
What is a Trace? A Runtime Verification Perspective

Giles Reger1? and Klaus Havelund2??

1 University of Manchester, Manchester, UK
2 Jet Propulsion Laboratory, California Inst. of Technology, USA

Abstract. Runtime Monitoring or Verification deals with traces. In its most sim-
ple form a monitoring system takes a trace produced by a system and a specifi-
cation of correct behaviour and checks if the trace conforms to the specification.
More complex applications may introduce notions of feedback and reaction. The
notion that unifies the field is that we can abstract the runtime behaviour of a sys-
tem by an execution trace and check this for conformance. However, there is little
uniform understanding of what a trace is. This is most keenly seen when compar-
ing theoretical and practical work. This paper surveys the different notions of
trace and reflects on the related issues.

1 Introduction

Runtime Monitoring or Verification [29, 45] is a form of dynamic analysis where a sys-
tem of interest is abstracted as an execution trace. The most common notion of runtime
verification is to take a specification of correct behaviour φ and a trace τ and check for

language inclusion i.e. τ
?
∈ L(φ). This can be applied offline by collecting a trace as a

log file or online by monitoring the system whilst it is running.
How the trace τ is captured from the system and described for the monitoring pro-

cess is important. We observe that currently (i) there is no general notion of what should
be recorded in a trace, and (ii) there is no general format for recording traces as log
files. This state of affairs hinders interoperability of runtime verification tools, sharing
of case studies and benchmarks, and application of runtime verification techniques (as
time must be spent deciding how to generate traces).

A solution would be to develop a general trace format to be used in runtime verifica-
tion that is optimal from the perspective of runtime verification tools. However, we also
observe that recording log files or execution traces is common in many areas of soft-
ware engineering where runtime verification is not used. To encourage use of (formal)
monitoring techniques in such areas it is important to understand the kinds of traces
they deal with.

Therefore, we begin in Sections 2 and 3 by reviewing existing notions of trace, both
within and outside the runtime verification community. Then we discuss two important

? The contribution of this author is based upon work from COST Action ARVI IC1402, sup-
ported by COST (European Cooperation in Science and Technology).

?? The research performed by this author was carried out at Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space Adminis-
tration.

points. In Section 4 we discuss what should appear in a trace, and in Section 5 we dis-
cuss what format a trace file should take. Finally, Section 6 concludes with a discussion
of what further issues to take into account when considering general trace formats.

2 Traces in Runtime Verification

We briefly review the role and occurrence of different notions of trace within the field
of runtime verification.

2.1 Traces as Models

Traces are typically introduced as models of specifications written in a specification
language. It is common to say that a specification ϕ denotes a (usually infinite) set of
traces. More precisely one would normally define a signature Σ which induces a set of
possible interpretations or traces T , and define a denotation |ϕ| ⊆ T , i.e the conditions
for the trace to be a model for ϕ. As discussed below, the signature and the form of
traces built from it can vary. But in general the signature will capture a notion of event
and traces will be (finite) sequences of events.

Propositional Traces. The most simple case of this is when regular expressions or
state machines are used as specifications and traces are taken as finite traces of propo-
sitional symbols. For example, the regular expression specification (ab)∗ has the trace
abab in its language but not the trace abbab. Another popular language for runtime
verification is Linear Temporal Logic (LTL). In the propositional case it is common to
have a one-event-at-a-time assumption. This makes the traces similar to those above.
However, in contrast to model checking, traces are usually considered finite, and there
have been various proposals for finite-trace versions of LTL. Relaxing the one-event-
at-a-time assumption means that multiple events may occur at each time point, leading
to a sequence of sets presentation. For example, assuming some appropriate finite-trace
semantics, the LTL specification �(a→ ♦(b∧ c)) has the trace {a}.{}.{b}.{b, c} in its
language. More complicated notions of trace tend to build on these ideas and we briefly
cover some of these in the following.

Adding Time. The traces above introduce a qualitative notion of time i.e. give an order-
ing of events. However, they do not capture the quantitative distance (in time) between
events. There have been various extensions of specification languages to deal with this.
We can add clocks to automata to get timed automata [2, 17] and add intervals to get
timed regular expressions [4]. Intervals can also be added to LTL to get extensions such
as Metric Temporal Logic (MTL) [44, 54] and Timed Propositional Temporal Logic
(TPTL) [3].

Such specifications often come with two alternative notions of trace or variations on
their semantics. The first is to take a pointwise semantics as before where specifications
denote (possibly infinite) timed words that add (strictly increasing) real-valued times-
tamps to events (or sets of events). For example, the MTL specification �(a→ ♦(1,3)b)

has the trace (1, a)(1.5, a)(3.5, b) in its language but not (1, a)(1.5, a)(2.4, b) (again as-
suming an appropriate finite trace semantics). The second is to consider a continuous
semantics where the trace is captured by a signal function f : R+ → 2Σ mapping time
t to a set of events f(t) holding at time t. A signal function can be transformed into a
timed word and a timed word can be transformed into a signal function if they satisfy
properties that mean that an infinite number of events cannot occur in a finite amount
of time. For signal functions this is called the finite variability property and for timed
words this is called the non-Zeno property. Pragmatically, the difference between the
pointwise and continuous view is that the former has an event-driven quality, and the
second more intuitively reflects a setting where a system is periodically sampled.

Adding Data. Relatively early on in the history of runtime verification it was noted that
it was useful to add a notion of data to specification languages, in order to capture traces
with data carrying events. There is a wide range of different approaches to specification
but the underlying traces are similar although the context of the specification language
often leads to differing terminology when talking about traces.

There is a large body of work [1, 7–9, 20, 49] dealing with traces as (finite) se-
quences of so-called parametric events of the form e(a, b, c), where e is an event name
and a, b, c are data values. We note that not all of these work uses the term parametric
event, but the overall concept remains the same. A separate effort is built on the existing
theory of data words captured by register automata [26, 32]. The notion of trace is the
same i.e. a trace is a sequence of letters from a finite alphabet paired with a data value
from some infinite set. We mention this work separately as it is associated with a large
body of theoretical work from outside of runtime verification [41, 52, 61].

A few extensions naturally lift propositional temporal logic to first-order, introduc-
ing functions, predicates, and quantification. As per the standard lifting, interpretations
must be extended to interpret function and predicate symbols, thus leading to additional
information being added to the trace as in [15, 25]. Although we note that it is unusual
to do this in practice. It is common [15] for specifications to restrict functions and pred-
icates to some well-defined theory such as arithmetic. In this case the interpretation of
such symbols is implicitly defined by the theory. An approach to monitoring called mon-
itoring modulo theories [25] (following satisfiability modulo theories) considers traces
mixing theory symbols and so-called observation symbols capturing system events.

In cases where specification languages include a notion of quantification, the do-
main of quantification must be captured in some way. In some situations it would be
reasonable for this to be captured in the specification (e.g. if quantifying over some
fixed set of values) but more typically it is considered part of the trace. Whilst it would
be reasonable to define this domain separately it is most common [7, 20, 58] for it to be
defined exactly as values extracted from the trace. Independently of how the quantifi-
cation domain is captured there is also the consideration of whether it should be fixed
throughout the trace. For example, some approaches [68] quantify over values seen in
the trace so far rather than the whole trace. Such decisions can significantly alter the
interpretation of the specifications.

As a final note, once the notion of event is no longer propositional it is possible to
introduce the notion of events with complex structure. So far, in our discussion, events

have had a flat form consisting of a name and a sequence of data values. This may
not reflect real-world scenarios where data structures often encapsulate other nested
structures, and recorded observations therefore may have structured fields. However, it
is not common to consider structured events, although such efforts have been seen. For
example, in [35] a first-order temporal logic is defined over XML documents where
events are structured XML records.

Data and Time. One can add both data and time to produce a language that has more
complex traces. One can, of course, treat time as just another element of data, and this
is often sufficient. However, approaches that do this do not lend particular support for
special metric operators as the specification language is not aware of the special status
of this data.

One example of a language that combines data and time is Metric First Order Tem-
poral Logic (MFOTL) [16] defined over traces consisting of timestamped parametric
events. Another example is Signal Temporal Logic (STL) [48] where (continuous se-
mantics) MTL is extended so that signals are real-valued (rather than boolean-valued).
Implicitly this means that each propositional event has a real-valued parameter. Prop-
erties can then place conditions on functions of signals over time. There is also an
extension of STL that deals with time-frequency analysis where traces are represented
by a spectogram (a two-dimensional representation of time versus frequency) [27].

We would also like to mention a specific form of structured data in traces coming
from the related field of statistical model checking. Spatial-Temporal logics [12, 31,
33, 34] are defined over sequences of spatial structures, for example quarternary tree
structures [34]. This is an example of an application domain where the structure of data
is well-defined and the specification language is interpreted over this structure.

2.2 Instrumentation Techniques

Another way of viewing what traces are, from a runtime verification perspective, is to
consider the different instrumentation techniques commonly used in runtime verifica-
tion as these reflect what is being observed.

Instrumenting Java. The most common approach in the literature for observing events
in Java programs is to use AspectJ [6]. This approach tends to be used for intercepting
method calls and their parameters. Therefore, event names typically relate to method
calls with a few exceptions, for example taking and releasing locks. However, early
work on Java instrumentation was more general. The Java-MaC [42] tool introduces a
low-level language for identifying events in terms of program variables and fields in
objects. Alternative approaches to Java instrumentation include JVM agents (used by
RV-Monitor [47]) and Java Reflection (used by JUnitRV [24]). Again these techniques
tend to focus on method invocations, but are not restricted to these.

Instrumenting C. Instrumentation techniques for the runtime verification of C (and
C++) programs are less well established. There exists some work on extending the AOP

approach to C, but with relatively little uptake compared to AspectJ. RMOR [36] is a
framework for monitoring the execution of C programs against state machines using
an aspect-oriented pointcut language similar to AspectJ’s. The system is implemented
in the C analysis and transformation package CIL [22], which itself is programmed
in Ocaml. AspectC++ [5] is a mature framework for aspect-oriented programming in
C++. InterAspect [66] provides a GCC-plugin that supports pointcut definitions for the
GIMPLE intermediate language. Finally, [21] reports on recent promising work and
gives a good overview of previous efforts. The two main other approaches are manual
instrumentation and code rewriting (as done by E-ACSL [43] and RiTHM [51]). For C
programs it is more common to take changes in variable values as events. Another large
consideration for C programs is that of memory safety, and this is a common behaviour
to observe.

Other Languages. Whilst Java and C remain the two most common languages con-
sidered for monitoring, there exists some work on monitoring other languages. There
is a recent body of work monitoring Erlang programs (ELARVA [23] and detectEr3).
Initially, this work took advantage of Erlang’s tracing mechanism to hook into Erlang’s
virtual machine to receive events as messages [23]. More recent work [18, 19] employs
an Aspect-Oriented Programming framework to inject instrumentation as in AspectJ. It
should be noted that when monitoring Erlang programs there is an additional issue of
distributed (asynchronous) computation to contend with. There is also some work on
monitoring Python programs [59] which employs function decorators to modify func-
tions with additional instrumentation.

Hardware Instrumentation. For hardware monitoring there appears to be two main
approaches [70]. The first is to add a passive device to the system bus and “sniff” on-
going activities. For example, BusMOP [56] uses this approach to detect I/O accesses,
memory accesses and interrupts. The second approach is to directly access relevant sig-
nals and registers and compile the property to be monitored directly to a circuit [39, 46,
62, 69]. The former approach is event-triggered whilst the second samples a continuous
signal on clock cycles.

3 Traces Elsewhere

In this section we briefly discuss sources of traces in areas that have received a mixed
level of attention from the runtime verification. Understanding what traces are available
here could be useful in understanding what kinds of traces we should be dealing with.

Web Servers. Web servers typically log accesses and errors. There are a number of
standards for access logs supported by the main web server technologies. For example,
the Common Log Format4 logs each access as a single line consisting of the host, an

3 http://www.cs.um.edu.mt/svrg/Tools/detectEr
4 https://www.w3.org/Daemon/User/Config/Logging.html#
common-logfile-format

identity, the user, a date, the request, the status and the number of bytes. Within this
the identity, timestamps and statuses are also standardised. Whilst this format is quite
straightforward, and looks similar to what we discussed above, the more complex (draft)
Extended Log Format5 uses a header to specify the data types in each field.

Databases. Database systems typically log transactions to guarantee durability of data.
As these logs are meant for internal consumption there is little available about the for-
mat of such logs. The information stored would typically involve the query type and
any arguments. As these logs are used to ensure durability they are typically circular
i.e. older records are overwritten by newer records once the changes in older records
have been flushed to main storage.

System Logging in Unix. When exploring security related issues it is common to
observe the system calls made to the Unix kernel. Tools for this task include strace
and ltrace. strace6 attaches to a process and records system calls and signals.
Each line of the log file records the system call name followed by its arguments in
parenthesis and its return value. For example,

open("/dev/null", O_RDONLY) = 3

records open being called with a pathname and flag. Errors include the relevant error
number and string, for example

open("/foo/bar", O_RDONLY) = -1 ENOENT (No such file or directory)

Additionally, signals are printed as signal symbol and decoded siginfo structure. For
example,

sigsuspend([] <unfinished ...>
--- SIGINT {si_signo=SIGINT,si_code=SI_USER,si_pid=...}
+++ killed by SIGINT +++

is an excerpt from stracing and interrupting the command “sleep 666”. ltrace is very
similar to strace but intercepts calls to dynamic libraries. This could be used to detect
calls to the standard C library (for example).

System Logging in Windows. As expected, Windows systems have more propriety
logging facilities than Unix-based systems. However, one can access Windows Event
Logs, which record a range of different events occurring in the system. Recorded events
contain a source, category, identifier and an event-specific string such as a filename or
username. Events can be of a number of kinds, e.g. application events, system events,
security events. There has been some work filtering and extracting well-defined events
to perform log checking [60] but it seems that this is not well-supported.

5 https://www.w3.org/TR/WD-logfile.html
6 This information is based on that found in man strace.

4 What Should Go Into the Trace

Let us attempt to summarise the previous review to draw some conclusions about the
kinds of things that should be supported in traces (ignoring the format of such things
for now). Firstly, it is clear that we need good support for Data and Time as these
are fundamental. In addition, we note that separate support for time is beneficial as it
may have special requirements (e.g. is strictly increasing) not shared by normal data
parameters. Beyond this there are a number of ideas to discuss.

Assumptions about relevance The main observation from Section 2.2 is that RV ac-
tivities tend to specify the required events, record such events in a trace, and perform
monitoring on that trace. However, many log files produced for other purposes will at-
tempt to record as much relevant information as possible. Any useful system for record-
ing and using traces would likely need to support traces containing more information
than is relevant to the task in hand.

Do we need event names? It would seem that each event should be given a name.
However, this could be an overly rigid requirement coming from a particular view of
monitoring. In the setting of hardware monitoring where one has a number of signals
one is observing, there is no notion of event name, as each event contains the same
information i.e. a vector of values. Perhaps forcing an event to have a name is therefore
restrictive.

Ordered or named parameters? Previously we assumed events had a fixed number of
parameters and the values for each parameter was included in events. However, this does
not allow for two scenarios. Firstly, where there are a large number of parameters and
only a few are relevant. Secondly, where there may be a variable number of parameters
but we know that the particular parameter of interest will be present. These cases can be
addressed by identifying parameters by a name rather than a position. Supporting these
alternative presentations would extend applicability to these scenarios.

Structured events. Most observations mentioned in the previous section are flat e.g.
system calls have a flat list of parameters. However, there are some notable contexts
where data values may have structure that should be recorded. A simple case is where
the data value is a collection of other data values i.e. has variable non-fixed size. Two
places where this issue is likely to occur is when serialising data structures and in Web
Services, where structured data is common-place.

Notions of equality and other types. There is often an implicit direct notion of equal-
ity i.e. that one can compare data values in the trace directly. However, this may be
too simplistic. For example, if one were to record memory addresses to identify data
structures then equality should be interpreted within the context of memory manage-
ment or garbage collection, which indicates the lifetime of that identity7. When richer

7 The issue here is that over the lifetime of a program the same memory address could refer to
different data structures if some structures are deleted.

data values appear in the trace there may be non-standard interpretations for equality
operations on them. In either case, additional information may be required to interpret
the trace.

The MetaData. One may need more information to understand the trace than is de-
scribed in the events. For example, domains of quantification, the relevant signature/al-
phabet, sampling information, units for certain measurements etc. It would be useful
for a trace format to support additional (structured) metadata of this kind. Otherwise a
separate file will be required.

Capturing context. For some monitoring activities there is a wider context that may
be relevant. For example, when monitoring Java applications it may be relevant when a
certain (monitored) object is garbage collected. This could be encoded as events.

5 What Format Should a Trace File Take?

It seems clear that traces should follow a well-defined common format. This allows
parsing and printing tools, as well as libraries to be easily reused. This was the approach
taken by the RV competition [10, 11, 30], and we here review the file formats used
for this competition, highlight their advantages and disadvantages, and point out some
alternative uses of these formats.

Comma Separated Values (CSV). This standardised8 format is often used for the stor-
age and transport of simply structured data. It would be difficult to represent complexly
structured events in this format. Parsing of CSV files is, however, very efficient due to
its simple format. Each data record in a CSV file occupies one line. Values on the line
are separated by commas. An optional initial header line can contain column names,
allowing CSV processing software to access values by name. It is important to note that
whitespace is taken as part of values.

In the case where all events have the same number of arguments, and each position
has the same interpretation across lines, the CSV format is optimal. As an example
consider the CSV file containing drawing commands taking x- and y-coordinates as
arguments:

command, x, y
move, 3, 4
draw, 0, 4
move, 0, 0
draw, 3, 4

However, the typical case is that different commands take different numbers and kinds
of arguments, with different interpretations. During the latest RV competition CSV files
were for example generated for keeping track of Java operations on maps (update map,

8 See http://www.ietf.org/rfc/rfc4180.txt

create the collection of keys of the map, create a derived iterator from this key set, use
the iterator - and check that after an update to a map no such derived iterator is further
used). The CSV files used a header as in the following example:

event, map, collection, iterator
updateMap, 6750210, ,
createColl,6750210, 2081191879,
createIter, , 2081191879, 910091170
useIter, , , 910091170
updateMap, 1183888521, ,

Note that in order to match the header, empty fields are required when a particular
column is not relevant to an event. A CSV file can also be constructed without using
a header, in which case the CSV file reading software must know and interpret the
postions of the arguments correctly. Here arguments are just listed sequentially with-
out blank fields in between. Positions here have different interpretations for different
commands, for example argument number 1 in a updateMap command is a map while
argument number 1 in a createIter command is a collection:

updateMap, 6750210
createColl, 6750210, 2081191879
createIter, 2081191879, 910091170
useIter, 910091170
updateMap, 6750210

Finally one can consider a format where there is also no header, but where fields are
named in each row (every second position in a line is the name of a value, which then
follows in the next position):

updateMap, map, 6750210
createColl, map, 6750210, collection, 2081191879
createIter, collection, 2081191879, iterator, 910091170
useIter, iterator, 910091170
updateMap, map, 6750210

eXtended Markup Language (XML). This standardised9 format associated with web
services is a markup language where data are tagged. In the RV competition five tags
were introduced: log, event, name, field, and value. The following gives a log
consisting only of the second event in the previous log.

<log>
<event>
<name>createColl</name>
<field>
<name>map</name>
<value>6750210</value>

</field>

9 See https://www.w3.org/TR/REC-xml

<field>
<name>collection</name>
<value>2081191879</value>

</field>
</event>

</log>

This format clearly supports structured data and also metadata, for example an event
could be further tagged with additional time information:

<event timestamp="1462810918">

Although this does not add much functionality as the same information could be
represented as data (e.g. in CSV); the role of metadata is to separate data from informa-
tion that describes it.

However, the above representation is verbose. Similar to the CSV format, the XML
format can be simplified, not mentioning names of fields, but rather giving them just by
position. The above one-event log would in such a solution become simpler, although
still somewhat verbose:

<log>
<event>
<name>createColl</name>
<value>6750210</value>
<value>2081191879</value>

</event>
</log>

Finally, XML supports the notion of schema that defines the expected structure and can
be used to validate XML documents.

JavaScript Object Notation (JSON). This standardised10 format stores structured
attribute-value pairs as well as arrays. The first one-event log presented as XML above
can be captured in JSON as follows.

[
{
"createColl" : {
"map" : "6750210",
"collection" : "2081191879"

}
}

]

This seems to have the advantages of XML but is relatively more concise. Similar to
the cases of CSV and XML, JSON can be made more succinct by using arrays to model
positional arguments, as in the following where we have listed all the events in the
original CSV file:
10 See https://tools.ietf.org/html/rfc7159

[
{"updateMap" : ["6750210"]},
{"createColl" : ["6750210", "2081191879"]},
{"createIter" : ["2081191879", "910091170"]},
{"useIter" : ["910091170"]},
{"updateMap" : ["6750210"]}

]

Tool Formats. Finally, we note that some tools have their own propriety trace file
format. Monpoly [14] has a plain text format with an event per-line where each line
contains a timestamp, event name and then (optionally) some data parameters. Both
OCLR-Check [28] and BeepBeep [35] make use of custom XML formats.

6 Discussion and Conclusion

The aim of this paper was to review various notions of trace from a runtime verifica-
tion perspective, and beyond. This review has been relatively lightweight but hopefully
provides some discussion points and useful references. We finish with a few discussion
points relevant to the topic of traces, which we have not yet touched.

Rolling Logs. Something that is rarely dealt with in runtime verification is the issue of
monitoring logs from systems that have been running for a long time. The first problem
is that one will not want to repeatedly analyze all logs from the beginning of time.
Approaches will be needed for accumulating monitoring results from past analyses.
The second problem is that of bootstrapping, if one has not been recording logs so far,
but wants to start monitoring, then it may be necessary to make some assumptions about
the unseen logs.

Uncertainty. A common issue is where a trace contains partial information. This can
either be partial by construction and therefore known to be partial, for example where a
system’s execution is sampled only periodically for efficiency reasons [13, 40, 67]. Or it
may be partial due to unreliability in the recording process. In either case it may be nec-
essary to either estimate or predict what has been omitted, or provide some confidence
in the computed verdict. An alternative approach is to compute the distance between
the observed behaviour and expected behaviour [55, 57].

Concurrency. We have ignored the issue of concurrent or distributed systems. Such
systems can be abstracted as a set of separate but related execution traces with a single
trace per concurrent or distributed process. A notable property of such systems is that
there is (generally) no notion of a global clock. If the behaviour of each process is
independent then it may be sufficient to consider the behaviour of the system as a set of
independent sequential traces. However, it is more common for there to be dependencies
between processes. In such a case there is a choice: one can enforce a total ordering of
events or record the observed partial order.

The first case equates to flattening the set of traces into a single trace, for example
serialising the trace by selecting an arbitrary ordering. But unless this ordering is en-
forced (via synchronization) the trace may not reflect actual behaviour, possibly leading
to false positives or false negatives in monitoring. If the ordering is enforced by syn-
chronization this can have a large impact on performance.

In the second case it is typical [50, 53, 63, 64] to consider a distributed computation
as a partial order 〈E,→〉 on a set of events E based on the happens-before relation→.
The happens-before relation necessarily totally orders events from the same process and
represents synchronisation (e.g. message passing) between different processes. In such
a setting a global state (or consistent cut) is a tuple of events (one from each process)
representing a frontier in the distributed computation that satisfies the happens-before
relation. These global states can then be formed into a computation lattice or state lat-
tice where one global state is above another global state if it occurs strictly later in
the computation. This differs from the previous structure as the nodes now represent
global states rather than individual events. A path through the computation lattice is
one possible global trace of the system and it is typical to consider all such traces.
In the context of multithreaded programs there exist methods generalising the happens-
before relationship by considering additional causal relationships [38, 65]. This can lead
to more possible global traces being explored, increasing the chances of finding buggy
behaviour even if this behaviour was not observed at runtime. Such exploration of all
possible global traces in the partial order has similarities to model checking [37]. How-
ever, a model checker will explore all possible traces of the program, whereas the above
described method will not.

As a concluding remark, it is clear that any efforts to unify notions of trace and stan-
dardise how runtime verification tools record and process events will be beneficial to
both the developers and users of such tools.

References

1. Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins,
Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble.
Adding trace matching with free variables to AspectJ. SIGPLAN Not., 40:345–364, October
2005.

2. Rajeev Alur and D. L. Dill. Automata for modeling real-time systems. In Proceedings of the
Seventeenth International Colloquium on Automata, Languages and Programming, pages
322–335, New York, NY, USA, 1990. Springer-Verlag New York, Inc.

3. Rajeev Alur and Thomas A. Henzinger. A really temporal logic. J. ACM, 41(1):181–203,
January 1994.

4. Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expressions. Journal of the
ACM, 49(2):172–206, 2002.

5. AspectC++. Aspect oriented programming for C++. http://www.aspectc.org, 2016.
6. AspectJ. Aspect oriented programming for Java. https://eclipse.org/aspectj/,

2016.
7. Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger, and David E. Rydeheard.

Quantified event automata: Towards expressive and efficient runtime monitors. In FM, pages
68–84, 2012.

8. Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-based runtime
verification. In VMCAI, pages 44–57, 2004.

9. Howard Barringer and Klaus Havelund. Tracecontract: a Scala DSL for trace analysis. In
Proc. of the 17th international conference on Formal methods, pages 57–72, Berlin, Heidel-
berg, 2011.

10. Ezio Bartocci, Borzoo Bonakdarpour, and Yliès Falcone. Runtime Verification: 5th Inter-
national Conference, RV 2014, Toronto, ON, Canada, September 22-25, 2014. Proceedings,
chapter First International Competition on Software for Runtime Verification, pages 1–9.
Springer International Publishing, Cham, 2014.

11. Ezio Bartocci, Borzoo Bonakdarpour, Yliès Falcone, Christian Colombo, Normann Decker,
Felix Klaedtke, Klaus Havelund, Yogi Joshi, Reed Milewicz, Giles Reger, Grigore Rosu,
Julien Signoles, Daniel Thoma, Eugen Zalinescu, and Yi Zhang. First international com-
petition on runtime verification. International Journal on Software Tools for Technology
Transfer (STTT), 2016 (To appear).

12. Ezio Bartocci, Luca Bortolussi, Dimitrios Milios, Laura Nenzi, and Guido Sanguinetti. Hy-
brid Systems Biology: Fourth International Workshop, HSB 2015, Madrid, Spain, September
4-5, 2015. Revised Selected Papers, chapter Studying Emergent Behaviours in Morphogene-
sis Using Signal Spatio-Temporal Logic, pages 156–172. Springer International Publishing,
Cham, 2015.

13. Ezio Bartocci, Radu Grosu, Atul Karmarkar, Scott A. Smolka, Scott D. Stoller, Erez Zadok,
and Justin Seyster. Runtime Verification: Third International Conference, RV 2012, Istanbul,
Turkey, September 25-28, 2012, Revised Selected Papers, chapter Adaptive Runtime Verifi-
cation, pages 168–182. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

14. David Basin, Matúš Harvan, Felix Klaedtke, and Eugen Zălinescu. Monpoly: Monitoring
usage-control policies. In Sarfraz Khurshid and Koushik Sen, editors, Runtime Verification,
volume 7186 of Lecture Notes in Computer Science, pages 360–364. Springer Berlin Hei-
delberg, 2012.

15. David Basin, Felix Klaedtke, Srdjan Marinovic, and Eugen Zălinescu. Monitoring of tempo-
ral first-order properties with aggregations. Formal Methods in System Design, 46(3):262–
285, 2015.

16. David Basin, Felix Klaedtke, Samuel Müller, and Eugen Zălinescu. Monitoring metric first-
order temporal properties. J. ACM, 62(2):15:1–15:45, May 2015.

17. Johan Bengtsson and Wang Yi. Lectures on Concurrency and Petri Nets: Advances in Petri
Nets, chapter Timed Automata: Semantics, Algorithms and Tools, pages 87–124. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004.

18. Ian Cassar and Adrian Francalanza. On synchronous and asynchronous monitor instrumen-
tation for actor-based systems. In Proceedings 13th International Workshop on Foundations
of Coordination Languages and Self-Adaptive Systems, FOCLASA 2014, Rome, Italy, 6th
September 2014., pages 54–68, 2014.

19. Ian Cassar and Adrian Francalanza. On implementing a monitor-oriented programming
framework for actor systems. In International Conference on integrated Formal Methods
(iFM), 2016.

20. Feng Chen and Grigore Roşu. Parametric trace slicing and monitoring. In TACAS ’09, pages
246–261, Berlin, Heidelberg, 2009.

21. Zhe Chen, Zhemin Wang, Yunlong Zhu, Hongwei Xi, and Zhibin Yang. Tools and Algo-
rithms for the Construction and Analysis of Systems: 22nd International Conference, TACAS
2016, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, chapter Paramet-
ric Runtime Verification of C Programs, pages 299–315. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2016.

22. CIL. C Intermediate Language. https://www.cs.berkeley.edu/˜necula/cil/,
2016.

23. Christian Colombo, Adrian Francalanza, and Rudolph Gatt. Runtime Verification: Second In-
ternational Conference, RV 2011, San Francisco, CA, USA, September 27-30, 2011, Revised
Selected Papers, chapter Elarva: A Monitoring Tool for Erlang, pages 370–374. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

24. Normann Decker, Martin Leucker, and Daniel Thoma. NASA Formal Methods: 5th Inter-
national Symposium, NFM 2013, Moffett Field, CA, USA, May 14-16, 2013. Proceedings,
chapter jUnitRV–Adding Runtime Verification to jUnit, pages 459–464. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013.

25. Normann Decker, Martin Leucker, and Daniel Thoma. Tools and Algorithms for the Con-
struction and Analysis of Systems: 20th International Conference, TACAS 2014, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Greno-
ble, France, April 5-13, 2014. Proceedings, chapter Monitoring Modulo Theories, pages
341–356. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

26. Stéphane Demri and Ranko Lazić. LTL with the freeze quantifier and register automata.
ACM Trans. Comput. Logic, 10(3):16:1–16:30, April 2009.

27. Alexandre Donzé, Oded Maler, Ezio Bartocci, Dejan Nickovic, Radu Grosu, and Scott
Smolka. Automated Technology for Verification and Analysis: 10th International Sympo-
sium, ATVA 2012, Thiruvananthapuram, India, October 3-6, 2012. Proceedings, chapter On
Temporal Logic and Signal Processing, pages 92–106. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

28. Wei Dou, Domenico Bianculli, and Lionel Briand. Oclr: A more expressive, pattern-based
temporal extension of ocl. In Proceedings of the 10th European Conference on Modelling
Foundations and Applications - Volume 8569, pages 51–66, New York, NY, USA, 2014.
Springer-Verlag New York, Inc.

29. Y. Falcone, K. Havelund, and G. Reger. A tutorial on runtime verification. In Manfred Broy
and Doron Peled, editors, Summer School Marktoberdorf 2012 - Engineering Dependable
Software Systems, to appear. IOS Press, 2013.

30. Yliès Falcone, Dejan Nickovic, Giles Reger, and Daniel Thoma. Second International Com-
petition on Runtime Verification. In 6th International Conference, RV 2015, Vienna, Austria,
September 22-25, 2015. Proceedings, volume LNCS, page 16, Vienne, Austria, September
2015. Springer.

31. E. A. Gol, E. Bartocci, and C. Belta. A formal methods approach to pattern synthesis in
reaction diffusion systems. In 53rd IEEE Conference on Decision and Control, pages 108–
113, Dec 2014.

32. Radu Grigore, Dino Distefano, Rasmus Lerchedahl Petersen, and Nikos Tzevelekos. Tools
and Algorithms for the Construction and Analysis of Systems: 19th International Conference,
TACAS 2013, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, chapter Runtime Ver-
ification Based on Register Automata, pages 260–276. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

33. Radu Grosu, Scott A. Smolka, Flavio Corradini, Anita Wasilewska, Emilia Entcheva, and
Ezio Bartocci. Learning and detecting emergent behavior in networks of cardiac myocytes.
Commun. ACM, 52(3):97–105, March 2009.

34. Iman Haghighi, Austin Jones, Zhaodan Kong, Ezio Bartocci, Radu Gros, and Calin Belta.
Spatel: A novel spatial-temporal logic and its applications to networked systems. In Pro-
ceedings of the 18th International Conference on Hybrid Systems: Computation and Control,
HSCC ’15, pages 189–198, New York, NY, USA, 2015. ACM.

35. S. Halle and R. Villemaire. Runtime enforcement of web service message contracts with
data. IEEE Transactions on Services Computing, 5(2):192–206, April 2012.

36. Klaus Havelund. Runtime verification of C programs. In Proc. of the 1st TestCom/FATES
conference, volume 5047 of LNCS, Tokyo, Japan, 2008. Springer.

37. Gerard Holzmann. Spin Model Checker, the: Primer and Reference Manual. Addison-
Wesley Professional, first edition, 2003.

38. Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. Maximal sound predictive race
detection with control flow abstraction. SIGPLAN Not., 49(6):337–348, June 2014.

39. S. Jakšić, E. Bartocci, R. Grosu, R. Kloibhofer, T. Nguyen, and D. Ničkovié. From signal
temporal logic to FPGA monitors. In Formal Methods and Models for Codesign (MEM-
OCODE), 2015 ACM/IEEE International Conference on, pages 218–227, Sept 2015.

40. Kenan Kalajdzic, Ezio Bartocci, Scott A. Smolka, Scott D. Stoller, and Radu Grosu. Run-
time Verification: 4th International Conference, RV 2013, Rennes, France, September 24-
27, 2013. Proceedings, chapter Runtime Verification with Particle Filtering, pages 149–166.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

41. Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci.,
134(2):329–363, November 1994.

42. MoonZoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee, and Oleg Sokolsky.
Java-MaC: A run-time assurance approach for java programs. Formal Methods in System
Design, 24(2):129–155, 2004.

43. Nikolai Kosmatov, Guillaume Petiot, and Julien Signoles. An optimized memory monitoring
for runtime assertion checking of C programs. In International Conference on Runtime
Verification (RV’13), volume 8174 of LNCS, pages 167–182. Springer, September 2013.

44. Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time Sys-
tems, 2(4):255–299, 1990.

45. Martin Leucker and Christian Schallhart. A brief account of runtime verification. Journal of
Logic and Algebraic Programming, 78(5):293–303, may/june 2008.

46. Hong Lu and Alessandro Forin. The design and implementation of P2V, an architecture for
zero-overhead online verification of software programs. Technical Report MSR-TR-2007-
99, Microsoft Research, August 2007.

47. Qingzhou Luo, Yi Zhang, Choonghwan Lee, Dongyun Jin, Patrick O’Neil Meredith, Tra-
ian Florin Serbanuta, and Grigore Rosu. RV-monitor: Efficient parametric runtime verifica-
tion with simultaneous properties. In Proceedings of the 14th International Conference on
Runtime Verification (RV’14). LNCS, September 2014.

48. Oded Maler and Dejan Nickovic. Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems: Joint International Conferences on Formal Modeling and Analysis
of Timed Systmes, FORMATS 2004, and Formal Techniques in Real-Time and Fault -Tolerant
Systems, FTRTFT 2004, Grenoble, France, September 22-24, 2004. Proceedings, chapter
Monitoring Temporal Properties of Continuous Signals, pages 152–166. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004.

49. Patrick Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore Roşu. An overview
of the MOP runtime verification framework. J Software Tools for Technology Transfer, pages
1–41, 2011.

50. M. Mostafa and B. Bonakdarpour. Decentralized runtime verification of ltl specifications in
distributed systems. In Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE
International, pages 494–503, May 2015.

51. S. Navabpour, Y. Joshi, C. W. W. Wu, S. Berkovich, R. Medhat, B. Bonakdarpour, and S. Fis-
chmeister. RiTHM: a tool for enabling time-triggered runtime verification for c programs. In
ACM Symposium on the Foundations of Software Engineering (FSE), pages 603–606, 2013.

52. Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Logic, 5(3):403–435, July 2004.

53. Vinit A. Ogale and Vijay K. Garg. Detecting Temporal Logic Predicates on Distributed
Computations, pages 420–434. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

54. Joël Ouaknine and James Worrell. Some recent results in metric temporal logic. In Proceed-
ings of the 6th International Conference on Formal Modeling and Analysis of Timed Systems,
FORMATS ’08, pages 1–13, Berlin, Heidelberg, 2008. Springer-Verlag.

55. Fabrizio Pastore and Leonardo Mariani. AVA: supporting debugging with failure interpreta-
tions. In Sixth IEEE International Conference on Software Testing, Verification and Valida-
tion, ICST 2013, Luxembourg, Luxembourg, March 18-22, 2013, pages 416–421, 2013.

56. R. Pellizzoni, P. Meredith, M. Caccamo, and G. Rosu. Hardware runtime monitoring for de-
pendable cots-based real-time embedded systems. In Real-Time Systems Symposium, 2008,
pages 481–491, Nov 2008.

57. Giles Reger. Suggesting edits to explain failing traces. In Runtime Verification - 6th Inter-
national Conference, RV 2015 Vienna, Austria, September 22-25, 2015. Proceedings, pages
287–293, 2015.

58. Giles Reger and David E. Rydeheard. From first-order temporal logic to parametric trace
slicing. In Runtime Verification - 6th International Conference, RV 2015 Vienna, Austria,
September 22-25, 2015. Proceedings, pages 216–232, 2015.

59. Adam Renberg. Test-inspired runtime verification. Master’s thesis, Royal Institute of Tech-
nology (KTH), Stockholm, 2014.

60. A. Russ. Detecting security incidents using windows workstation event logs. Technical
report, Sans Institute InfoSec Reading Room, 2013.

61. Luc Segoufin. Computer Science Logic: 20th International Workshop, CSL 2006, 15th
Annual Conference of the EACSL, Szeged, Hungary, September 25-29, 2006. Proceedings,
chapter Automata and Logics for Words and Trees over an Infinite Alphabet, pages 41–57.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

62. K. Selyunin, T. Nguyen, E. Bartocci, D. Nickovic, and R. Grosu. Monitoring of MTL spec-
ifications with IBM’s spiking-neuron model. In 2016 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 924–929, March 2016.

63. Alper Sen and Vijay K. Garg. Rv ’2003, run-time verification (satellite workshop of cav ’03)
partial order trace analyzer (pota) for distributed programs. Electronic Notes in Theoretical
Computer Science, 89(2):22 – 43, 2003.

64. Alper Sen and Vijay K. Garg. Detecting Temporal Logic Predicates in Distributed Programs
Using Computation Slicing, pages 171–183. Springer Berlin Heidelberg, Berlin, Heidelberg,
2004.

65. Traian Florin ŞerbănuŢă, Feng Chen, and Grigore Roşu. Maximal Causal Models for Se-
quentially Consistent Systems, pages 136–150. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2013.

66. Justin Seyster, Ketan Dixit, Xiaowan Huang, Radu Grosu, Klaus Havelund, Scott A. Smolka,
Scott D. Stoller, and Erez Zadok. Interaspect: aspect-oriented instrumentation with GCC.
Formal Methods in System Design, 41(3):295–320, 2012.

67. Scott D. Stoller, Ezio Bartocci, Justin Seyster, Radu Grosu, Klaus Havelund, Scott A.
Smolka, and Erez Zadok. Runtime Verification: Second International Conference, RV 2011,
San Francisco, CA, USA, September 27-30, 2011, Revised Selected Papers, chapter Run-
time Verification with State Estimation, pages 193–207. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

68. Volker Stolz. Temporal assertions with parametrized propositions*. J. Log. and Comput.,
20:743–757, June 2010.

69. Tim Todman, Stephan Stilkerich, and Wayne Luk. In-circuit temporal monitors for runtime
verification of reconfigurable designs. In Proceedings of the 52Nd Annual Design Automa-
tion Conference, DAC ’15, pages 50:1–50:6, New York, NY, USA, 2015. ACM.

70. C. Watterson and D. Heffernan. Runtime verification and monitoring of embedded systems.
IET Software, 1(5):172–179, October 2007.

