
Runtime Verification of Log Files,
a Trojan Horse for Formal Methods?

Howard Barringer1, Alex Groce3, Klaus Havelund2,
David Rydeheard1, and Margaret Smith2

1 School of Computer Science
University of Manchester

Oxford Road
Manchester, M13 9PL, UK

{howard.barringer,david.rydeheard}@manchester.ac.uk
2 Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109, USA

{klaus.havelund,margaret.h.smith}@jpl.nasa.gov
3 School of Electrical Engineering and Computer Science

Oregon State University
Corvallis, USA

alex.groce@eecs.oregonstate.edu

Runtime verification is the discipline of monitoring and analyzing program execu-
tions. A typical scenario consists of determining whether an execution trace satisfies
a user-provided specification. Research challenges include development of expressive
and convenient specification languages, development of decision procedures for fast
analysis of traces against specifications, and minimization of impact on an instrumented
running program being monitored. In this presentation, we motivate and show how a
temporal rule-based runtime verification system has been applied to log file analysis in
support of the software testing effort for NASA’s next 2011 Mars mission MSL (Mars
Science Laboratory).

RULER [2] is a general-purpose conditional rule-based system, which has a simple
and easily implemented algorithm for effective runtime verification, and into which one
can compile a wide range of temporal logics and other specification formalisms used
for runtime verification. RULER has been designed with expressive power as well as
specification convenience in mind. A RULER specification consists of a set of rules
operating on a set of facts. A fact is of the form F(v1, ...,vn), where F is an identifier
and v1, . . . ,vn are values of various domains. For example, FileSent(127) is a fact. Facts
include observed events as well as internally generated state. A rule triggers when its
condition (a predicate over the set of facts) is satisfied, and as a result the rule will add
and/or remove facts from the set. Specifications can be parameterized with data, or even

? Part of the research described in this publication was carried out at the Jet Propulsion Labo-
ratory, California Institute of Technology, under a contract with the National Aeronautics and
Space Administration.



with specifications, allowing for temporal logic combinators to be defined. The system
has been developed in Java and can be directly applied to monitoring JAVA programs,
using for example ASPECTJ [5] for code instrumentation.

The LOGSCOPE [4] system is a derivation from RULER, developed specifically for
supporting testing of MSL flight software. It is implemented in PYTHON in order to
integrate well with other test scripts written for MSL, also written in PYTHON. The
LOGSCOPE specification language removes some of RULER’s generality, resulting in
the interesting subset of data parameterized state machines, and adds a simple user-
friendly temporal logic. The temporal logic is mapped to the core parameterized state
machines. A description of the process of introducing LOGSCOPE as part of the MSL
testing effort is presented in [3]. The system has been used by test engineers to analyze
log files generated by running the flight software. The temporal logic was instrumental
in achieving test engineer acceptance of the technology. Detailed logging is already part
of the MSL system design approach, and hence there is no added instrumentation over-
head caused by this approach. While post-mortem log analysis prevents the autonomous
reaction to problems possible with online runtime verification, it provides a powerful
tool for test automation.

A combined presentation of the two systems is presented in [1]. We will conclude
with a brief mention of the current effort to unify these two systems, providing more
expressive temporal capability in rule specifications.

References

1. H. Barringer, K. Havelund, D. Rydeheard, and A. Groce. Rule systems for runtime verifi-
cation: A short tutorial. In S. Bensalem and D. Peled, editors, 9th international workshop
on Runtime Verification (RV’09), volume 5779 of LNCS, pages 1–24, Grenoble, France, July
2009. Springer.

2. H. Barringer, D. Rydeheard, and K. Havelund. Rule systems for run-time monitoring: from
Eagle to RuleR. Journal of Logic and Computation, 2009. Advance Access published on
November 21, 2008. doi:10.1093/logcom/exn076.

3. A. Groce, K. Havelund, and M. Smith. From scripts to specifications, the evolution of a flight
software testing effort. October 2009. Submitted for conference publication.

4. A. Groce, K. Havelund, M. Smith, and H. Barringer. Let’s look at the logs: Low-impact
runtime verification. Computer Journal, July 2009. Submitted for review.

5. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview
of AspectJ. In J. L. Knudsen, editor, European Conference on Object-oriented Programming,
volume 2072 of LNCS, pages 327–353. Springer, 2001.


