the conveyed context conditions are that the constituent expression must be readonly and have the maximal type \textbf{Bool}:

\[
\text{restriction} ::= \\
\quad \bullet \text{readonly} _ \text{logical} _ \text{-expr}
\]

If a category name appearing in an alternative is prefixed with a text containing several words in italics separated by ", or .", then this text convey a context condition which is the disjunction of each of the context conditions conveyed by the individual words (i.e. one of the context conditions conveyed by the individual words must be fulfilled). As an example consider the following syntax rule, where the conveyed context condition is that the constituent name must represent a value or a variable:

\[
\text{expr} ::= \\
\quad \text{value} _ \text{or} _ \text{variable} _ \text{-name}
\]

<table>
<thead>
<tr>
<th>prefix</th>
<th>context condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{unit}</td>
<td>the maximal type of the \texttt{expr} must be \textit{Unit}</td>
</tr>
<tr>
<td>\textit{logical}</td>
<td>the maximal type of the \texttt{expr} must be \textit{Bool}</td>
</tr>
<tr>
<td>\textit{integer}</td>
<td>the maximal type of the \texttt{expr} must be \textit{Int}</td>
</tr>
<tr>
<td>\textit{list}</td>
<td>the maximal type of the \texttt{expr} must be a list type</td>
</tr>
<tr>
<td>\textit{map}</td>
<td>the maximal type of the \texttt{expr} must be a map type</td>
</tr>
<tr>
<td>\textit{function}</td>
<td>the maximal type of the \texttt{expr} must be a function type</td>
</tr>
<tr>
<td>\textit{pure}</td>
<td>the \texttt{expr} must be pure</td>
</tr>
<tr>
<td>\textit{readonly}</td>
<td>the \texttt{expr} must be readonly</td>
</tr>
</tbody>
</table>

Table 1: Prefixes of \texttt{expr} and the context conditions they convey

Terminology Contains definitions of terms etc. When a term is defined it is written in italics.
Meaning Contains a description of the meaning of statically correct strings.

Context conditions Contains a description of the conditions that syntactically correct strings must satisfy in order to be statically correct. Note, that as a convenience some of these conditions are also indicated by italicized prefixes in the syntax rules, as described above.

Properties Contains a description of the properties that statically correct strings have. This information is used to describe context conditions.
Table 2: Prefixes of `restriction` and the context conditions they convey

<table>
<thead>
<tr>
<th>prefix</th>
<th>context condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pure</td>
<td>the restriction must be pure</td>
</tr>
</tbody>
</table>

Table 3: Prefixes of `set_limitation` and the context conditions they convey

<table>
<thead>
<tr>
<th>prefix</th>
<th>context condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pure</td>
<td>the set_limitation must be pure</td>
</tr>
</tbody>
</table>

Table 4: Prefixes of `name` and the context conditions they convey

<table>
<thead>
<tr>
<th>prefix</th>
<th>context condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pure</td>
<td>the name must be pure</td>
</tr>
<tr>
<td>type</td>
<td>the name must represent a type</td>
</tr>
<tr>
<td>value</td>
<td>the name must represent a value</td>
</tr>
<tr>
<td>variable</td>
<td>the name must represent a variable</td>
</tr>
<tr>
<td>channel</td>
<td>the name must represent a channel</td>
</tr>
<tr>
<td>scheme</td>
<td>the name must represent a scheme</td>
</tr>
<tr>
<td>object</td>
<td>the name must represent an object</td>
</tr>
</tbody>
</table>

Table 5: Prefixes of `id` and the context conditions they convey

<table>
<thead>
<tr>
<th>prefix</th>
<th>context condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>the id must represent a value</td>
</tr>
</tbody>
</table>

Table 6: Prefixes of `object_expr` and the context conditions they convey

<table>
<thead>
<tr>
<th>prefix</th>
<th>context condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>element</td>
<td>the object_expr must represent a model</td>
</tr>
<tr>
<td>array</td>
<td>the object_expr must represent an array</td>
</tr>
</tbody>
</table>

Table 7: Prefixes of `infix_combinator` and the context conditions they convey

<table>
<thead>
<tr>
<th>prefix</th>
<th>context condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>associative</td>
<td>the infix_combinator must be associative</td>
</tr>
<tr>
<td>commutative</td>
<td>the infix_combinator must be commutative</td>
</tr>
</tbody>
</table>
2 Declarative constructs and visibility rules

A *declarative construct* is a language construct representing one or more definitions. A *definition* introduces an identifier or operator for an entity such as a scheme, an object, a type, a value, a variable, a channel or an axiom. A definition stems from one of the following declarative constructs:

- module_decl, decl, formal_scheme_parameter, formal_array_parameter, lambda_parameter,
- single_typing, typing, axiom_quantification, let_def, class_expr, object_expr, list_limitation,
- formal_function_application, result_naming, pattern

Notice, that some declarative constructs give first rise to definitions when they are in a context. For instance, a *pattern* gives first rise to definitions when a value in the context is matched against it. For such constructs the maximal types of the identifiers and/or operators introduced by the definitions is determined by a maximal type given by the context. Such a maximal type is called a *maximal context type* for (or of) the declarative construct.

A definition has an associated region of RSL text, called the *scope* of the definition. Within this scope, and only there, there are places where its entity may be referred to by its identifier or operator. We will talk also about the scope of a declarative construct meaning the scope of its definitions. The *scope rules* of the language determine the scope of definitions.

A definition is said to be *visible* at a point of RSL text if its entity may be referred to by its identifier or operator at that point. At such a point the identifier or operator is said to *represent* the entity or to be a *name of* the entity. The *visibility rules* of the language determine the visibility of definitions.

Two definitions are said to be *compatible* if they introduce distinct identifiers and operators or if they are both value definitions introducing the same identifier or operator but with distinguishable maximal types. Two declarative constructs are said to be compatible if all their definitions are compatible.

The context conditions ensure that at each point of RSL text all visible definitions are compatible.

Scope rules

The scope of a declarative construct depends on the context in which it occurs. Therefore for each construct containing a declarative construct the scope of this must be given. This is done in the subsections called ”Properties” using the following conventions:

1. For declarative constructs occurring in non declarative constructs the scope is always explicitly stated. (This is for instance the case for the declarations in a local expression, see the example below.)
Example 2.1

```plaintext
local
value
   x : Int = 3
in
   x + 2
end
```

The scope of the definition of x is the expression x + 2.

2. For declarative constructs occurring in declarative constructs there are the following possibilities:

(a) The scope is explicitly stated. (This is for instance the case for the typings in an object definition, see the example below.)

Example 2.2

```plaintext
object
   O[i : Int] :
      class
         variable
            v : Int := i - 7
      end
end
```

The scope of the definition of i is the class expression.

(b) An immediate scope is stated. (This is for instance the case for the declarations in a basic class expression, see the example below.) In this case the scope is the immediate scope plus possible extensions. The extensions depend on the context for the outer declarative construct and is given for all occurrences of it. (For instance for the class expressions in an extending class expression.)

Example 2.3

```plaintext
scheme
   S = extend
e      class
         value
            x : Int = 3,
e      end
   with
e      value
            y : Int = x
e      end
```

The immediate scope of the definition of x is the region between class and end. The total scope of x is this region plus the region between with and end.
(c) No scope is given. (This is for instance the case for the value definitions in a value declaration, see the example below.) In this case it is implicitly understood that the scope of the inner construct is given by the scope of the outer construct in which it occurs.

Example 2.4

```plaintext
value
  x : Int = y,
  y : Int
```

The scope of the value definition of x is equal to the scope of the whole value declaration.

Visibility rules

The visibility rules are:

1. A definition is not visible outside its scope.
2. A definition is potentially visible throughout its scope. However, there may be places in the scope, where the definition is hidden, i.e. not visible. For instance, if the identifier or operator introduced by a definition is also introduced by another definition in an inner scope then the outer definition is hidden throughout the scope of the inner definition. For values the latter is only the case if the maximal types of the two values are undistinguishable. Other cases in which definitions are hidden are stated in the property sections.

Example 2.5

```plaintext
class
  variable
    v : Bool := true
  axiom local
    variable
      v : Int := 3
    in
      v = 7
    end
end
```

The scope of the variable definition "v : Bool := true" is the whole class expression, while the scope of the local variable definition "v : Int := 3" is the expression "v = 7". Therefore, according to visibility rule number 2, in the expression "v = 7" only the local variable definition
is visible.

Example 2.6

class
tvalue
 v : Bool = true
axiom
local
tvalue
 v : Int = 3
in
tv
end
tend

In the local expression the local value definition does not hide the outer value definition as the maximal types of the two value definitions are distinguishable. Therefore, both value definitions are visible in the local expression.

□
3 Overloading

An identifier or operator is said to be overloaded at a certain point if there are several definitions of that identifier or operator which are visible at that point.

Only value identifiers and operators are allowed to be overloaded.

Note that all operators have one or more predefined meanings which have the whole specification as scope. This implies that if the user defines an operator to have a maximal type distinguishable from the maximal types of the predefined meanings of the operator then in the scope of the user definition the operator is overloaded, cf. the visibility rules. If the user defines an operator to have a maximal type undistinguishable from one of the maximal types of the predefined meanings of the operator then this predefined meaning is hidden in the scope of the user-defined, cf. the visibility rules.

Overload resolution

For a specification to be useful there must be a unique legal interpretation of each identifier and operator, where we by an interpretation mean a corresponding definition. Now, an occurrence of an overloaded identifier or operator has several possible interpretations (namely one for each visible definition of it) and therefore the problem is to find its legal corresponding definition (if it has any).

Considering the context of the identifier or operator, some of the possible interpretations may be illegal according to the context conditions. In general the more context one considers the more information (context conditions) exists to identify illegal interpretations. But if the context considered is an expression which has the same maximal type for several different possible interpretations of the constituent overloaded identifiers and operators then further context will never make it possible to choose one of these interpretations over the other ones. Therefore all such interpretations are illegal.

In general the legal interpretations of the constituent identifiers and operators in a given context (a construct) are those

1. which satisfy the context conditions given by the construct, and
2. for which the construct has distinguishable maximal types if the construct is an expression (belongs to the syntactic category expr).

The overloading is said to be resolvable if there is exactly one legal interpretation of each identifier and operator in its innermost enclosing so-called ”complete context”.

A complete context is one of the following:
• The expr in a list_limitation.
• The expr in an explicit_let.
• The expr in a case_expr.
• A defined_item which is just an id_or_op.
• A specification.

Example 3.1

```plaintext
class
  value
  v : Int,
  v : Bool
axiom
  v
end
```

The occurrence of v in the axiom is overloaded – it has two possible interpretations: either it is an integer or it is a boolean. However, only the latter interpretation satisfies the context condition that an axiom must have the maximal type `Bool`, and hence only this interpretation is legal.

Example 3.2

```plaintext
class
  value
  + : Bool × Bool → Bool,
  v : Real
axiom
  true + false ≡ true
axiom
  v ≡ 1.7 + 2.2
end
```

The two occurrences of the operator, +, in the axioms are overloaded – each of the occurrences has three possible interpretations: either it is the predefined integer addition (having the maximal type `Int × Int → Int`) or it is the predefined real addition (having the maximal type `Real × Real → Real`) or it is the user-defined boolean addition (having the maximal type `Bool × Bool → Bool`). Only the user-defined one satisfies the context conditions for the first occurrence, while only the predefined real addition satisfies the context conditions for the second occurrence.
Example 3.3

```plaintext
class
  value
  + : Real × Real → Real
  v : Real
axiom
  v ≡ 1.7 + 2.2
end
```

The occurrence of the operator, +, in the axiom has two possible interpretations: either it is the predefined integer addition (having the maximal type \(\text{Int} \times \text{Int} \rightarrow \text{Int} \)) or it is the user-defined real addition (having the maximal type \(\text{Real} \times \text{Real} \rightarrow \text{Real} \)). The predefined real addition is hidden since its maximal type is undistinguishable from the maximal type of the user-defined one. Only the user-defined real addition satisfies the context conditions, and hence only this interpretation is legal.

□

Example 3.4

```plaintext
value
  v : Int,
  v : Bool,
  f : Int → Int,
  f : Bool → Nat
axiom
  f(v) ≡ 7
```

There are two combinations of interpretations for \(f \) and \(v \) satisfying the context conditions. These are:

1. \(f : \text{Int} \rightarrow \text{Int}, \ v : \text{Int} \)
2. \(f : \text{Bool} \rightarrow \text{Nat}, \ v : \text{Bool} \)

However, for both combinations the maximal type of \(f(v) \) is the same, namely \(\text{Int} \), and hence the expression \(f(v) \) has no legal interpretations.

□

Example 3.5
In the first axiom the identifier b has exactly one legal interpretation. Hence, the overloading is resolvable.

In the second axiom the identifier v has two possible interpretations: v : B and v : C. Both of these satisfy the context conditions, but for both the maximal type of the expression f(v) has the same maximal type. Therefore there are no legal interpretations of v in the expression f(v). Hence, the overloading is not resolvable.

In the definition of a the identifier v has two possible interpretations: v : B and v : C. Both of these satisfies the context conditions and are legal. Hence, the overloading is not resolvable.

\[\square \]
4 Specifications

Syntax

specification ::=
 module_decl-string

module_decl ::=
 object_decl | scheme_decl

Terminology

A module is either an object or a scheme.

Meaning

A specification defines one or more modules.

Properties

In a specification the scope of the constituent module_decl-string is the module_decl-string itself. Note, that this means that the order of definitions is indifferent - an object or a scheme may be used before it is defined.

Context conditions

The constituent module_decls must be compatible, i.e. introduce distinct object and scheme identifiers.

4.1 Object declarations

Syntax

object_decl ::=
 object object_def-list

object_def ::=
 opt-comment-string id opt-formal_array_parameter : class_expr

formal_array_parameter ::=
 [typing-list]

Terminology

An *object* is either a model or an array of models.

An *array of models* – also termed an *array* – is a mapping from values to models: each value is mapped to a single model.

The *index type* of an array is the type of values, all of which are mapped to a model by the array. An *index value* is a value within the index type.

An array maps any two distinct index values into two models that do not have variables or channels in common.

Meaning

An object declaration defines one or more objects.

- A model is defined by a definition of the form

 id : class_expr

 By this definition the identifier is bound to a model. The model is an arbitrary one belonging to the class represented by the class expression.

- An array of models is defined by a definition of the form

 id[typing_list] : class_expr

 By this definition the identifier is bound to an array of models. The index type of the array is the type represented by the typing list. Each index value belonging to the index type is mapped to a model. The model is an arbitrary one belonging to the class represented by the class expression – evaluated in the environment obtained by matching the index value against the decomposer also represented by the typing list.

 An array may be applied to an index value in an element object expression as described in section 4.4.2.

Any two defined objects do not have variables or channels in common.
Properties

In an `object_def` the scope of the `opt-formal_array_parameter` is the `class_expr`.

An `object_def` introduces the constituent `id` for an object. The object is an array if a `formal_array_parameter` is present else it is a model. If it is an array the maximal parameter type is the maximal type of the `formal_array_parameter`. The body is the constituent `class_expr`.

The maximal type of a `formal_array_parameter` is the maximal type of the `single_typing` the `typing_list` is a shorthand for.

Context conditions

In an `object_decl` the constituent `object_defs` must be compatible, i.e. introduce distinct identifiers.

4.2 Scheme declarations

Syntax

```
scheme_decl ::= scheme scheme_def-list

scheme_def ::= opt-comment-string id opt-formal_scheme_parameter = class_expr

formal_scheme_parameter ::= ( formal_scheme_argument-list )

formal_scheme_argument ::= object_def
```

Terminology

A `scheme` is either a class or a parameterised class.

A `parameterised class` is a mapping from lists of objects to classes: each object list is mapped to a class.
Meaning

A scheme declaration defines one or more schemes.

- A class is defined by a definition of the form
 \[id = \text{class_expr} \]
 By this definition the identifier is bound to a class. The class is the one represented by the class expression.

- A parameterised class is defined by a definition of the form
 \[id(\text{formal_scheme_argument_list}) = \text{class_expr} \]
 By this definition the identifier is bound to a parameterised class.
 A parameterised class may be applied to a list of objects in a scheme instantiation as described in section 4.3.6. Under that section it is described which actual parameters are allowed and what the class resulting from the instantiation is.

Properties

In a scheme_def the scope of the opt-formal_scheme_parameter is the opt-formal_scheme_parameter itself and the class_expr.

A scheme_def introduces the constituent id for a scheme.

Context conditions

In a scheme_decl the constituent scheme_defs must be compatible, i.e. introduce distinct identifiers.

In a formal_scheme_parameter the constituent formal_scheme_arguments must be compatible, i.e. introduce distinct identifiers.

4.3 Class expressions

Syntax

\[\text{class_expr ::=} \]
basic_class_expr |
importing_class_expr |
extending_class_expr |
renaming_class_expr |
scheme_instantiation

Terminology

A *model* is an association of names with entities: each name is associated with a single entity. A model *provides* a name if it associates that name with an entity.

A model *satisfies* a definition if it provides the name introduced by that definition and if the entity associated with the name has the defined kind and if the properties stated in the definition *hold* in the model.

A *class* is a collection of models.

A name is *under-specified* if there exists at least two models in the class in which the name is associated with different entities. This corresponds to the case where the properties stated about the name are not *complete*.

Meaning

A class expression stands for a collection of definitions and represents the class consisting of all models that satisfy each of the definitions. Each model associates the identifiers and operators defined in the class expression with particular entities. For each alternative it is stated which definitions the class expression stands for.

4.3.1 Basic class expressions

Syntax

```markdown
basic_class_expr ::= 
  class opt-decl-string end
```

Meaning

A basic class expression stands for the definitions appearing in the declarations.
Properties

The immediate scope of the opt-decl-string is the opt-decl-string itself. Note, that this means that the order of definitions is indifferent.

Context conditions

The constituent decls must be compatible.

4.3.2 Importing class expression

Syntax

importing_class_expr ::=
 import object_expr-list in class_expr

Meaning

An importing class expression has the same meaning as the constituent class expression.

4.3.3 Extending class expressions

Syntax

extending_class_expr ::=
 extend class_expr-list with opt-decl-string end

Meaning

An extending class expression stands for the definitions which the class expressions stand for and the definitions which appear in the declarations.
Properties

The immediate scope of the opt-decl-string is the opt-decl-string itself. (Note, that this means that the order of definitions is indifferent.) The scopes of the class_exprs extend to the opt-decl-string.

Context conditions

The constituent class_exprs and decls must be compatible.

4.3.4 Hiding class expressions

Syntax

hiding_class_expr ::=
 hide defined_item-list in class_expr

Meaning

A hiding class expression stands roughly speaking for the definitions that the constituent class expression stands for. The names that are mentioned in the defined item list can, however, not be referred to outside the class expression.

Properties

The scope of the class_expr extends to the id_or_ops in the defined_item-list, while all other definitions (than those of the class_expr) are hidden there. (From this and the visibility rules it follows that the defined_items must be defined in the class_expr.) The scope of the the definitions of the defined_items in the class_expr cannot be extended beyond the hiding_class_expr.

Context conditions

The constituent defined_items must be distinct.

A sort must not be hidden if it is used by a non-hidden entity.
4.3.5 Renaming class expression

Syntax

renaming_class_expr ::=
 use rename_pair-list in class_expr

Meaning

A renaming class expression stands for the definitions that the constituent class expression stands for, but renamed according to the rename pairs in the renaming pair list.

Properties

The scope of the class_expr extends to the id_or_ops in the defined_items in the rename_pair-list, while all other definitions (than those of the class_expr) are hidden there. (From this and the visibility rules it follows that the defined (or old) items of the rename_pair-list must be defined in the class_expr.)

Context conditions

All new names must be distinct except if they are new names for values of distinguishable maximal types.

All old items of the rename_pair-list must be distinct. (In other words: there must not be more than one new name for each old item).

The new names must be different from the names of those old items (of the class_expr) which are not renamed, except for values, where a new name may be equal to the name of an old item, if the maximal type of the old item is distinguishable from the maximal type of the new.

4.3.6 Scheme instantiations

Syntax

scheme_instantiation ::=
 scheme-name opt-actual_scheme_parameter
actual_scheme_parameter ::= (object_expr-list)

Meaning

An instantiation is either an instantiation of a named class or of a named parameterised class.

- An instantiation of a named class has the form:

 name

 The name has the form opt_qualification id and the parameterised class must have been defined by a scheme definition (section 4.2) as follows:

 scheme
 id = body_class_expr

 The instantiation stands for the definitions that the body class expression stands for.

- An instantiation of a named parameterised class has the form:

 name(object_expr1, ... ,object_expr_n)

 The name has the form opt_qualification id and the parameterised class must have been defined by a scheme definition (section 4.2) as follows:

 scheme
 id(id_1 opt_formal_array_parameter_1 : class_expr_1, ... , id_n opt_formal_array_parameter_n : class_expr_n) = body_class_expr

 The instantiation stands for the definitions that the body class expression stands for – evaluated in an environment where each id_i has been bound to the object obtained by evaluating object_expr_i.

Terminology

An object_expr-list is a static implementation of a formal_scheme_argument-list, if and only if:

- The number of the object_exprs is equal to the number of formal_scheme_arguments.
• Each of the object_exprs is a static implementation of the corresponding formal_scheme_argument.

An object_expr is a static implementation of a formal_scheme_argument if and only if:

• The object represented by the object_expr and the object defined by the formal_scheme_argument are either both arrays or both models.
• If they are both arrays then the maximal parameter types are the same.
• The body (a class_expr) of the object_expr is a static implementation of the body (a class_expr) of the formal_scheme_argument (which is an object_def.)

A class_expr is a static implementation of another (old) class_expr if and only if:

• For each non-axiom definition in the old class_expr there is a definition in the new class_expr of the same kind implementing it. (Here value definitions that are formed by multiple typings and product bindings, union definitions, short record definitions, variant definitions, multiple variable definitions and multiple channel definitions should be expanded to the collection of definitions they are shorthands for).

A type definition is a static implementation of another (old) type definition, if and only if:

• They introduce the same identifier.
• If the old type definition is an abbreviation definition then the new one is also an abbreviation definition and the maximal type of the new is equal to the maximal type of the old with all old sorts replaced by their corresponding new types.

A (single) value definition is a static implementation of another (old) (single) value definition, if and only if:

• They introduce the same name.
• The maximal type of the new is equal to the maximal type of the old with all old sorts replaced by their corresponding new types.

A (single) variable definition / (single) channel definition is a static implementation of another (old) (single) variable definition / (single) channel definition, if and only if:

• They introduce the same name.
• The maximal type of the new is equal to the maximal type of the old with all old sorts replaced by their corresponding new types.

An object definition is a static implementation of another (old) object definition, if and only if:

• They introduce the same name.
• They define either both an array or both a model.
• If they define arrays then they have the same maximal parameter type.
• The class expression of the new object definition is a static implementation of the class expression of the old object definition.

A scheme definition is a static implementation of another (old) scheme definition, if and only if:

• They introduce the same name.
• They have the same number of formal scheme arguments.
• The maximal parameter types of the formal scheme arguments of the old scheme definition are equal of the corresponding maximal parameter types of the new scheme definition.
• The class expressions of the formal scheme arguments of the old scheme definition are static implementations of the corresponding class expressions of the new scheme definition.
• The class expression of the new scheme definition is a static implementation of the class expression of the old scheme definition.

Context conditions

In a scheme instantiation the name must represent a scheme. There must be an actual_scheme_parameter present if and only if the scheme is parameterised, (i.e. a formal_scheme_parameter is present in the corresponding scheme_def). If an actual_scheme_parameter is present then the constituent object_expr-list must be a static implementation of the formal_scheme_argument-list (of the formal_scheme_parameter) of the corresponding scheme definition. The definitions introduced by the scheme_instantiation must not contain type cycles and must be compatible.

In an actual_scheme_parameter any two object_exprs must not provide the same variable or channel.
4.4 Object expressions

Syntax

\[
\text{object_expr ::= object-name | element_object_expr | array_object_expr | fitting_object_expr}
\]

Meaning

An object expression represents an object.

Properties

An object_expr has an associated class expression, called the body. If it represents an array, then it also has an associated maximal parameter type.

4.4.1 Names

Properties

The body of a name is the class_expr of the corresponding object definition. The maximal parameter type of a name representing an array is the maximal type of the formal_array_parameter of the corresponding object definition.

Context conditions

For an object_expr being a name, this name must represent an object.

4.4.2 Element object expressions

Syntax

\[
\text{element_object_expr ::= }
\]
An element object expression represents a model obtained as follows. The object expression represents an array and the actual array parameter represents the value obtained by evaluating the expression list as a product. This value should be an index value of the array. The model is obtained by applying the array to the value (i.e. the model is that model which the value is mapped to by the array).

Properties

The body is the body of the constituent object_expr. Note, that in the context conditions, two applications of the same array to distinct actual array parameters are considered as defining the same entities.

The maximal type of an actual_array_parameter of the form \([e_1]\) is \(t_1\)
and of the form \([e_1, \ldots, e_n]\) is \(t_1 \times \ldots \times t_n\),
where \(t_1, \ldots, t_n\) are the maximal types of the constituent exprs \(e_1, \ldots, e_n\).

Context conditions

In an element_object_expr the constituent object_expr must represent an array.

In an element_object_expr the maximal type of the actual_array_parameter must be less than or equal to the maximal parameter type of the object_expr.

The exprs in the actual_array_parameter must be pure.

4.4.3 Array object expressions

Syntax

\[
\text{array-object_expr} \ ::= \\
\{ \mid \text{typing-list} \cdot \text{element-object_expr} \mid
\]
Meaning

An array object expression represents an array. The index type of the array is the type represented by the typing list. Each index value belonging to the index type is mapped to a model. This model is the model obtained by evaluating the element object expression in the environment obtained by matching the index value against the decomposer also represented by the typing list.

Properties

The scope of the constituent typings is the object_expr.

The maximal parameter type is the maximal type of the single_typing the constituent typing-list is a shorthand for. The body is the body of the constituent object_expr.

Context conditions

The object_exp must represent a model.

4.4.4 Fitting object expressions

Syntax

fitting_object_expr ::=
 object_expr renaming

Meaning

A fitting object expression represents the object represented by the object expression, but with provided names renamed according to the renaming.

In case the object represented by the object expression is an array, the names in each of the models which the index values are mapped to are renamed.
Properties

In a fitting_object_expr the scope of the body of the constituent object_expr extends to the id_or_ops in the defined_items in the renaming, while all other definitions (than those of the body of the constituent object_expr) are hidden there. (From this and the visibility rules it follows that the defined (or old) items of the renaming must be defined in the body of the object_expr.)

If a fitting_object_expr represents an array the maximal parameter type is the maximal parameter type of constituent object_expr. The body is the body of the constituent object_expr renamed according to the constituent renaming.

4.5 Renamings

Syntax

renaming ::=
 { rename_pair-list }

rename_pair ::=
 defined_item for defined_item

defined_item ::=
 id_or_op |
 disambiguated_item

disambiguated_item ::=
 id_or_op : type_expr

Terminology

If a rename_pair occurs in the renaming of a fitting_object_expr then the name on the right-hand side of for is called a new name and the name on the left-hand side of for is called an old name. If it occurs in a rename_class_expr then the name on the left-hand side of for is called a new name and the name on the right-hand side of for is called an old name.

To rename something according to a rename_pair means to replace all occurrences of the old name with the new name.
Meaning

A renaming represents the combination of the renamings represented by each rename pair in
the rename pair list.

The type expression within a disambiguated item is useful when the name due to overloading
represents several values with different types. The type expression then identifies precisely one
of the values.

Context conditions

In a rename_pair there must not be a type_expr in that defined_item which contains a new name.

In a renaming all new names must be distinct except if they are new names for values of
distinguishable maximal types.

In a renaming all old items must be distinct. (In other words: there must not be more than one
new name for each old item).

In a disambiguated_item the id_or_op must represent a value and its maximal type and the
maximal type of type_expr must be the same.
5 Declarations

Syntax

\[
decl ::=
 \text{object
def} |
 \text{scheme
def} |
 \text{type
def} |
 \text{value
def} |
 \text{variable
def} |
 \text{channel
def} |
 \text{axiom
def}
\]

Terminology

A declaration is a list of definitions all of the same kind – scheme, object, type, value, variable, channel or axiom. Each definition normally introduces a name for an entity of that kind, and one or more properties.

Object and scheme declarations are described in sections 4.1 and 4.2.

5.1 Type declarations

Syntax

\[
type\text{_}\text{decl} ::=
 \text{type \{commented_type_def\}_list}
\]

\[
\text{commented_type_def} ::=
 \text{opt-comment-string type_def}
\]

\[
\text{type_def} ::=
 \text{sort_def} |
 \text{variant_def} |
 \text{union_def} |
 \text{short_record_def} |
 \text{abbreviation_def}
\]
Meaning

A type declaration defines one or more types and zero or more values.

Context conditions

The type names introduced in the constituent type defs must be distinct from each other and the introduced value names.

The value names introduced in the constituent type defs must be distinct unless their maximal types are distinguishable.

5.1.1 Sort definitions

Syntax

sort_def ::= id

Terminology

A sort – or synonymously abstract type – is a type with no predefined operations for generating and manipulating its values.

Meaning

A sort definition defines a sort by just giving its name.

Since a sort is not born with predefined operations for generating and manipulating its values, the writer of a specification must define these as values him- or herself. Their definition indirectly states properties about the sort. If for example two values of the same sort are defined and they are required to be different, then indirectly the sort is required to contain at least two values.

Properties

The maximal type of a sort is the sort itself.
5.1.2 Variant definitions

Syntax

\[
\text{variant} \text{ def} ::= \\
\text{id} \text{ == variant}-\text{choice}
\]

\[
\text{variant} ::= \\
\text{constant_variant} | \\
\text{record_variant}
\]

\[
\text{constant_variant} ::= \\
\text{constructor} \text{ opt-subtype_naming}
\]

\[
\text{record_variant} ::= \\
\text{constructor} \text{ component_kinds} \text{ opt-subtype_naming}
\]

\[
\text{constructor} ::= \\
\text{id_or_op} |
\]

\[
\text{component_kinds} ::= \\
\text{(component_kind-list)}
\]

\[
\text{component_kind} ::= \\
\text{opt-destructor} \text{ type_expr} \text{ opt-reconstructor}
\]

\[
\text{destructor} ::= \\
\text{id_or_op} : \\
\]

\[
\text{reconstructor} ::= \\
\text{→ id_or_op}
\]

\[
\text{subtype_naming} ::= \\
\text{@ id}
\]

Meaning

A variant definition is a shorthand for writing a name for an abstract type, names for its constructors and names for destructors and reconstructors. Additionally it generally provides an implicit induction axiom. We shall in the following describe how a variant definition of the form

\text{type}
id == variant₁ | ... | variantₙ

represents a sort definition, some subtype definitions, some value definitions and some axioms. We will deal in turn with constructors, subtypes, destructors, reconstructors and induction axioms. We will also use the following example throughout.

\[
\text{type} \\
\text{Tree} == \\
 \text{empty} @ \text{Empty_Tree} | \\
 \text{node}(\\
 \text{left} : \text{Tree}, \\
 \text{val} : \text{Elem} \to \text{repl_value}, \\
 \text{right} : \text{Tree}) @ \text{Non_Empty_Tree}
\]

- **Constructors**

 \text{Tree} has two variants, one of which is constant and one a record variant. It has two subtype namings.

 The subtype naming is dealt with below, and so we will ignore it here. We also deal with destructors and reconstructors below, and so ignore them here.

 We can now construct a series of declarations that are equivalent to the original. Firstly, we have an abstract type declaration for the variant type being defined:

\[
\text{type} \\
\text{id}
\]

For our example this declaration would be

\[
\text{type} \\
\text{Tree}
\]

Secondly, for each variant, indexed \(i\) say, which is not a wildcard, we obtain a value declaration.

If the variant is a constant variant, say \(\text{con}_i\), we obtain the value declaration

\[
\text{value} \\
\text{con}_i : \text{id}
\]

which simply says that \(\text{con}_i\) is a (constant) value of type \(\text{id}\). For our example we would have the single value declaration

\[
\text{value} \\
\text{empty} : \text{Tree}
\]
If the variant is a record variant having \(n_i \) components, say,

\[
\text{con}_i(T_{i,1}, ..., T_{i,n_i})
\]

we obtain the value declaration

\[
\text{value} \\
\text{con}_i : T_{i,1} \times \cdots \times T_{i,n_i} \rightarrow \text{id}
\]

which says that \(\text{con}_i \) is a total function from the product of its component types to the type \(\text{id} \). \(\text{con}_i \) constructs values of type \(\text{id} \) from values of its component types, (as indicated by the name, "constructor", of its syntactic category).

For our example we would have the single value declaration

\[
\text{value} \\
\text{node} : \text{Tree} \times \text{Elem} \times \text{Tree} \rightarrow \text{Tree}
\]

Constant and record variants which have wildcards for their constructors do not generate any value declarations (except for any destructors or reconstructors attached to the components of a record variant).

Subtypes

Any variant can have a subtype name (an identifier, \(\text{type}_{id_i} \)) associated with it. This will generate an additional type declaration as follows:

- for a non-wildcard constant variant

\[
\text{type} \\
\text{type}_{id_i} = \{ | x : \text{id} \cdot x = \text{id}_i | \}
\]

- for a non-wildcard record variant

\[
\text{type} \\
\text{type}_{id_i} = \\
\{ | x : \text{id} \cdot \\
\exists x_1 : T_{i,1}, ..., x_{n_i} : T_{i,n_i} \cdot \\
x = \text{con}_i(x_1, ..., x_{n_i}) | \}
\]

- for a constant or record wildcard variant

\[
\text{type} \\
\text{type}_{id_i} = \{ | x : \text{id} \cdot p(x) | \}
\]

\[
\text{value} \\
p : \text{id} \rightarrow \text{Bool}
\]

The identifier \(p \) is under-specified. It must not be already in scope, and should be hidden at the level of the smallest enclosing class expression.

Our example introduces two subtype names which generates the subtype declarations
type
Empty_tree = \{ | x : Tree \cdot x = \text{empty} | \},
Non_empty_tree =
\{ | x : Tree \cdot
\exists x_1 : \text{Tree}, x_2 : \text{Elem}, x_3 : \text{Tree} \cdot
x = \text{node}(x_1, x_2, x_3) | \}

- **Destructors**
Each destructor $dest_{i,j}$ introduced in a record variant

\[
\text{con}_i((..., dest_{i,j} : T_{i,j}, ...)\]

generates firstly a value declaration

value

\[
dest_{i,j} : \text{id} \rightsquigarrow T_{i,j}\]

For our example we would have the following declarations

value

\[
\text{left} : \text{Tree} \rightsquigarrow \text{Tree},
\text{val} : \text{Tree} \rightsquigarrow \text{Elem},
\text{right} : \text{Tree} \rightsquigarrow \text{Tree}\]

If a constructor is present, it also generates an axiom of the following form

axiom

\[
\forall x_1 : T_{i,1}, \ldots, x_n : T_{i,n_i} \cdot
\text{dest}_{i,j}(\text{con}_i(x_1, \ldots, x_n)) \equiv x_j\]

For our example we would have the axioms

axiom

\[
\forall x_1 : \text{Tree}, x_2 : \text{Elem}, x_3 : \text{Tree} \cdot
\text{left}(\text{node}(x_1, x_2, x_3)) = x_1,
\forall x_1 : \text{Tree}, x_2 : \text{Elem}, x_3 : \text{Tree} \cdot
\text{val}(\text{node}(x_1, x_2, x_3)) = x_2,
\forall x_1 : \text{Tree}, x_2 : \text{Elem}, x_3 : \text{Tree} \cdot
\text{right}(\text{node}(x_1, x_2, x_3)) = x_3,\]

- **Reconstructors**
Each reconstructor $recon_{i,j}$ introduced in a record variant

\[
\text{con}_i((..., T_{i,j} \rightarrow recon_{i,j}, ...)\]

RAISE/CR/DOC/2/V1
generates firstly a value declaration

\textbf{value} \\
\text{recon}_{i,j} : T_{i,j} \times \text{id} \rightleftharpoons \text{id}

For our example we would have, for the one reconstructor \(\text{repl}_\text{val}\)

\textbf{value} \\
\text{repl}_\text{val} : \text{Elem} \times \text{Tree} \rightleftharpoons \text{Tree}

If there are destructors associated with the variant then for each destructor \(\text{dest}_{i,k}\) there is an axiom relating it to the reconstructor \(\text{recon}_{i,j}\). For the case when \(j\) and \(k\) are equal we obtain the axiom

\[\forall x_j : T_{i,j}, x : \text{id} \cdot \text{dest}_{i,j} (\text{recon}_{i,j} (x_j, x)) \equiv x_j \]

which expresses the fact that a destructor recovers the component value changed by a corresponding reconstructor.

When \(j\) and \(k\) are different we obtain the axiom

\[\forall x_j : T_{i,j}, x : \text{id} \cdot \text{dest}_{i,k} (\text{recon}_{i,j} (x_j, x)) \equiv \text{dest}_{i,k} (x) \]

which expresses the fact that changing a component value by a reconstructor does not affect other components.

In our example, we obtain the following three axioms

\textbf{axiom} \\
\[\forall x_2 : \text{Elem}, x : \text{Tree} \cdot \text{left}(\text{repl}_\text{val}(x_2, x)) \equiv \text{left}(x), \]
\[\forall x_2 : \text{Elem}, x : \text{Tree} \cdot \text{val}(\text{repl}_\text{val}(x_2, x)) \equiv x_2, \]
\[\forall x_2 : \text{Elem}, x : \text{Tree} \cdot \text{right}(\text{repl}_\text{val}(x_2, x)) \equiv \text{right}(x) \]

- \textit{Induction axioms}

Provided there are no wildcard variants in our type definition we will also obtain an induction axiom. (The removal of the induction axiom is the main reason for using wildcard variants — they allow us to later add further variants, or components of variants, and obtain implementation. If there were an induction axiom, making such additions would negate it and so could not give implementation.)

If there is no recursion in the type, i.e. none of the component types in any variants involve \(\text{id}\), then the induction axiom is simple:
∀ f : id → Bool •
(∀ x₁ : T₁,₁, ..., xₙ₁ : T₁,ₙ₁ • f(con₁(x₁,...,xₙ₁)))
∧ ... ∧
(∀ x₁ : Tₙ,₁, ..., xₙₙ : Tₙ,ₙₙ • f(conₙ(x₁,...,xₙₙ)))
⇒
∀ x : id • f(x)

(In this definition, for any variant, index i, say, that is constant we take nᵢ to be zero so that the quantification in the conjunct disappears and we obtain a conjunct f(conᵢ).)

Suppose now that the type is recursive, and that the j'th component in the i'th variant is id. Then in the above definition the i'th conjunct becomes

(∀ x₁ : Tᵢ,₁, ..., xⱼ : id, ..., xₙᵢ : Tᵢ,ₙᵢ •
f(xⱼ) ⇒ f(conᵢ(x₁,...,xⱼ,...,xₙᵢ)))

There are obvious extensions to this when there are two or more component types in a variant equal to id. For two such we would get a conjunct of the form

(∀ x₁ : Tᵢ,₁, ..., xⱼ : id, ..., xᵢ : id, ..., xₙᵢ : Tᵢ,ₙᵢ •
(f(xⱼ) ∧ f(xᵢ)) ⇒
f(conᵢ(x₁,...,xⱼ,...,xᵢ,...,xₙᵢ)))

This is the case in our example, which has the induction axiom

axiom
∀ f : Tree → Bool •
(∀ x₁ : Tree, x₂ : Elem, x₃ : Tree •
f(x₁) ∧ f(x₃) ⇒ f(node(x₁,x₂,x₃)))
⇒
∀ x : Tree • f(x)

So to prove some property of the type Tree we prove it for empty and we prove it for a constructed node assuming it is true for the left and right subtrees.

Another extension is when id is a component of Tᵢ,j instead of equal to it. For instance, suppose Tᵢ,j is U × id. Then the conjunct would be

(∀ x₁ : Tᵢ,₁, ..., (y,z) : (U × id), ..., xₙᵢ : Tᵢ,ₙᵢ •
f(z) ⇒ f(conᵢ(x₁,...,(y,z),...,xₙᵢ)))
This leads us to the possibility that \(id \) is a component of a variant type \(T_{i,j} \) and hence to the problem of mutually recursive variant types. The general rule here is fairly complicated, and the reader is referred to the proof rules ([2]) for its formulation. We will present an example. Suppose we generalise trees to have lists of subnodes, and define lists by variants. Then we might have the definitions

\[
\text{type} \\
\text{Tree} == \\
\quad \text{empty_tree} | \\
\quad \text{node}(\\
\quad \quad \text{val : Elem,} \\
\quad \quad \text{sub : List}), \\
\text{List} == \\
\quad \text{empty_list} | \\
\quad \text{list}(\\
\quad \quad \text{head : Tree,} \\
\quad \quad \text{tail : List})
\]

The induction axiom for these is a joint one, formulated as follows:

\[
\text{axiom} \\
\forall \, \text{tf : Tree} \to \text{Bool, lf : List} \to \text{Bool} \cdot \\
\left(\begin{array}{c}
\text{tf} (\text{empty_tree}) \\
\land \\
\left(\forall \, x_1 : \text{Elem}, x_2 : \text{List} \cdot \\
\quad \text{lf} (x_2) \Rightarrow \text{tf} (\text{node}(x_1, x_2)) \\
\land \\
\text{lf} (\text{empty_list}) \\
\land \\
\left(\forall \, x_1 : \text{Tree}, x_2 : \text{List} \cdot \\
\quad (\text{tf} (x_1) \land \text{lf} (x_2)) \Rightarrow \text{lf} (\text{list}(x_1, x_2)) \\
\right) \Rightarrow \\
\forall \, x_1 : \text{Tree}, x_2 : \text{List} \cdot (\text{tf} (x_1) \land \text{lf} (x_2))
\end{array} \right)
\]

So to prove a pair of properties of \(\text{Tree} \) and \(\text{List} \) we prove the appropriate properties for the constants \(\text{empty_tree} \) and \(\text{empty_list} \), and also prove them for the constructed values assuming the appropriate properties of components.

Properties

The maximal type of the type being defined is the type itself.

The constituent \textit{constructors}, \textit{destructors} and \textit{reconstructors} introduce names of values. The maximal types of these are the maximal types of the types given in the meaning section.
The constituent subtype namings introduces names for types. The maximal type of these is the variant type.

Context conditions

The name of the variant type being defined and all names of the subtypes introduced in the constituent subtype namings must be distinct from each other and from the names in the constituent constructors, destructors and reconstructors.

The constructors, deconstructors and reconstructors must only have the same name if their maximal types are distinguishable.

5.1.3 Union definitions

Syntax

```
union_def ::= 
id = type-name-choice2
```

Meaning

A union definition is a shorthand for writing a variant definition including constructors and destructors. A union definition of the form

```
type
   id = optqualification1 id1 | ... | optqualificationn idn
```

is a shorthand for

```
type
   id ==
   id1_to_id(id1_from_id : optqualification1 id1) | ... |
   idn_to_id(idn_from_id : optqualificationn idn)
```

In addition, in contexts where an expression is required to have a type which is "less than or equal to" id, any expression, say expr, having one of the types id_i (1 ≤ i ≤ n) is allowed - it is not necessary to apply the corresponding constructor, id_i_to_id, in order to get an expression of type id. Loosely, expr is a shorthand for writing id_i_to_id(expr). This may be generalized. See section 6, where the ordering "less than" is defined.
Properties

The maximal type of the type being defined is the type itself.

The implicit constructors and destructors introduce names of values. The maximal types of these are given by the variant_def the union_def is a shorthand for.

Context conditions

The constituent names must represent types and the last ids in the names must be distinct.

5.1.4 Short record definitions

Syntax

\[\text{short_record_def ::= } \]
\[\text{id :: component_kind-string} \]

Meaning

A short record definition is a shorthand for a variant definition with a single variant including a constructor. A short record definition of the form

\[\text{type} \]
\[\text{id :: component_kind}_1 \ldots \text{component_kind}_n \]

is a shorthand for

\[\text{type} \]
\[\text{id == mk_id(component_kind}_1, \ldots ,\text{component_kind}_n) \]

Properties

The maximal type of the type being defined is the type itself.

The implicit constructor, the constituent destructors and the reconstructors introduce names of values. The maximal type of these are given by the variant_def the short_record_def is a shorthand for.
Context conditions

The name of the short record type being defined must be distinct from any name in the constituent destructors and reconstructors.

The implicit constructor, the deconstructors and the reconstructors must only have the same name if their maximal types are distinguishable.

5.1.5 Abbreviation definitions

Syntax

abbreviation_def ::=
 id = type_expr

Meaning

An abbreviation definition introduces a name for the type represented by the type expression.

Properties

The maximal type of the type being defined is the maximal type of the constituent type_expr.

Context conditions

The type being defined must not be among the types that the right-hand side of the abbreviation_def depends on. In this case the definition would be illegally cyclic.

5.2 Value declarations

Syntax

valueDecl ::=
 value commented_value_def-list

commented_value_def ::=
Meaning

A value declaration defines one or more values.

A typing introduces one or more identifiers and/or operators for values of particular types.

Context conditions

The value names introduced in the constituent value defs must be distinct unless their maximal types are distinguishable.

5.2.1 Explicit value definitions

Syntax

explicit_value_def ::=
 single_typing = pure-expr

Meaning

An explicit value definition of the form

value
 single_typing = expr

is a shorthand for

value
The meta function

\[E : \text{single_typing} \to \text{expr} \]

turns the binding part of a single typing into an expression simply by copying identifiers, commas and parentheses and by bracketting operators. The type part of the single typing is ignored by the function. For example,

\[E((x,+) : T) = (x,(+)) \]

Context conditions

The maximal type of the \text{expr} must be less than or equal to the maximal type of the \text{single_typing}. The constituent \text{expr} must be pure.

5.2.2 Implicit value definitions

Syntax

\[
\text{implicit_value_def ::=}
\quad \text{single_typing} \text{ pure-restriction}
\]

Meaning

An implicit value definition of the form

\[
\text{value}
\quad \text{single_typing} \cdot \text{expr}
\]

is a shorthand for
value
 single_typing
axiom
 expr

Context conditions

The restriction must be pure.

5.2.3 Explicit function definitions

Syntax

explicit_function_def ::=
 single_typing formal_function_application ≡ expr opt-pre_condition

formal_function_application ::=
 id_application |
 prefix_application |
 infix_application

id_application ::=
 value-id formal_function_parameter-string

formal_function_parameter ::=
 (opt-binding-list)

prefix_application ::=
 prefix_op id

infix_application ::=
 id infix_op id

pre_condition ::=
 pre readonlyLogical_expr

Meaning

An explicit function definition of the form

value
single_typing

formal_function_application \equiv \text{expr opt pre condition}

is a shorthand for

value

single_typing

axiom

\[Q(\text{formal_function_application})(D) \]
\[E(\text{formal_function_application}) \equiv \text{expr opt pre condition} \]

Two meta functions \(E \) and \(Q \) have been applied here. The function

\[Q : \text{formal_function_application} \rightarrow \text{type_expr} \rightarrow \text{‘an optional quantification’} \]

extracts a parameter quantification from a formal function application. The second argument to the function is a type expression representing the domain type of the function being defined (how to obtain \(D \) should be obvious in the individual case). The function works as follows

\[Q(\text{id}())(D) = \text{‘no quantification’} \]
\[Q(\text{id}(\text{binding}))(D) = \forall \text{binding} : D \cdot \]
\[Q(\text{id}(\text{binding}_1,\ldots,\text{binding}_n))(D) = \forall (\text{binding}_1,\ldots,\text{binding}_n) : D \cdot \]
\[Q(\text{op id}) = \forall \text{id} : D \cdot \]
\[Q(\text{id}_1 \text{ op } \text{id}_2) = \forall (\text{id}_1,\text{id}_2) : D \cdot \]

The function

\[E : \text{formal_function_application} \rightarrow \text{expr} \]

turns a formal function application into an expression simply by copying identifiers, operators, commas and parentheses – bracketting operators in case of an id_application. For example,

\[E(\text{f(x,+)}) = \text{f(x,(+))} \]
\[E(\text{card s}) = \text{card s} \]
\[E(\text{x + y}) = \text{x + y} \]
Properties

In an explicit function def the scope of the formal_function_application is expr and opt-pre_condition.

The context of a formal_function_application determines a maximal context type for the formal_function_application.

In an explicit_function_def the maximal context type of the formal_function_application is the maximal type of the single_typing.

In a formal_function_parameter of the form (b₁, ..., bₙ) the maximal context types of the constituent bindings b₁, ..., bₙ are t₁, ..., tₙ, respectively, where t₁ × ... × tₙ is the parameter part of the maximal context type (a function type).

The maximal type of the id introduced in a prefix_application is the parameter type part, t₁, of the maximal context type, t₁ → acc t₂.

The maximal types of the first and second id in an infix_application are t₁ and t₂, respectively, where the maximal context type is t₁ × t₂ → acc t₃.

Context conditions

The binding in the single_typing must be an id_or_op (i.e. not a product_binding).

If the id_or_op in the single_typing is an identifier then the formal_function_application must be an id_application of this identifier.

If the id_or_op in the single_typing is a prefix operator then the formal_function_application must be a prefix_application of this prefix operator.

If the id_or_op in the single_typing is an infix operator then the formal_function_application must be an infix_application of this infix operator.

The maximal type of the single_typing must be a function type. If the formal_function_application is an infix_application then the parameter part of the function type must be a product type of length 2. If the formal_function_application is an id_application then the function type must be curried at least as many times as there are formal_function_parameters.

I.e. there are the three following forms, where some of the arrows may be substituted with →:

\[
\begin{align*}
\text{id} : & \ t_1 \rightarrow \text{acc}_1 \ t_2 \ ... \ \rightarrow \text{acc}_n \ t_{n+1} \\
\text{id}(\text{id}_1)(\text{id}_2)...(\text{id}_n) & \equiv \text{expr} \ \text{opt} - \text{pre} - \text{condition} \\
\text{prefix_op} : & \ t_1 \rightarrow \text{acc} \ t_2
\end{align*}
\]
prefix_op id \equiv expr \text{opt-\-pre_condition}

\text{infix_op} : t_1 \times t_2 \rightarrow acc t_3
\text{id infix_op id'} \equiv expr \text{opt-\-pre_condition}

The maximal type of the \text{expr} must be less than or equal to the type one obtains from the maximal type of the \text{single_typing}, when one strips as many parameter types as there are formal_function_parameters in the formal_function_application.

The \text{expr} and the \text{opt-pre_condition} must only access those variables and channels that are accessible according to the access descriptors acc_1 - acc_n in the first form example above and the access descriptor acc in the two last form examples.

In an \text{id_application}, the identifiers introduced in the constituent formal_function_parameters must be distinct unless they have distinguishable maximal types. In an \text{infix_application} the two identifiers must be distinct unless they have distinguishable maximal types.

In a \text{pre_condition} the \text{expr} must be readonly and must have the maximal type \text{Bool}.

5.2.4 Implicit function definitions

Syntax

\text{implicit_function_def ::=}
\text{single_typing formal_function_application post_condition opt-pre_condition}

\text{post_condition ::=}
\text{opt-result_naming post readonly_logical-expr}

\text{result_naming ::=}
\text{as binding}

Meaning

An implicit function definition of the form

\text{value}
\text{single_typing}
\text{formal_function_application post_condition opt_pre_condition}

is a shorthand for
The two functions E and Q and the type expression D have been defined above.

Properties

In an implicit_function_def the scope of the formal_function_application is the post_condition and opt-pre_condition.

The context of a post_condition determines a maximal context type for the post_condition.

In an implicit_function_def the maximal context type of the formal_function_application is the maximal type of the single_typing and the maximal context type of the post_condition is the result part of the type one obtains from the maximal type of the single_typing, when one strips as many parameter types as there are formal_function_parameters in the formal_function_application.

In a post_condition the scope of the opt-result_naming is the expr.

In a result_naming the maximal context type of the binding is the maximal context type of the innermost enclosing post_condition.

Context conditions

The binding in the single_typing must be an id_or_op (i.e. not a product_binding).

If the id_or_op in the single_typing is an identifier then the formal_function_application must be an id_application of this identifier.

If the id_or_op in the single_typing is a prefix operator then the formal_function_application must be a prefix_application of this prefix operator.

If the id_or_op in the single_typing is an infix operator then the formal_function_application must be an infix_application of this infix operator.

The maximal type of the single_typing must be a function type. If the formal_function_application is an infix_application then the parameter part of the function type must be a product type of length 2. If the formal_function_application is an id_application then the function type must be curried at least as many times as there are formal_function_parameters.
I.e. there are the three following forms, where some of the arrows may be substituted with \sim:

\[
\begin{align*}
id : t_1 & \rightarrow \text{acc}_1 t_2 \ldots \rightarrow \text{acc}_n t_{n+1} \\
id(id_1)(id_2)\ldots(id_n) & \text{ post-condition opt–pre-condition} \\
\text{prefix_op} : t_1 & \rightarrow \text{acc} t_2 \\
\text{prefix_op id} & \text{ post-condition opt–pre-condition} \\
infix_op : t_1 \times t_2 & \rightarrow \text{acc} t_3 \\
id \text{ infix_op id'} & \text{ post-condition opt–pre-condition}
\end{align*}
\]

The post-condition and the opt-pre-condition must only read those variables and channels that are accessible according to the access descriptors \text{acc}_1 - \text{acc}_n in the first form example above and the access descriptor \text{acc} in the two last form examples.

In a post-condition the expr must be readonly and must have the maximal type \textbf{Bool}.

5.3 Variable declarations

Syntax

\[
\text{variable_decl ::=}
\]

\[
\begin{align*}
\text{variable commented_variable_def-list} \\
\text{commented_variable_def ::=}
\]

\[
\begin{align*}
\text{opt-comment-string variable_def} \\
\text{variable_def ::=}
\]

\[
\begin{align*}
\text{single_variable_def} | \\
\text{multiple_variable_def} \\
\text{single_variable_def ::=}
\]

\[
\begin{align*}
\text{id : type_expr opt-initialisation} \\
\text{initialisation ::=}
\]

\[
\begin{align*}
\text{:= pure-expr} \\
\text{multiple_variable_def ::=}
\]

\[
\begin{align*}
\text{id-list2 : type_expr}
\end{align*}
\]

"
Terminology

A variable is a container capable of holding values of a particular type. All variables are kept in the so-called state.

The contents of a variable can be changed explicitly by an assignment expression. It can thus change contents within its lifetime. Variables are in particular used to define functions with side-effects on some global state.

Meaning

A single variable definition defines a variable and its associated type. In addition, an initialisation expression can be given, the value of which is the initial value of the variable. The initial value is the value kept in the variable ‘when its surrounding class expression is instantiated’ and restored to it by an initialise expression (section 7.19).

If no initialisation is given, the initial value of the variable is just some arbitrarily chosen value within its type.

A multiple variable definition is just a shorthand for two or more single variable definitions. A multiple variable definition of the form

\[\text{variable } id_1, \ldots, id_n : \text{type_expr}\]

is a shorthand for

\[\text{variable } id_1 : \text{type_expr},
\]

\[;\]

\[;\]

\[id_n : \text{type_expr}\]

Properties

In a variable_def the maximal types of the constituent ids is the maximal type of the type_expr.

Context conditions

The names introduced in the constituent variable_defs must be distinct.
The `expr` in an initialisation must be pure.

5.4 Channel declarations

Syntax

```latex
channel_decl ::= 
    channel commented_channel_def-list

commented_channel_def ::= 
    opt-comment-string channel_def

channel_def ::= 
    single_channel_def | 
    multiple_channel_def

single_channel_def ::= 
    id : type_expr

multiple_channel_def ::= 
    id-list2 : type_expr
```

Terminology

A channel is a medium that concurrently executing expressions can communicate through.

In order for two expressions to communicate through a channel, one expression must offer an output communication to the channel whilst the other expression must offer an input communication from the channel.

Communication is synchronized: the outputting expression only outputs to the channel if the inputting expression simultaneously inputs from the channel.

Meaning

A single channel definition defines a channel and its associated type. All values communicated over the channel must have this type.

A multiple channel definition is just a shorthand for two or more single channel definitions. A multiple channel definition of the form
channel
 id_1, ..., id_n : type_expr

is a shorthand for

channel
 id_1 : type_expr,
 :
 id_n : type_expr

Properties

In a `channel_def` the maximal types of the constituent `ids` is the maximal type of the `type_expr`.

Context conditions

The names introduced in the constituent `channel_defs` must be distinct.

5.5 Axiom declarations

Syntax

```
axiom_decl ::= 
   axiom opt-axiom_quantification axiom_def-list
```

```
axiom_quantification ::= 
   forall typing-list •
```

```
axiom_def ::= 
   opt-comment-string opt-axiom_naming pure_logical-expr
```

```
axiom_naming ::= 
   [ id ]
```

Meaning

An `axiom_decl` defines one or more axioms, each being a boolean `expr` defining additional properties of names introduced by other definitions.
An axiom can be given a name \((\text{axiom_naming})\), but such a naming does not add to the properties.

Each axiom is implicitly prefixed with ‘\(\square\)’. That is, an \texttt{axiom_decl} of the form

\[
\begin{align*}
\text{axiom} & \quad \text{opt_axiom_naming}_1 \, \text{expr}_1, \\
& \quad \vdots \\
& \quad \text{opt_axiom_naming}_n \, \text{expr}_n
\end{align*}
\]

is a shorthand for

\[
\begin{align*}
\text{axiom} & \quad \text{opt_axiom_naming}_1 \, \Box \, \text{expr}_1, \\
& \quad \vdots \\
& \quad \text{opt_axiom_naming}_n \, \Box \, \text{expr}_n
\end{align*}
\]

An \texttt{axiom_quantification} is a shorthand for a distributed quantification. That is, an \texttt{axiom_decl} of the form

\[
\begin{align*}
\text{axiom \forall} & \quad \text{typing_list} \, \bullet \\
& \quad \text{opt_axiom_naming}_1 \, \text{expr}_1, \\
& \quad \vdots \\
& \quad \text{opt_axiom_naming}_n \, \text{expr}_n
\end{align*}
\]

is a shorthand for

\[
\begin{align*}
\text{axiom} & \quad \text{opt_axiom_naming}_1 \, \Box \, \forall \, \text{typing_list} \, \bullet \, \text{expr}_1, \\
& \quad \vdots \\
& \quad \text{opt_axiom_naming}_n \, \Box \, \text{typing_list} \, \bullet \, \text{expr}_n
\end{align*}
\]

Properties

In an \texttt{axiom_decl} the scope of the opt-\texttt{axiom_quantification} is the \texttt{axiom_def-list}.
Context conditions

The names introduced in the constituent axiom_def must be distinct.

The expr in an axiom_def must be readonly and have the maximal type \textbf{Bool}.
6 Type expressions

Syntax

type_expr ::=
type_literal |
type-name |
product_type_expr |
set_type_expr |
list_type_expr |
map_type_expr |
function_type_expr |
subtype_expr |
bracketted_type_expr

Terminology

A type is a set of values. We distinguish between three kinds of types:

- **predefined types** are represented by literals build into the language. These types include for example the integers and the booleans.
- **abstract types** are represented by sort names defined in sort definitions (section 5.1.1).
- **compound types** are build from other types by application of a type operator to one or more types.

A type T_1 is a subtype of a type T_2 if T_1 is a subset of T_2.

A type is said to be maximal if (it can be representated by a type expression and) it is not a subtype of any other type (which can be represented by a type expression).

The maximal type of a type is the maximal type of which it is a subtype.

Two types are undistinguishable if their maximal types only differ wrt. constituent access descriptors in constituent function types.

Two types are distinguishable if they are not undistinguishable.

The union definitions in a specification give rise to an ordering on types, called less than. This ordering is defined inductively by the following rules:
1. Each type, \(t \), represented on the right-hand side of a union definition is less than the type, \(t' \), represented on the left-hand side.

2. If \(t \) is less than \(t' \) and \(t' \) is less than \(t'' \) then \(t \) is less than \(t'' \). (The ordering is transitive.)

3. If \(t \) is less than \(t' \) and \(\text{acc}' \) contains all the accesses of \(\text{acc} \) then

 (a) \(\ldots \times t \times \ldots \) is less than \(\ldots \times t' \times \ldots \)

 (b) \(\text{t-infset} \) is less than \(\text{t'-infset} \)

 (c) \(t^\omega \) is less than \(t'^\omega \)

 (d) \(t \rightsquigarrow_s \) is less than \(t' \rightsquigarrow_s \), where \(s \) is some type

 (e) \(s \rightsquigarrow \text{t} \) is less than \(s \rightsquigarrow \text{t'} \), where \(s \) is some type

 (f) \(s \rightsquigarrow \text{acc} \text{t} \) is less than \(s \rightsquigarrow \text{acc'} \text{t'} \), where \(s \) is some type

A type, \(t \), is said to be an *upper bound* of a collection of types if all types in the collection is less than or equal to \(t \).

A type is said to be a *least upper bound* of a collection of types if it is an upper bound of this collection and it is less than all other upper bounds.

Meaning

A type expression represents a type.

Properties

A *type_expr* has an associated maximal type, which is equal to the maximal type of the type it represents.

6.1 **Names**

Context conditions

For a *type_expr* being a *name*, the *name* must represent a type.
6.2 Type literals

Syntax

type_literal ::=
 Unit
 Bool
 Int
 Nat
 Real
 Text
 Char

Meaning

A type literal represents a predefined type. There are the following literals:

Unit =
 { () }
Bool =
 { true,false }
Int =
 { ...,2,1,0,1,2,... }
Nat =
 { | i : Int • i ≥ 0 |}
Real =
 { ...,4.3,...,12.23,... }
Text =
 Char*
Char =
 { 'a','b',... }

The unit value ‘()’ represents the single value in type Unit. The natural numbers Nat is a subtype of the integers Int. Characters Char are the ASCII characters. Texts Text are just character lists. A Text literal in double quotes ("...") is a shorthand for a list of characters. That is, a text of the form

"c_1 ... c_n"

is a shorthand for

⟨'c_1'...,′c_n'⟩
Properties

The maximal type of Unit is Unit.
The maximal type of Bool is Bool.
The maximal type of Int is Int.
The maximal type of Nat is Int.
The maximal type of Real is Real.
The maximal type of Text is Charw.
The maximal type of Char is Char.

6.3 Product type expressions

Syntax

product_type_expr ::=
 type_expr-product2

Terminology

A product is a value of the form

$$(v_1,\ldots,v_n)$$

The length of a product_type_expr is the number of constituent type_exprs.

Meaning

A product type expression of the form

$$\text{type_expr}_1 \times \ldots \times \text{type_expr}_n$$

represents the type of all products of the form

$$(v_1,\ldots,v_n)$$

where each v_i has the type represented by type_expr_i.
Properties

The maximal type of a product type_expr of the form \(t_1 \times \ldots \times t_n \) is \(t'_1 \times \ldots \times t'_n \), where \(t'_1, \ldots, t'_n \) are the maximal types of the constituent type_exprs \(t_1, \ldots, t_n \).

6.4 Set type expressions

Syntax

\[
\text{set_type_expr ::=} \\
\quad \text{finite_set_type_expr |} \\
\quad \text{infinite_set_type_expr}
\]

\[
\text{finite_set_type_expr ::=} \\
\quad \text{type_expr-set}
\]

\[
\text{infinite_set_type_expr ::=} \\
\quad \text{type_expr-infset}
\]

Terminology

A \textit{set} is an unordered collection of distinct values of the same type.

Meaning

A set type expression represents a type of subsets of the type represented by the constituent type expression. If the type operator is \textit{-set}, the type will contain all finite subsets. If the type operator is \textit{-infset}, the type will contain all (infinite as well as finite) subsets.

Properties

The maximal type of a set_type_expr of the form \(t\text{-set} \) or \(t\text{-infset} \) is \(t'\text{-infset} \), where \(t' \) is the maximal type of the constituent type_expr \(t \).
6.5 List type expressions

Syntax

\[
\text{list}_\text{type}_\text{expr} ::= \\
\quad \text{finite}_\text{list}_\text{type}_\text{expr} \mid \\
\quad \text{infinite}_\text{list}_\text{type}_\text{expr}
\]

\[
\text{finite}_\text{list}_\text{type}_\text{expr} ::= \\
\quad \text{type}_\text{expr}^*
\]

\[
\text{infinite}_\text{list}_\text{type}_\text{expr} ::= \\
\quad \text{type}_\text{expr}^\omega
\]

Terminology

A list is an ordered sequence of values of the same type, possibly including duplicates.

Meaning

A list type expression represents a type of lists of elements of the type represented by the constituent type expression. If the type operator is \(^* \), the type will contain all finite lists. If the type operator is \(^\omega \), the type will contain all (infinite as well as finite) lists.

Properties

The maximal type of a \(\text{list}_\text{type}_\text{expr} \) of the form \(t^* \) or \(t^\omega \) is \(t'^\omega \), where \(t' \) is the maximal type of the constituent \(\text{type}_\text{expr} t \).

6.6 Map type expressions

Syntax

\[
\text{map}_\text{type}_\text{expr} ::= \\
\quad \text{type}_\text{expr} \rightarrow \text{type}_\text{expr}
\]
Terminology

A map can be conceived as a (possibly infinite) collection of pairs \((v_1, v_2)\) where \(v_1\) is a domain value, \(v_2\) is a range value and \(v_1\) is related to \(v_2\). The domain of a map is the set of values, \(v_1\), for which there exists a value, \(v_2\), such that \((v_1, v_2)\) is in the map. The range of a map is the set of values, \(v_2\), for which there exists a value, \(v_1\), such that \((v_1, v_2)\) is in the map.

A map is said to be non-deterministic if it relates a domain value with more than one range value.

A map can be applied to a value in its domain to find a corresponding value in the range – arbitrarily chosen among the possible in the non-deterministic case.

Meaning

A map type expression represents the type of all maps, each of which has a subset of the first type as domain and a subset of the second type as range.

Properties

The maximal type of a \texttt{map_type_expr} of the form \(t_1 \rightarrow^m t_2\) is \(t'_1 \rightarrow^m t'_2\), where \(t'_1\) and \(t'_2\) are the maximal types of the constituent \texttt{type_exprs} \(t_1\) and \(t_2\).

6.7 Function type expressions

Syntax

\[
\text{function_type_expr ::= type_expr function_arrow result_desc} \\
\text{function_arrow ::= } \sim \mid \rightarrow \\
\text{result_desc ::= opt-access_desc-string type_expr}
\]
Terminology

A function maps the values of one type – the parameter type – into values of another type – the result type. In addition a function can, when applied:

- Access variables by reading from them or writing to them.
- Access channels by inputting from them or outputting to them.

An applicative function is a function that does not access variables or channels. An imperative function is a function that accesses variables or channels.

An operation is an imperative function that does not access channels, only variables. A process is an imperative function that accesses channels.

A function’s extended parameter type can be defined as:

- its parameter type,
- the variables it can read from together with their types,
- the channels it can input from together with their types.

A function’s extended result type can be defined as:

- its result type,
- the variables it can write to together with their types,
- the channels it can output to together with their types.

In general, if a function is applied to a value, evaluated in a state and inputs values from channels, then if all of these satisfy the subtype constraints of the extended parameter type, then the subtype constraints of the extended result type will be satisfied. Otherwise, one can only be guaranteed that the maximal type constraints of the extended result type are satisfied.

Meaning

A function type expression represents a type of functions from the parameter type represented by the type expression to the result type represented by the type expression in the result description. The access description string specifies which accesses to variables and channels the functions are allowed when applied. Depending on the function arrow the functions are either partial or total as described below.
• **Partial functions**

A partial function type expression of the form

\[
\text{type_expr}_1 \downarrow \text{opt_access-desc_string type_expr}_2
\]

defines a set of functions, \(f \), such that for any \(x \) belonging to the maximal type of \(\text{type_expr}_1 \), the application

\[
f(x)
\]
is an expression that might deadlock, default or diverge at any stage in its execution.

If

- \(x : \text{type_expr}_1 \),
- and the current state satisfies the subtype constraints on the variables,
- and any inputs satisfy the subtype constraints on the channels,

then any outputs will satisfy the subtype constraints on the channels.

If additionally the application expression terminates – possibly after some sequence of communication, then

- the resulting value will be within \(\text{type_expr}_2 \),
- and the resulting state will satisfy the subtype constraints on the variables.

Alternatively, if

- \(\neg(x : \text{type_expr}_1) \) but \(x \) belonging to the maximal type of \(\text{type_expr}_1 \),
- or the current state does not satisfy the subtype constraints on the variables,
- or some inputs do not satisfy the subtype constraints on the channels,

then the subtype constraints on outputs, resulting value and resulting state cannot be guaranteed. The maximal type constraints will, however, still be guaranteed.

• **Total functions**

A total function type expression of the form

\[
\text{type_expr}_1 \rightarrow \text{opt_access-desc_string type_expr}_2
\]

defines the subset of the partial functions \(f \):

\[
\text{type_expr}_1 \downarrow\text{opt_access-desc_string type_expr}_2
\]
such that if

- \(x : \text{type_expr}_1 \),
– and the current state satisfies the subtype constraints on the variables,
– and any inputs satisfy the subtype constraints on the channels,

then the application

\[f(x) \]

is a total expression. This can also be expressed by defining total functions as a subtype of partial functions. A type expression of the form

\[\text{type_expr} \rightarrow \text{result_desc} \]

is a shorthand for

\[
\{ \mid f : \text{type_expr} \rightarrow \text{result_desc} \cdot \\
\forall x : \text{type_expr} \cdot f(x) \text{ post true} \} \]

Properties

The maximal type of a function type_expr of the form \(t_1 \sim \text{acc} t_2 \) or \(t_1 \rightarrow \text{acc} t_2 \) is \(t'_1 \sim \text{acc} t'_2 \), where \(t'_1 \) and \(t'_2 \) are the maximal types of the constituent type_exprs \(t_1 \) and \(t_2 \).

6.7.1 Access descriptions

Syntax

\[
\text{access_desc} ::= \\
\quad \text{access_mode} \text{ access-list} \\
\]

\[
\text{access_mode} ::= \\
\quad \text{read} \mid \\
\quad \text{write} \mid \\
\quad \text{in} \mid \\
\quad \text{out} \\
\]

\[
\text{access} ::= \\
\quad \text{variable_or_channel-name} \mid \\
\quad \text{completed_access} \mid \\
\quad \text{comprehended_access} \\
\]

\[
\text{completed_access} ::= \\
\quad \text{opt-qualification} \text{ any} \\
\]

\[
\text{comprehended_access} ::= \\
\quad \{ \text{access-list} \mid \text{pure-set_limitation} \} \\
\]

RAISE/CR1/DOC/2/V1
Meaning

A function type expression describes what global variables and channels can be accessed from the functions it represents. For each variable and channel it is additionally described in what way it can be accessed.

An access description describes the variables/channels having a particular access-mode. A variable can be given access-mode:

- **read** if it may only be read from.
- **write** if it may be written to, that is: changed by an assignment; variables with this access-mode have automatically **read** access-mode.

A channel can be given access-mode:

- **in** if it may be input from.
- **out** if it may be output to.

An access describes a logically related set of variables/channels having the access-mode. An access list gives access to the union of the individual accesses. An access can besides a name be a:

- **completed access**
 A completed access gives access to all variables/channels introduced by a particular model.
 If the qualification is absent, all variables/channels in the innermost enclosing model are given access to, except that completed accesses within schemes refer to the model at the point of instantiation, not that at the point of definition.
 If the qualification is present, it represents a model. All the variables/channels in that model are then given access to.

- **comprehended access**
 A comprehended access gives access to the set of variables/channels obtained as follows: for each environment in the set of environments represented by the set limitation, the union of the accesses in the access list is obtained. The result is the union of all these unions.

Context conditions

For an access being a name, the name must represent
• a variable if it occurs in the access-list of an access_descr having read or write as access_mode

• a channel if it occurs in the access-list of an access_descr having in or out as access_mode

In a comprehended_access the set limitation must be pure.

6.8 Subtype expressions

Syntax

subtype_expr ::=
 { | single_typing pure-restriction | }

Meaning

A subtype expression represents a subtype of the type represented by the single typing. The subtype contains any value that makes the restriction hold – evaluated in the environment obtained by matching the value against the decomposer also represented by the single typing.

Properties

The maximal type of a subtype_expr is the maximal type of the constituent single_typing.

Context conditions

The restriction must be pure.

6.9 Bracketted type expressions

Syntax

bracketted_type_expr ::=
 (type_expr)
Meaning

A bracketted type expression represents the same type as represented by the type expression.

Properties

The maximal type of a bracketed_type_expr is the maximal type of the constituent type_expr.
7 Expressions

Syntax

expr ::= value_literal | value_or_variable-name | pre_name | basic_expr | product_expr | set_expr | list_expr | map_expr | function_expr | application_expr | quantified_expr | equivalence_expr | post_expr | disambiguation_expr | bracketted_expr | infix_expr | prefix_expr | comprehended_expr | initialise_expr | assignment_expr | input_expr | output_expr | structured_expr

Terminology

An expression is evaluated – or synonymously ‘executed’ – in a state to yield a value. In addition, the expression may

- read the value of variables,
- write to variables by assignments,
- input from channels,
- output to channels.

More formally, the effect of an expression – evaluated in a state – is to offer zero or more communications on channels and then to do one of the following
• **terminate** successfully thereby returning a value and a possibly changed state.

• **deadlock** when it has as its only possible effect to communicate with the surroundings through a channel that is concealed from (not visible in) the surroundings. Such a situation can for example arise when the expression locally declares a channel and then tries to communicate with the surroundings through it.

• **default** when its effect can never be selected in an internal choice.

• **diverge** when it has as a possible effect to continue executing without terminating, without attempting to input from or output to channels, and without deadlocking or defaulting.

An expression is **non-deterministic** if it may choose internally between a set of possible effects. Two evaluations of the expression in the same state might thus give two different effects. As a consequence, the eventually returned value can be one of a set of possible values. Likewise the returned state can be one of a set of possible states.

An expression is **converging** if it has as the only possible behaviour to terminate successfully.

An expression is **total** if

• there is no possibility of deadlock, default or divergence at any stage in the execution of the expression (even after some sequence of communications),

• if at any stage in the execution of the expression it comes to an end then the result returned is deterministic,

An expression may be build from sub-expressions. Unless otherwise stated the following holds:

1. Any sub-expression may be non-deterministic and this non-determinism propagates such that the whole expression gets non-deterministic.

2. Any sub-expression may be diverging, deadlocking or defaulting. The diverging, deadlocking or defaulting of the sub-expression propagates such that the whole expression becomes diverging, deadlocking or defaulting.

An **expr** is said to **access** a variable if it reads (from) or writes to it.

An **expr** is said to **access** a channel if it inputs from or outputs to it.

An **expr** is said to be **pure** if it does not access any variable or channel.

An **expr** is said to be **readonly** if it does not write to any variable and it does not input from or output to any channel.
Two expressions are said to access the state \textit{independently} if each of the expressions does not read any of the variables which are written in by the other expression.

Two expressions are said to be \textit{parallelizable} if they access the state independently.

An expression is said to \textit{offer a communication}, if it inputs from or outputs to a channel.

\textbf{Properties}

An expression has an associated maximal type (such that if the expression terminates successfully then its value belongs to its maximal type).

An expression also has an associated description of which variables it reads, which variables it writes to, which channels it inputs from and which channels it outputs to. In this description the following conventions has been used: If an expression writes to a variable, then it also reads that variable.

\textbf{7.1 Value literals}

\textbf{Syntax}

\begin{verbatim}
value_literal ::=
 unit_literal |
 bool_literal |
 int_literal |
 real_literal |
 text_literal |
 char_literal

unit_literal ::=
 ()

bool_literal ::=
 true |
 false
\end{verbatim}

\textbf{Meaning}

The effect of a value literal is to return the value represented by the literal.
Properties

The maximal type of a unit literal is Unit.
The maximal type of a bool literal is Bool.
The maximal type of a int literal is Int.
The maximal type of a real literal is Real.
The maximal type of a text literal is Charω.
The maximal type of a char literal is Char.

A value literal does not access any variables or channels.

7.2 Names

Properties

A name representing a value does not access any variables or channels. A name representing a variable reads that variable.

Context conditions

For an expr being a name, the name must represent a value or a variable.

7.3 Pre names

Syntax

pre_name ::= variable-name`

Meaning

A pre_name occurs within a post condition, see section 7.13. The effect of a pre_name is to return the contents in the pre-state of the variable represented by name.

Properties

The local variable definitions of the innermost enclosing post condition are hidden in the name.
The maximal type of a pre_name is the maximal type of the constituent name.

A pre_name reads the variable it represents.

Context conditions

A pre_name must occur within a post_condition.

The name must represent a variable.

7.4 Basic expressions

Syntax

basic_expr ::=
 chaos |
 skip |
 stop |
 swap

Meaning

- The effect of chaos is to diverge.
- The effect of skip is to return the unit value of type Unit.
- The effect of stop is to deadlock.
- The effect of swap is to default.

Properties

The maximal type of a basic_expr is Unit.

A basic_expr does not access any variables or channels.
7.5 Product expressions

Syntax

product_expr ::= (expr-list2)

Meaning

The effect of a product expression is the effect of the expression list evaluated as a product.

Properties

The maximal type of a product_expr of the form \((e_1, \ldots, e_n)\) is \(t_1 \times \ldots \times t_n\), where \(t_1, \ldots, t_n\) are the maximal types of the constituent exprs \(e_1, \ldots, e_n\).

A product_expr accesses any of the variables and channels which the constituent exprs access.

Context conditions

The constituent exprs must access the state independently and at most one of them may offer a communication.

7.6 Set expressions

Syntax

set_expr ::=
 ranged_set_expr |
 enumerated_set_expr |
 comprehended_set_expr
7.6.1 Ranged set expressions

Syntax

```plaintext
ranged_set_expr ::= 
    \{ readonly_integer-expr .. readonly_integer-expr \}
```

Meaning

The effect of a ranged set expression is to return a set of integers in a range delimited by a lower bound and an upper bound.

The first constituent expression is evaluated to return the lower bound \(i_1 \) and the second constituent expression is evaluated to return the upper bound \(i_2 \). The set contains all integers \(i \) such that \(i_1 \leq i \leq i_2 \).

Properties

The maximal type of a `ranged_set_expr` is `Int-infset`.

A ranged_set_expr accesses any of the variables and channels which the constituent exprs access.

Context conditions

The constituent exprs must be readonly and must have the maximal type `Int`.

7.6.2 Enumerated set expressions

Syntax

```plaintext
enumerated_set_expr ::= 
    \{ readonly-opt-expr-list \}
```

Meaning

The effect of an enumerated set expression is to return a set of explicitly specified values.
The set contains all elements in the list returned by the expression list – evaluated as a list.

Properties

The maximal type of an enumerated_set_expr having one or more constituent exprs is t-infset, where t is the least upper bound of the maximal types of the constituent exprs. The maximal type of an enumerated_set_expr having no constituent exprs is t-infset, where t is free to be any type.

An enumerated_set_expr accesses any of the variables and channels which the constituent exprs access.

Context conditions

The constituent exprs must be readonly.

The maximal types of the constituent exprs must have a least upper bound.

7.6.3 Comprehended set expressions

Syntax

comprehended_set_expr ::=
{ readonly-expr | set_limitation }

set_limitation ::=
typing-list opt-restriction

restriction ::=
• readonly_logical-expr

Meaning

The effect of a comprehended set expression is to return a set, the elements of which are obtained by evaluating the constituent expression in all those environments that satisfies a certain restriction.

For each environment in the set of environments represented by the set limitation (see below), the expression is evaluated. If the expression is convergent and deterministic, the returned
value is included in the set. In the case of non-convergence or non-determinism, the particular evaluation does not contribute with a set member. A comprehended set expression is convergent and deterministic.

A set limitation represents a subset of the environments that the typing list represents: those that makes the restriction hold. An absent restriction is equivalent to the restriction $\bullet \text{true}$.

We say that a restriction holds if it is convergent and deterministic and returns the value true.

Properties

In a comprehended set expr the scope of the set limitation extends to the constituent expr.

In a set limitation the immediate scope of the typings is the constituent restriction.

The maximal type of a comprehended set expr is $t\text{-infset}$, where t is the maximal type of the constituent expr.

A comprehended set expr reads any of the variables and channels which the constituent expr and set limitation read.

A set limitation reads any of the variables and channels which the constituent restriction reads.

A restriction reads any of the variables and channels which the constituent expr reads.

Context conditions

In a comprehended set expr the constituent expr must be readonly.

In a restriction the constituent expr must be readonly and must have the maximal type Bool.

7.7 List expressions

Syntax

\[
\text{list_expr ::= }
\begin{array}{l}
\text{ranged_list_expr} \\
\text{enumerated_list_expr} \\
\text{comprehended_list_expr}
\end{array}
\]
7.7.1 Ranged list expressions

Syntax

\[
\text{ranged_list_expr ::= (readonly_integer-expr .. readonly_integer-expr)}
\]

Meaning

The effect of a ranged list expression is to return a list of integers in a range delimited by a lower bound and an upper bound.

The two constituent expressions are evaluated to return the integers \(i_1 \) – the value of the first constituent expression – and \(i_2 \) – the value of the second constituent expression. The list contains all integers \(i \) such that \(i_1 \leq i \leq i_2 \), occurring in increasing order.

Properties

The maximal type of a ranged_list_expr is \(\text{Int}^\omega \).

A ranged_list_expr reads any of the variables and channels which the constituent exprs read.

Context conditions

The constituent exprs must be readonly and must have maximal type \(\text{Int} \).

7.7.2 Enumerated list expressions

Syntax

\[
\text{enumerated_list_expr ::= (readonly-opt-expr-list)}
\]

Meaning

The effect of an enumerated list expression is the effect of the expression list evaluated as a list.
Properties

The maximal type of an enumerated_list_expr having one or more constituent exprs is t^ω, where t is the least upper bound of the maximal types of the constituent exprs.

The maximal type of an enumerated_list_expr having no constituent exprs is t^ω, where t is free to be any type.

An enumerated_list_expr reads any of the variables and channels which the constituent exprs read.

Context conditions

The constituent exprs must be readonly.

The maximal types of the constituent exprs must have a least upper bound.

7.7.3 Comprehended list expressions

Syntax

comprehended_list_expr ::=
(readonly_expr | list_limitation)

list_limitation ::=
binding in readonly_list_expr opt-restriction

Meaning

The effect of a comprehended list expression is to return a list generated on the basis of another list.

For each environment in the list of environments represented by the list limitation (see below) – processed from left to right – the constituent expression is evaluated. The returned value is included in the list at the corresponding position.

A list limitation evaluates to a list of environments as follows. The constituent expression returns a list. Each list element in the list – processed from left to right – is then matched against the binding to obtain an environment. In case this environment makes the restriction hold, the environment is included in the resulting environment list at the corresponding position.
An absent restriction is equivalent to the restriction • true.

Properties

In a comprehended_list_expr the scope of the list_limitation extends to the constituent expr.

In a list_limitation the immediate scope of the binding is the constituent restriction.

The maximal type of a comprehended_list_expr is t^ω, where t is the maximal type of the constituent expr.

In a list_limitation the maximal context type of the constituent binding is t, where t^ω is the maximal type of the constituent expr.

A comprehended_list_expr reads any of the variables and channels which the constituent expr and list_limitation read.

A list_limitation reads any of the variables and channels which the constituent expr and restriction read.

Context conditions

In a comprehended_list_expr the constituent expr must be readonly.

In a list_limitation the constituent expr must be readonly and must have a maximal type which is a list type.

7.8 Map expressions

Syntax

map_expr ::=
 enumerated_map_expr |
 comprehended_map_expr
7.8.1 Enumerated map expression

Syntax

\[
\text{enumerated_map_expr ::= [opt-expr_pair-list]}
\]

\[
\text{expr_pair ::= readonly-expr} \mapsto \text{readonly-expr}
\]

Meaning

The effect of an enumerated map expression is to return a map of explicitly specified pairs.

Each expression pair in the expression pair list represents a pair of values. The map contains all the pairs represented by such expression pairs. In case the expression pair list is empty the map is empty.

Properties

The maximal type of an \textit{enumerated_map_expr} having one or more constituent \textit{expr_pairs} is \(t_1 \leftarrow t_2 \), where \(t_1 \) is the least upper bound of the domain types and \(t_2 \) is the least upper bound of the range types of the constituent \textit{expr_pairs}.

The maximal type of an \textit{enumerated_map_expr} having no constituent \textit{exprs} is \(t_1 \leftarrow t_2 \), where \(t_1 \) and \(t_2 \) are free to be any types.

The maximal domain type and the maximal range type of an \textit{expr_pair} are the maximal types of the first and the second constituent \textit{expr}, respectively.

An \textit{enumerated_map_expr} reads any of the variables and channels which the constituent \textit{expr_pairs} read.

An \textit{expr_pair} reads any of the variables and channels which the constituent \textit{exprs} read.

Context conditions

In an \textit{enumerated_map_expr} the maximal domain types of the the constituent \textit{expr_pairs} must have a least upper bound and the maximal range types of the the constituent \textit{expr_pairs} must have a least upper bound.
In an expr_pair the exprs must be readonly.

7.8.2 Comprehended map expressions

Syntax

```
comprehended_map_expr ::= [ expr_pair | set_limitation ]
```

Meaning

The effect of a comprehended map expression is to return a map the pairs of which are obtained by evaluating the expression pair in all those environments that satisfies a certain restriction.

For each environment in the set of environments represented by the set limitation, the expression pair is evaluated. If the expression pair is convergent and deterministic, the resulting value pair is included in the map. In the case of non-convergence or non-determinism, the particular evaluation does not contribute with a pair. A comprehended map expression is convergent and deterministic.

Properties

In a comprehended_map_expr the scope of the set_limitation extends to the constituent expr_pair.

The maximal type of a comprehended_map_expr is \(t_1 \rightarrow t_2 \), where \(t_1 \) is the maximal domain type and \(t_2 \) is the maximal range type of the constituent expr_pair.

A comprehended_map_expr reads any of the variables and channels which the constituent expr_pair and set_limitation read.

7.9 Function expressions

Syntax

```
function_expr ::= 
    \( \lambda \) lambda_parameter \( \cdot \) expr
```

```
lambda_parameter ::= 
    lambda_typing | 
```

RAISE/CR1/DOC/2/V1


```latex
single_typing

lambda_typing ::= ( opt-typing-list )
```

Meaning

The effect of a function expression is to return a function. The lambda parameter represents:

- a type – the parameter type of the function,
- a decomposer – against which an actual parameter is matched to yield a parameter environment mapping formal parameter identifiers and operators to actual parameter values.

In the case of a single typing the type and decomposer are those represented by the single typing. In the case of a lambda typing, the type and decomposer are those represented by the optional typing list.

When the function is applied to an actual parameter p within the parameter type, p is matched against the decomposer to yield an environment in which the body expression is evaluated.

Properties

In a function_expr the scope of the lambda_parameter is expr.

The maximal type of a function_expr is $t_1 \sim acc\ t_2$, where t_1 is the maximal type of the lambda_parameter, t_2 is the maximal type of the expr and acc is a description of which variables and channels the expr accesses.

The maximal type of an lambda_parameter is given for each of its alternatives.

The maximal type of a lambda_typing is Unit if there is no typing-list present else it is the maximal type of the typing the typing-list is a shorthand for.

A function_expr does not access any variables or channels.

7.10 Application expressions

Syntax

```latex
application_expr ::= 
```
Expressions

\[\text{list or map or function-expression} \ actual_function_parameter-string \]

\[
\text{actual_function_parameter ::= (opt-exp-list)}
\]

Meaning

The effect of an application expression is obtained by applying a function, a map or a list to an actual parameter.

An application of the form where there is only one actual function parameter:

\[\text{expr actual_function_parameter} \]

represents the application of a function, map or list to an actual parameter. The expression and actual function parameter are evaluated to return respectively an applicable value and an actual parameter. The actual parameter is the value returned by the optional expression list evaluated as a product.

In the case the applicable value is a:

- function – this is just applied to the actual parameter.
- map – the returned value is non-deterministically chosen between those mapped to by the actual parameter in the map. If the actual parameter maps to no values in the map, the application defaults.
- list – the actual parameter must be a positive number between one and the length of the list. In that case, the list element at that position becomes the value returned. In case the actual parameter does not indicate a position in the list, the application diverges.

An application expression of the form

\[\text{expr actual_function_parameter}_1 \ldots \text{actual_function_parameter}_n \]

is equivalent to

\[(\ldots(\text{expr actual_function_parameter}_1)\ldots) \text{actual_function_parameter}_n \]
Properties

The properties of an `application_expr` are given for the case, where there is only one `actual_function_parameter`. The properties for the case where there are more than one `actual_function_parameter` is given by the properties of its equivalent `application_expr` (see above).

The maximal type of an `application_expr` is determined by the maximal type of the constituent `expr`. If this is:

- a function type, $t_1 \sim \text{acc} \ t_2$, then it is the result type, t_2,
- list type, t^ω, then it is the element type, t,
- a map type, $t_1 \Rightarrow m\ t_2$, then it is the range type t_2.

An `application_expr` accesses any of the variables and channels which the constituent `expr` and `actual_function_parameter` access and if the `expr` has a maximal type which is a function type, $t_1 \sim \text{acc} \ t_2$, then also any of the variables and channels which the function body accesses as described in acc.

Context conditions

The context conditions of an `application_expr` are given for the case, where there is only one `actual_function_parameter`. The context conditions for the case where there are more than one `actual_function_parameter` is given by the context conditions of its equivalent `application_expr` (see above).

In an `application_expr` the maximal type of the `expr` must be a function type, a list type or a map type. Furthermore, if the maximal type of the `expr` is:

- a function type, $t_1 \sim \text{acc} \ t_2$, then the maximal type of the `actual_function_parameter` must be less than or equal to the type t_1
- a list type, t^ω, then the maximal type of the `actual_function_parameter` must be equal to `Int`
- a map type, $t_1 \Rightarrow m\ t_2$, then the maximal type of the `actual_function_parameter` must be less than or equal to the type t_1

In an `application_expr` the following constructs must access the state independently and at most one of them may offer a communication: the `expr` and the `actual_function_parameter` and if the `expr` has a maximal type which is a function type, $t_1 \sim \text{acc} \ t_2$, then also the function body (the access of which is described in acc).
In an actual function parameter the constituent expression must access the state independently and at most one of them may offer a communication.

7.11 Quantified expressions

Syntax

\[
\text{quantified_expr ::= } \\
\text{quantifier typing-list restriction}
\]

Meaning

The effect of a quantified expression is to return a boolean value depending on the value returned by a predicate for each environment in a set of environments. The typing list represents a set of environments. In case the quantifier is:

- \(\forall\), the returned value is true iff. the restriction holds for all the environments.
- \(\exists\), the returned value is true iff. the restriction holds for at least one of the environments.
- \(\exists!\), the returned value is true iff. the restriction holds for exactly one of the environments.

A quantified expression is convergent and deterministic.

Properties

In a quantified expression the scope of the constituent typings is the restriction.

The maximal type of a quantified expression is \text{Bool}.

A quantified expression reads any of the variables and channels which the constituent restriction reads.
7.12 Equivalence expressions

Syntax

\[
equivalence_expr ::= \text{expr} \equiv \text{expr} \text{ opt-pre_condition}
\]

Meaning

The effect of an `equivalence_expr` is to return a boolean value that depends on whether the two `expr`s yield the same effect, when each is evaluated in the current state. The returned value is `true` if and only if at least one of the following two conditions are satisfied:

- The `pre_condition`, if present, does not hold.

 A `pre_condition` holds in a given state if the constituent `expr` is convergent and deterministic and returns the value `true`.

- The equivalence holds.

 The equivalence holds if and only if the first `expr` evaluated in the current state represents exactly the same effect as the second `expr` evaluated in the same state. That is, the two `expr`s must represent the same effect concerning non-determinism, state-modification, external communication and returned value, but also the same effect concerning divergence, deadlock and defaulting.

An `equivalence_expr` is convergent and deterministic.

Properties

The maximal type of an `equivalence_expr` is `Bool`.

An `equivalence_expr` reads any of the variables which the constituent `expr`s read.

Context conditions

The maximal types of the the constituent `expr`s must have a least upper bound.
7.13 Post expressions

Syntax

post_expr ::=
 expr post_condition opt-pre_condition

Meaning

The effect of a post_expr is to return a boolean value that depends on the effect of expr when evaluated in the current state, the pre-state. The effect of expr is only used to determine this boolean value and is ignored thereafter.

The value returned by the post_expr is true if and only if one or more of the following conditions are satisfied

- The pre_condition, if present, does not hold in the pre-state. A pre_condition holds in a given state if the constituent expr is convergent and deterministic and returns the value true.
- The subtype constraints on variables are not satisfied in the pre-state.
- Inputs performed within expr do not satisfy subtype constraints on channels.
- The post_condition holds.

The post_condition holds if and only if all of the following conditions are satisfied

- The expr is total.
- Any outputs performed within expr satisfy the subtype constraints on the channels.
- If expr terminates:
 - the returned state, the post-state, satisfies the subtype constraints on the variables,
 - the value returned – matched against the post_condition result_naming if present – and the post-state make the post-condition expr hold: it is convergent and deterministic and returns the value true.

Within the post-condition expr, variables in the pre-state can be referred to by suffixing them with a hook (pre_name). Variables of the post-state are accessed through their normal (un-hooked) names.

A post_expr is convergent and deterministic.
Properties

The maximal type of a post_expr is **Bool**.

The maximal context type for the post_condition is the maximal type of the constituent expr.

A post_expr reads any of the variables or channels which the constituent expr reads.

7.14 Disambiguation expressions

Syntax

\[
disambiguation_expr ::= \text{expr} : \text{type}_expr
\]

Meaning

The effect of a disambiguation expression is the effect of the constituent expression. Due to overloading the constituent expression may represent many values with different types. The type expression identifies exactly one of these values.

Properties

The maximal type of a disambiguated_expr is the maximal type of the type_expr.

A disambiguated_expr accesses any of the variables and channels which the constituent expr accesses.

Context conditions

The maximal type of the expr must be less than or equal to the maximal type of the type_expr.

7.15 Bracketted expressions

Syntax

\[
bracketted_expr ::= \]

(expr)

Meaning

The effect of a bracketted expression is the effect of the constituent expression.

7.16 Infix expressions

Syntax

infix_expr ::= stmt_infix_expr | axiom_infix_expr | value_infix_expr

7.16.1 Statement infix expressions

Syntax

stmt_infix_expr ::= expr infix_combinator expr

Meaning

See the definition of infix combinators.

Properties

For the infix_combinator being

[] | []: the maximal type of the stmt_infix_expr is the least upper bound of the maximal types of the constituent exprs.

|| | ||: the maximal type of the stmt_infix_expr is Unit.

; : the maximal type of the stmt_infix_expr is the maximal type of the second constituent expr.
A statement_infix_expr accesses any of the variables and channels which the two constituent_exprs access.

Context conditions

For the infix_combinator being

[] , []: the maximal types of the two_exprs must have a least upper bound.

∥ , []: the two_exprs must have the maximal type Unit and must be parallelizable.

; : the first_expr must have the maximal type Unit.

7.16.2 Axiom infix expressions

Syntax

\[
\text{axiom_infix_expr ::=}
\]

\[
\text{logical-exp} \text{ in} \text{fix-connective logical-exp}
\]

Meaning

See the definition of infix connectives.

Properties

The maximal type of an axiom_infix_expr is **Bool**.

An axiom_infix_expr accesses any of the variables and channels which the two constituent_exprs access.

Context conditions

The two_exprs must have the maximal type **Bool**.
7.16.3 Value infix expressions

Syntax

value_infix_expr ::=
 expr infix_op expr

Meaning

The effect of a value infix expression is to return the value obtained by applying the infix operator to a pair of values. Each of the constituent expressions are evaluated to return the values \(v_1\) – the value of the first constituent expression – and \(v_2\) – the value of the second constituent expression. The infix operator is then applied to the pair \((v_1, v_2)\).

Properties

The maximal type of a value_infix_expr is the result type part of the maximal type of the infix_op.

A value_infix_expr accesses any of the variables and channels which the two constituent exprs access and any of the variables and channels which the function body accesses as described in the access description part of the maximal type of the infix_op.

Context conditions

The type \(t_1 \times t_2\), where \(t_1\) and \(t_2\) are the maximal types of the two exprs, must be less than or equal to the parameter type part of the maximal type of the infix_op. The two exprs and the function body (the access of which is described in the access description part of the maximal type of the infix_op) must access the state independently and at most one of them may offer a communication.

7.17 Prefix expressions

Syntax

prefix_expr ::=
 axiom_prefix_expr |
 value_prefix_expr

RAISE/CRI/DOC/2/V1
7.17.1 Axiom prefix expressions

Syntax

\[
\text{axiom_prefix_expr ::= prefix_connective \ logical_expr}
\]

Meaning

See the definition of prefix connectives.

Properties

The maximal type of an \texttt{axiom_prefix_expr} is \texttt{Bool}.

An \texttt{axiom_prefix_expr} does not access any variables or channels if the \texttt{prefix_connective} is \texttt{□}, else it accesses any of the variables and channels which the constituent \texttt{expr} accesses.

Context conditions

The \texttt{expr} must have the maximal type \texttt{Bool}.

If the constituent \texttt{prefix_connective} is \texttt{□} then the constituent \texttt{expr} must be readonly.

7.17.2 Value prefix expressions

Syntax

\[
\text{value_prefix_expr ::= prefix_op expr}
\]

Meaning

The effect of a value prefix expression is to return the value obtained by applying the prefix operator to the value returned by the constituent expression.
Properties

The maximal type of a \texttt{value_prefix_expr} is the result type part of the maximal type of the \texttt{prefix_op}.

A \texttt{value_prefix_expr} accesses any of the variables and channels which the constituent \texttt{expr} accesses and any of the variables and channels which the function body accesses as described in the access description part of the maximal type of the \texttt{prefix_op}.

Context conditions

The maximal type of the \texttt{expr} must be less than or equal to the parameter part of the maximal type of the \texttt{prefix_op}.

The \texttt{expr} and the function body (the access of which is described in the access description part of the maximal type of the \texttt{prefix_op}) must access the state independently and at most one of them may offer a communication.

7.18 Comprehended expressions

Syntax

\[
\text{comprehended_expr ::= }
\text{associative_commutative_infix_combinator \{ expr | set_limitation \}}
\]

Meaning

The effect of a comprehended expression is obtained by applying a binary infix combinator to a set of expressions instead of to just two expressions. This has the straight-forward explanation since the infix combinators possible here are all commutative and associative:

\[
\land, \lor , \cup, \cap
\]

The set contains an expression for each environment in the set of environments represented by the set limitation. The expression is evaluated in that environment and in the current state.

In the case the set contains a single expression, the comprehended expression represents the same effect as the expression. In the case the set is empty we have:
Properties

In a comprehended_expr the scope of the set_limitation extends to the expr.

The maximal type of a comprehended_expr is the maximal type of the expr.

A comprehended_expr accesses any of the variables and channels which the constituent expr and set_limitation access.

Context conditions

The infix_combinator must be associative and commutative, that is, it must be one of the following: \(\parallel \), \(\lceil \rceil \), \(\lfloor \rfloor \).

For the infix_combinator, \(\parallel \), the expr must have the maximal type Unit.

7.19 Initialise expressions

Syntax

\[
\text{initialise_expr ::= opt-qualification initialise}
\]

Meaning

The effect of an initialise expression is to re-assign to selected variables their initial values. The value returned by the initialise expression is the unit value. The initial value of a variable is given in connection with its definition.

In case the qualification is absent, all variables introduced by the innermost enclosing model are initialised, except that initialisations within schemes refer to the model at the point of instantiation, not that at the point of definition.

In the case the qualification is present, it represents a model. All the variables in that model are then initialised.
Properties

The maximal type of an initialise_expr is Unit.

An initialise_expr writes to all variables initialised by it.

7.20 Assignment expressions

Syntax

assignment_expr ::=
 variable-name := expr

Meaning

The effect of an assignment expression is to assign the value of the constituent expression to the variable represented by the name. The value returned by the assignment expression is the unit value.

Properties

The maximal type of an assignment_expr is Unit.

An assignment_expr writes to the variable represented by the constituent name and accesses any of the variables or channels which the constituent expr accesses.

Context conditions

The name must represent a variable.

The maximal type of the expr must be less than or equal to the maximal type of the name.

7.21 Input expressions

Syntax

input_expr ::=
Expressions

channel-name ?

Meaning

The effect of an input expression is to offer an input communication from the channel represented by the name. The value returned by the input expression is the value input from the channel.

Properties

The maximal type of an input_expr is the maximal type of the constituent name.

An input_expr inputs from the channel represented by the constituent name.

Context conditions

The name must represent a channel.

7.22 Output expressions

Syntax

output_expr ::= channel-name ! expr

Meaning

The effect of an output expression is to offer an output communication to the channel represented by the name, of the value returned by the constituent expression. The value returned by the output expression is the unit value.

Properties

The maximal type of an output_expr is Unit.

An output_expr outputs to the channel represented by the constituent name and accesses any of the variables or channels which the constituent expr accesses.
Context conditions

The name must represent a channel.

The maximal type of the expr must be less than or equal to the maximal type of the name.

7.23 Structured expressions

Syntax

structured_expr ::=
 local_expr |
 let_expr |
 if_expr |
 case_expr |
 for_expr |
 while_expr |
 until_expr

7.23.1 Local expressions

Syntax

local_expr ::=
 local opt-decl-string in expr end

Meaning

The effect of a local expression is the effect of the constituent expression evaluated in the scope of the declarations. The names defined by the declarations may be under-specified thus resulting in a set of environments. A non-deterministic choice is made between the effects of evaluating the constituent expression in these environments. The local expression is thus capable of introducing non-determinism.

If the constituent expression offers a communication via a locally declared channel to the outside world, the local expression deadlocks.
Properties

The scope of the opt-decl-string is opt-decl-string itself and the expr. Note, that this means that
the order of the definitions in the opt-decl-string is indifferent.

The maximal type of a local_expr is the maximal type of the expr.

A local_expr accesses any of the non-local variables and channels (i.e. variables and channels
not defined in the opt-decl-string) which the expr accesses.

7.23.2 Let expressions

Syntax

let_expr ::= let let_def-list in expr end

let_def ::= typing | explicit_let | implicit_let

explicit_let ::= let_binding = expr

implicit_let ::= single_typing restriction

let_binding ::= binding | record_pattern | list_pattern

Meaning

The effect of a let expression is the effect of the constituent expression evaluated in the scope
of the definitions occurring in the let definition list. A let expression – with only a single let
definition – of the form

let let_def in
 expr
end
defines through the let-definition local names to be visible only within the constituent expression. The names defined by the let-definition may be under-specified thus resulting in a set of environments. A non-deterministic choice is made between the effects of evaluating the constituent expression in these environments. The let expression is thus capable of introducing non-determinism.

There are three kinds of let-definitions.

- A let-definition of the form of a *typing* represents the set of environments represented by the typing.
- A let-definition of the form of an *implicit let* represents a subset of the environments that the single typing represents: those that make the restriction hold.
- A let-definition of the form of an *explicit let* represents the set of environments obtained as follows. The expression is evaluated to return a value which is then matched against the let-binding resulting in a set of environments.

A let expression involving more than one let definition is a shorthand for a number of nested let expressions with single let definitions. That is, a let expression of the form

\[
\text{let let_def}_1, \ldots, \text{let_def}_n \text{ in} \\
\text{expr} \\
\text{end}
\]

is a shorthand for

\[
\text{let let_def}_1 \text{ in} \\
\quad : \\
\quad \text{let let_def}_n \text{ in} \\
\quad \text{expr} \\
\quad \text{end} \\
\quad : \\
\quad \text{end}
\]

Properties

In a let_expr of the form

\[
\text{let let_def}_1, \ldots, \text{let_def}_n \text{ in} \\
\text{expr} \\
\text{end}
\]
the scope of let_def_i (1 ≤ i ≤ n) is expr and all let_def_j for j > i.

The maximal type of a let_expr is the maximal type of the expr.

In an explicit_let the maximal context type of the let_binding is the maximal type of the expr.

A let_expr accesses any of the variables and channels which the constituent let_defs and expr access.

A typing does not access any variables or channels.

An explicit_let accesses any of the variables and channels which the constituent expr accesses.

An implicit_let reads any of the variables which the constituent restriction reads.

7.23.3 If expressions

Syntax

if_expr ::=
 if logical_expr then
 expr
 opt-elsif_branch-string
 opt-else_branch
 end

elsif_branch ::=
 elsif logical_expr then expr

else_branch ::=
 else expr

Meaning

The effect of an if expression is to determine the applicable alternative followed by the effect of that alternative. An if expression of the form

if expr_1 then expr_2 else expr_3 end

is evaluated by evaluating the first constituent expression to return a boolean value – the test value. If the test value is equal to true, the second constituent expression is evaluated. Alternatively, if the test value is equal to false the third constituent expression is evaluated.
An if expression involving elsif-branches is a shorthand for a number of nested if expressions without elsif-branches. An if expression of the form

```plaintext
if expr_1 then expr_1'
elsif expr_2 then expr_2'
:
elsif expr_n then expr_n'
opt_else_branch
end
```

is a shorthand for

```plaintext
if expr_1 then expr_1'
else
  if expr_2 then expr_2'
else
    :  
    if expr_n then expr_n'
opt_else_branch end
    :
  end
end
```

An if expression of the form

```plaintext
if expr_1 then expr_2 end
```

is a shorthand for

```plaintext
if expr_1 then expr_2 else skip end
```

Properties

The maximal type of an if_expr is the least upper bound of the maximal type of the second constituent expr and all the constituent branches.

The maximal type of an else_if_branch is the maximal type of second constituent expr.

The maximal type of an else_branch is the maximal type of the constituent expr.

An if_expr accesses any of the variables and channels which the constituent exprs and branches access.
An elsif branch accesses any of the variables and channels which the constituent exprs access.

An else branch accesses any of the variables and channels which the constituent expr accesses.

Context conditions

In an if expr the first expr must have the maximal typeBool. The maximal types of the second expr and all the constituent branches must have a least upper bound.

In an else if branch the first expr must have the maximal typeBool.

7.23.4 Case expressions

Syntax

case_expr ::= case expr of case_branch-list end

case_branch ::= pattern → expr

Meaning

The effect of a case expression is to evaluate the constituent expression, determine the matching case branch and then to evaluate the expression part of that case branch.

The constituent expression is evaluated to return a value – the test value. Then the case branches are processed from left to right until the test value succeeds to match a pattern. The successful pattern matching then results in a set of environments. The corresponding expression in the matching case branch is then evaluated in each of these environments and a non-deterministic choice is made between the resulting effects.

If there is no matching case branch, the whole case expression defaults.

Properties

In a case_branch the scope of the pattern is the expr.

The maximal type of a case_expr is the least upper bound of the maximal types of the exprs in
the constituent case branches.

In a case_expr the maximal context type of the patterns in the case branches is the maximal type of the expr.

A case_expr accesses any of the variables and channels which the constituent expr and case branches access.

A case_branch accesses any of the variables and channels which the constituent expr accesses.

Context conditions

In a case_expr the maximal types of the exprs in the constituent case branches must have a least upper bound.

7.23.5 For expressions

Syntax

for_expr ::=
 for list_limitation do unit_expr end

Meaning

The effect of a for expression is to repeat the evaluation of the constituent expression for each element of a list value. For each environment in the list of environments represented by the list limitation – processed from left to right – the constituent expression is evaluated. The value returned by the for expression is the unit value.

Properties

In a for_expr the scope of the list_limitation extends to the expr.

The maximal type of a for_expr is Unit.

A for_expr accesses any of the variables and channels which the constituent list_limitation and expr access.
Context conditions

The expr must have the maximal type Unit.

7.23.6 While expressions

Syntax

while_expr ::=
 while logical-expr do unit-expr end

Meaning

The effect of a while expression is to repeat the evaluation of the second constituent expression while the first boolean constituent expression evaluates to true. The value returned by the while expression is the unit value.

A while expression of the form

 while expr₁ do expr₂ end

is equivalent to

 if expr₁ then
 expr₂ ; while expr₁ do expr₂ end
 else
 skip
 end

Properties

The maximal type of a while_expr is Unit.

A while_expr accesses any of the variables and channels which the constituent exprs access.
Context conditions

The first expr must have the maximal type **Bool**. The second expr must have the maximal type **Unit**.

7.23.7 Until expressions

Syntax

\[
\text{until}_\text{expr} ::= \\
\quad \text{do } \text{unit-expr until } \text{logical-expr end}
\]

Meaning

The effect of an until expression is to repeat the evaluation of the first constituent expression until the second boolean constituent expression evaluates to **true**. The value returned by the until expression is the unit value.

An until expression of the form

\[
\text{do expr}_1 \text{ until expr}_2 \text{ end}
\]

is a shorthand for

\[
\text{expr}_1 \text{ ; while } \sim\text{expr}_2 \text{ do expr}_1 \text{ end}
\]

Properties

The maximal type of an until_expr is **Unit**.

An until_expr accesses any of the variables and channels which the constituent exprs access.

Context conditions

The first expr must have the maximal type **Unit**. The second expr must have the maximal type **Bool**.
7.24 Expression lists

Meaning

An expression list is evaluated either as a product or as a list.

- The effect of an *expression list evaluated as a product* is to return a value obtained as follows.

 The value of an expression list containing a single expression:

 \(\text{expr} \)

 is the value returned by the expression. The value of an expression list containing more than one expression:

 \(\text{expr}_1, \ldots, \text{expr}_n \)

 is obtained by evaluating each expression \(\text{expr}_i \) to yield a resulting value \(v_i \) and then forming the product value:

 \((v_1, \ldots, v_n) \)

 An optional expression list is evaluated as follows. If the expression list is absent, the resulting value is the unit value ‘(‘) of type \textbf{Unit}. If the expression list is present, the resulting value is the resulting value of the expression list evaluated as a product.

- The effect of an *expression list evaluated as a list* is to return a list obtained as follows.

 The resulting value of an expression list containing a single expression:

 \(\text{expr} \)

 is the one-element list containing the resulting value of the expression. The value of an expression list containing more than one expression:

 \(\text{expr}_1, \ldots, \text{expr}_n \)

 is obtained by evaluating each expression \(\text{expr}_i \) to yield a resulting value \(v_i \) and then forming the list value:

 \((v_1, \ldots, v_n) \)

 An optional expression list is evaluated as follows. If the expression list is absent, the resulting value is the empty list. If the expression list is present, the resulting value is the resulting value of the expression list evaluated as a list.
8 Bindings

Syntax

binding ::=
id_or_op |
product_binding

product_binding ::=
(binding-list2)

Terminology

An environment is a mapping from identifiers and operators to values. One environment \(env_1 \) can be overwritten with another environment \(env_2 \) using \(\dagger \). That is, the environment resulting from

\[env_1 \dagger env_2 \]

is equal to \(env_2 \) for all the identifiers and operators for which \(env_2 \) is defined. For identifiers and operators only defined by \(env_1 \) the resulting environment equals \(env_1 \).

A decomposer is a mapping from values to environments. Matching a value against a decomposer means to apply the decomposer to the value and thus obtain an environment.

Meaning

A binding represents a decomposer. In the below explanation we shall use the convention of writing

\[b(v) \]

for the environment obtained by matching the value \(v \) against the (decomposer represented by the) binding \(b \).

The environment obtained by matching the value \(v \) against a binding is defined as follows. In case the binding is

- an id_or_op then the environment obtained is
[id_or_op ↦ v]

• a product binding of the form

(binding₁, ..., bindingₙ)

then v must be a product value of the form

(v₁, ..., vₙ)

and the resulting environment is

binding₁(v₁) † ... † bindingₙ(vₙ)

Properties

The context of a binding determines a maximal context type for the binding. For constructs containing bindings, this maximal context type is stated.

An id_or_op being a binding has as maximal type the maximal context type of the binding.

In a product binding of the form (b₁, ..., bₙ) having a context type of the form t₁ × ... × tₙ, the maximal context types of the constituent bindings b₁, ..., bₙ are t₁, ..., tₙ, respectively.

Context conditions

The maximal context type of a product binding must be a product type of the same length as the binding-list. The names introduced in the constituent bindings must be distinct unless they have distinguishable maximal types.
9 Typings

Syntax

typing ::=
single_typing | multiple_typing

single_typing ::=
 binding : type_expr

multiple_typing ::=
 binding-list2 : type_expr

Meaning

The basic form of typing is the single typing. All multiple typings and typing lists are shorthands for single typings. A single typing represents

- a type \(t \) – represented by the type expression.
- a decomposer \(d \) – represented by the binding – against which a value can be matched to yield an environment.
- a set of environments – obtained by applying the decomposer to each value in the type:

\[\{ d(v) \mid v \in t \} \]

A multiple typing of the form

\[\text{binding}_1, \ldots, \text{binding}_n : \text{type_expr} \]

is a shorthand for the single typing

\[(\text{binding}_1, \ldots, \text{binding}_n) : \text{type_expr} \times \ldots \times \text{type_expr} \]

where the product type expression has length \(n \).

A typing list of the form
binding\(_1\) : type_expr\(_1\), \ldots , binding\(_n\) : type_expr\(_n\)

is a shorthand for a single typing

\((binding\(_1\), \ldots , binding\(_n\)) : type_expr\(_1\) \times \ldots \times type_expr\(_n\)\)

A typing list involving multiple typings is first re-written by re-writing the multiple typings into single typings.

An optional typing list where the typing list is present, represents the type and decomposer represented by the typing list. In case the typing list is absent, the type and decomposer are as follows:

- the type is **Unit**.
- the decomposer is the wildcard decomposer which when matched against a value yields the empty environment.

Properties

The maximal type of a **single_typing** is the maximal type of the **type_expr**.

The maximal type of a **multiple_typing** is the maximal type of the **single_typing** it is a shorthand for.

In a **typing** the maximal context type of the constituent **bindings** is the maximal type of the constituent **type_expr**.

Context conditions

In a **multiple_typing** the names introduced in the constituent **bindings** must be distinct unless they have distinguishable maximal types.
10 Patterns

Syntax

\[
\text{pattern ::= value}_\text{literal} | \text{pure}_\text{value-name} | \text{wildcard}_\text{pattern} | \text{product}_\text{pattern} | \text{record}_\text{pattern} | \text{list}_\text{pattern}
\]

Terminology

A pattern has two roles:

- To control, in conditional contexts, the choice between alternatives on the basis of pattern matching.
- To provide names for the constituent parts of compound values.

Matching a value against a pattern yields either failure or success. In the case of success the result of the matching is a set of environments, each mapping identifiers and operators occurring in the pattern into constituent parts of the value.

The fact that the result of a successful pattern matching is a set (of environments) is due to record patterns that may introduce non-deterministic decomposition of compound values.

In the following explanation of patterns we shall use the convention of writing

\[
p(v)
\]

for the set of environments obtained by the successful matching of the value \(v \) against the pattern \(p \).

For each pattern kind, the criteria for match success is given together with the resulting environments in case of match success. The value matched against the pattern will be referred to as the test value.
Properties

The context of a pattern determines a maximal context type for the pattern. For constructs containing patterns, this maximal context type is stated.

10.1 Value literals

Meaning

• match success: The value literal must be equal to the test value.
• resulting environment set: \{[]\}

Context conditions

The maximal type of a value literal considered as an expr must be less than or equal to the maximal context type of the value literal.

10.2 Names

Meaning

• match success: The value represented by the name must be equal to the test value.
• resulting environment set: \{[]\}

Context conditions

For a pattern being a name, the name must represent a value.

The maximal type of the name must be less than or equal to the maximal context type of the pattern.

10.3 Wildcard patterns

Syntax

wildcard_pattern ::=
Meaning

- **match success**: All values match a wildcard pattern.
- **resulting environment set**: {[]}

10.4 Product patterns

Syntax

```
product_pattern ::= ( pattern-list2 )
```

Meaning

- **match success**: If the product pattern is of the form

 \((\text{pattern}_1, \ldots, \text{pattern}_n)\)

 then the test value must be a product value of the form

 \((v_1, \ldots, v_n)\)

 and each \(v_i\) must additionally match the corresponding pattern \(\text{pattern}_i\).

- **resulting environment set**:

 \[
 \{\text{environment}_1 \uparrow \ldots \uparrow \text{environment}_n \mid \\
 \text{environment}_1 \in \text{pattern}_1(v_1) \\
 \ldots \wedge \\
 \text{environment}_n \in \text{pattern}_n(v_n)\}
 \]

Properties

In a product_pattern of the form \((\text{pattern}_1, \ldots, \text{pattern}_n)\) having a maximal context type of the form \(t_1 \times \ldots \times t_n\), the maximal context type of the constituent patterns \(\text{pattern}_1, \ldots, \text{pattern}_n\) is \(t_1, \ldots, t_n\), respectively.
Context conditions

The maximal context type of a product_pattern must be a product type of the same length as the pattern-list2.

The names introduced in the constituent patterns must be distinct unless they have distinguishable maximal types.

10.5 Record patterns

Syntax

record_pattern ::= pure_value-name component_patterns

component_patterns ::= (inner_pattern-list)

inner_pattern ::= binding | wildcard_pattern

Meaning

- **match success**: The name must represent a function c:

 $c : t_0 \rightsquigarrow t$

 where t is the type of the test value. Let v be the test value, then there must exist at least one value $v_0 : t_0$ such that:

 $c(v_0) = v$

 By this is meant that c when applied to v_0 is converging and deterministically returning the value v.

- **resulting environment set**: Let cp be the component pattern, the meaning of which is described below. The resulting set of environments is thus:

 $\{ cp(v_0) \mid v_0 \in t_0 \land c(v_0) = v \}$
Component patterns are deterministic since they cannot involve record patterns. When a value is matched against a component pattern, the result is thus a single environment.

The environment resulting from matching a value against a component pattern of the form

\[(\text{inner}_\text{pattern})\]

is the environment obtained by matching the value against the \text{inner}_\text{pattern}.

The environment resulting from matching a value of the form

\[(v_1, \ldots, v_n)\]

against a component pattern of the form

\[(\text{inner}_\text{pattern}_1, \ldots, \text{inner}_\text{pattern}_n)\]

is

\[
\text{inner}_\text{pattern}_1(v_1) \downarrow \ldots \downarrow \text{inner}_\text{pattern}_n(v_n)
\]

The environment resulting from matching a value against an inner pattern with the form of a binding is the environment obtained by matching the value against the binding.

The environment resulting from matching a value against an inner pattern with the form of a wildcard pattern is the empty environment.

Properties

In a \text{record_pattern} the maximal context type of the \text{component_patterns} is the domain part of the maximal type of the \text{name}.

In a \text{component_pattern} of the form \((p_1, \ldots, p_n)\) having a maximal context type of the form \(t_1 \times \ldots \times t_n\), the maximal context types of the constituent \text{inner_patterns} \(p_1, \ldots, p_n\) is \(t_1, \ldots, t_n\), respectively.

In a \text{component_pattern} of the form \((p)\) having a context type \(t\) the maximal context type of the constituent \text{inner_pattern} \(p\) is \(t\).
Context conditions

In a record pattern the name must represent a value and have a maximal type which is a function type. The result type part of this type must be less than or equal to the maximal context type of the record pattern.

In a component patterns the names introduced in the constituent inner patterns must be distinct unless they have distinguishable maximal types. A component pattern of the form \((p_1, \ldots, p_n)\), \(n > 1\), must have a maximal context type of the form \(t_1 \times \ldots \times t_n\).

10.6 List patterns

Syntax

\[
\text{list_pattern ::=}
\begin{align*}
\text{constructed_list_pattern} & \mid \\
\text{left_list_pattern} & \mid \\
\text{right_list_pattern} & \mid \\
\text{left_right_list_pattern}
\end{align*}
\]

Context conditions

The maximal context type of a list pattern must be a list type.

10.6.1 Constructed list patterns

Syntax

\[
\text{constructed_list_pattern ::=}
\begin{align*}
\langle & \text{opt-_inner_pattern-list} \rangle
\end{align*}
\]

Meaning

- match success: When the constructed list pattern is of the form

\[\langle \text{inner_pattern}_1, \ldots, \text{inner_pattern}_n \rangle\]

the test value must be a list of the form
We shall refer to \(n \) as the length of the constructed list pattern. The criteria for match success can thus be re-formulated as "the length of the test value must be equal to the length of the constructed list pattern".

- **resulting environment set:**

 \[
 \{ \text{inner_pattern}_1(v_1) \uparrow \ldots \uparrow \text{inner_pattern}_n(v_n) \}
 \]

Properties

The maximal context type of each of the constituent `inner_patterns` is the element part of the maximal context type of the `constructed_list_pattern`.

Context conditions

The names introduced in the constituent `inner_patterns` must be distinct unless they have distinguishable maximal types.

10.6.2 Left list patterns

Syntax

```plaintext
left\_list\_pattern ::= 
\quad \text{constructed\_list\_pattern} \uparrow \text{id\_or\_wildcard}
```

```plaintext
id\_or\_wildcard ::= 
\quad \text{id} | 
\quad \text{wildcard\_pattern}
```

Meaning

For an inner pattern we have

- **match success:** The test value must be a list and its length must be greater than or equal to the length of the constructed list pattern. Thus if the left list pattern is of the form

 \[
 \langle \text{inner_pattern}_1, \ldots, \text{inner_pattern}_n \rangle \uparrow \text{id_or_wildcard}
 \]
then the test value must be a list of the form

\[(v_1, \ldots, v_n) \sim \text{suffix}\]

- **resulting environment set:**

\[\{\text{inner_pattern}_1(v_1) \uparrow \ldots \uparrow \text{inner_pattern}_n(v_n) \uparrow \text{id_or_wildcard(suffix)}\}\]

For an id or wild card pattern we have

- **match success:** All values match an id or wildcard pattern.
- **resulting environment set:**

Matching a value \(v\) against an id_or_wildcard pattern of the form of an id yields the environment set

\[\{ [\text{id} \mapsto v] \}\]

and of the form of a wildcard yields the environment set\{[[]]\}

Properties

In a *left_list_pattern* the maximal context type of the constituent *constructed_list_pattern* and *id_or_wildcard* is the maximal context type of the *left_list_pattern*.

The maximal type of an *id* in an *id_or_wildcard* is the maximal context type.

Context conditions

The names introduced in the *constructed_list_pattern* and in *id_or_wildcard* must be distinct unless they have distinguishable maximal types.

10.6.3 Right list patterns

Syntax

\[
\text{right_list_pattern} ::= \\
\text{id_or_wildcard} \sim \text{constructed_list_pattern}
\]
Meaning

- **match success**: The test value must be a finite list and its length must be greater than or equal to the length of the constructed list pattern. Thus if the right list pattern is of the form

 \[\text{id_or_wildcard} \hat{\langle} \text{inner_pattern}_1, \ldots, \text{inner_pattern}_n \rangle \]

 then the test value must be of the form

 \[\text{prefix} \hat{\langle} v_1, \ldots, v_n \rangle \]

- **resulting environment set**:

 \[\{ \text{id_or_wildcard}(\text{prefix}) \mapsto \text{id_or_wildcard}(\text{prefix}) \mapsto \text{id_or_wildcard}(\text{prefix}) \mapsto \ldots \mapsto \text{inner_pattern}_1(v_1) \mapsto \ldots \mapsto \text{inner_pattern}_n(v_n) \} \]

Properties

In a right list pattern the maximal context type of the constituent constructed list pattern and id or wildcard is the maximal context type of the right list pattern itself.

Context conditions

The names introduced in the constructed list pattern and in id or wildcard must be distinct unless they have distinguishable maximal types.

10.6.4 Left right list patterns

Syntax

\[
\text{left_right_list_pattern} ::= \\
\text{constructed_list_pattern} \hat{\langle} \text{id_or_wildcard} \hat{\langle} \text{constructed_list_pattern} \rangle \]

Meaning

- **match success**: The test value must be a finite list and its length must be greater than or equal to the sum of the lengths of the two constructed list patterns. Thus if the left right list pattern is of the form
\langle \text{inner_pattern}_1,1, \ldots, \text{inner_pattern}_{1,n_1} \rangle
\text{_id_or_wildcard}\text{__infix}\text{__id_or_wildcard(_infix)}
\langle \text{inner_pattern}_2,1, \ldots, \text{inner_pattern}_{2,n_2} \rangle

then the test value must be of the form

\langle v_1,1, \ldots, v_{1,n_1} \rangle
\text{__infix}\text{__id_or_wildcard(_infix)}\text{__id_or_wildcard(_infix)}
\langle v_2,1, \ldots, v_{2,n_2} \rangle

\bullet \text{ resulting environment set: }

\{
\quad \text{inner_pattern}_1,1(v_1,1) \uparrow \ldots \uparrow \text{inner_pattern}_{1,n_1}(v_{1,n_1})
\quad \uparrow \text{id_or_wildcard(_infix)} \uparrow
\quad \text{inner_pattern}_2,1(v_2,1) \uparrow \ldots \uparrow \text{inner_pattern}_{2,n_2}(v_{2,n_2})
\}

Properties

In a \text{left_right_list_pattern} the maximal context type of the constituent \text{constructed_list_patterns} and \text{id_or_wildcard} is the maximal context type of the \text{left_right_list_pattern} itself.

Context conditions

The names introduced in the \text{constructed_list_patterns} and in \text{id_or_wildcard} must be distinct unless they have distinguishable maximal types.
11 Names

Syntax

name ::=
 qualified_id |
 qualified_op

Meaning

A name represents an entity such as a scheme, object, type, value, variable or channel.

Properties

If a name represents a value, a variable, a channel or a type then it has an associated maximal type.

11.1 Qualified identifiers

Syntax

qualified_id ::=
 opt-qualification id

qualification ::=
 element-object_expr .

Meaning

An un-qualified identifier represents the entity to which it has been bound by an enclosing definition.

A qualified identifier represents the entity obtained by looking up the identifier in the model represented by the qualification.

A qualification represents the model represented by the object expression.
Properties

A qualified id represents the entity represented by the constituent id.

The maximal type of a qualified id representing a value, a variable, a channel or a type is the maximal type of the constituent id.

In a qualified id the scope of a qualification is extended to the id, while all other definitions are hidden there.

Context conditions

In a qualification the object_expr must represent a model.

11.2 Qualified operators

Syntax

qualified_op ::=
 opt-qualification (op)

Meaning

An un-qualified operator in brackets represents a function value. The operator can either be predefined or it can have been introduced in an enclosing definition. If the operator has been introduced by a definition, the choice between predefined and defined version depends on overload-resolution.

A qualified operator represents the function obtained by looking up the operator in the model represented by the qualification.

The brackets turn the operator into a function that must be applied with prefix notation via an application expression. Assume the prefix operator p_op and the infix binary operator i_op, then the following equivalences hold:

\[
p_{op} \text{ expr } \equiv (p_{op})(\text{expr})
\]

\[
\text{expr}_1 \ i_{op} \ \text{expr}_2 \ \equiv (i_{op})(\text{expr}_1,\text{expr}_2)
\]
Properties

A qualified \texttt{op} represents the value represented by the constituent \texttt{op}.

The maximal type of a qualified \texttt{op} is the maximal type of the constituent \texttt{op}.

In a qualified \texttt{op} in which a qualification is present the scope of this qualification is extended to the \texttt{op}, while all other definitions are hidden there.

In a qualified \texttt{op} in which no qualification is present all predefined polymorphic meanings of operators are hidden.

11.3 Identifiers and operators

Syntax

\begin{verbatim}
\texttt{id_or_op ::= id | op}
\texttt{op ::= infix_op | prefix_op}
\end{verbatim}

Properties

Each occurrence of an identifier or operator (\texttt{id}, \texttt{op} or \texttt{id_or_op}) is either a defining or an applied occurrence.

The following occurrences are defining occurrences:

- The \texttt{id} (or ids) occurring immediately within a scheme_def, object_def, axiom_naming, variable_def, channel_def, sort_def variant_def, union_def, short_record_def, abbreviation_def, subtype_naming, prefix_application, infix_application and \texttt{id_or_wildcard}.
- The new \texttt{id_or_op} in a rename_pair.
- The \texttt{id_or_op} occurring immediately within a constructor, destructor, reconstructor and binding.

All other occurrences are applied occurrences.
Each defining occurrence of an identifier or operator is part of a declarative construct that represents at least a definition introducing this identifier or operator.

An applied occurrence of an identifier or operator is said to be *visible* if there is a visible definition introducing it.

A legal applied occurrence of an identifier or operator has a *corresponding definition* (or *interpretation*). There are three cases for an applied occurrence of an identifier or operator:

1. There is no visible definition introducing it, i.e. it is not visible. In that case the occurrence is illegal, cf. the context condition below, and hence the identifier or operator has no corresponding definition.

2. There is exactly one visible definition introducing it. This definition is the corresponding definition of the identifier or operator.

3. There are two or more visible definitions introducing it. According to the visibility rules and context conditions for declarative constructs this can only be the case for names of values. In the section on overloading it is explained how to find the corresponding definition in this case, if possible.

An applied occurrence of an identifier or operator *represents* the entity of its corresponding definition.

For an identifier or operator representing a value, a variable, a channel or a type, its maximal type is determined by its corresponding definition.

Note, that all operators have one or more predefined meanings which has the whole specification as scope. A predefined meaning is said to be *polymorphic* if its type contains type variables.

Context conditions

An applied occurrence of an identifier and operator must be visible.

11.3.1 Infix operators

Syntax

\[\text{infix_op ::= } \]
\[
= | \\
\ne | \\
> |
\]
Meaning

Below, the predefined meanings of the infix operators are stated.

The infix operators operate on pairs of values referred to as arguments. Some operators may have pre-conditions that must hold for the arguments. When a pre-condition is violated the result of the value infix expression is not well-defined.

The type T and subscripted versions of T occurring in the operator signatures are type variables representing arbitrary types.

- **Equal:**

 $$ = : T \times T \rightarrow \text{Bool} $$

 The result is true iff. the two arguments are equal.

- **Not equal:**

 $$ \neq : T \times T \rightarrow \text{Bool} $$

 The result is true iff. the two arguments are not equal.
• Integer addition:

\[+ : \text{Int} \times \text{Int} \rightarrow \text{Int} \]

The result is the sum of the two integers.

• Real addition:

\[+ : \text{Real} \times \text{Real} \rightarrow \text{Real} \]

The result is the sum of the two reals.

• Integer subtraction:

\[- : \text{Int} \times \text{Int} \rightarrow \text{Int} \]

The result is the difference between the first integer and the second integer.

• Real subtraction:

\[- : \text{Real} \times \text{Real} \rightarrow \text{Real} \]

The result is the difference between the first real and the second real.

• Integer multiplication:

\[\ast : \text{Int} \times \text{Int} \rightarrow \text{Int} \]

The result is the product of the two integers.

• Real multiplication:

\[\ast : \text{Real} \times \text{Real} \rightarrow \text{Real} \]

The result is the product of the two reals.

• Integer exponentiation:

\[\uparrow : \text{Int} \times \text{Int} \rightarrow \text{Real} \]

Pre-condition: If the second integer is negative the first integer must be different from zero (0).

The result is the first integer raised to the power of the second integer.

• Real exponentiation:

\[\uparrow : \text{Real} \times \text{Real} \rightarrow \text{Real} \]
Pre-condition: If the second real is negative the first real must be different from zero (0). If the second real is not a whole number the first real must be non-negative. The result is the first real raised to the power of the second real.

- **Function composition:**
 \[
 \circ : (T_2 \rightsquigarrow \text{acc } T_3) \times (T_1 \rightsquigarrow \text{acc'} T_2) \rightarrow (T_1 \rightsquigarrow \text{acc}'' T_3)
 \]
 where \text{acc”} is the union of \text{acc} and \text{acc’}.
 The result is the composition of the two functions defined as follows:
 \[
 (\text{expr}_1 \circ \text{expr}_2)(\text{expr}) \equiv \text{expr}_1(\text{expr}_2(\text{expr}))
 \]

- **Map composition:**
 \[
 \circ : (T_2 \mapsto T_3) \times (T_1 \mapsto T_2) \rightarrow (T_1 \mapsto T_3)
 \]
 The result is the composition of the two maps defined as follows:
 \[
 (\text{expr}_1 \circ \text{expr}_2)(\text{expr}) \equiv \text{expr}_1(\text{expr}_2(\text{expr}))
 \]

- **Integer division:**
 \[
 / : \text{Int} \times \text{Int} \rightleftharpoons \text{Int}
 \]
 Pre-condition: The second integer must not be zero (0).
 The absolute value (without sign) of the result is the number of times that the absolute value of the second integer can be within the absolute value of the first integer. The sign of the result is the traditional product of the signs of the arguments.

- **Real division:**
 \[
 / : \text{Real} \times \text{Real} \rightleftharpoons \text{Real}
 \]
 Pre-condition: The second real must not be zero (0).
 The result is obtained by dividing the first real with the second real.

- **Map restriction to:**
 \[
 / : (T_1 \mapsto T_2) \times T_1 \infset \rightarrow (T_1 \mapsto T_2)
 \]
 The result is the map with its domain limited to the elements of the set.

- **Integer remainder:**
\ : Int × Int \sim\ Int

Pre-condition: The second integer must not be zero (0).

The absolute value of the result is the remainder after having divided the absolute value of the second integer into the absolute value of the first integer. The sign of the result is the sign of the first integer. This implies the following relation between integer division and integer remainder. Let a and b be integers:

$$a = (a/b)*b + (a\%b)$$

- **Set difference:**

\ : T-\text{infset} × T-\text{infset} \rightarrow T-\text{infset}

The result is the set of all elements which appear in the first set and not in the second.

- **Map restriction with:**

\ : (T_1 \rightarrow m \ T_2) × T_1-\text{infset} \rightarrow (T_1 \rightarrow m \ T_2)

The result is the map with the elements of the set removed from its domain.

- **Integer greater than:**

\ : Int × Int \rightarrow Bool

The result is true iff. the first integer is greater than the second integer.

- **Real greater than:**

\ : Real × Real \rightarrow Bool

The result is true iff. the first real is greater than the second real.

- **Integer less than:**

\ : Int × Int \rightarrow Bool

The result is true iff. the first integer is less than the second integer.

- **Real less than:**

\ : Real × Real \rightarrow Bool

The result is true iff. the first real is less than the second real.

- **Integer greater than or equal to:**

\ : Int × Int \geq\ Int
\[\geq : \text{Int} \times \text{Int} \to \text{Bool} \]

The result is \textbf{true} iff. the first integer is greater than or equal to the second integer.

- **Real greater than or equal to:**

\[\geq : \text{Real} \times \text{Real} \to \text{Bool} \]

The result is \textbf{true} iff. the first real is greater than or equal to the second real.

- **Integer less than or equal to:**

\[\leq : \text{Int} \times \text{Int} \to \text{Bool} \]

The result is \textbf{true} iff. the first integer is less than or equal to the second integer.

- **Real less than or equal to:**

\[\leq : \text{Real} \times \text{Real} \to \text{Bool} \]

The result is \textbf{true} iff. the first real is less than or equal to the second real.

- **Proper superset:**

\[\supset : \text{T-infset} \times \text{T-infset} \to \text{Bool} \]

The result is \textbf{true} iff. the second set is a proper subset of the first set. That is, it is a subset of the first set but not equal to it.

- **Proper subset:**

\[\subset : \text{T-infset} \times \text{T-infset} \to \text{Bool} \]

The result is \textbf{true} iff. the first set is a proper subset of the second set. That is, it is a subset of the second set but not equal to it.

- **Superset:**

\[\supseteq : \text{T-infset} \times \text{T-infset} \to \text{Bool} \]

The result is \textbf{true} iff. the second set is a subset of the first set.

- **Subset:**

\[\subseteq : \text{T-infset} \times \text{T-infset} \to \text{Bool} \]

The result is \textbf{true} iff. the first set is a subset of the second set.
• **Within:**

\[\in : T \times T\text{-}\text{infset} \to \text{Bool} \]

The result is **true** iff. the first argument is a member of the set.

• **Not within:**

\[\not\in : T \times T\text{-}\text{infset} \to \text{Bool} \]

The result is **true** iff. the first argument is not a member of the set.

• **Intersection:**

\[\cap : T\text{-}\text{infset} \times T\text{-}\text{infset} \to T\text{-}\text{infset} \]

The result is the set containing all elements which appear in both of the two sets.

• **Set union:**

\[\cup : T\text{-}\text{infset} \times T\text{-}\text{infset} \to T\text{-}\text{infset} \]

The result is the set containing all elements which appear in one or both of the two sets.

• **Map union:**

\[\cup : (T_1 \to m T_2) \times (T_1 \to m T_2) \to (T_1 \to m T_2) \]

The result is the map containing all the pairs of the first map and all the pairs of the second map. Note that if the intersection of the domains of the two maps is not empty, the union may lead to a non-deterministic map.

• **List concatenation:**

\[\hat{\ : T^* \times T^\omega \to T^\omega \]

The result is the concatenation of the two lists. That is, the list containing all the elements of the two lists, ordered as in the two lists and with all the elements of the first list appearing first.

• **Map overwrite:**

\[\hat{\ : (T_1 \to m T_2) \times (T_1 \to m T_2) \to (T_1 \to m T_2) } \]

The result is the first map overwritten with the second map. Where the two maps have common domain elements, the second map overwrites the first.

• **Set distribution:**
\[\$_{\text{set}} : (T \times T \leadsto T) \times \text{T-set} \leadsto T \]

Pre-condition: The function, say \(f \), must be associative, be commutative and have exactly one unit \(u \) such that:

\[\forall x : T \cdot f(u, x) = x \]

The result is the value obtained by applying the function to ‘all the elements’ of the set – pair-wise:

\[
f \$_{\text{set}} \equiv
 \begin{cases}
 u & \text{if } \text{s} = \{\} \\
 \text{let } x : T \cdot x \in \text{s in} \\
 f(x, f \$_{\text{set}} \{x\}) & \text{else}
 \end{cases}
\end{aligned}
\]

The above definition of \(f \) applied to a set with more than one element depends on a repeated non-deterministic choice of element from the set. This does, however, not make the result non-deterministic since \(f \) is commutative and associative.

- **List distribution:**

\[\$_{\text{list}} : (T \times T \leadsto T) \times \text{T-list} \leadsto T \]

Pre-condition: The function, say \(f \), must be associative and have exactly one right unit \(u \) such that:

\[\forall x : T \cdot f(x, u) = x \]

The result is the value obtained by applying the function to ‘all the elements’ of the list – pair-wise – in order left to right:

\[
f \$_{\text{list}} \equiv
 \begin{cases}
 u & \text{if } \text{l} = () \\
 \text{else} \\
 f(\text{hd l}, f \$_{\text{list}} (\text{tl l})) & \text{end}
 \end{cases}
\]
11.3.2 Prefix operators

Syntax

\[
\text{prefix_op ::= abs | it | rl | card | len | inds | elems | hd | tl | front | last | dom | rng}
\]

Meaning

Below, the predefined meanings of the prefix operators are stated.

The prefix operators operate on values (arguments). Some operators may have pre-conditions that must hold for the argument. When a pre-condition is violated the result of the value prefix expression is not well-defined.

The type \(T \) occurring in the operator signatures is a type variable representing an arbitrary type.

- **Absolute value of integer:**

 \[
 \text{abs : \text{Int} \to \text{Nat}}
 \]

 The result is the absolute value of the integer. That is, if the integer is negative, the negated value is returned. The operator is the identity on non-negative integers.

- **Absolute value of real:**

 \[
 \text{abs : \text{Real} \to \text{Real}}
 \]

 The result is the absolute value of the real. That is, if the real is negative, the negated value is returned. The operator is the identity on non-negative reals.
• Real to integer conversion:

$\text{it} : \text{Real} \rightarrow \text{Int}$

The absolute value (without sign) of the result is the greatest integer that is smaller than or equal to the absolute value of the real. The sign is the sign of the real.

• Integer to real conversion:

$\text{rl} : \text{Int} \rightarrow \text{Real}$

The result is the identity on the argument, just changing its type.

• Cardinality of set:

$\text{card} : \text{T-set} \sim \rightarrow \text{Nat}$

The result is the number of elements in the set.

• Length of list:

$\text{len} : \text{T}^\ast \rightarrow \text{Nat}$

The result is the length of the list.

• Indices of list:

$\text{inds} : \text{T}^\omega \rightarrow \text{Nat-infset}$

The result is the set of indices in the list. Let f_list be a finite list and let i_list be an infinite list, then:

$\text{inds} f_\text{list} = \{n | n : \text{Nat} \cdot n \geq 1 \land n \leq \text{len} f_\text{list}\}$

$\text{inds} i_\text{list} = \{n | n : \text{Nat} \cdot n \geq 1\}$

• Elements of list:

$\text{elems} : \text{T}^\omega \rightarrow \text{T-infset}$

The result is the set of elements of the list.

• Head of list:

$\text{hd} : \text{T}^\omega \sim \rightarrow \text{T}$
Pre-condition: The list must be non-empty.
The result is the first element in the list.

- Tail of list:

 \(tl : T^\omega \rightarrow T^\omega \)

 The result is the list which remains after removing the first element if present. The operator is the identity on the empty list.

- Front of list:

 \(\text{front} : T^* \rightarrow T^* \)

 The result is the list which remains after removing the last element if present. The operator is the identity on the empty list.

- Last of list:

 \(\text{last} : T^* \sim T \)

 Pre-condition: The list must be non-empty.
The result is the last element of the list.

- Domain of map:

 \(\text{dom} : (T_1 \leftarrow T_2) \rightarrow T_1\text{-infset} \)

 The result is the domain of the map: the values for which it is defined.

- Range of map:

 \(\text{rng} : (T_1 \leftarrow T_2) \rightarrow T_2\text{-infset} \)

 The result is the range of the map: the values that can be obtained by applying the map to the values in its domain.
12 Infix combinators

Syntax

\[
\text{infix_combinator} ::= \begin{cases} \; \& \; | \\
\; \n | \\
\; || | \\
\; \# | \\
; \end{cases}
\]

Meaning

The infix combinators are intended to compose expressions that either communicate or at least have side-effects on variables. Some simple proof-rules are associated with each combinator in order to clarify its semantics.

- **External Choice:**

 \[\text{expr}_1 \uplus \text{expr}_2 \]

 An external choice is made between the effects of the two expressions. That is, the possible effect of a concurrently executing third expression can influence the choice.

 External choice has unit \textit{stop}, has zero \textit{chaos}, is idempotent, is commutative, is associative, and is distributive through internal choice:

 \[
 \begin{align*}
 \text{expr} \uplus \text{stop} & \equiv \\
 \text{expr} & \\
 \text{expr} \uplus \text{chaos} & \equiv \\
 \text{chaos} & \\
 \text{expr} \uplus \text{expr} & \equiv \\
 \text{expr} & \\
 \text{expr}_1 \uplus \text{expr}_2 & \equiv \\
 \text{expr}_2 \uplus \text{expr}_1 & \\
 \text{expr}_1 \uplus (\text{expr}_2 \uplus \text{expr}_3) & \equiv \\
 (\text{expr}_1 \uplus \text{expr}_2) \uplus \text{expr}_3 & \\
 \text{expr}_1 \uplus (\text{expr}_2 \uplus \text{expr}_3) & \equiv \\
 (\text{expr}_1 \uplus \text{expr}_2) \uplus (\text{expr}_1 \uplus \text{expr}_3)
 \end{align*}
\]
• **Internal choice:**

\[\text{expr}_1 \parallel \text{expr}_2 \]

An internal – non-deterministic – choice is made between the effects of the two expressions. That is, the possible effect of a concurrently executing third expression cannot influence the choice.

Internal choice has unit **swap**, has zero **chaos**, is idempotent, is commutative, and is associative:

\[\text{expr} \parallel \text{swap} \equiv \text{expr} \]
\[\text{expr} \parallel \text{chaos} \equiv \text{chaos} \]
\[\text{expr} \parallel \text{expr} \equiv \text{expr} \]
\[\text{expr}_1 \parallel \text{expr}_2 \equiv \text{expr}_2 \parallel \text{expr}_1 \]
\[\text{expr}_1 \parallel (\text{expr}_2 \parallel \text{expr}_3) \equiv (\text{expr}_1 \parallel \text{expr}_2) \parallel \text{expr}_3 \]

• **Concurrent composition:**

\[\text{expr}_1 \parallel \text{expr}_2 \]

The two expressions are made to execute concurrently with another. The two expressions can communicate through channels: one expression inputs from a channel which is output to by the other expression.

Concurrent attempts to input from a channel and to output to the channel does, however, not necessarily lead to a communication. Whether it does, depends on an internal choice. The two expressions can thus communicate with a third expression which is concurrently composed with the two.

Concurrent composition has unit **skip**, has zero **chaos**, is commutative, is associative, and is distributive through internal choice:

\[\text{expr} \parallel \text{skip} \equiv \text{expr} \]
\[\text{expr} \parallel \text{chaos} \equiv \text{chaos} \]
The following two equivalences hold if the expression \(s_{\text{expr}} \) is a total one which also does not involve communication and if \(c_1 \neq c_2 \).

\[
\begin{align*}
\text{x:=c}_1? \parallel \text{c}_2!s_{\text{expr}} & \equiv \\
(\text{x:=c}_1? ; \text{c}_2!s_{\text{expr}}) \parallel (\text{c}_2!s_{\text{expr}} ; \text{x:=c}_1?)
\end{align*}
\]

\[
\begin{align*}
\text{x:=c}? \parallel \text{c}!s_{\text{expr}} & \equiv \\
(((\text{x:=c}? ; \text{c}!s_{\text{expr}}) \parallel (\text{c}!s_{\text{expr}} ; \text{x:=c}?)) \parallel (\text{x:=s}_{\text{expr}}) \parallel (\text{x:=s}_{\text{expr}})
\end{align*}
\]

These are special cases of a more general law.

- **Interlocked composition:**

\[
\begin{align*}
\text{expr}_1 \parallel \text{expr}_2 & \equiv \\
\text{expr}_2 \parallel \text{expr}_1
\end{align*}
\]

The two expressions are made to execute interlocked with another. The effect is similar to concurrent composition except that the two expressions are obliged to communicate exclusively with each other. Thus: concurrent attempts to input from a channel and to output to the channel does lead to a communication. On the other hand, if the two expressions only want to communicate, but not on the same channel, then the whole expression deadlocks.

Interlocked composition has unit \textit{skip}, has zero \textit{chaos}, is commutative, and is distributive through internal choice:

\[
\begin{align*}
\text{expr} \parallel \text{skip} & \equiv \\
\text{expr} \\
\text{expr} \parallel \text{chaos} & \equiv \\
\text{chaos} \\
\text{expr}_1 \parallel \text{expr}_2 & \equiv \\
\text{expr}_2 \parallel \text{expr}_1
\end{align*}
\]

\[
\begin{align*}
\text{expr}_1 \parallel (\text{expr}_2 \parallel \text{expr}_3) & \equiv \\
(\text{expr}_1 \parallel \text{expr}_2) \parallel (\text{expr}_1 \parallel \text{expr}_3)
\end{align*}
\]

The following two equivalences hold if the expression \(s_{\text{expr}} \) is a total one which does not involve communication, and if \(c_1 \neq c_2 \).
As with the corresponding equivalences for concurrent composition, these are special cases of a more general law.

In general, the interlocking combinator illustrates the distinction between external choice and internal choice. The following equivalences hold if $s_{_1}$ and $s_{_2}$ are total expressions which do not involve communication, and if $c_1 \neq c_2$.

$$\begin{align*}
(x:=c_1? \parallel c_2!s_{_1}) \parallel c_1!s_{_2} & \equiv x := s_{_1} \\
(x:=c_1? \parallel c_2!s_{_2}) \parallel c_1!s_{_1} & \equiv (x := s_{_1}) \parallel \text{stop}
\end{align*}$$

- **Sequential composition:**

$$\text{expr}_1 ; \text{expr}_2$$

The second expression is made to execute sequentially after the first expression. The value returned is the value returned by the second expression.

Sequential composition has unit skip, is associative, and is distributive on the right through internal choice:

$$\begin{align*}
\text{expr} ; \text{skip} & \equiv \text{expr} \\
\text{skip} ; \text{expr} & \equiv \text{expr} \\
\text{expr}_1 ; (\text{expr}_2 ; \text{expr}_3) & \equiv (\text{expr}_1 ; \text{expr}_2) ; \text{expr}_3 \\
(\text{expr}_1 \parallel \text{expr}_2) ; \text{expr}_3 & \equiv (\text{expr}_1 ; \text{expr}_3) \parallel (\text{expr}_2 ; \text{expr}_3)
\end{align*}$$
13 Connectives

13.1 Infix connectives

Syntax

infix_connective ::=
 ⇒ |
 ∨ |
 ∧

Meaning

The infix connectives are intended to compose boolean expressions into new boolean expressions.

The effect of a composed expression follows a so-called conditional logic where in general the second constituent expression is evaluated only if the value of the first constituent expression is not enough to determine the value of the composed expression. In this way the eventual divergence, deadlock or default in the second constituent expression can be avoided when possible. The meaning of the connectives is given in terms of equivalences with the if expressions they are shorthands for.

• And:
 \(\text{expr}_1 \land \text{expr}_2 \equiv \)
 if \(\text{expr}_1 \) then \(\text{expr}_2 \) else false end

• Or:
 \(\text{expr}_1 \lor \text{expr}_2 \equiv \)
 if \(\text{expr}_1 \) then true else \(\text{expr}_2 \) end

• Implies:
 \(\text{expr}_1 \Rightarrow \text{expr}_2 \equiv \)
 if \(\text{expr}_1 \) then \(\text{expr}_2 \) else true end

13.2 Prefix connectives

Syntax

prefix_connective ::=

RAISE/CRU/DOC/2/V1
Meaning

The prefix connectives compose boolean expressions into new boolean expressions.

- **Not:**
 An axiom_prefix_expr of the form

 \[\neg \text{expr} \]

 is a shorthand for

 \[
 \text{if expr then false else true end}
 \]

- **Always:**
 An axiom_prefix_expr of the form

 \[\Box \text{expr} \]

 yields true if and only if for all states satisfying the subtype constraints for visible variables, the expr is convergent and deterministic and yields the value true.

 The axiom_prefix_expr itself is convergent and deterministic.
References

[1] An RSL Tutorial
 RAISE/CRI/DOC/1/V1

 RAISE/CRI/DOC/5/V1
Index

a name of 7
abstract type 32,57
access 71
applicative function 64
applied 128
array of models 16
body 26
channel 54
class 19
compatible 7
complete context 11
complete 19
compound types 57
converging 71
corresponding definition 128
deadlock 71
declarative construct 7
decomposer 111
default 71
defining 128
definition 7
distinguishable 57
diverge 71
domain 63
effect 71
entity 31
environment 111
extended parameter type 64
extended result type 64
failure 115
function 64
hidden 9
hold 19
imperative function 64
independently 72
index type 16
index value 16
interpretation 11,128
kind 31
least upper bound 58
legal 11
length 60
list 62
maximal context type 7,112,116
maximal parameter type 26
maximal 57
model 19
module 15
new 30
non-deterministic 63,71
object 15
offer a communication 72
old 30
operation 64
overloaded 10
parallelizable 72
parameter type 64
parameterised class 17
pattern matching 111,115
polymorphic 129
predefined types 57
process 64
product 60
properties 31
provides 19
pure 72
range 63
readonly 72
rename 30
represent 7,129
resolveable 11
result type 64
satisfies 19
scheme 17
scope rules 7
set 61
sort 32
state 52
static implementation 24
subtype 57
success 115
synchronized 54
terminate 71
total 71
type operator 57

type 57

under-specified 19

undistinguishable 57

upper bound 58

variable 52

visibility rules 7

visible 7,128
A Lexical Matters

This section describes lexical matters, i.e. the micro-syntax for RSL.

Basically, RSL follows the rules now in current practise for most programming languages: a text (i.e. an RSL specification) is represented as a string of characters, which is interpreted left-to-right and broken into a string of tokens. The characters are drawn from a superset of the ASCII characters called the full RSL character set. Tokens may be separated by “whitespace”, which is strings of zero or more of the following characters: line-feed, carriage-return, space and tab. (Note that comments are part of the RSL syntax and thus cannot be used freely as whitespace. Also note that comments may be nested.)

There are two types of tokens in RSL: varying and fixed.

A.1 Varying Tokens

The micro-syntax for varying tokens is defined by the below syntax rules, where the characters used in forming tokens are shown in quotes, as in ‘$’. Furthermore, LF, CR and TAB are used to denote the ASCII characters line-feed, carriage-return and tab.

\[
\text{id} ::= \\
\quad \text{letter opt-letter_or_digit_or_underline_or_prime-string}
\]

\[
\text{letter_or_digit_or_underline_or_prime} ::= \\
\text{letter | digit | underline | prime}
\]

\[
\text{letter} ::= \\
\quad \text{ascii_letter | greek_letter}
\]

\[
\text{comment} ::= \\
\quad \text{"\'/\'\'\'*\'\'\'/" comment_item-string \'}\'\'}\'/\'
\]

\[
\text{comment_item} ::= \\
\quad \text{comment_char | comment}
\]

\[
\text{comment_char} ::= \\
\quad \text{LF | CR | TAB |}
\]
ascii_letter | digit | graphic | prime | quote

int_value_literal ::= opt-sign digit-string

real_value_literal ::= opt-sign digit-string '.' digit-string

text_value_literal ::= \[^\[\]\] opt-text_character-string \[^\[\]\]

cchar_value_literal ::= \[^\[\]\] char_character \[^\[\]\]

text_character ::= character | prime
cchar_character ::= character | quote
ccharacter ::= ascii_letter | digit | graphic | escape
digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

ascii_letter ::= 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'i' | 'j' | 'k' | 'l' | 'm'

'\[N\]' | 'O' | 'P' | 'Q' | 'R' | 'S' | 'T' | 'U' | 'V' | 'W' | 'X' | 'Y' | 'Z'

greek_letter ::= 'α' | 'β' | 'γ' | 'δ' | 'ε' | 'ζ' | 'η' | 'θ' | 'ι' | 'κ' | 'λ'

'ν' | 'ξ' | 'π' | 'ρ' | 'σ' | 'τ' | 'υ' | 'φ' | 'χ' | 'ψ' | 'ω'

'Γ' | 'Δ' | 'Θ' | 'Ψ' | 'Σ' | 'Π' | 'Σ' | 'Υ' | 'Φ' | 'Ψ' | 'Ω
A.1.1 ASCII Forms of Greek Letters

Greek letters, which may be used in identifiers, have ASCII forms as follows:
The representation of individual fixed tokens is given directly in the syntax rules for RSL. However, a representation using only ASCII characters is possible, as defined in the following table:

<table>
<thead>
<tr>
<th>ASCII</th>
<th>(\alpha)</th>
<th>ASCII</th>
<th>(\Gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>(\delta)</td>
<td>(\Delta)</td>
<td>(\epsilon)</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>(\zeta)</td>
<td>(\eta)</td>
<td>(\theta)</td>
</tr>
<tr>
<td>(\delta)</td>
<td>(\iota)</td>
<td>(\kappa)</td>
<td>(\lambda)</td>
</tr>
<tr>
<td>(\epsilon)</td>
<td>(\lambda)</td>
<td>(\nu)</td>
<td>(\Xi)</td>
</tr>
<tr>
<td>(\zeta)</td>
<td>(\pi)</td>
<td>(\Pi)</td>
<td>(\xi)</td>
</tr>
<tr>
<td>(\eta)</td>
<td>(\rho)</td>
<td>(\Sigma)</td>
<td>(\rho)</td>
</tr>
<tr>
<td>(\theta)</td>
<td>(\sigma)</td>
<td>(\Upsilon)</td>
<td>(\phi)</td>
</tr>
<tr>
<td>(\iota)</td>
<td>(\tau)</td>
<td>(\Phi)</td>
<td>(\chi)</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>(\upsilon)</td>
<td>(\Psi)</td>
<td>(\psi)</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>(\omega)</td>
<td>(\Omega)</td>
<td>(\omega)</td>
</tr>
</tbody>
</table>

A.2 Fixed Tokens

The representation of individual fixed tokens is given directly in the syntax rules for RSL. However, a representation using only ASCII characters is possible, as defined in the following table:
The word equivalents of certain symbols: all, exists, union, inter, isin, always are reserved, and cannot be used as identifiers.

A.3 RSL keywords

The RSL keywords are listed below. They cannot be used as identifiers.
B Precedence and associativity of operators

Value operator precedence – increasing

<table>
<thead>
<tr>
<th>Prec</th>
<th>Operator(s)</th>
<th>Associativity</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>(\lambda \lor \exists \exists!)</td>
<td>Right</td>
</tr>
<tr>
<td>13</td>
<td>(\equiv) post</td>
<td>–</td>
</tr>
<tr>
<td>12</td>
<td>([] \cap | ||]</td>
<td>Right</td>
</tr>
<tr>
<td>11</td>
<td>;</td>
<td>Right</td>
</tr>
<tr>
<td>10</td>
<td>:= !</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>(\Rightarrow)</td>
<td>Right</td>
</tr>
<tr>
<td>8</td>
<td>(\lor)</td>
<td>Right</td>
</tr>
<tr>
<td>7</td>
<td>(\land)</td>
<td>Right</td>
</tr>
<tr>
<td>6</td>
<td>(\neq \lor \leq \leq \subseteq \subseteq \supseteq \supseteq \in \not \in)</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>(+ - \setminus \sim \cup \dagger)</td>
<td>Left</td>
</tr>
<tr>
<td>4</td>
<td>(* / \circ \cap)</td>
<td>Left</td>
</tr>
<tr>
<td>3</td>
<td>(\uparrow $)</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>:</td>
<td>–</td>
</tr>
<tr>
<td>1</td>
<td>(\sim \square) prefix_op</td>
<td>–</td>
</tr>
</tbody>
</table>

Type operator precedence – increasing

<table>
<thead>
<tr>
<th>Prec</th>
<th>Operator(s)</th>
<th>Associativity</th>
</tr>
</thead>
</table>
| 3 | \(\rightarrow\righta
C Syntax summary
Specifications

specification ::=
 module_decl-string

module_decl ::=
 object_decl |
 scheme_decl

Object declarations

object_decl ::=
 object object_def-list

object_def ::=
 opt-comment-string id opt-formal_array_parameter : class_expr

formal_array_parameter ::=
 [typing-list]

Scheme declarations

scheme_decl ::=
 scheme scheme_def-list

scheme_def ::=
 opt-comment-string id opt-formal_scheme_parameter = class_expr

formal_scheme_parameter ::=
 (formal_scheme_argument-list)

formal_scheme_argument ::=
 object_def

Class expressions

class_expr ::=
 basic_class_expr |
 importing_class_expr |
 extending_class_expr |
 hiding_class_expr |
renaming_class_expr | scheme_instantiation

Basic class expressions

basic_class_expr ::= class opt-decl-string end

Importing class expressions

importing_class_expr ::= import object_expr-list in class_expr

Extending class expressions

extending_class_expr ::= extend class_expr-list with opt-decl-string end

Hiding class expressions

hiding_class_expr ::= hide defined_item-list in class_expr

Renaming class expressions

renaming_class_expr ::= use rename_pair-list in class_expr

Scheme instantiations

scheme_instantiation ::= scheme-name opt-actual_scheme_parameter

actual_scheme_parameter ::= (object_expr-list)
Object expressions

object_expr ::=
 object-name |
 element_object_expr |
 array_object_expr |
 fitting_object_expr

Element object expressions

element_object_expr ::=
 array-object_expr actual_array_parameter

actual_array_parameter ::=
 [pure-expr-list]

Array object expressions

array_object_expr ::=
 [] typing-list • element-object_expr |

Fitting object expressions

fitting_object_expr ::=
 object_expr renaming

Renamings

renaming ::=
 { rename_pair-list }

rename_pair ::=
 defined_item for defined_item

defined_item ::=
 id_or_op |
 disambiguated_item

disambiguated_item ::=
 id_or_op : type_expr
Declarations

\[
\text{decl ::= object_decl | scheme_decl | type_decl | value_decl | variable_decl | channel_decl | axiom_decl}
\]

Type declarations

\[
\text{type_decl ::= type \space commented_type_def-list}
\]

\[
\text{commented_type_def ::= opt-comment-string \space type_def}
\]

\[
\text{type_def ::= sort_def | variant_def | union_def | short_record_def | abbreviation_def}
\]

Sort definitions

\[
\text{sort_def ::= \space id}
\]

Variant definitions

\[
\text{variant_def ::= \space id == variant_choice}
\]

\[
\text{variant ::= \space constant_variant | record_variant}
\]

\[
\text{constant_variant ::=}
\]
constructor opt-subtype_naming

record_variant ::=
 constructor component_kinds opt-subtype_naming

constructor ::=
 id_or_op |
 _

component_kinds ::=
 (component_kind-list)

component_kind ::=
 opt-destructor type_expr opt-reconstructor

destructor ::=
 id_or_op :

reconstructor ::=
 → id_or_op

subtype_naming ::=
 @ id

Union definitions

union_def ::=
 id = type-name-choice2

Short record definitions

short_record_def ::=
 id :: component_kind-string

Abbreviation definitions

abbreviation_def ::=
 id = type_expr
Value declarations

value_decl ::=
 value commented_value_def-list

commented_value_def ::=
 opt-comment-string value_def

value_def ::=
 typing |
 explicit_value_def |
 implicit_value_def |
 explicit_function_def |
 implicit_function_def

Explicit value definitions

explicit_value_def ::=
 single_typing = pure-expr

Implicit value definitions

implicit_value_def ::=
 single_typing pure-restriction

Explicit function definitions

explicit_function_def ::=
 single_typing formal_function_application ≡ expr opt-pre_condition

formal_function_application ::=
 id_application |
 prefix_application |
 infix_application

id_application ::=
 value-id formal_function_parameter-string

formal_function_parameter ::=
 (opt-binding-list)
prefix_application ::=
 prefix_op id

infix_application ::=
 id infix_op id

pre_condition ::=
 pre readonly_logical-expr

Implicit function definitions

implicit_function_def ::=
 single_typing formal_function_application post_condition opt-pre_condition

post_condition ::=
 opt-result_naming post readonly_logical-expr

result_naming ::=
 as binding

Variable declarations

variable_decl ::=
 variable commented_variable_def-list

commented_variable_def ::=
 opt-comment-string variable_def

variable_def ::=
 single_variable_def |
 multiple_variable_def

single_variable_def ::=
 id : type_expr opt-initialisation

initialisation ::=
 := pure-expr

multiple_variable_def ::=
 id-list2 : type_expr
Syntax summary 167

Channel declarations

channel_decl ::= channel commented_channel_def-list

commented_channel_def ::= opt-comment-string channel_def

channel_def ::= single_channel_def | multiple_channel_def

single_channel_def ::= id : type_expr

multiple_channel_def ::= id-list2 : type_expr

Axiom declarations

axiom_decl ::= axiom opt-axiom_quantification axiom_def-list

axiom_quantification ::= forall typing-list •

axiom_def ::= opt-comment-string opt-axiom_naming pure_logical-expr

axiom_naming ::= [id]
Syntax summary

Type expressions

type_expr ::=
 type_literal |
 type-name |
 product_type_expr |
 set_type_expr |
 list_type_expr |
 map_type_expr |
 function_type_expr |
 subtype_expr |
 bracketted_type_expr

Type literals

type_literal ::=
 Unit |
 Bool |
 Int |
 Nat |
 Real |
 Text |
 Char

Product type expressions

product_type_expr ::=
 type_expr-product2

Set type expressions

set_type_expr ::=
 finite_set_type_expr |
 infinite_set_type_expr

finite_set_type_expr ::=
 type_expr-set

infinite_set_type_expr ::=
 type_expr-infset
List type expressions

\[
\text{list}_\text{type}_\text{expr} ::= \\
\text{finite}_\text{list}_\text{type}_\text{expr} | \\
\text{infinite}_\text{list}_\text{type}_\text{expr}
\]

\[
\text{finite}_\text{list}_\text{type}_\text{expr} ::= \\
\text{type}_\text{expr}^\ast
\]

\[
\text{infinite}_\text{list}_\text{type}_\text{expr} ::= \\
\text{type}_\text{expr}^\omega
\]

Map type expressions

\[
\text{map}_\text{type}_\text{expr} ::= \\
\text{type}_\text{expr} \rightarrow \text{type}_\text{expr}
\]

Function type expressions

\[
\text{function}_\text{type}_\text{expr} ::= \\
\text{type}_\text{expr} \rightarrow \text{function}_\text{arrow} \text{result}_\text{desc}
\]

\[
\text{function}_\text{arrow} ::= \\
\sim | \\
\rightarrow
\]

\[
\text{result}_\text{desc} ::= \\
opt-\text{access}_\text{desc-string} \text{type}_\text{expr}
\]

Access descriptions

\[
\text{access}_\text{desc} ::= \\
\text{access}_\text{mode} \text{access-list}
\]

\[
\text{access}_\text{mode} ::= \\
\text{read} | \\
\text{write} | \\
\text{in} | \\
\text{out}
\]

\[
\text{access} ::= \\
\]
variable_or_channel-name |
completed_access |
comprehended_access

completed_access ::=
 opt-qualification any

comprehended_access ::=
 { access-list | pure-set_limitation }

Subtype expressions

subtype_expr ::=
 { single_typing pure-restriction |

Bracketted type expressions

bracketted_type_expr ::=
 (type_expr)
Expressions

expr ::=
 value_literal |
 value_or_variable-name |
 pre_name |
 basic_expr |
 product_expr |
 set_expr |
 list_expr |
 map_expr |
 function_expr |
 application_expr |
 quantified_expr |
 equivalence_expr |
 post_expr |
 disambiguation_expr |
 bracketted_expr |
 infix_expr |
 prefix_expr |
 comprehended_expr |
 initialise_expr |
 assignment_expr |
 input_expr |
 output_expr |
 structured_expr

Value literals

value_literal ::=
 unit_literal |
 bool_literal |
 int_literal |
 real_literal |
 text_literal |
 char_literal

unit_literal ::=
 ()

bool_literal ::=
 true |
 false
Pre names

pre_name ::=
 `variable-name`

Basic expressions

basic_expr ::=
 chaos |
 skip |
 stop |
 swap

Product expressions

product_expr ::=
 (expr-list2)

Set expressions

set_expr ::=
 ranged_set_expr |
 enumerated_set_expr |
 comprehended_set_expr

Ranged set expressions

ranged_set_expr ::=
 { readonly_integer-expr .. readonly_integer-expr }

Enumerated set expressions

enumerated_set_expr ::=
 { readonly-opt-expr-list }
Comprehended set expressions

comprehended_set_expr ::=
{ readonly-expr | set_limitation }

set_limitation ::=
typing-list opt-restriction

restriction ::=
• readonly_logical-expr

List expressions

list_expr ::=
ranged_list_expr |
enumerated_list_expr |
comprehended_list_expr

Ranged list expressions

ranged_list_expr ::=
⟨ readonly_integer-expr .. readonly_integer-expr ⟩

Enumerated list expressions

enumerated_list_expr ::=
⟨ readonly-opt-expr-list ⟩

Comprehended list expressions

comprehended_list_expr ::=
⟨ readonly-expr | list_limitation ⟩

list_limitation ::=
binding in readonly_list-expr opt-restriction
Map expressions

map_expr ::=
 enumerated_map_expr |
 comprehended_map_expr

Enumerated map expressions

enumerated_map_expr ::=
 [opt-exp expr_pair-list]

expr_pair ::=
 readonly-exp expr_pair

Comprehended map expressions

comprehended_map_expr ::=
 [expr_pair | set_limitation]

Function expressions

function_expr ::=
 λ lambda_parameter • expr

lambda_parameter ::=
 lambda_typing |
 single_typing

lambda_typing ::=
 (opt-typing-list)

Application expressions

application_expr ::=
 list_or_map_or_function-exp expr actual_function_parameter-string

actual_function_parameter ::=
 (opt-exp-list)
Quantified expressions

quantified_expr ::= quantifier typing-list restriction
quantifier ::= ∀ | ∃ | ∃!

Equivalence expressions

equivalence_expr ::= expr ≡ expr opt-pre-condition

Post expressions

post_expr ::= expr post_condition opt-pre-condition

Disambiguation expressions

disambiguation_expr ::= expr : type_expr

Bracketted expressions

bracketted_expr ::= (expr)

Infix expressions

infix_expr ::= stmt_infix_expr | axiom_infix_expr | value_infix_expr
Stmt infix expressions

stmt_infix_expr ::= expr infix_combinator expr

Axiom infix expressions

axiom_infix_expr ::= logical-expr infix_connective logical-expr

Value infix expressions

value_infix_expr ::= expr infix_op expr

Prefix expressions

prefix_expr ::= axiom_prefix_expr | value_prefix_expr

Axiom prefix expressions

axiom_prefix_expr ::= prefix_connective logical-expr

Value prefix expressions

value_prefix_expr ::= prefix_op expr

Comprehended expressions

comprehended_expr ::= associative_commutative-infix_combinator { expr | set_limitation }
Initialise expressions

initialise_expr ::=
 opt-qualification initialise

Assignment expressions

assignment_expr ::=
 variable-name := expr

Input expressions

input_expr ::=
 channel-name ?

Output expressions

output_expr ::=
 channel-name ! expr

Structured expressions

structured_expr ::=
 local_expr |
 let_expr |
 if_expr |
 case_expr |
 for_expr |
 while_expr |
 until_expr

Local expressions

local_expr ::=
 local opt-decl-string in expr end
Let expressions

let_expr ::=
 let let_def-list in expr end

let_def ::=
 typing |
 explicit let |
 implicit let

explicit let ::=
 let_binding = expr

implicit let ::=
 single_typing restriction

let_binding ::=
 binding |
 record_pattern |
 list_pattern

If expressions

if_expr ::=
 if logical-expr then
 expr
 opt-elsif_branch-string
 opt-else_branch
 end

elsif_branch ::=
 elsif logical-expr then expr

else_branch ::=
 else expr

Case expressions

case_expr ::=
 case expr of case_branch-list end

case_branch ::=
 pattern → expr
Syntax summary

For expressions

for_expr ::=
 for list_limitation do unit_expr end

While expressions

while_expr ::=
 while logical_expr do unit_expr end

Until expressions

until_expr ::=
 do unit_expr until logical_expr end
Bindings

binding ::=
 id_or_op |
 product_binding

product_binding ::=
 (binding-list2)
Typings

typing ::=
 single_typing |
 multiple_typing

single_typing ::=
 binding : type_expr

multiple_typing ::=
 binding-list2 : type_expr
Patterns

\[
\text{pattern ::= value_literal | pure_value-name | wildcard_pattern | product_pattern | record_pattern | list_pattern}
\]

Wildcard patterns

\[
\text{wildcard_pattern ::= -}
\]

Product patterns

\[
\text{product_pattern ::= (pattern-list2)}
\]

Record patterns

\[
\text{record_pattern ::= pure_value-name component_patterns}
\]

\[
\text{component_patterns ::= (inner_pattern-list)}
\]

\[
\text{inner_pattern ::= binding | wildcard_pattern}
\]

List patterns

\[
\text{list_pattern ::= constructed_list_pattern | left_list_pattern | right_list_pattern | left_right_list_pattern}
\]
Construct list patterns

constructed_list_pattern ::= (opt-inner_pattern-list)

Left list patterns

left_list_pattern ::= constructed_list_pattern ^ id_or_wildcard

id_or_wildcard ::= id | wildcard_pattern

Right list patterns

right_list_pattern ::= id_or_wildcard ^ constructed_list_pattern

Left right list patterns

left_right_list_pattern ::= constructed_list_pattern ^ id_or_wildcard ^ constructed_list_pattern
Names

name ::=
 qualified_id |
 qualified_op

Qualified ids

qualified_id ::=
 opt-qualification id

qualification ::=
 element-object_expr .

Qualified ops

qualified_op ::=
 opt-qualification (op)

Identifiers and operators

id_or_op ::=
 id |
 op

op ::=
 infix_op |
 prefix_op

Infix ops

infix_op ::=
 = |
 ≠ |
 ≥ |
 ≤ |
 ⊃ |
 ⊂ |
Syntax summary

⊂ | ⊇ | ⊆ | ∈ | \∉ | + | − | \| | ~ | \cup | † | ∗ | / | ◦ | ∩ | ↑ | $

Prefix ops

prefix_op ::= abs | it | rl | card | len | inds | elems | hd | tl | front | last | dom | rng
Connectives

connective ::=
 infix_connective |
 prefix_connective

Infix connectives

infix_connective ::=
 ⇒ |
 ∨ |
 ∧

Prefix connectives

prefix_connective ::=
 ∼ |
 □
Infix combinators

infix_combinator ::=
 ⌈⌉
 ⌈⌉
 ⌊⌋
 ⌊⌋
 ∥∥
 ∥∥
 –∥∥
 –∥∥
 #∥
 #∥
 ;