
Toward Automated Enforcement of Error-Handling Policies

Douglas R. Smith and Klaus Havelund
Kestrel Technology LLC

Palo Alto, CA 94304

August 8, 2005

Abstract

Modern systems are prone to failure due to poor handling of errors that might arise.
We report on a design for a tool called HandlErr that allows system developers
(1) to state error-handling policies in a modular class-like notation, and (2) to
automatically enforce those policies throughout the system code. The enforcement
mechanisms are based on recently developed scalable and conservative static analysis
algorithms. When static analysis cannot provide enough information about the
applicability of a policy at a program point, then runtime monitoring code is inserted
and the error-handling policy is applied based on runtime information.

1 Introduction

System developers have a natural tendency to focus on nominal behavior during design, often
deferring an exhaustive analysis and treatment of possible abnormal situations. This strategy
makes some sense since error-handling code is voluminous and obscures the nominal flow of
control. Empirical measures of the amount of code devoted to error-handling in fielded systems
vary from a few percent up to two-thirds [2, 15], with the amount increasing with code size
and age. However, post-mortem analysis of a wide range of system failures often points to poor
handling of errors. The more that a system is embedded and dependent on proper data and
interaction with other systems, the more defensive it needs to be in order to prevent failures.
Better techniques for supporting the development of robust system code would be a general
value.

This study addresses the problem of creating a scalable technology for developing robust soft-
ware systems. Although we focus on Java, the technical approach applies to most programming
languages. We describe the design for a tool, called HandlErr , that takes as input a large
non-robust Java program together with modular specifications of error handling policies, and
robustifies the program by automatically inserting error detection and handling codes according
to the policies. The error handling policies are expressed in a Java-like notation for compat-
ibility with current programming practice. The modular policies support a more productive
programming practice that produces higher quality code. HandlErr could be used both
during system development and to robustify legacy code, without affecting functionality.

1



class AddNumbersFromFile {

static void doIt(String fileName) throws IOException {
DataInputStream source = null;
if(fileName!=null)

source = new DataInputStream(new FileInputStream(fileName));
int count = source.readInt();
int sum = addEm(source,count);
System.out.println("Sum is " + sum);

}

static int addEm(DataInputStream s, int c) throws IOException {
int sum = 0;
for (int i = 0; i < c; i++)
sum += s.readInt();

if(s.available()==0)s.close();
return sum;

}
}

Figure 1: Nonrobust Java Program

The key idea of HandlErr is to separate error-handling policies from nominal case code. This
separation of concerns is closely related to aspect-oriented programming, which our techniques
extend. HandlErr takes a collection of user-specified error-handling policies and system
code and composes them by enforcing the policies in the code. The effect is to insert error-
handling code at all code locations where the policies apply. By using sound static analysis
algorithms to detect where the policies apply, HandlErr ensures that no potential faults
are overlooked. By allowing the user to express modular error-handling policies, HandlErr

supports more uniform error-handling, more productive focus on error-handling content, and
significantly reduced effort to change the policies. HandlErr will uniformly and exhaustively
apply the policies throughout the code, automatically.

Although the examples in this paper do not illustrate it, it is possible that the static analysis to
apply a policy cannot determine which policy to apply at a certain code location. In that case,
runtime test code is inserted that makes the determination at runtime. Thus HandlErr will
support a spectrum of analysis from purely static weaving of policies to runtime monitoring
and application.

2 Motivating Example

Figure 1 shows a simple Java program that reads numbers from a file and sums them. We
will use this as a running example since it exhibits several of the most common sources of
errors and poor error-handling: (1) I/O operations, (2) the handling of ill-formed data, and

2



Open Stop
open close

use

FileNotFoundException / handler1

IOException / handler2

use

handler3

Start

Error

Figure 2: Simplified Generic File Management Policy

(3) obligations to observe proper and complete sequencing of operations in the acquisition
and release of resources. The example Java program relies entirely on Java’s builtin exception
handlers, but when fully robustified (to give pertinent messages, to close files upon termination,
and to handle minor errors), the resulting code is mostly error handling code.

This paper reports on the the two key conceptual bases for HandlErr : (1) error-handling
policies and (2) policy enforcement mechanisms.

We observe that errors are the flip-side to normal behavior, so it seems reasonable to specify
error-handling policies in the context of normal-case behavior. Consequently, our approach
has been to express policies as state machines that represent both the normal behavior of some
aspect of a system together with the abnormalities that may arise. We call these state machines
error-handling policies, or policies for short.

For example, a simplified language-neutral policy for file management is depicted in Figure 2
(a more complete textual notation is presented in the next section). The outer box indicates
the temporal scope of the policy. Control-flow arrows are labeled with guarded actions. Solid
arrows correspond to normal program control flow. Dotted arrows correspond to abnormal or
exceptional control flow, expressing the action taken when an operation throws an exception.
For example, if a FileNotFoundException is thrown during an open operation then handler1
should be executed. The handlers associated with each exception are presented as code tem-
plates to be instantiated at design-time by the policy enforcement mechanism. The arrows
exiting the policy correspond to the possible outcomes of the behavior, both normal-case pass-
ing of control and the throwing of exceptions. Certain states are safe, written with a double
circle, indicating a global obligation with respect to this policy. In this example, the enforce-
ment algorithm is obliged to ensure that whenever the program is about to terminate while
in an unsafe state, it must close all open files. The figure also represents erroneous actions,
particularly, using a file before opening it. The policy specifies that the use action in the Start
state should be replaced with the throw of an exception.

3



void close() throws IOException {…}
void available() throws IOException {…}

FilterInputStream

DataInputStream(InputStream in){…}
int readInt() throws IOException {…}
char readChar() throws IOException {…}

…

DataInputStream

extends

int readInt() throws IOException;
char readChar() throws IOException;

DataInput

implements

Figure 3: Partial Interface to java.io.DataInputStream

3 Policy Language

HandlErr treats policies in a manner similar to classes in Java, allowing extension/inheritance
and instantiation. Moreover, policies are expressed using an extension of Java syntax with
pattern notations.

3.1 Policy Syntax

Our running example uses the DataInputStream class from java.io whose interface and depen-
dencies are sketched in Figure 3. DataInputStream provides methods for opening a stream (via
its constructor), reading various types, checking availability of data, closing a stream, and oth-
ers. A class policy that constrains the behavior of any instance of DataInputStream is shown
in Figure 4. Generally, a policy has the following form:

policy policyName extends policy-list {
instance-variable*
transition*
}

where (1) policy-list is a comma-separated list of zero or more policies, (2) * is used to denote
zero or more occurrences of, (3) each instance variable is declared using Java syntax (separated
by semicolons), and (4) transitions have the form

4



policy DataInputStreamPolicy {
string filename;
DataInputStream in;

Start: { DataInputStream(FileInputStream(filename)) returns in } -> Open

Start: { in.read*() } -> Error
replace {throw new Error("Attempt to read from an unopen File"); }

Start: { in.available() } -> Start
replace {throw new Error("Attempt to invoke available on an unopen File");}

Start: { in.close() } -> Start
replace {print("Attempt to close an unopen File"); }

Open: { in.read*() } -> Open
catch (EOFException e)

{throw new Error("EOF: insufficient data in file " + filename); }
catch (IOException e)

{throw new Error("Cannot read from File " + filename); }

Open: { in.available() } -> Open
catch (IOException e)

{throw new Error("Unable to determine whether file "
+ filename + " contains more data"); }

Open: { in.close() } -> Closed
precondition {in.available() == 0}

{System.out.println("Closed file " + filename
+ " when it contained extra data"); }

Open : { exit } -> Closed
preaction
{ System.out.println("Performing a missing close on file " + filename);

in.close();
}

Closed: { in.read*() } -> Closed
replace {throw new Error ("File " + filename + "already closed"); }

Closed: { in.available() } -> Closed
replace {throw new Error ("Attempt to invoke available on a closed file: "

+ filename); }

Closed: { in.close() } -> Closed
replace {throw new Error ("File " + filename + "already closed"); }

}

Figure 4: Policy on DataInputStreams

5



source-state: {transition pattern} -> target-state
precondition {precondition pattern} {precondition handler pattern}
postcondition {postcondition pattern} {postcondition handler pattern}
invariant {invariant pattern} {invariant handler pattern}
preaction {preaction handler pattern}
postaction {postaction handler pattern}
replace {replacement code pattern}
catch (Exception e) {exception handler pattern}

where zero or more of the optional clauses (precondition, postcondition, invariant, preaction,
postaction, replace, catch) may occur.

The transition pattern is a mixture of pattern expressions (defined below) and Java that is
intended to match Java source code. Upon normal completion of the transition code (i.e the
source code that matches the transition pattern), a transition is made to the target-state.

If a precondition clause is specified, then an instance of the precondition pattern is tested
before the transition code - if it fails, then an instance of the precondition handler pattern will
be executed. Similarly, the postcondition is tested after the transition code and the invariant
is tested both before and after the transition.

A preaction clause indicates that the appropriate instance of the preaction handler pattern
should be executed before the transition. Similarly, a postaction clause indicates that the
appropriate instance of the postaction handler pattern should be executed after the transition.
A replace clause is used to replace the code that matches the transition pattern with an instance
of the replacement code pattern. It is intended to be used when a certain operation or event is
illegal in the source-state (e.g. it corresponds to a security violation, or abuse of a resource).

A catch clause specifies a class of exceptions that the transition code may throw. The intention
is to wrap the corresponding code in a try-catch clause with an appropriate instance of the
exception handler pattern. The handler patterns are arbitrary Java code that can refer to any
variable referenced in the transition pattern. A handler pattern may or may not contain a
throw, as appropriate. A handler pattern without a throw may be used to express code for
fixing the current state when an error occurs, or simply to emit a warning message.

Pattern language for code templates

The patterns between curly braces in transitions and clauses are Java templates - an extension
of Java syntax with pattern notations. Here are some of the pattern notations needed in our
examples:

• String patterns – { read*() } matches any method invocation whose name begins “read”.
More generally, it seems reasonable to utilize AspectJ-like pattern constructs for describ-
ing expression and method-call patterns.

• Declared Variables – when in is a declared variable, the first occurrence of pattern
{ in.read*() } binds in to the object on which read is invoked. Subsequent occurrences
of in must match that binding.

6



• Implicit Naming – { expr returns x } matches any expression (e.g. method call) that
matches { expr }, but the matching process binds the result to x.

• Context patterns – { .. in.read*() .. } matches the smallest context that includes a method
call that matches {in.read*()}.

As an example, when variable f has been declared, the pattern

{ sum = .. f.read*() ..; }

matches the statement

sum = sum + in.readInt();

with binding {f �→ in}.

A policy instance is defined by values created in the source code that correspond to the policy
variables declared in the policy. The map from policy variables to source code expressions that
create the values of a policy instance is called the instance binding. For example, an instance
of policy DataInputStreamPolicy (Figure 4) that is applicable to the AddNumbersFromFile
example (Figure 1) is given by the instance binding

{fn �→ fileName,
in �→ source}

The scope of a policy instance is the innermost block that encloses the value flow of the instance
bindings.

One special idiom arises in order to express and handle obligations:

source-state: {exit} -> safe-final-state
preaction {preaction code pattern}

Here the transition pattern is the keyword exit, which matches any normal or abnormal exit
from the scope of a policy instance. This rule defines an obligation to transition the system to
a safe state before exiting. In words, the obligation states that when the system attempts to
exit from the policy scope and it is in the unsafe source-state, then execute the preaction
code pattern before exit.

7



policy AddNumbersPolicy extends DataInputStreamPolicy {

Open0: { count = in.read*() } -> Open1
postcondition (0 <= count && count <= 1000)

{System.out.println("count received an illegal value: "
+ count
+ "\nsetting count to 0");

count = 0;}
catch (EOFException e)

{throw new Error("File " + in.filename
+ " contains no data!"); }

Open1: { in.read*() } -> Open1

}

Figure 5: Policy for AddNumbersFromFile

3.2 Policy Extension and Inheritance

Just as Java allows building new classes by inheriting members, thereby achieving reuse and
specialization, HandlErr also supports the development of policies by inheritance. The ex-
tending policy must use the same states as its parent, but with (optional) ordinal suffixes added.
For example, the policy in Figure 4 is extended to obtain an application-specific policy shown in
Figure 5 which takes into account that program AddNumbersFromFile has two stages of reading
from the file: first read in a count of the numbers in the rest of the file, then read in the remain-
ing numbers and sum them. The policy overrides some transitions of DataInputStreamPolicy
so that they give more meaningful messages. In AddNumbersFilePolicy, the Open policy state
from DataInputStreamPolicy is replaced by Open0 and Open1. This numbering scheme ensures
that HandlErr knows how the extending state machine is a refinement of the parent state
machine (more detail on state machine refinement can be found in [12]). If a transition has
several catch clauses, they are ordered (topologically) by specificity. When there is a conflict,
the extending policy overrides the parent policy. 1 2

HandlErr is envisioned to provide a basic hierarchy of policies that mirrors the Java libraries,
and thus providing generic application-independent error-handling support. By using policy
extension, the developer can create application-specific policies. Note the handling of a violated
postcondition in the first transition in AddNumbersFilePolicy: here the user indicates that if
the read-in value of count is out of bounds, then for this application it is acceptable to set the
value to zero and continue (after also warning the user of the problem). This is an example of
an application-specific remedial action in response to an error.

1examples of potential conflicts?
2Potential criticism of application-specific policies – worst case there is one transition per source statement,

then the separation of policy and code is disruptive rather than simplifying an helpful; e.g. as with Open0 and
Open 1 – counter-criticism is that the policy context and structure (refinement of the generic policy) is useful.

8



3.3 Policy Enforcement

HandlErr ’s policy enforcement strategy depends on static program analysis to find where
the policies apply in the system design. The analysis must be conservative – whenever there
exists an instance of policy E in program P, then HandlErr must find it.

Static program analyses are further classified in terms of context sensitivity – a context-insensitive
analysis produces for each method a formula characterizing the effect of calling it, whereas a
context-sensitive analysis produces for each method and each calling context, a formula char-
acterizing the effect of calling the method.

For example, a flow-insensitive points-to analysis of AddNumbersFromFile would find that the
value created by the constructor DataInputStream in doIt, say v, may flow to variables source
and s. Restated, the analysis asserts that at every program point source = v ∨ s = v.
Similarly, a flow-sensitive dataflow analysis of AddNumbersFromFilewould assert that the policy
state before the statement count = source.readInt(); is either Start or Open.

To gain scalability in enforcing policies, HandlErr may produce incomplete analyses and
therefore some false positives. For our purposes however, false positives will result in extra
error-handling code that will never be executed. Such dead code costs no extra runtime, and
we believe, negligible extra code size. However, false positives can only arise at program points
with ambiguous policy states (more than one possible policy state). In this case, we may
instrument the code with runtime monitors in order to decide exactly which error handlers
apply. This runtime tracking occurs a small overhead. In other words, where we cannot get
exact analysis statically, we regain it dynamically, paying a small price of runtime overhead to
achieve exact enforcement of policies.

The enforcement strategy proceeds in stages, as presented in the following subsections.

3.3.1 Value-Flow Analysis

The first stage is interprocedural value-flow analysis that links program points to value creation,
and computes the value flow across statements and method calls. The goals are (1) to identify
policy instance creation sites by identifying program points where the values are created for
the instance variables, (2) to compute alias sets, and (3) to determine the scope of the value
flow for the policy. This information is used to determine the scope of a policy instance – the
innermost block that encloses the value flow of the instance bindings and to support policy
simulation in the next stage.

Several recent projects have presented points-to algorithms that scale well. Das’ flow-insensitive
pointer analysis runs in near-linear time and was used to analyze Word97 (approx 2.1 MLOC)
in two minutes on a dated PC [1, 3]. Whalen and Lam [16] have developed a context-sensitive
pointer alias analysis for Java using OBDDs (Ordered Binary Decision Diagrams) to compactly
represent and reason about enormous numbers of calling contexts.

In our example, value-flow analysis finds an instance of policy AddNumbersFilePolicy (Figure
5) determined by the creation of a stream by the constructor call in doIt. The scope of the
instance is determined by the flow of the stream value to source, which can flow to s in addEm,

9



DoIt entry

fileName != null

F
source = new DataInputStreamPolicy(fileName)

T

{Start}

{Start}
{Open0}

{Start,Open0}

count = source.readInteger();

{Open1}

call addEm(source,count);

{Open1 � Closed,
Open1 � Open1 }

sum = result

{Open1,Closed}

System.out.println("Sum is " + sum)

{Open1,Closed}

exit

addEm entry

{Open1}

sum = 0;
i= 0;

i < c

sum += source.readInteger();
i++;

T

s.available()==0

F

F
s.close();

T

{Open1}

{Closed}

{Open1, Closed}

{Open1}

{Open1}

{Open1}

{Open1}

{Open1}

exit

return sum

{Open1, Closed}

Figure 6: Policy Simulation on RobustAddNumbersFromFileClass

10



and which is deallocated upon exit from doIt. Thus the scope of the instance is the doIt
method.

3.3.2 Policy Simulation

The second stage is a flow-sensitive interprocedural dataflow analysis that simulates the policy
automata over the Control Flow Graph (CFG) of the application code. The result of policy
simulation includes (1) a map from source code program points to sets of policy states, (2) a
map from source code expressions and statements to sets of policy transitions, (3) a map from
program points and policy variables to source code expressions (used for pattern instantiation),
and (4) a summary of the state changes effected by method calls. The value-flow analysis from
the previous step is used to eliminate unnecessary work in this stage by restricting the policy
simulation to just those value flows that may occur in each method call context. The analysis
is ambiguous if any program point has more than one policy state associated with it, and it is
unambiguous otherwise.

The policy simulation needed by HandlErr builds on a long tradition of dataflow analysis
algorithms going back at least to Kildall [11] who defined the general problem of computing
the meet-over-all-paths problem over a finite semilattice. The formal structure of this class of
problems admits a low-order polynomial-time flow-sensitive exact analysis algorithm scheme
(essentially a Tarski fixpoint iteration algorithm applied to program structure). Recently, Kil-
dall’s algorithm has been extended from intra-procedural to inter-procedural analysis in the
RHS algorithm by Reps, Horowitz, and Sagiv [13], still preserving low-order polynomial-time
complexity. Engler et al. [7] and Das et al. [4] adapted and extended the RHS algorithm to
safety properties represented as state machines. The ESP algorithm of Das et al. adds in path
sensitivity [4] and value flow analysis [1], supporting correlation between program properties
and policy states and more accurate matching in the presence of aliasing. We have developed
a variant of the above algorithms and used hand-simulation to test it. These algorithms gives
us confidence that we can implement scalable and conservative policy simulation code.

For example, Figure 6 shows the result of performing policy simulation on the CFGs of AddNum-
bersFromFile. The control flow arcs are labeled with exact sets of policy states. As in the RHS
algorithm, code blocks for procedure call are separated from procedure return, and the arc
between them is labeled with a summary of the effect of the procedure call. Note that the
analysis is ambiguous, particularly due to the conditionals in doIt and addEm.

3.3.3 Policy Enforcement

HandlErr will support two forms of enforcement, depending on whether the policy simulation
produced an ambiguous or unambiguous analysis for a given policy.

Ambiguous Analysis Distinguishing ambiguous analyses is important for several reasons.
First, in general it will be difficult (or impossible in the case of concurrency) to determine
statically which transition clauses to apply. Consequently, ambiguous analyses lead to the need
to perform some runtime state tracking to provide the information missing from the static

11



analysis. Second, if the code is ambiguous with respect to a policy, then it is likely to be
poorly organized, hard to understand, and even incorrect. Consequently there should be value
in informing the programmer about the sources of ambiguity and attempting to restructure the
code to remove ambiguities.

A policy CP whose variables are typed over classes C1, ..., Cn can be translated into extensions of
those classes. Constants are introduced for each policy state, as well as a currentState field.
The policy fields are also declared in order to provide information on the policy bindings. Each
method m in C is overridden by code that performs a case analysis on the value of currentState,
performing error-handling or invocation of super.m as appropriate. If there is more than one
class involved, then an update to the policy state in one class instance must be communicated
at the same time to the other class instances to which it is coupled. Any obligations are handled
by defining a finalize clause. The effect is (1) to instrument instances of the class with code to
track the runtime policy state of the object, (2) to expose that state and related information
to the runtime system, and (3) to provide context-specific error handling.

For our example, AddNumbersPolicy has a DataInputStream field and HandlErr automat-
ically translates this policy into an extension of DataInputStream shown in Figures 7 and 8.
HandlErr then automatically replaces DataInputStream with DataInputStreamForAddNum-
bers in the user’s application code, as shown in Figure 9. At the same time, HandlErr will
warn the user that the two conditionals in doIt and addEm give rise to ambiguous policy state.

12



public class DataInputStreamForAddNumbers extends DataInputStream {

public static final int Start = 1;

public static final int Open0 = 2;

public static final int Open1 = 3;

public static final int Closed = 4;

int currentState = Start;

public String filename;

public DataInputStreamForAddNumbers(String filename) throws FileNotFoundException {

super(new FileInputStream(filename)); // field in stores the file handle

this.filename = filename;

this.currentState = Open0;

}

public boolean inState(int state){

return this.currentState == state;

}

// renamed because readInt() is final

public int readInteger() throws IOException {

int x = 0;

switch(currentState){

case Start:

throw new Error("Attempt to read from an unopen File");

case Open0:

try{

x = super.readInt();

} catch (EOFException e){

throw new EOFException("File" + filename + "contains no data!");

} catch (IOException e){

throw new IOException("Cannot read from file " + filename);

}

if(!(0 <= x && x <= 1000)) {

System.out.println("count received an illegal value: "

+ Integer.toString(x)

+ "\nsetting count to 0");

x = 0;

}

currentState = Open1;

break;

case Open1:

try{

x = super.readInt();

} catch (EOFException e){

throw new EOFException("EOF: insufficient data in file " + filename);

} catch (IOException e){

throw new IOException("Cannot read from file " + filename);

}

break;

case Closed:

throw new Error("File " + filename + "already closed");

}

return x;

}

Figure 7: Implementation of Policy AddNumbersPolicy (part 1/2)

13



public int available() throws IOException {
int avail = 0;
switch(currentState){
case Start:

throw new Error("Attempt to invoke available on an unopen File");
case Open0: case Open1:

try{
avail = super.available();

} catch (IOException e){
throw new Error("Unable to determine whether file"

+ filename + " contains extra data");
}
break;

case Closed:
throw new Error("Attempt to invoke available on a closed file: "

+ filename);
}
return avail;

}

public void close() throws IOException {
switch(currentState){

case Start:
throw new Error("Attempt to close an unopen File");

case Open0: case Open1:
currentState = Closed;
if(super.available() != 0)

System.out.println("Closed file " + filename
+ " when it contained extra data");

super.close();
break;

case Closed:
throw new Error("File " + filename + " already closed");

}
}

// handle the obligation to close the file, if not already done so.
protected void finalize() throws Throwable {

if(!inState(Closed)){
try {

System.out.println("Performing a missing close on " + filename);
super.close();

} finally {
super.finalize();

}
}

}
}

Figure 8: Implementation of Policy AddNumbersPolicy (part 2/2)

14



public class RobustAddNumbersFromFile {

static void doIt(String fileName) throws IOException {
// REPLACE DataInputStream WITH DataInputStreamForAddNumbers
// BEGIN
DataInputStreamForAddNumbers source = null;
// END

if(fileName!=null){
// REPLACE
// DataInputStream(new FileInputStream(fileName));
// WITH
// DataInputStreamForAddNumbers(fileName)
// BEGIN
source = new DataInputStreamForAddNumbers(fileName);
// END

}

// REPLACE readInt WITH readInteger
// BEGIN
int count = source.readInteger();
// END

int sum = addEm(source,count);
System.out.println("Sum is " + sum);

}

static int addEm(DataInputStreamForAddNumbers s, int c) throws IOException {
int sum = 0;
for (int i = 0; i < c; i++)
// REPLACE readInt WITH readInteger
// BEGIN

sum += source.readInteger();
// END
if(s.available()==0)s.close();
return sum;
}

}

Figure 9: Policy Applied to AddNumbersFromFile

15



There are some simple semantics-preserving code transformations that HandlErr could apply
to reduce or eliminate ambiguous analyses. For example, an if-then-else in which the two
branches produce different analyses:

if(test){
block1;

} else {
block2;

}
block3;

can be transformed to the equivalent

if(test){
block1;
block3;

} else {
block2;
block3;

}

which will work to keep differing policy states in distinct cases. For example, the following
policy-ambiguous code in doIt

if(fileName!=null)
source = new DataInputStream(new FileInputStream(fileName));

count = source.readInt();

is transformed to

if(fileName!=null){
source = new DataInputStream(new FileInputStream(fileName));
count = source.readInt();

} else {
count = source.readInt();

}

which gives an unambiguous analysis along each branch. Applying the policy clauses and
simplifying the code ultimately results in the unambiguous code

if(fileName==null){
throw new Error("Attempt to read from an unopen File");

}
source = new DataInputStream(new FileInputStream(fileName));
count = source.readInt();

16



class AddNumbersFromFile1 {

static void doIt(String fileName) throws IOException {
DataInputStream source = null;
if(fileName==null){

throw new Error("Attempt to read from an unopen File");
}
source = new DataInputStream(new FileInputStream(fileName));
count = source.readInt();
int sum = addEm(source,count);
System.out.println("Sum is " + sum);

}

static int addEm(DataInputStream s, int c) throws IOException {
int sum = 0;
for (int i = 0; i < c; i++)

sum += s.readInt();
s.close();
return sum;

}
}

Figure 10: AddNumbersFromFile with Unambiguous Analysis

which is closer to what the programmer, arguably, should have written in the first place.

In our example, there is no obvious transformation that would eliminate the ambiguity that
results from the conditional in addEm. HandlErr can provide a warning about it, but the
programmer must decide whether and how to clean up the code.

Unambiguous Analysis If the analysis is unambiguous, then HandlErr checks to see
whether the application code has detectors and handlers as specified by the policy. If not, then
appropriate instances of policy clauses are added to the source code. As in the ambiguous case,
HandlErr generates extensions to the underlying classes of the policy, but in this case the
extensions only record the policy bindings and do not provide policy-state tracking. HandlErr

treats obligations to drive the code to a safe state by an appropriate instantiation of the policy
obligation clause at each program point where an exit from an unsafe state could be made.

Suppose that AddNumbersFromFile has been transformed into code that has an unambiguous
analysis, as shown in Figure 10. HandlErr then generates the class extension in Figure 11
and the robustified version of AddNumbersFromFile shown in Figures 12, 13, and 14.

17



public class DataInputStreamForAddNumbers1 extends DataInputStream {
public String filename;

public DataInputStreamForAddNumbers1(String filename) throws FileNotFoundException {
super(new FileInputStream(filename)); // field in stores the file handle
this.filename = filename;

}
}

Figure 11: Class Extension for AddNumbersFromFile1

class RobustlyAddNumbersFromFile1 {

static void doIt(String fileName) throws IOException{
// REPLACE DataInputStream WITH DataInputStreamForAddNumbers1
// BEGIN
DataInputStreamForAddNumbers1 source = null;
// END

if(fileName==null){
// ROBUSTIFY:
// count = source.readInt();
// WITH:
// Start: { in.read*() } -> Error
// replace {throw new Error("Attempt to read from an unopen File"); }
// BEGIN

throw new Error("Attempt to read from an unopen File");
}
// REPLACE DataInputStream WITH DataInputStreamForAddNumbers1
// ROBUSTIFY:
// source = DataInputStream(new FileInputStream(fileName));
// WITH:
// Start: { new DataInputStream(new FileInputStream(fn)) returns in} -> Open1
// catch (FileNotFoundException e)
// {throw new Error("File " + fn + " cannot be found"); }
// BEGIN
try {

source = new DataInputStreamForAddNumbers1(fileName);
} catch (FileNotFoundException e) {

throw new Error("File " + fileName + " cannot be found");
}
// END

Figure 12: Robustified AddNumbersFromFile (part 1/3)

18



int count = 0;
// ROBUSTIFY:
// count = source.readInt();
// WITH:
// Open0: { count = in.read*() } -> Open1
// postcondition (0 <= count && count <= 1000)
// {System.out.println("count received an illegal value: "
// + Integer.toString(count)
// + "\nsetting count to 0");
// count = 0;}
// catch (EOFException e)
// {throw new Error("File " + in.filename + " contains no data!"); }
// BEGIN
try {

count = source.readInt();
} catch(EOFException e){

source.close();
throw new Error("File " + source.filename + " contains no data!");

} catch(IOException e){
source.close();
throw new Error("Bad data in file" + source.filename);

}
if(!(0 <= count && count <= 1000)){

System.out.println("Count received an illegal value: "
+ Integer.toString(count)
+ "\nsetting Count to 0");

count = 0;
}
// END

int sum;
try{

sum = addEm(source,count);
} catch (IOException e){

source.close();
throw e;

}
System.out.println("Sum is " + sum);

}

Figure 13: Robustified AddNumbersFromFile (part 2/3)

19



static int addEm(DataInputStreamForAddNumbers1 s, int c) throws IOException {
int sum = 0;
for (int i = 0; i < c; i++) {
// ROBUSTIFY:
// sum += source.readInt();
// WITH:
// Open: { sum = .. in.read*() ..} -> Open
// catch (EOFException e)
// {throw new Error("Not enough data in file" + fn); }
// Open: { in.read*() } -> Open
// catch (IOException e)
// {throw new Error("Bad data in file" + fn); }
// BEGIN
try {
sum += s.readInt();

} catch(EOFException e){
s.close();
throw new Error("Not enough data in file" + s.filename);

} catch(IOException e){
s.close();
throw new Error("Bad data in file" + s.filename);

}
// END

}
s.close();
return sum;

}

}

Figure 14: Robustified AddNumbersFromFile (part 3/3)

20



4 Usage Levels for HandlErr

We envision that HandlErr has several different levels of usage, depending on user expertise
and cost/benefit tradeoffs.

1. Basic Usage – The user treats HandlErr as a completely automatic Java preprocessor,
requiring no effort or understanding from the user. HandlErr analyzes the Java library
classes used in the application and extracts those class policies from its library that are
applicable. The user’s application is automatically instrumented with internal tracking of
policy state and richer error-handling than the Java classes. Since the process of applying
class policies is simply a matter of adding some class extensions and making some simple
modifications to the source code, we anticipate that the HandlErr preprocessing will
take negligible time compared to compilation.

For further flexibility, HandlErr could allow the user to browse a checklist of policies
that HandlErr can apply. The user would modify this list, perhaps adding policies
from domain-specific libraries and deleting others.

2. Advanced Usage – At this level, class and application policies are treated as a part of the
programming process, essentially a kind of aspect-oriented programming specialized to
error-handling and robustness. The user creates and evolves policy hierarchies along with
code development. HandlErr is treated as an extension of the compiler, and the policies
are treated as program modules. The effect is a more modular approach to programming
which can be seen as extending Aspect-Oriented Programming to behaviorally-specified
aspects.

The user gets the following feedback from HandlErr :

• Compile time – HandlErr prints messages about program statements that may
lead to error states (e.g. reading a file that has been closed). HandlErr takes care
to eliminate false positives and to only present information about original flaws, not
the cascade of errors that may follow from them.

• Run time – The augmented source code will catch a wide range of runtime errors
according to the policies that HandlErr applied. The handlers provide informative
feedback on the nature and location of the error. As far as possible, obligations, such
as file, lock, and resource release, are performed prior to termination.

3. Expert Usage – A more expressive policy language is used to express policies, enabling a
richer range of properties and behaviors. User expertise is needed since the cost of applying
such policies rises with their semantic richness, so judgment regarding cost/benefits is
required.

5 Related Work

Programming Languages and Program Transformation

Error-handling policies could be expressed via the pointcut/advice pairs of AspectJ [10]. From
the point of view of AspectJ, our policy enforcement approach makes the following contributions.

21



First, a policy automaton generalizes the notion of pointcut by providing a behavioral context
(versus a simple method call) for advice. Although one could be simulate behavioral context
using AspectJ pointcuts, it would be complex and obscure. The state machine provides a clearer
way to express loci of advice. Second, the state machines provide the loci for multiple advice
code patterns. In AspectJ (and most other forms of AOP) each pointcut is associated with
one advice template. Third, the policy automata match arbitrary code statements and is not
restricted to method calls.

One must also compare the builtin mechanisms. HandlErr handles obligations such as exit
from the scope of a policy instance which, to our knowledge, is not expressible in AspectJ.
Conversely, AspectJ provides point-cut notations to provide special forms of behavioral context.
The notation cflow m constrains event matching to the dynamic context of a call to method m
(i.e. when a call to m is on the stack). To capture this expressivity seems to require extending
the policy automata to be hierarchical, as in Statecharts [8].

Schneider’s concept of enforceable security policies [14] and mechanized enforcement [6] is sim-
ilar to the HandlErr approach. Our contributions include the use of the policy automaton
to express compactly multiple properties, and the focus of fast static analysis to scale up Han-

dlErr .

Program Verification

A state machine policy can be viewed as a temporal logic constraint that we intend for the
target system to satisfy. Our approach is constructive in that enforcement makes the system
satisfy the constraint by means of conservative static analysis and program transformations.
Model checking is the well-known technique for checking whether a system satisfies a temporal
logic constraint [?]. The difficulty of scaling-up software model-checking has motivated recent
work on runtime verification of properties [5, 9] where temporal properties are compiled into
runtime monitoring code. Several projects are using automata to express safety properties and
to check them using static analysis. To make the checking tractable, several projects argue that
fast imprecise analysis combined with filters for false positives can still provide useful debugging
information [1, 4, 7, 15].

6 Implementation Notes

• use CD-simplify to eliminate as far as possible the runtime cost of evaluating pre/post-
condition tests.

• policy hierarchy – HandlErr provides a basic hierarchy of policies that mirrors the Java
libraries, and thus provides generic application-independent error-handling support. By
using policy inheritance, the developer can create application-specific policies.

7 Summary

The HandlErr approach to robustifying large Java programs makes use of a state-machine-
based policy language that expresses abnormal/error conditions in the context of constraints

22



on normal behavior. Implementing class policies as class extensions provides a simple solution
to the problem of tracking policy state under conditions of aliasing, concurrency, and value-
flow over procedural boundaries. Application policies capture application semantics and they
provide a framework for systematically analyzing the kinds of abnormal situations that might
arise and how to handle them. Static analysis to determine policy scope enables HandlErr

to discharge obligations in a timely manner, allowing for graceful shutdown upon normal or
abnormal termination.

Error-handling policies must treat two orthogonal concerns: how to detect error conditions, and
what to do about them when they arise. We believe that policy automata provide a precise yet
intuitive formalism for expressing error situations. The other main concern, how to treat an
error that arises, is mainly an application-specific problem. The simplest approach is to print an
informative error message when an error occurs. However, HandlErr supports the expression
of arbitrary error-handling code to restore a system to a workable state by means of Java code
templates (as when count is given an illegal value in RobustlyAddNumbersFromFile).

The advantages of the HandlErr approach include

• The state machine notation provides a clear trace-based semantics to policies and we
believe that users will find the notation convenient. HandlErr has been designed to
reflect Java syntax and pragmatics as much as possible.

• Expressing error-handling policies as separate modules helps to focus users on what can
go wrong, leading to a more complete understanding of the system and its environment,
as well as supporting the construction of more robust code.

• Improved modularity leads to improved understandability and ease of evolution. Modular
error-handling policies with automatic enforcement leads to uniform treatment of error-
handling leading to more robust code, less time wasted in tracking down bugs, and reduced
development time. In this regard, HandlErr provides a generalized form of Aspect-
Oriented Programming where join-points are specified by behavioral contexts, not just
statement patterns.

• The library policies and enforcement machinery encodes best-practice programming tech-
niques; e.g. idiomatic safe coding practice that ordinary programmers may not be familiar
with. An example is the formulation of the finalization code to handle obligations, in-
cluding invocation of the finalization code of the object’s superclass.

• Static analysis can identify program points that (with high likelihood) have errors. The
effect is to aid the programmer in producing more robust code during development, and
also to simplify the analysis, allowing the runtime error-handling to be more precise and
effective.

• Although one might expect that robust error-handling causes a slight performance degra-
dation, Weimer and Necula report a surprising performance improvement (17%) in file
management programs, when resources are correctly deallocated in the presence of ex-
ceptions [15]. It may be that correct error-handling of resources more than pays for the
overall cost of runtime tracking and error-handling.

23



Acknowledgments: Thanks to Alessandro Coglio for the name HandlErr and the motivat-
ing example of this paper.

References

[1] Adams, S., Ball, T., Das, M., Lerner, S., Rajamani, S. K., Seigle, M., and

Weimer, W. Speeding up dataflow analysis using flow-insensitive pointer analysis. In
The 9th International Static Analysis Symposium (SAS’02) (2002).

[2] Cristian, F. Exception handling. In Dependability of Resilient Computers. BSP Profes-
sional Books, Blackwell Scientific Publications, 1989, pp. 68–97.

[3] Das, M. Unification-based pointer analysis with directional assignments. ACM SIGPLAN
Notices 35, 5 (2000), 35–46.

[4] Das, M., Lerner, S., and Seigle, M. ESP: Path-sensitive program verification in
polynomial time. In SIGPLAN 2002 Conference on Programming Language Design and
Implementation (PLDI’02) (2002).

[5] Drusinsky, D. The temporal rover and the atg rover. In Proceedings of the SPIN 2000
Workshop (2000), Springer-Verlag LNCS 1885, pp. 323–329.

[6] Erlingsson, U., and Schneider, F. SASI enforcement of security policies: A ret-
rospective. In Proceedings of the New Security Paradigms Workshop (Ontario, Canada,
September 1999).

[7] Hallem, S., Chelf, B., Xie, Y., and Engler, D. A system and language for building
system-specific, static analyses. In SIGPLAN 2002 Conference on Programming Language
Design and Implementation (PLDI’02) (2002).

[8] Harel, D. Statecharts: A visual approach to complex systems. Science of Computer
Programming 8, 3 (June 1987), 231–274.

[9] Havelund, K., and Rosu, G. Monitoring Java programs with Java PathExplorer. In
Electronic Notes in Theoretical Computer Science (2001), K. Havelund and G. Rosu, Eds.,
vol. 55, Elsevier.

[10] Kiczales, G., and et al. An Overview of AspectJ. In Proc. ECOOP, LNCS 2072,
Springer-Verlag (2001), pp. 327–353.

[11] Kildall, G. A unified approach to global program optimization. In First ACM Symposium
on Principle of Programming Languages (POPL) (1973), pp. 194–206.

[12] Pavlovic, D., and Smith, D. R. Composition and refinement of behavioral speci-
fications. In Proceedings of Automated Software Engineering Conference (2001), IEEE
Computer Society Press, pp. 157–165.

[13] Reps, T., Horwitz, S., and Sagiv, M. Precise interprocedural dataflow analysis via
graph reachability. In Conference Record of the Twenty-Second ACM Symposium on Prin-
ciples of Programming Languages (1995), ACM, pp. 49–61.

24



[14] Schneider, F. Enforceable security policies. ACM Transactions on Information and
System Security 3, 1 (February 2000), 30–50.

[15] Weimer, W., and Necula, G. C. Finding and preventing run-time error handling
mistakes. In 19th Annual ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’04) (Oct. 2004).

[16] Whalen, J., and Lam, M. Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In SIGPLAN 2004 Conference on Programming Language Design
and Implementation (PLDI’04) (June, 2004).

25


