A Refinement Proof for a Garbage Collector

Klaus Havelund\(^1\)\(^\star\) and Natarajan Shankar\(^2\)

\(^1\) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
\(^2\) Computer Science Laboratory, SRI International, Menlo Park, USA

Abstract. We describe how the PVS theorem prover has been used to verify a safety property of a widely studied garbage collection algorithm. The safety property asserts that “nothing but garbage is ever collected.” The garbage collection algorithm and its composition with the user program can be regarded as a concurrent system with two processes working on a shared memory. Such concurrent systems can be encoded in PVS as state transition systems using a model similar to TLA \([16]\). The safety criterion is formulated as a refinement and proved using refinement mappings. Russinoff \([19]\) originally verified the algorithm in the Boyer-Moore prover, but his proof was not based on refinement. Furthermore, the safety property formulation required a glass box view of the algorithm. Using refinement, however, the safety criterion makes sense independent of the garbage collection algorithm. As a by-product, we encode a version of the theory of refinement mappings in PVS. The paper reflects substantial work that was done over two decades ago, but which is still relevant.

1 Introduction

Russinoff \([19]\) used the Boyer-Moore theorem prover to verify a safety property of a mark–and–sweep garbage collection algorithm originally suggested by Ben-Ari \([3]\). The garbage collector and its composition with a user program is regarded as a concurrent system with both processes working on a common shared memory. The collector uses a colouring (marking) technique to iteratively colour all accessible nodes \textit{black} while leaving garbage nodes \textit{white}. When the colouring has stabilized, all the white nodes can be collected and placed in the free list.

An initial version of the algorithm was first proposed by Dijkstra, Lamport, Martin, Scholten, and Steffens \([6]\) as an exercise in organizing and verifying the cooperation of concurrent processes. Their solution involved three colours. Ben-Ari improved this algorithm so as to use only two colours while simplifying the

\(^\star\) The research performed by his author was carried out at LITP, Paris 6, France (supported by an HCM grant); SRI International, California, USA; Aalborg University, Denmark; and Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
resulting proof. All of these proofs were informal pencil and paper exercises. As pointed out by Russinoff [19], these informal proofs ran into difficulties of one sort or another. Dijkstra, et al. [6] explained (as an example of a “logical trap”) how they originally proposed a minor modification to the algorithm. This claim turned out to be wrong, and was discovered by the authors just before the proof reached publication. Ben-Ari later proposed the same modification to his algorithm and argued for its correctness without discovering its flaw. Counterexamples were later given by Pixley [18] and van de Snepscheut [20]. Furthermore, although Ben-Ari’s algorithm is correct, his proof of the safety property was found to be flawed. This flaw was essentially reproduced by Pixley [18] where it again survived the review process, and was only discovered ten years later by Russinoff during the course of his mechanical verification [19]. Ben-Ari also gave a flawed proof of a liveness property (every garbage node will eventually be collected) that was later observed and corrected by van de Snepscheut [20].

Russinoff’s correctness property is formulated as a state predicate \(P \), which is then proven to be an invariant, i.e., true in all reachable states. In gross terms, this invariant predicate is formulated as follows. The garbage collector can at any time be in one of 9 different locations. In one of the locations, here called APPEND, the append operation representing garbage collection is applied to a certain memory node \(X \), but only when this node is white. The safety predicate \(P \) is then formulated as: “if the control of the garbage collector is at location APPEND and \(X \) is white then \(X \) is garbage”. However, this formulation of the safety property does not really tell us whether the program is correct. We have to additionally ensure that the append operation is only invoked in location APPEND, and only on white nodes. Hence, the safety property of the garbage collector follows from both the invariance of \(P \) and an operational understanding of the garbage collection algorithm.

This observation motivated us to carry out a proof in the PVS\(^3\) theorem prover [1] using a refinement approach, presented in this paper, where the safety property itself is formulated as an abstract algorithm, and the proof is based on refinement mappings as suggested by Lamport [16]. This approach has the advantage that the safety property can be formulated more abstractly without considering the internal structure of the final implementation. Here a black box view of the algorithm is sufficient. This yields a further contribution in terms of the formalization of refinement mappings in PVS. In order better to make a comparison, we also carried out a proof in PVS using the same technique as in [19]. This work was documented in [11]. In [12] we verified a distributed communication protocol using similar techniques for representing state transition systems. Our key conclusion is that techniques for strengthening invariants are of major importance also in refinement proofs, and that refinement does not remove this burden. The proof presented here was carried out over two decades ago, but was only published as a (substantial) technical report [13]. Since we still consider the work relevant, and even cited, we decided to finally publish this work.

\(^3\) PVS stands for Prototype Verification System.
The paper is organized as follows. Section 2 outlines additional related work. In Section 3, a formalization of state transition systems and refinement mappings is provided in an informal mathematical style that is later formalized in PVS. The garbage collection algorithm is described in Section 4. Sections 5 and 6 present the successive refinements of the initial algorithm in three stages. This presentation is based on an informal notation for transition systems. Section 7 lists some observations on the entire verification exercise. Appendices A and B formalize the concepts introduced in Sections 3, 5 and 6 in PVS.

2 Additional Related Work

Our proof was performed in 1996. In the same year, Gonthier [10] verified a detailed implementation of a realistic concurrent garbage collector [7] using TLP, a prover for the Temporal Logic of Actions. Gonthier’s proof demonstrates that the implementation preserves a complex safety invariant with about 22,000 lines of proof. Since 1996, there have been a number of verification efforts aimed at the verification of garbage collectors. Jackson [15] used an embedding of temporal logic in PVS to verify both safety and liveness properties for an abstract mutator/allocator/collector model of the tricolor algorithm of Dijkstra, et al. This abstract model is then refined to a lower-level heap-based implementation. Burdy [4] formalized our refinement argument in both B and Coq for the purpose of comparing the two formal systems. In Burdy’s formalization, the abstract mutator already colors the target of a pointer assignment. Gammie, Hosking, and Engelhardt [9] describe the Isabelle/HOL formalization and verification of the tricolor concurrent garbage collector (similar to the one verified by Gonthier) for an x86-TSO memory model in a multi-mutator setting as an invariance proof. Many of the proofs build the cooperative marking by the mutator into the specification. When this marking by the mutator alternatively is viewed as a refinement, as in our proof, it is important to demonstrate that the refinement has not restricted the mutator so that it does not generate any garbage. It can do this, for example, by never redirecting a pointer so as to leave a node orphaned. Such a mutator would satisfy the refinement with an idle garbage collector. A correct refinement must preserve the nondeterminism of the mutator and therefore must simultaneously witness a simulation relation on the collector and a bisimulation relation on the mutator.

3 Transition Systems and Refinement Mappings

In this section, we establish the formal theory for using an abstract non-deterministic program as a safety specification so that any behaviour is safe as long as it is generated by the abstract program. An implementation is then defined as a refinement of this program. The basic concepts are those of transition systems, traces, invariants, observed transition systems, refinements, and refinement mappings. The theory presented is a minor modification of the theory developed by Abadi and Lamport [2]. We first introduce the basic concept of a transition system. Specifications as well as their refinements are written as transition systems.

Definition 1 (Transition System). A transition system is a triple \((\Sigma, I, N)\), where

- \(\Sigma\) is a state space
- \(I \subseteq \Sigma\) is the set of initial states.
- \(N \subseteq \Sigma \times \Sigma\) is the next-state relation. Elements of \(N\) are denoted by pairs of the form \((s, t)\), meaning that there is a transition from the state \(s\) to the state \(t\).

An execution trace is an infinite sequence of states, where the first state satisfies the initiality predicate and every pair of adjacent states is related by the next-state relation. A sequence \(\sigma\) is just an infinite enumeration of states \(\langle s_0, s_1, s_2, \ldots \rangle\). We let \(\sigma_i\) denote the \(i\)'th element \(s_i\) of the sequence. The traces of a transition system can be defined as follows.

Definition 2 (Traces). The traces of a transition system are defined as follows:

\[
\Theta(\Sigma, I, N) = \{ \sigma \in \Sigma^\omega \mid \sigma_0 \in I \land \forall i \geq 0 \cdot N(\sigma_i, \sigma_{i+1}) \}
\]

We shall need the notion of a transition system invariant, which is a state predicate true in all states reachable from an initial state by following the next-state relation.

Definition 3 (Invariant). Given a transition system \(S = (\Sigma, I, N)\), then a predicate \(P : \Sigma \to B\) is an \(S\) invariant iff:

\[
\forall \sigma \in \Theta(S) \cdot \forall i \geq 0 \cdot P(\sigma_i)
\]

Since we want to compare transition systems, and decide whether one transition system refines another, we need a notion of observability. For that purpose, we extend transition systems with an observation function, which when applied to a state returns an observation in some domain.
Definition 4 (Observed Transition System). An observed transition system is a five-tuple \((\Sigma, \Sigma_o, I, N, \pi)\) where

- \((\Sigma, I, N)\) is a transition system
- \(\Sigma_o\) is a state space, the observed one
- \(\pi : \Sigma \to \Sigma_o\) is an observation function that extracts the observed part of a state.

Typically (at least in our case) a state \(s \in \Sigma\) consists of an observable part \(s_{obs} \in \Sigma_o\) and an internal part \(s_{int}\), hence \(s = (s_{obs}, s_{int})\) and \(\pi\) is just the projection function: \(\pi(s_{obs}, s_{int}) = s_{obs}\). We adopt the convention that a projection function \(\pi\) applied to a trace \(\langle s_1, s_2, \ldots \rangle\) results in the projected trace \(\langle \pi(s_1), \pi(s_2), \ldots \rangle\).

The central concept in all this is the notion of refinement: that one observed transition system \(S_2\) refines another observed transition system \(S_1\). By this we intuitively mean that every observation we can make on \(S_2\), we can also make on \(S_1\). Hence, if \(S_1\) behaves safely so will \(S_2\) since every projected trace of \(S_2\) is a projected trace of \(S_1\). This is formulated in the following definition.

Definition 5 (Refinement). An observed transition system \(S_2 = (\Sigma_2, \Sigma_o, I_2, N_2, \pi_2)\) refines an observed transition system \(S_1 = (\Sigma_1, \Sigma_o, I_1, N_1, \pi_1)\) iff for every trace of \(S_2\) there exists a trace of \(S_1\) with the same observed states (note that they have the same observed state space \(\Sigma_o\)):

\[
\forall \sigma_2 \in \Theta(S_2) \cdot \exists \sigma_1 \in \Theta(S_1) \cdot \pi_1(\sigma_1) = \pi_2(\sigma_2)
\]

We have thus established what it means for one observed transition system to refine another, but we still need a practical way of showing refinement. Note that refinement is defined in terms of traces which are infinite objects so that reasoning about them directly is impractical. We need a way of reasoning about states and pairs of states. A refinement mapping is a suitable tool for this purpose. A refinement mapping from a lower level transition system \(S_2\) to a higher-level one \(S_1\) is a mapping from the state space \(\Sigma_2\) to the state space \(\Sigma_1\), that when applied statewise, maps traces of \(S_2\) to traces of \(S_1\). This is formally stated as follows.

Definition 6 (Refinement Mapping). A refinement mapping from an observed transition system \(S_2 = (\Sigma_2, \Sigma_o, I_2, N_2, \pi_2)\) to an observed transition system \(S_1 = (\Sigma_1, \Sigma_o, I_1, N_1, \pi_1)\) is a mapping \(f : \Sigma_2 \to \Sigma_1\) such that there exists an \(S_2\) invariant \(P\) (representing reachable states in \(S_2\)), where:

1. \(\forall s \in \Sigma_2 \cdot \pi_1(f(s)) = \pi_2(s)\)
2. \(\forall s \in \Sigma_2 \cdot I_2(s) \Rightarrow I_1(f(s))\)
3. \(\forall s, t \in \Sigma_2 \cdot P(s) \land P(t) \land N_2(s, t) \Rightarrow N_1(f(s), f(t))\)
Property 1 says that the observation of a state in S_2 is the same as that of its image in S_1 obtained by applying the refinement mapping. Property 2 says that an initial state in S_2 is mapped to an initial state in S_1. Property 3 says that if two reachable states (satisfying the invariant P) in S_2 are connected via S_2’s next-state relation, then their images in S_1 are correspondingly connected via S_1’s next-state relation.

We can now state the main theorem (which is stated in [2], and which we have proved in PVS for our slightly modified version):

Theorem 1 (Existence of Refinement Mappings). If there exists a refinement mapping from an observed transition system S_2 to an observed transition system S_1, then S_2 refines S_1.

We shall show how we demonstrate the existence of refinement mappings in PVS, by providing a witness, that is: defining a particular one. Defining the refinement mapping turns out typically to be easy, whereas showing that it is indeed a refinement mapping (the properties in Definition 6) is where the major effort goes. Especially finding and proving the invariant P is the bulk of the proof.

We differ from Abadi and Lamport [2] in two ways. First, we allow general observation functions, and not just projection functions that are the identity map on a subset of the state space. Second, in Definition 6 of refinement mappings, we assume that states s and t satisfy an implementation invariant P, which is not the case in [2]. We have thus weakened the premises of the refinement rule. Whereas the introduction of observation functions is just a nice (but not strictly necessary) generalization, the use of invariants is of real importance for practical proofs.

4 The Algorithm

In this section we informally describe the garbage collection algorithm. As illustrated in Figure 1, the system consists of two processes, the *mutator* and the *collector*, working on a shared *memory*.

4.1 The Memory

The memory is a fixed size array of *nodes*. In Figure 1 there are 5 nodes (rows) numbered 0–4. Associated with each node is an array of uniform length of *cells*. Figure 1 shows 4 cells numbered 0 – 3 per node. A cell is identified by a pair of integers (n,i) where n is a node number and where i is called the *index*. Each cell contains a pointer to a node, called the *son*. In the case of a LISP implementation, there are, for example, two cells per node. In Figure 1, we assume that all empty cells contain the *NIL* value 0, and hence point to node 0. In addition, node 0
Fig. 1. The mutator, collector and shared memory

points to node 3 (because cell (0,0) does so), which in turn points to nodes 1 and 4. Hence the memory can be thought of as a two-dimensional array, the size of which is determined by the positive integer constants NODES and SONS. Each node has an associated colour, black or white, that is used by the collector in identifying garbage nodes.

A pre-determined number of nodes, defined by the positive integer constant ROOTS, are designated as the roots, and these are kept in the initial part of the array (they may be thought of as static program variables). In Figure 1, there are two such roots shown separated from the rest with a dotted line. A node is accessible if it can be reached from a root by following pointers, and a node is garbage if it is not accessible. Nodes 0, 1, 3, and 4 in Figure 1 are therefore accessible, and node 2 is garbage.

There are only three operations by which the memory structure can be modified:

- Redirect a pointer towards an accessible node.
- Change the colour of a node.
- Append a garbage node to the free list.

In the initial state, all pointers are assumed to be 0, and nothing is assumed about the colours.

4.2 The Mutator

The mutator corresponds to the user program and performs the main computation. From an abstract point of view, it continuously changes pointers in the memory; the changes being arbitrary except for the fact that a cell can only be set to point to an already accessible node. In changing a pointer the “previously pointed-to” node may become garbage, if it is not accessible from the roots in some alternative way. In Figure 1, any cell can hence be modified by the mutator to point to a node other than 2. Only accessible cells can be modified, but as shown below, the algorithm can in fact be proved safe without this restriction. The algorithm is as follows:
1. Select a node \(n \), an index \(i \), and an accessible node \(k \), and assign \(k \) to cell \((n,i)\).
2. Colour node \(k \) black. Return to step 1.

Each of the two steps is regarded as an atomic instruction.

4.3 The Collector

The collector collects garbage nodes and puts them into a free list, from which the mutator may then remove them as they are needed during dynamic storage allocation. Associated with each node is a colour field, that is used by the collector during its identification of garbage nodes. Basically, it colours accessible nodes black, and at a certain point it collects all white nodes, which are then garbage, and puts them into the free list. Figure 1 illustrates the situation at such a point: only node 2 is white since it is the only garbage node. The collector algorithm is as follows:

1. Colour each root black.
2. Examine each pointer in succession. If the source is black and the target is white, colour the target black.
3. Count the black nodes. If the result exceeds the previous count (or if there was no previous count), return to step 2.
4. Examine each node in succession. If a node is white, append it to the free list; if it is black, colour it white. Then return to step 1.

Steps 1–3 constitute the marking phase where all accessible nodes are blackened. Each of these steps involves an iteration involving a smaller step that is executed atomically. For example, step 3 consists of several atomic instructions, each counting (or not) a single node.

5 The Specification

We now present the initial specification of the garbage collector. It is presented as a transition system using an informal notation. In Appendix A it is described how we encode transition systems in PVS.

We shall assume a data structure representing the memory. The number of nodes in the memory is defined by the constant \(\text{NODES} \). The type \text{Node} defines the numbers from 0 to \(\text{NODES} - 1 \). The constant \(\text{SONS} \) defines the number of cells per node. The type \text{Index} defines the numbers from 0 to \(\text{SONS} - 1 \). Hence, the memory can be thought of a two-dimensional array, and can be declared as in Fig 24.

4 The actual PVS specification shown on page 23 is actually more abstract and does not specify the memory as being implemented as an array. We use an array implementation here for clarity of presentation.
The memory will be the observed part of the state (Σ_o – see Definition 6) throughout all refinements. For example, the node colouring structure and other auxiliary variables that we later add will be internal. Recall that an initial segment of the nodes are roots, the number being defined by the constant ROOTS. A number of functions (e.g., for reading the state) and procedures (e.g., for modifying the state) are assumed, see Fig 3.

```plaintext
function accessible(n:Node):bool;
function son(n:Node,i:Index):Node;
procedure set_son(n:Node,i:Index,k:Node);
procedure append_to_free(n:Node);
```

Fig. 3. Functions and procedures used in the specification

The function `accessible` returns true if its argument node is accessible from one of the roots by following pointers. The function `son` returns the contents of cell (n,i). The procedure `set_son` assigns k to the cell identified by (n,i). Hence after the procedure has been called, this cell now points to k. The procedure `append_to_free` appends its argument node to the list of free nodes, assuming that it is a garbage node. The specification consists of the parallel composition of the mutator and the collector. The mutator is shown in Fig. 4.

```plaintext
MODIFY :
[1] choose n,k:Node; i:Index where accessible(k) ->
    set_son(n,i,k);
    goto MODIFY
end
```

Fig. 4. Specification of mutator

A program at any time during its execution is in one of a finite collection of locations that are identified by program labels. The above mutator has one such location named `MODIFY`. Associated with each location is a set of numbered ([1], [2], ...) rules, typically of the form $p \rightarrow s$, where p is a pre-condition on the state and s is an assignment statement. When the program execution
is at this location, all rules where the condition \(p \) is true in the current state are enabled, and a non-deterministic choice is made between them, resulting in the next state being obtained by applying the \(s \) statement of the chosen rule to the current state. The “\texttt{choose } x: T \texttt{ where } p(x) \rightarrow s \texttt{ end}” construct represents a set of such rules, one for each choice of \(x \) within its type \(T \). Hence, the mutator repeatedly chooses two arbitrary nodes \(n,k: \text{Node} \) and an arbitrary index \(i: \text{Index} \) such that \(k \) is accessible. The cell \((n,i)\) is then set to point to \(k \). The collector is shown in Fig 5.

\begin{verbatim}
COLLECT :
[1] choose n:Node where not accessible(n) ->
 append_to_free(n);
 goto COLLECT
end
\end{verbatim}

\textbf{Fig. 5.} Specification of collector

It repeatedly chooses an arbitrary inaccessible node which is then appended to the free list of nodes. Since the node is not accessible it is a garbage node, hence only garbage nodes are collected (appended), and this is the proper specification of the garbage collector. This yields an abstract specification of the behavior of the collector that is not yet a reasonable implementation. We need to somehow implement the selection of an inaccessible node.

\section{The Refinement Steps}

In this section we outline how the refinement is carried out in three steps, resulting in the garbage collection algorithm described informally in Section 4. Each refinement is given an individual subsection, which again is divided into a \texttt{program} subsection presenting the new program, and a \texttt{proof} subsection outlining the refinement proof. According to Theorem 1 a refinement can be proved by identifying a refinement mapping from the concrete state space to the abstract state space, see Definition 6. Hence, each \texttt{proof} section will consist of a definition of such a mapping together with a proof that it is a refinement mapping, focusing on the simulation relation required in item (3) of Definition 6. The PVS encoding of the programs is described in Appendix A, while the PVS encoding of the refinement proofs is described in Appendix B.

\subsection{First Refinement : Introducing Colours}

\textbf{6.1.1 The Program} In the first step, the collector is refined to base its search for garbage nodes on a colouring technique. The type \texttt{Colour} is defined as \texttt{bool},
the set of Booleans, assumed to represent the colours black (true) and white (false). The global state must be extended with a colouring of each node in the memory (not each cell), and a couple of extra auxiliary variables \(Q \) and \(L \) used for other purposes. The extended state is shown in Fig. 6.

\[
\begin{align*}
\text{var} & \quad M : \text{array[Node,Index] of Node;} \\
& \quad C : \text{array[Node] of Colour;} \\
& \quad Q : \text{Node;} \\
& \quad L : \text{nat;} \\
\end{align*}
\]

Fig. 6. First refinement state

Three extra operations on this new data structure are needed, shown in Fig. 7.

\[
\begin{align*}
\text{procedure set}_\text{colour}(n:\text{Node},c:\text{Colour}); \\
\text{function colour}(n:\text{Node}):\text{Colour;} \\
\text{function blackened}():\text{bool;} \\
\end{align*}
\]

Fig. 7. Additional functions and procedures used in first refinement

The procedure \(\text{set}_\text{colour} \) colours a node either white or black by updating the variable \(C \). The function \(\text{colour} \) returns the colour of a node. Finally, the function \(\text{blackened} \) returns true if all accessible nodes are black. The mutator is now refined into the program which was informally described in Section 4, see Fig. 8.

\[
\begin{align*}
\text{MUTATE :} & \quad [1] \text{choose } n,k:\text{Nodes}; \text{ i:Index where accessible(k) } - \to \\
& \quad \text{set}_\text{son}(n,i,k); \\
& \quad Q := k; \\
& \quad \text{goto COLOUR;} \\
& \quad \text{end} \\
\text{COLOUR :} & \quad [1] \text{true } - \to \text{set}_\text{colour}(Q,\text{true}); \text{ goto MUTATE;} \\
\end{align*}
\]

Fig. 8. Refinement of mutator

There are two locations, \(\text{MUTATE} \) and \(\text{COLOUR} \). In the \(\text{MUTATE} \) location, in addition to the mutation, the target node \(k \) is assigned to the global auxiliary

11
variable Q. Then in the COLOUR location, Q is coloured black. *Note that the mutator will not be further refined, it will now stay unchanged during the remaining refinements of the collector.* The collector is defined in Fig 9.

```plaintext
COLOUR :
[1] choose n:Nodes ->
    set_colour(n,true);
    goto COLOUR;
end;
[2] blackened() -> L := 0; goto TEST_L;
TEST_L :
[1] L = NODES -> goto COLOUR;
[2] L < NODES -> goto APPEND;
APPEND :
[1] not colour(L) -> append_to_free(L); L := L + 1; goto TEST_L;
[2] colour(L) -> set_colour(L,false); L := L + 1; goto TEST_L;
```

Fig. 9. First refinement of collector

It consists of two phases. While in the COLOUR location, nodes are coloured arbitrarily until all accessible nodes are black (*blackened()*). The style in which colouring is expressed may seem surprising, but it is a way of defining a post condition: *colour at least all accessible nodes.*\(^5\) In the second phase at locations TEST\(_L\) and APPEND, all white nodes are regarded as garbage nodes, and are hence collected (appended to the free list). The auxiliary variable L is used to control the loop: it runs through all the nodes. After appending all garbage nodes to the free list, the colouring phase is restarted.

6.1.2 The Refinement Proof
The refinement mapping, call it \(\text{abs}\), from the concrete state space to the abstract state space maps \(\mathcal{M}\) to \(\mathcal{N}\). Note that such a mapping only needs to be defined for each component of the abstract state, showing how it is generated from components in the concrete state. Hence, the concrete variables C, Q and L are not used for this purpose. This is generally the case for the refinement mappings to follow: they are the identity on the variables occurring in the abstract state. Also program locations have to be mapped. In fact, each program (mutator, collector) can be regarded as having a program counter variable, and we have to show how the abstract program counter is obtained (mapped) from the concrete. Whenever the concrete program is in a particular location \(l\), then the abstract program will be in the location

\(^5\) By formulating this colouring as an iteration, we can avoid introducing a history variable at a lower refinement level. Note that any node can be coloured, not only accessible nodes. This allows a later refinement to colour nodes that originally were accessible, but later have become garbage.
abs(l). In the current case, the concrete mutator locations MUTATE and COLOUR are both mapped to MODIFY, while the concrete collector locations COLOUR, TEST.L and APPEND all are mapped to COLLECT. This completes the definition of the refinement mapping.

In order to prove Property (3) in Definition 6, we associate each transition in the concrete program with a transition in the abstract program, and prove that: “if the concrete transition brings a state s_1 to a state s_2, then the abstract transition brings the state $abs(s_1)$ to the state $abs(s_2)$”. We say that the concrete transition, say t_c, simulates the abstract transition, say t_a, and write this as $t_c \ll t_a$. Putting all these sub-proofs together will yield a proof of (3). Some of the concrete transitions just simulate a stuttering step (no state change) in the abstract system. This will typically be some of the new transitions associated with new location names added to the concrete program. Other concrete transitions have exact counterparts in the abstract program. These are typically transitions associated with same location names as in the abstract program. In the following, we will only mention cases that deviate from the above two; i.e., where we add new location names, and where the corresponding new transitions do not simulate a stuttering step in the abstract program.

Hence in our case, MUTATE.1 \ll MODIFY.1, and APPEND.1 \ll COLLECT.1 (APPEND.2 simulates stuttering). In the proof of APPEND.1 \ll COLLECT.1, an invariant is needed about the concrete program:

$$\text{collector@APPEND} \land \text{accessible(L)} \implies \text{colour(L)}$$

It says that whenever the concrete collector is at the APPEND location, and node L is accessible, then L is also black. From this we can conclude that the append to free operation is only applied to garbage nodes, since it is only applied to white nodes. Hence, we need to prove an invariant about the concrete program in order to prove the refinement. In general, the proof of these invariants is what really makes the refinement proof non-trivial. To prove the above invariant, we do in fact need to prove a stronger invariant, namely that in locations TEST.L and APPEND: $\forall n \geq L \cdot \text{accessible}(n) \implies \text{colour}(n)$. This invariant strengthening is typical in our proofs.

6.2 Second Refinement: Colouring by Propagation

6.2.1 The Program

In this step, accessible nodes are coloured through a propagation strategy, where first all roots are coloured, and next all white nodes which have a black father are coloured. The state is extended with an extra auxiliary variable K used for controlling the iteration through the roots. The extended state is shown in Fig 10. Two additional functions are needed, shown in Fig. 11.

The function bw returns true if n is black and $son(n,i)$ is white. The function $exists_bw$ returns true if there exists a black node, say n, that via one of its
var
M : array[Node,Index] of Node;
C : array[Node] of Colour;
Q : Node;
K, L : nat;

Fig. 10. Second refinement state

function bw(n:Node,i:Index):bool;
function exists_bw():bool;

Fig. 11. Additional functions used in second refinement

COLOUR_ROOTS :
[1] K = ROOTS -> goto PROPAGATE;
[2] K < ROOTS -> set_colour(K,true); K := K+1; goto COLOUR_ROOTS;

PROPAGATE :
[1] choose n:Node; i:Index where bw(n,i) ->
 set_colour(son(n,i),true);
 goto PROPAGATE;
end;
[2] not exists_bw() -> L := 0; goto TEST_L;

TEST_L :
[1] L = NODES -> K := 0; goto COLOUR_ROOTS;
[2] L < NODES -> goto APPEND;

APPEND :
[1] not colour(L) -> append_to_free(L); L := L + 1; goto TEST_L;
[2] colour(L) -> set_colour(L,false); L := L + 1; goto TEST_L;

Fig. 12. Second refinement of collector

cells, say i, points to a white node. That is: $bw(n,i)$. The collector becomes as shown in Fig. 12.

The COLOUR location from the previous level has been replaced by the two locations COLOUR_ROOTS and PROPAGATE (while the append phase is mostly unchanged). In the COLOUR_ROOTS location all roots are coloured black, the loop being controlled by the variable K. In the PROPAGATE location, either there exists no black node with a white son (i.e. not exists_bw()), in which case we start collecting (going to location TEST_L), or such a node exists, in which case its son is coloured black, and we continue colouring.

6.2.2 The Refinement Proof The refinement mapping, besides being the identity on identically named entities (variables as well as locations), maps the
collector locations \texttt{COLOUR_ROOTS} and \texttt{PROPAGATE} to \texttt{COLOUR}. Hence concrete root colouring as well as concrete propagation are just particular kinds of abstract colourings.

Concerning the transitions, \texttt{COLOUR_ROOTS.2} \ll \texttt{COLOUR.1}, \texttt{PROPAGATE.1} \ll \texttt{COLOUR.1}, and \texttt{PROPAGATE.2} \ll \texttt{COLOUR.2}. In the proof of \texttt{PROPAGATE.2} \ll \texttt{COLOUR.2}, an invariant is needed about the concrete program:

\[
\text{collector@PROPAGATE} \implies \forall r: \text{Root} \cdot \text{colour}(r)
\]

It states that in location \texttt{PROPAGATE} all roots must be coloured. This fact combined with the propagation termination condition \texttt{not exists_bw}(): “there does not exist a pointer from a black node to a white node”, will imply the propagation termination condition in \texttt{COLOUR.2} of the abstract specification: \texttt{blackened}(), which says that “all accessible nodes are coloured”.

6.3 Third Refinement : Propagation by Scans

6.3.1 The Program In the last refinement, the propagation, represented by the location \texttt{PROPAGATE} above, is refined into an algorithm, where all nodes are repeatedly scanned in sequential order, and if black, their sons coloured; until a whole scan does not result in a colouring. The state is extended with auxiliary variables \texttt{BC} (\texttt{black count}) and \texttt{OBC} (\texttt{old black count}), used for counting black nodes; and the variables \texttt{H}, \texttt{I}, and \texttt{J} for controlling loops, see Fig. 13.

<table>
<thead>
<tr>
<th>var</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{M} : array[Node,Index] of Node;</td>
</tr>
<tr>
<td>\texttt{C} : array[Node] of Colour;</td>
</tr>
<tr>
<td>\texttt{Q} : Node;</td>
</tr>
<tr>
<td>\texttt{H}, \texttt{I}, \texttt{J}, \texttt{K}, \texttt{BC}, \texttt{OBC} : nat;</td>
</tr>
</tbody>
</table>

Fig. 13. Third refinement state

The collector is described in Fig 14, where transitions have been divided into 4 steps corresponding to the informal description of the algorithm on page 8. Two loops interact (steps 2 and 3). In the first loop, \texttt{TEST_I}, \texttt{TEST_COLOUR} and \texttt{COLOUR_SONS}, all nodes are scanned, and every black node has all its sons coloured. The variables \texttt{I} and \texttt{J} are used to “walk” through the cells. In the second loop, \texttt{TEST_H}, \texttt{COUNT} and \texttt{COMPARE}, it is counted how many nodes are black. This amount is stored in the variable \texttt{BC}, and if this amount exceeds the old black count, stored in the variable \texttt{OBC}, then yet another scan is started, and \texttt{OBC} is updated. The variable \texttt{H} is used to control this loop.
- Step 1: Colour roots

COLOUR_ROOTS :
[1] K = ROOTS -> I := 0; goto TEST_I;
[2] K < ROOTS -> set_colour(K,true); K := K + 1; goto COLOUR_ROOTS;

- Step 2: Propagate once

TEST_I :
[1] I = NODES -> BC := 0; H := 0; goto TEST_H;
[2] I < NODES -> goto TEST_COLOUR;

TEST_COLOUR :
[1] not colour(I) -> I := I + 1; goto TEST_I;
[2] colour(I) -> J := 0; goto COLOUR_SONS;

COLOUR_SONS :
[1] J = SONS -> I := I + 1; goto TEST_I;
[2] J < SONS -> set_colour(son(I,J),true); J := J + 1;
 goto COLOUR_SONS;

- Step 3: Count black nodes

TEST_H :
[1] H = NODES -> goto COMPARE;

COUNT :
[1] not colour(H) -> H := H + 1; goto TEST_H;
[2] colour(H) -> BC := BC + 1; H := H + 1; goto TEST_H;

COMPARE :
[1] BC = OBC -> L := 0; goto TEST_L;
[2] BC /= OBC -> OBC := BD; I := 0; goto TEST_I;

- Step 4: Append garbage nodes

TEST_L :
[1] L = NODES -> BC := 0; OBC := 0; K := 0; goto TEST_I;
[2] L < NODES -> goto APPEND;

APPEND :
[1] not colour(L) -> append_to_free(L); L := L + 1; goto TEST_L;
[2] colour(L) -> set_colour(L,false); L := L + 1; goto TEST_L;

Fig. 14. Third and final refinement of collector

6.3.2 The Refinement Proof The refinement mapping is the identity, except for six of the locations of the collector. That is, the collector locations TEST_I, TEST_COLOUR, COLOUR_SONS, TEST_H, COUNT, and COMPARE are all mapped to PROPAGATE. Concerning the transitions, COLOUR_SONS.2 ≪ PROPAGATE.1 whereas COMPARE.1 ≪ PROPAGATE.2. In the proof of COLOUR_SONS.2 ≪ PROPAGATE.1, the following invariant is needed:

\[\text{collector@COLOUR_SONS} \implies \text{colour(I)} \]

This property implies that the abstract PROPAGATE.1 transition pre-condition bw(I,J) will be true (in case the son is white) or otherwise (if the son is also
black), the concrete transition corresponds to a stuttering step (colouring an already black son is the identity function). Correspondingly, in the proof of \texttt{COMPARE.1} \textless \texttt{PROPAGATE.2}, the following invariant is needed:

\[
\text{collector@COMPARE} \land BC = OBC \implies \neg \exists \text{bw}()
\]

It states that when the collector is in location \texttt{COMPARE}, after a counting scan where the number of black nodes have been counted and stored in \texttt{BC}, if the number counted equals the previous (old) count \texttt{OBC} then there does not exist a pointer from a black node to a white node. Note that \texttt{BC} = \texttt{OBC} is the propagation termination condition, and this then corresponds to the termination condition \texttt{not exists bw()} of the abstract transition \texttt{PROPAGATE.2}. The proof of these two invariants is quite elaborate, and does in fact compare in size and “look” to the complete proofs in [11] as well as in [19].

7 Observations

It is possible to compare the present proof (PVS\textit{ref-proof}) with two other mechanized proofs of exactly the same algorithm: the proof in the Boyer-Moore prover [19], from now on referred to as the BM\textit{inv-proof}; and the PVS proof [11], referred to as the PVS\textit{inv-proof}. Instead of being based on refinement, these two proofs are based on a statement of the correctness criteria as an invariant to be proven about the implementation (the third refinement step). The PVS\textit{inv-proof} follows the BM\textit{inv-proof} closely. Basically the same invariants were needed. The PVS\textit{ref-proof} has the advantage over the two other proofs, that the correctness criteria can be appreciated without knowing the internal structure of the implementation. That is, we do not need to know for example that the append operation is only applied in location \texttt{Append} to node \texttt{X}, and only if \texttt{X} is white. Hence, from this perspective, the refinement proof represents an improvement. The PVS\textit{ref-proof} has approximately the same size as the PVS\textit{inv-proof}, in that basically the same invariants and lemmas about auxiliary functions need to be proven (19 invariant lemmas and 57 function lemmas). The proof effort took a couple of months. Hence, one cannot argue that the proof has become any simpler. On the contrary in fact: since we have many levels, there is more to prove. Some invariants were easier to discover when using refinement, especially at the top levels. In particular nested loops may be treated nicely with refinement, only introducing one loop at a time. In general, loops in the algorithm to be verified are the reason why invariant discovery is hard, and of course nested loops are no better. The main lesson obtained from the PVS\textit{inv-proof} is the importance of invariant discovery in safety proofs. Our experience with the PVS\textit{ref-proof} is that refinement does not relieve us of the need to search for invariants. We had to come up with exactly the same invariants in both cases, but the discovery process was different, and perhaps more structured in the refinement proof. Automated or semi-automated discovery of invariants remains a challenging research topic.
References

A Formalization in PVS

This appendix describes how in general transition systems and refinement mappings are encoded in PVS, and in particular how the garbage collector refinement is encoded.

A.1 Transition Systems and their Refinement

Recall from section 3 that an observed transition system is a five-tuple of the form: \((\Sigma, \Sigma_o, I, N, \pi)\) (Definition 4). In PVS we model this as a theory with two type definitions, and three function definitions.

\[
\text{ots : THEORY} \\
\text{BEGIN} \\
\quad \text{State} : \text{TYPE} = \ldots \\
\quad \text{O_State} : \text{TYPE} = \ldots \\
\quad \text{proj} : \left[\text{State} \rightarrow \text{O_State}\right] = \ldots \\
\quad \text{init} : \left[\text{State} \rightarrow \text{bool}\right] = \ldots \\
\quad \text{next} : \left[\text{State, State} \rightarrow \text{bool}\right] = \ldots \\
\text{END ots}
\]

The correspondence with the five-tuple is as follows: \(\Sigma = \text{State}, \Sigma_o = \text{O_State}, \pi = \text{proj}, I = \text{init} \text{ and } N = \text{next}\). The \text{init} function is a predicate on states, while the \text{next} function is a predicate on pairs of states. We shall formulate the specification of the garbage collector as well as all its refinements in this way. It will become clear below how in particular the function \text{next} is defined. Now we can define what is a trace (Definition 2) and what is an invariant (Definition 3). This is done in the theory \text{Traces}.

\[
\text{Traces[State:TYPE]} : \text{THEORY} \\
\text{BEGIN} \\
\quad \text{init} : \text{VAR pred[State]} \\
\quad \text{next} : \text{VAR pred[[State,State]]} \\
\quad \text{sq} : \text{VAR sequence[State]} \\
\quad \text{n} : \text{VAR nat} \\
\quad \text{p} : \text{VAR pred[State]} \\
\text{trace(init,next)(sq):bool = } \\
\quad \text{init(sq(0)) AND FORALL n: next(sq(n),sq(n+1))} \\
\text{invariant(init,next)(p):bool = } \\
\quad \text{FORALL (tr:(trace(init,next))): FORALL n: p(tr(n))} \\
\text{END Traces}
\]
The theory is parameterized with the State type of the observed transition system. The VAR declarations are just associations of types to names, such that in later definitions, axioms, and lemmas, these names are assumed to have the corresponding types. In addition, axioms and lemmas are assumed to be universally quantified with these names over the types. Note that pred[T] in PVS is short for the function space [T -> bool]. The type sequence[T] is short for [nat -> T]; that is: the set of functions from natural numbers to T. A sequence of States is hence an infinite enumeration of states. Given a transition system with initiality predicate init and next-state relation next, a sequence sq is a trace of this transition system if trace(init,next)(sq) holds. A predicate p is an invariant if invariant(init,next)(p) holds. That is: if for any trace tr, p holds in all positions n of that trace. Note how the predicate trace(init,next) (it is a predicate on sequences) is turned into a type in PVS by surrounding it with parentheses – the type containing all the elements for which the predicate holds, namely all the program traces.

The next notion we introduce in PVS is that of a refinement between two observed transition systems (Definition 5). The theory Refine_Predicate below defines the function refines, which is a predicate on a pair of observed transition systems: a low level implementation system as the first parameter, and a high level specification system as the second parameter.

```
BEGIN
IMPORTING Traces
s_init : VAR pred[S_State]
s_next : VAR pred[[S_State,S_State]]
s_proj : VAR [S_State -> O_State]
i_init : VAR pred[I_State]
i_next : VAR pred[[I_State,I_State]]
i_proj : VAR [I_State -> O_State]
refines(i_init,i_next,i_proj)(s_init,s_next,s_proj):bool =
  FORALL (i_tr:(trace(i_init,i_next))):
    EXISTS (s_tr:(trace(s_init,s_next))):
      map(i_proj,i_tr) = map(s_proj,s_tr)
END Refine_Predicate
```

The theory is parameterized with the state space S_State of the high level specification theory, the state space I_State of the low level implementation theory, and the observed state space O_State, which we remember is common for the two observed transition systems. Refinement is defined as follows: for all traces i_tr of the implementation system, there exists a trace s_tr of the specification system, such that when mapping the respective projection functions to the traces, they become equal. The function map has the type map : [D->R] -> [sequence[D] -> sequence[R]] and simply applies a function to all the elements of a sequence. Finally, we introduce in the theory Refinement the notion of a refinement mapping (Definition 6) and its use for proving refinement
(Theorem 1). The theory is parameterized with a specification observed transition system (prefixes \mathcal{S}), an implementation observed transition system (prefixes \mathcal{I}), an abstraction function abs, and an invariant I_inv over the implementation system.

\[
\begin{align*}
&\text{Refinement[} \\
&\quad \text{O_State : TYPE,} \\
&\quad \text{S_State : TYPE,} \\
&\quad \text{S_init : pred[S_State],} \\
&\quad \text{S_next : pred[[S_State,S_State]],} \\
&\quad \text{S_proj : [S_State -> O_State],} \\
&\quad \text{I_State : TYPE,} \\
&\quad \text{I_init : pred[I_State],} \\
&\quad \text{I_next : pred[[I_State,I_State]],} \\
&\quad \text{I_proj : [I_State -> O_State],} \\
&\quad \text{abs : [I_State -> S_State],} \\
&\quad \text{I_inv : [I_State -> bool]} : \text{THEORY} \\
&\end{align*}
\]

\[
\begin{align*}
&\text{BEGIN} \\
&\text{ASSUMING} \\
&\quad \text{IMPORTING Traces} \\
&\quad \text{s : VAR I_State} \\
&\quad \text{r1,r2 : VAR (I_inv)} \\
&\quad \text{proj_id : ASSUMPTION FORALL s : S_proj(abs(s)) = I_proj(s)} \\
&\quad \text{init_h : ASSUMPTION FORALL s : I_init(s) IMPLIES S_init(abs(s))} \\
&\quad \text{next_h : ASSUMPTION I_next(r1,r2) IMPLIES S_next(abs(r1),abs(r2))} \\
&\quad \text{invar : ASSUMPTION invariant(I_init,I_next)(I_inv)} \\
&\text{END ASSUMING} \\
&\text{IMPORTING Refine_Predicate[O_State,S_State,I_State]} \\
&\text{ref : THEOREM refines(I_init,I_next,I_proj)(S_init,S_next,S_proj)} \\
&\text{END Refinement}
\end{align*}
\]

The theory contains a number of assumptions on the parameters and a theorem, which has been proven using the assumptions. Hence, the way to use this parameterized theory is to apply it to arguments that satisfy the assumptions, prove these, and then obtain as a consequence, the theorem which states that the implementation refines the specification (corresponding to Theorem 1). This theorem has been proved once and for all. The assumptions are as stated in Definition 6. We shall further need to assume transitivity of the refinement relation, and this is formulated (and proved) in the theory \text{Refine_Predicate_Transitive}.

21
A.2 The Specification

In this section we outline how the initial specification from section 5 of the garbage collector is modeled in PVS. We start with the specification of the memory structure, and then continue with the two processes that work on this shared structure.

A.2.1 The Memory The memory type is introduced in the theory Memory, parameterized with the memory boundaries. That is, NODES, SONS, and ROOTS define respectively the number of nodes (rows), the number of sons (columns/cells) per node, and the number of nodes that are roots. They must all be positive natural numbers (different from 0). There is also an obvious assumption that ROOTS is not bigger than NODES. These three memory boundaries are parameters to all our theories. The Memory type is defined as an abstract (non-empty) type upon which a constant and collection of functions are defined. First, however, types of nodes, indexes and roots are defined. The constant null_array represents the initial memory containing 0 in all memory cells (axiom mem_ax1). The function son returns the pointer contained in a particular cell. That is, the expression son(n,i)(m) returns the pointer contained in the cell identified by node n and index i. Finally, the function set_son assigns a pointer to a cell. That is, the expression set_son(n,i,k)(m) returns the memory m updated in cell (n,i) to
contain (a pointer to node) \(k \). In order to define what is an accessible node, we introduce the function \(\text{points_to} \), which defines what it means for one node, \(n_1 \), to point to another, \(n_2 \), in the memory \(m \).

The function \(\text{accessible} \) is then defined inductively, yielding the least predicate on nodes \(n \) (true on the smallest set of nodes) where either \(n \) is a root, or \(n \) is pointed to from an already reachable node \(k \). Finally we define the operation for appending a garbage node to the list of free nodes, that can be allocated by the mutator. This operation is defined abstractly, assuming as little as possible about its behaviour. Note that, since the free list is supposed to be part of the memory, we could easily have defined this operation in terms of the functions \(\text{son} \) and \(\text{set}_\text{son} \), but this would have required that we took some design decisions as to how the list was represented (for example where the head of the list should be and whether new elements should be added first or last). The axiom \(\text{append_ax} \) defining the append operation says that in appending a garbage node,
only that node becomes accessible, and the accessibility of all other nodes stays unchanged.

A.2.2 The Mutator and the Collector The complete PVS formalization of the top level specification presented in section 5 is given below.

| ASSUMING roots_within : ASSUMPTION ROOTS <= NODES ENDASSUMING
| IMPORTING Memory[NODES,SONS,ROOTS]
| State : TYPE = Memory
| O_State : TYPE = Memory
| s,s1,s2 : VAR State
| n,k : VAR Node
| i : VAR Index
| proj(s):O_State = s
| init(s):bool = (s = null_array)
| Rule_mutate(n,i,k)(s):State =
| IF accessible(k)(s) THEN set_son(n,i,k)(s) ELSE s ENDIF
| Rule_append(n)(s):State =
| IF NOT accessible(n)(s) THEN append_to_free(n)(s) ELSE s ENDIF
| next(s1,s2):bool =
| (EXISTS n,i,k: s2 = Rule_mutate(n,i,k)(s1)) OR
| (EXISTS n: s2 = Rule_append(n)(s1)) OR
| s2 = s1
| END Garbage_Collector

The state is simply the memory, and so is the observable state. Hence, there are no hidden variables, and the projection function proj is the identity. The next-state relation next is defined as a disjunction between three disjuncts, each representing a possible single transition of the total system. The first two disjuncts represent a move of the mutator and the collector, respectively, each move defined through a function. The third possibility just represents stuttering: the fact that a process does not change the state (needed for technical reasons).

Since each process (mutator, collector) only has one location we do not model these locations explicitly. The function \texttt{Rule_mutate} represents a move by the mutator, which is non-deterministic in the choice of the nodes \texttt{n}, \texttt{k} and index \texttt{i}. The function, when applied to an \textit{old} state, yields a \textit{new} state, where (if \texttt{k} is accessible) a pointer has been changed. Non-deterministic choices are modeled via existential quantifications. Each transition function is defined in terms of an \texttt{IF-THEN-ELSE} expression, where the condition represents the guard of the
transition (the situation where the transition may meaningfully be applied), and where the ELSE part returns the unchanged state, in case the guard is false\(^6\). The function \texttt{Rule_append} represents a move by the collector. In each step, either the mutator makes a move, or the collector does. This corresponds to an interleaving semantics of concurrency. Note how the repeated execution is guaranteed by our interpretation of what is a trace in terms of the next-state relation.

A.3 The First Refinement

In this section we outline how the first refinement from Section 6.1 of the garbage collector is modeled in PVS. In order to keep the presentation reasonably sized, we only illustrate this first refinement. The remaining refinements follow the same pattern. First, we describe a collection of colouring functions. The theory \texttt{Coloured_Memory} below introduces the primitives needed for colouring memory nodes. The type \texttt{Colour} represents the colours \texttt{black} (true) and \texttt{white} (false). The type \texttt{Colours} contains possible colourings of the memory, each being a mapping from nodes to their colours. The functions \texttt{colour}, \texttt{set_colour} and \texttt{blackened} are formalizations of those presented in Figure 7.

```plaintext
BEGIN
  IMPORTING Memory[NODES,SONS,ROOTS]
  Colour : TYPE = bool
  Colours : TYPE = [Node -> Colour]
  n : VAR Node
  i : VAR Index
  c : VAR Colour
  cs : VAR Colours
  m : VAR Memory

  colour(n)(cs):Colour = cs(n)
  set_colour(n,c)(cs):Colours = cs WITH [n := c]
  blackened(cs,m):bool = FORALL n: accessible(n)(m) IMPLIES colour(n)(cs)
END Coloured_Memory
```

We now show how the first refinement is formulated in PVS. The entire theory called \texttt{GarbageCollector1} is presented below.

\(^6\) This allows for \textit{stuttering} where rules are applied without changing the state.
BEGIN
ASSUMING roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING
IMPORTING Coloured_Memory[NODES,SONS,ROOTS]
MuPC : TYPE = \{MUTATE,COLOUR\} CoPC : TYPE = \{COLOUR,TEST_L,APPEND\}
State : TYPE = [# Mu:MuPC,CHI:CoPC,Q:nat,L:nat,C:Colours,M:Memory #]
0_State : TYPE = Memory
s,s1,s2 : VAR State n,k : VAR Node i : VAR Index
proj(s):0_State = M(s)
init(s):bool = MU(s) = MUTATE & CHI(s) = COLOUR & M(s) = null_array

Rule_mutate(n,i,k)(s):State =
 IF MU(s) = MUTATE AND accessible(k)(M(s)) THEN
 s WITH [M := set_son(n,i,k)(M(s)), Q := k, MU := COLOUR]
 ELSE s ENDIF

Rule_colour_target(s):State =
 IF MU(s) = COLOUR AND Q(s) < NODES THEN
 s WITH [C := set_colour(Q(s),TRUE)(C(s)), MU := MUTATE]
 ELSE s ENDIF

MUTATOR(s1,s2):bool =
 (EXISTS n,i,k: s2 = Rule_mutate(n,i,k)(s1)) OR
 s2 = Rule_colour_target(s1)

Rule_stop_colouring(s):State =
 IF CHI(s) = COLOUR AND blackened(C(s),M(s)) THEN
 s WITH [L := 0, CHI := TEST_L] ELSE s ENDIF

Rule_colour(n)(s):State =
 IF CHI(s) = COLOUR THEN
 s WITH [C := set_colour(n,TRUE)(C(s))] ELSE s ENDIF

Rule_stop_appending(s):State =
 IF CHI(s) = TEST_L AND L(s) = NODES THEN
 s WITH [CHI := APPEND] ELSE s ENDIF

Rule_continue_appending(s):State =
 IF CHI(s) = TEST_L AND L(s) < NODES THEN
 s WITH [CHI := APPEND] ELSE s ENDIF

Rule_black_to_white(s):State =
 IF CHI(s) = APPEND AND L(s) < NODES AND colour(L(s))(C(s)) THEN
 s WITH [C:=set_colour(L(s),FALSE)(C(s)),L:=L(s)+1,CHI:=TEST_L]
 ELSE s ENDIF

Rule_append_white(s):State =
 IF CHI(s) = APPEND AND L(s) < NODES AND NOT colour(L(s))(C(s)) THEN
 s WITH [M := append_to_free(L(s))(M(s)),L:=L(s)+1,CHI:=TEST_L]
 ELSE s ENDIF

COLLECTOR(s1,s2):bool =
 s2 = Rule_stop_colouring(s1) OR (EXISTS n:s2 = Rule_colour(n)(s1))
 OR s2 = Rule_stop_appending(s1) OR s2 = Rule_continue_appending(s1)
 OR s2 = Rule_black_to_white(s1) OR s2 = Rule_append_white(s1)

next(s1,s2):bool = MUTATOR(s1,s2) OR COLLECTOR(s1,s2) OR s2 = s1
END Garbage_Collector1
First of all, the state type is a record type with a field for each program variable. In addition to the ordinary program variables, there is a program counter “variable” for each process: \texttt{MU} for the mutator, and \texttt{CHI} for the collector. Each program counter ranges over a type that contains the possible labels. The observed state is still just the memory, hence ignoring, for example, the colouring \(C \). We see that the mutator next-state relation \texttt{MUTATOR} is now defined as a disjunction between a \textit{mutate} transition and a \textit{colour} transition. The collector next-state relation \texttt{COLLECTOR} is defined as the disjunction between six possible transitions.

\section*{B \hspace{1em} The Proof in PVS}

The proof of a single refinement lemma (step) is divided into three activities: discovery and proof of \textit{function lemmas}; discovery and proof of \textit{invariant lemmas}; and proof of the \textit{refinement lemma}. A \textit{function lemma} states a property of one or more auxiliary functions involved, which in our case are for example properties about the functions \texttt{accessible} and \texttt{blackened}. An invariant is a predicate on states, and an \textit{invariant lemma} states that an invariant holds in every reachable state of the concrete implementation (\texttt{Garbage}_\texttt{Collector1} in our case). Recall that we needed such an invariant when applying the \texttt{Refinement} theory (page 21). The function lemmas are used in proofs of invariant lemmas, which again are used in proofs of \textit{refinement lemmas}.

We shall show these lemmas for the first refinement, using a bottom-up presentation for pedagogical reasons, starting with function lemmas, and ending with the refinement lemma. In, reality, however, the proof was “discovered” top down: the refinement lemma was stated (by applying the \texttt{Refinement} theory to proper arguments), and during the proof of the corresponding \texttt{ASSUMPTION}s, the need for invariant lemmas were discovered, and during their proofs, function lemmas were discovered.

\subsection*{B.1 \hspace{1em} Function Lemmas}

During the proof, we need a new set of auxiliary functions to “observe” (or calculate) certain values based on the current state of the memory. These \textit{observer functions} occur in invariants. In the first refinement step, we shall need the function \texttt{blackened} defined in the theory \texttt{Memory}_\texttt{Observers} below.

This function is similar to the function which is part of the first refinement, page 25, except that it has an additional natural number argument. The function returns true if all nodes above (and including) that argument are black if accessible. The theory contains other functions, but these are first needed in later refinements and will not be discussed here. The lemmas about auxiliary functions that we need for the first refinement are given in the theory \texttt{Memory}_\texttt{Properties} below.
BEGIN
 ASSUMING
 roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING
IMPORTING Coloured_Memory[NODES,SONS,ROOTS]
cs : VAR Colours
m : VAR Memory
n : VAR Node
N : VAR nat
blackened(N)(cs,m):bool =
 FORALL (n | N <= n): accessible(n)(m) IMPLIES colour(n)(cs)
...
END Memory_Observers

BEGIN
 ASSUMING roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING
IMPORTING Memory_Observers[NODES,SONS,ROOTS]
cs : VAR Colours c : VAR Colour m : VAR Memory n,n1,n2,k : VAR Node
i,i1,i2,j : VAR Index N,N1,N2 : VAR nat
accessible1 : LEMMA
 accessible(k)(m) AND accessible(n1)(set_son(n,i,k)(m))
 IMPLIES accessible(n1)(m)
blackened1 : LEMMA
 blackened(n)(cs,m) AND accessible(n)(m) IMPLIES colour(n)(cs)
blackened2 : LEMMA
 accessible(k)(m) AND blackened(N)(cs,m)
 IMPLIES blackened(N)(cs,set_son(n,i,k)(m))
blackened3 : LEMMA
 blackened(N)(cs,m) IMPLIES blackened(N)(set_colour(n,TRUE)(cs),m)
blackened4 : LEMMA
 blackened(n)(cs,m) IMPLIES blackened(n+1)(set_colour(n,FALSE)(cs),m)
blackened5 : LEMMA
 NOT accessible(n)(m) AND blackened(n)(cs,m)
 IMPLIES blackened(n+1)(cs,append_to_free(n)(m))
blackened6 : LEMMA
 blackened(cs,m) IMPLIES blackened(0)(cs,m)
END Memory_Properties
The theory in its entirety contains other lemmas, needed for later refinements, which we shall however not present here. The lemma accessible1 is a key lemma, and it says that the set_son operator cannot turn garbage nodes into accessible nodes.

B.2 Invariant Lemmas

We can now state the invariant needed for the first refinement step. This is given in the theory Garbage_Collector1_Inv. The invariant really needed for the refinement proof is inv1, corresponding to the invariant on page 13; but during the proof of that, invariant inv2 is needed.

```
Garbage\_Collector1\_Inv[NODES:posnat, SONS:posnat, ROOTS:posnat] : THEORY
BEGIN
ASSUMING
  roots\_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING
IMPORTING Memory\_Properties[NODES, SONS, ROOTS]
IMPORTING Garbage\_Collector1[NODES, SONS, ROOTS]
IMPORTING Invariant\_Predicates[State]
s : VAR State

inv1(s):bool =
  CHI(s)=APPEND AND L(s) < NODES AND accessible(L(s))(M(s))
  IMPLIES colour(L(s))(C(s))

inv2(s):bool =
  CHI(s)=TEST\_L OR CHI(s)=APPEND IMPLIES blackened(L(s))(C(s),M(s))

I : pred[State] = inv1 & inv2

inv : LEMMA invariant(init,next)(I)
END Garbage\_Collector1\_Inv
```

Invariant inv1 is in fact the safety property originally formulated for the garbage collector in [19]. Its proof requires a generalization, which is inv2. This shows an example, where we have to strengthen an invariant (inv1) to a stronger invariant (inv2), which is then proven instead.

B.3 The Refinement Lemma

The first refinement step is formulated as an application of the Refinement theory which we defined on page 21. This is done in the theory Refinement1 shown below.
The theory imports the specification garbage collector \texttt{Garbage_Collector}, giving it the name \texttt{S}; the implementation \texttt{Garbage_Collector1}, named \texttt{I1}; and the implementation invariant \texttt{I} defined in the theory \texttt{Garbage_Collector1_Inv}. The theory further defines the abstraction function \texttt{abs}, and finally applies the \texttt{Refinement} theory. This application gives rise to four TCCs (Type Checking Conditions) generated by PVS, which have to be proven in order for the PVS specification to be well formed (type check). Furthermore, the proof of these TCCs yields the correctness of the refinement. The TCCs are shown below:

\begin{enumerate}
\item \textbf{R1_TCC1}: \texttt{OBLIGATION FORALL s: S.proj(abs(s)) = I1.proj(s)};
\item \textbf{R1_TCC2}: \texttt{OBLIGATION FORALL s: I1.init(s) IMPLIES S.init(abs(s))};
\item \textbf{R1_TCC3}: \texttt{OBLIGATION (FORALL (r1: (I), r2: (I)):
I1.next(r1, r2) IMPLIES S.next(abs(r1), abs(r2)))};
\item \textbf{R1_TCC4}: \texttt{OBLIGATION invariant(I1.init, I1.next)(I)};
\end{enumerate}

There is a TCC for each \texttt{ASSUMPTION} of the \texttt{Refinement} theory. In particular \textbf{R1_TCC3} states the simulation property, and \textbf{R1_TCC4} states the invariant property. As illustrated in section 6.1.2 page 13, we show for each concrete transition which abstract transition it simulates, for example we had that \texttt{APPEND.1 \ll COLLECT.1}, which in this PVS setting is formulated as the following lemma.
The technique illustrated above for the first refinement step is repeated for
the next two, yielding two further theories Refinement2 and Refinement3. All
3 refinements can now be composed, and the bottom level implementation can
be shown to refine the top level specification using transitivity of the refinement
relation. This is expressed in the theory Composed_Refinement below, where the
theorem ref is our main correctness criteria.

```
BEGIN
  ASSUMING
    roots_within : ASSUMPTION ROOTS <= NODES
  ENDASSUMING
  IMPORTING Refinement1[NODES,SONS,ROOTS]
  IMPORTING Refinement2[NODES,SONS,ROOTS]
  IMPORTING Refinement3[NODES,SONS,ROOTS]
  IMPORTING Refine_Predicate
  IMPORTING Refine_Predicate_Transitive
  ref2 : LEMMA
    refines[S.O_State,S.State,I2.State]
    (I2.init,I2.next,I2.proj)(S.init,S.next,S.proj)
  ref : THEOREM
    refines[S.O_State,S.State,I3.State]
END Composed_Refinement
```