
RAISE in Perspective

Klaus Havelund

NASA’s Jet Propulsion Laboratory, Pasadena, USA
Klaus.Havelund@jpl.nasa.gov

1 The Contribution of RAISE

The RAISE [6] Specification Language, RSL, originated as a development
from VDM [9] during a five year effort involving several researchers. The
purpose was to improve VDM by augmenting it with a module system, a pro-
cess description language, a formal semantics standard, and tool support. A
goal was to keep the language a wide spectrum language including high level
specification constructs as well as low level programming constructs, allow-
ing specification and program fragments to be mixed arbitrarily with each
other without imposing a linguistically layered language. The effort resulted
in a language inspired by, but in many ways different from VDM. A main
deviation from VDM is the emphasis on an algebraic specification-style logic
where a module consists of a signature and a set of axioms over the names
introduced in the signature. Derived forms exist which reflect the classical
VDM definitional style. Correspondingly, types can be abstract sorts as in
algebraic specifications or they can be defined through type definitions as
in VDM using what is normally referred to as a model oriented style. The
pure model oriented style usually uses such explicit type definitions and a
definitional style for functions. The pure algebraic style uses sorts and more
liberal equations with arbitrary terms on the left hand side as well as on the
right hand side. In the axiomatic style emphasis is on operations and how
they relate to each other. In the model oriented style there is a specific em-
phasis on type equations. When modeling a problem in VDM, the problem
is usually first approached by writing down a set of type definitions using
set, list and map type constructors. Operations are subsequently defined re-
ferring to the operators allowed on values of these types. The same style is
possible in RSL, although the added module system suggests the association

1



of operations with types in a compartmentalized manner.

Although the language is completely uniform, RSL is often for pedagogical
purposes presented as supporting three paradigms: functional, procedural
with side effects on a state, and process algebraic. In addition each paradigm
can be presented in an axiomatic style or in a model oriented definitional
style, conceptually forming a 3 by 2 matrix. However, there is only one
notion of function, which potentially can have side effects or communicate
on channels, and which can be defined axiomatically, with a special case
being a model oriented definitional style. Considering this 3 by 2 matrix, the
theoretical contribution of RSL was the algebraic specification of functions
with side effects on state variables and channels, and the linguistic and
semantic unification of all these concepts.

2 Relationship to Programming Languages

However, in spite of the axiomatic capabilities of RSL, the model oriented
definitional style seems more often used. For example the case study in
the RAISE chapter is mostly written in such a style (first functional and
then procedural, but both model oriented). The model oriented approach
tends to convey information succinctly. For example, by stating that a
document is a list of lines, each of which is a list of characters, one has
said a great deal before even introducing any functions on documents. In
essence, many specifications have the flavor of high level programs. This
observation might lead to question what the relationship between specifica-
tion languages and programming languages should be. Traditionally many
specification languages are seen as existing separately from programming
languages, only connected with a translator from the specification language
to the programming language in case the specification language contains an
executable subset. This separation has some advantages and some disad-
vantages. A main advantage is clearly that the specification language can be
used to describe systems independently of the final choice of programming
language. The implementation can even be programmed in different pro-
gramming languages, which is in fact typically the case. Another advantage
is that the specification language is liberated from issues of executability.
Specifications can be as abstract as required.

Amongst the disadvantages is the fact that a software project has to admin-
ister artifacts written in a specification language as well as in a programming

2



language. One can imagine that some parts of the system have been im-
plemented already in a programming language, while other parts have been
captured in a specification language, resulting in a multi language situation.
This problem seems even less necessary when considering that specification
language and programming language often have many constructs in com-
mon. It is not always possible to rely on a translator from the specification
language to the programming language. Typically such a translator will
not yield code that is efficient enough. The programmer will not trust the
complicated translation process and would be more comfortable with a real
one-step compiler. Finally, the link between specification and program can-
not in practice be formal. In theory it can be formalized, but it would
require a formal semantics of the programming language and a proof that
every specification is translated to a semantically equivalent program.

Whether one will argue for or against a separation between specification
language and programming language, it is clear that there are advantages of
combining specification and programming into one language. An interest-
ing language in this context is the widely used scripting and programming
language Python [5]. Python has built-in succinct notation for sets, lists
and maps, and iterators over these, exactly the core data types of VDM and
RSL. These concepts also exist in Java [3], although as libraries. These are
examples of using high level constructs for programming. Some program-
ming language extensions incorporate specifications in a layered manner,
where specifications are separated from the actual code, as axioms [2] or as
pre/post conditions [1, 4, 7].

In general, several concepts have shown to be useful in specification as well
as programming, and hence could be considered candidates for integration
into a single programming language. These include object orientation, func-
tional programming, algebraic data types generated with constructors and
pattern matching over these, as well as succinct notation for operating sets,
lists and maps, as well as logic inspired constructs such as pre/post condi-
tions and existential and universal quantification over finite sets. It is even
conceivable that equational rewriting rules could be merged with traditional
programming constructs in a programming language. Notation-wise this is
allowed in RSL, however, it is currently not supported by a computational
model.

If object oriented-ness means that objects are first class values, then RSL
is not object oriented. The integration of object orientation into RSL was
at the time regarded as a theoretical complication. Furthermore, object

3



orientation was not yet common practice when RSL was designed. Object
orientation has, however, shown to be a useful way of encapsulating state.
As an example, an object oriented presentation of the case study without
explicitly mentioning the state variable might be more succinct than the
functional style where the state is passed as argument to all functions.

The main point of the above discussion has been to emphasize that specifi-
cation languages and programming languages conceptually overlap and that
the gap between the two universes is not as big as one could believe. It is
desirable that more ideas from formal specification languages transfer into
programming languages and that there is a more elaborate exchange of ideas
between the two communities. The formal methods community has much
to offer the programming language community, and vice versa.

Verification and Testing

As a final point, it is worth mentioning the use of formal methods for testing.
RAISE stands for “Rigorous Approach to Industrial Software Engineering”.
By “Rigorous” is meant that the correctness of a software artifact developed
using the RAISE technology can be justified by a proof, relating formal
artifacts. Rigor is an important and essential element of a formal method
like RAISE. However, rigor comes with a price: generating proofs is hard.
Testing still seems to be the most practical approach for large specifications.
The testing method referred to in the paper resembles various unit testing
methods found in programming. The user writes a set of tests, each of which
performs a sequence of function calls on specific data, and then observes the
result. A useful augmentation of this approach would consist of prefixing
these tests with universal quantifications over data referred to in the tests,
and then use automated selection of data from the types quantified over
for automated testing. Selection of data from the types could furthermore
be guided by user-provided strategies. A more uniform view would be to
regard some equational axioms as test cases, hence avoiding introducing new
concepts into the language. A specification should be directly usable for
generating test cases. A special view on testing is runtime verification [10],
where a specification is used to monitor the execution of the final program. If
specifications become part of the programmer’s test arsenal, there is a bigger
chance that specification technology will be adopted by practitioners.

4



References

[1] Eiffel. http://www.eiffel.com.

[2] Extended ML. http://homepages.inf.ed.ac.uk/dts/eml.

[3] Java. http://java.sun.com.

[4] JML. http://www.cs.iastate.edu/~leavens/JML.

[5] Python. http://www.python.org.

[6] RAISE. http://www2.imm.dtu.dk/~db/raise.

[7] Spec#. http://research.microsoft.com/specsharp.

[8] Standard ML. http://en.wikipedia.org/wiki/Standard_ML.

[9] VDM. http://www.vdmportal.org.

[10] Runtime Verification Workshops. http://www.runtime-verification.org.

5


