
RSL Reference Manual

Part No.: RAISE/CRI/DOC/2/V1

Date: April 6, 1990

Original Authors: Klaus Havelund,
Anne Haxthausen

Copyright c© 1990 Computer Resources International A/S

This document is issued on a restricted basis by Computer Resources International A/S. No part of this
document may be reproduced, stored in a retreival system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
Computer Resources International A/S.

Note

This document is a pre-release produced for the VDM ’90 RAISE tutorial.

RSL and RAISE are trademarks of Computer Resources International A/S

UNIX is a registered trademark of Bell Laboratories

Sun Workstation is a registered trademark of Sun Microsystems

DISCLAIMER

The information contained in this document has been carefully produced and checked. However,
Computer Resources International A/S does not warrant correctness or appropriateness of the
information contained and is not responsible for any loss, damage or inconvenience resulting
from its use.

Contents i

Contents

1 Introduction 1
1.1 Purpose . 1
1.2 Target group . 1
1.3 Relations to other documents . 1
1.4 Structure of document . 1
1.5 Document conventions . 2

2 Declarative constructs and visibility rules 7

3 Overloading 11

4 Specifications 15
4.1 Object declarations . 15
4.2 Scheme declarations . 17
4.3 Class expressions . 18

4.3.1 Basic class expressions . 19
4.3.2 Importing class expression . 20
4.3.3 Extending class expressions . 20
4.3.4 Hiding class expressions . 21
4.3.5 Renaming class expression . 22
4.3.6 Scheme instantiations . 22

4.4 Object expressions . 26
4.4.1 Names . 26
4.4.2 Element object expressions . 26
4.4.3 Array object expressions . 27
4.4.4 Fitting object expressions . 28

4.5 Renamings . 29

5 Declarations 31
5.1 Type declarations . 31

5.1.1 Sort definitions . 32
5.1.2 Variant definitions . 33
5.1.3 Union definitions . 40
5.1.4 Short record definitions . 41
5.1.5 Abbreviation definitions . 42

5.2 Value declarations . 42
5.2.1 Explicit value definitions . 43
5.2.2 Implicit value definitions . 44
5.2.3 Explicit function definitions . 45
5.2.4 Implicit function definitions . 48

5.3 Variable declarations . 50
5.4 Channel declarations . 52
5.5 Axiom declarations . 53

RAISE/CRI/DOC/2/V1

ii Contents

6 Type expressions 57
6.1 Names . 58
6.2 Type literals . 59
6.3 Product type expressions . 60
6.4 Set type expressions . 61
6.5 List type expressions . 62
6.6 Map type expressions . 62
6.7 Function type expressions . 63

6.7.1 Access descriptions . 66
6.8 Subtype expressions . 68
6.9 Bracketted type expressions . 68

7 Expressions 71
7.1 Value literals . 73
7.2 Names . 74
7.3 Pre names . 74
7.4 Basic expressions . 75
7.5 Product expressions . 76
7.6 Set expressions . 76

7.6.1 Ranged set expressions . 77
7.6.2 Enumerated set expressions . 77
7.6.3 Comprehended set expressions . 78

7.7 List expressions . 79
7.7.1 Ranged list expressions . 80
7.7.2 Enumerated list expressions . 80
7.7.3 Comprehended list expressions . 81

7.8 Map expressions . 82
7.8.1 Enumerated map expression . 83
7.8.2 Comprehended map expressions . 84

7.9 Function expressions . 84
7.10 Application expressions . 85
7.11 Quantified expressions . 88
7.12 Equivalence expressions . 89
7.13 Post expressions . 90
7.14 Disambiguation expressions . 91
7.15 Bracketted expressions . 91
7.16 Infix expressions . 92

7.16.1 Statement infix expressions . 92
7.16.2 Axiom infix expressions . 93
7.16.3 Value infix expressions . 94

7.17 Prefix expressions . 94
7.17.1 Axiom prefix expressions . 95
7.17.2 Value prefix expressions . 95

7.18 Comprehended expressions . 96
7.19 Initialise expressions . 97
7.20 Assignment expressions . 98
7.21 Input expressions . 98

RAISE/CRI/DOC/2/V1

Contents iii

7.22 Output expressions . 99
7.23 Structured expressions . 100

7.23.1 Local expressions . 100
7.23.2 Let expressions . 101
7.23.3 If expressions . 103
7.23.4 Case expressions . 105
7.23.5 For expressions . 106
7.23.6 While expressions . 107
7.23.7 Until expressions . 108

7.24 Expression lists . 109

8 Bindings 111

9 Typings 113

10 Patterns 115
10.1 Value literals . 116
10.2 Names . 116
10.3 Wildcard patterns . 116
10.4 Product patterns . 117
10.5 Record patterns . 118
10.6 List patterns . 120

10.6.1 Constructed list patterns . 120
10.6.2 Left list patterns . 121
10.6.3 Right list patterns . 122
10.6.4 Left right list patterns . 123

11 Names 125
11.1 Qualified identifiers . 125
11.2 Qualified operators . 126
11.3 Identifiers and operators . 127

11.3.1 Infix operators . 128
11.3.2 Prefix operators . 136

12 Infix combinators 139

13 Connectives 143
13.1 Infix connectives . 143
13.2 Prefix connectives . 143

A Lexical Matters 149
A.1 Varying Tokens . 149

A.1.1 ASCII Forms of Greek Letters . 151
A.2 Fixed Tokens . 152
A.3 RSL keywords . 153

B Precedence and associativity of operators 155

RAISE/CRI/DOC/2/V1

iv Contents

C Syntax summary 157

RAISE/CRI/DOC/2/V1

Introduction 1

1 Introduction

1.1 Purpose

The purpose of this document is to describe the RAISE Specification Language, RSL. The
description is supposed to be suited for ‘looking up’ information rather than for ‘sequential
reading’. It is a manual rather than a tutorial.

1.2 Target group

The target group of this document is users of RSL.

1.3 Relations to other documents

A prerequisite for reading this document is familarity with the RSL tutorial [1].

1.4 Structure of document

The document is formally structured over the syntax of RSL (see below). The introduction is
followed by a special section on declarative constructs and a special section on overloading, and
after that a section on each of the main syntax categories of RSL:

• Declarative constructs and visibility rules

• Overloading

• Specifications

• Declarations

• Type expressions

• Expressions

• Bindings

• Typings

• Patterns

• Names

• Infix combinators

RAISE/CRI/DOC/2/V1

2 Introduction

• Connectives

Finally, the document contains a list of literature references, an index and three appendices.
The first appendix describes lexical matters for RSL, the second apendix desribes precedence
and associativity of RSL operators and the third appendix contains an RSL syntax summary.

1.5 Document conventions

The language description is centered around the syntax for RSL. The syntax defines the syn-
tactically correct strings of the language. The strings are divided into syntax categories with
the top syntax category containing all syntactically correct RSL specifications. Each syntax
category is defined by a rule. The rules of the syntax are grouped into sections in the manual.
Each section consists of some or all of the following subsections:

Syntax

Terminology

Meaning

Context conditions

Properties

Below the contents of these subsections is described and the used conventions are explained.

Syntax Contains one or more syntax rules each of the form

category name ::=
alternative1|
...
alternativen

where n ≥ 1. This rule introduces the syntax category named category name and defines
that category as the union of the strings generated by the alternatives. As an example
consider

set type expr ::=
finite set type expr|
infinite set type expr

Each alternative consists of a sequence of tokens where a token is of one of three kinds

RAISE/CRI/DOC/2/V1

Introduction 3

• A keyword in bolded font such as ‘Bool’

• A symbol such as ‘(’.

• A sub-category name such as ‘expr’, possibly prefixed with a text such as ‘logical-’ in
italics.

The strings generated by an alternative are those obtained by concatenating keywords,
symbols and strings from sub-categories – in the order of appearance. As examples con-
sider

finite set type expr ::=
type expr-set

map type expr ::=
type expr →m type expr

The below convention is used for defining optional presence (ε represents absence): For
any syntax category name ‘x’ the following rule is assumed.

opt x ::=
ε|
x

The below conventions are used for defining repetition: For any syntax category name ‘x’
the following rules are assumed.

x−string ::=
x|
x x−string

x-list ::=
x|
x , x-list

x-list2 ::=
x , x-list

x−choice ::=
x|
x | x−choice

x−choice2 ::=
x | x−choice

x−product2 ::=
x × x−product

RAISE/CRI/DOC/2/V1

4 Introduction

x−product ::=
x|
x × x−product

The below conventions are used for indicating context conditions:

If a category name appearing in an alternative is prefixed with a word in italics, then this
word conveys a context condition, as explained in the tables 1 - 7. As an example consider
the following syntax rule, where the conveyed context condition is that the maximal type
of the constituent expression must be Bool:

axiom prefix expr ::=
• logical-expr

If a category name appearing in an alternative is prefixed with several words in italics
separated by underscores, then each of the words convey a context condition. As an
example consider the following syntax rule, where the conveyed context conditions are
that the constituent expression must be readonly and have the maximal type Bool:

restriction ::=
• readonly logical-expr

If a category name appearing in an alternative is prefixed with a text containing several
words in italics separated by ” or ”, then this text convey a context condition which is
the disjunction of each of the context conditions conveyed by the individual words (i.e.
one of the context conditions conveyed by the individual words must be fulfilled). As an
example consider the following syntax rule, where the conveyed context condition is that
the constituent name must represent a value or a variable:

expr ::=
value or variable-name

prefix context condition
unit the maximal type of the expr must be Unit
logical the maximal type of the expr must be Bool
integer the maximal type of the expr must be Int
list the maximal type of the expr must be a list type
map the maximal type of the expr must be a map type
function the maximal type of the expr must be a function type
pure the expr must be pure
readonly the expr must be readonly

Table 1: Prefixes of expr and the context conditions they convey

Terminology Contains definitions of terms etc. When a term is defined it is written in italics.

RAISE/CRI/DOC/2/V1

Introduction 5

Meaning Contains a description of the meaning of statically correct strings.

Context conditions Contains a description of the conditions that syntactically correct strings
must satisfy in order to be statically correct. Note, that as a convenience some of these
conditions are also indicated by italicized prefixes in the syntax rules, as described above.

Properties Contains a description of the properties that statically correct strings have. This
information is used to describe context conditions.

RAISE/CRI/DOC/2/V1

6 Introduction

prefix context condition
pure the restriction must be pure

Table 2: Prefixes of restriction and the context conditions they convey

prefix context condition
pure the set limitation must be pure

Table 3: Prefixes of set limitation and the context conditions they convey

prefix context condition
pure the name must be pure
type the name must represent a type
value the name must represent a value
variable the name must represent a variable
channel the name must represent a channel
scheme the name must represent a scheme
object the name must represent an object

Table 4: Prefixes of name and the context conditions they convey

prefix context condition
value the id must represent a value

Table 5: Prefixes of id and the context conditions they convey

prefix context condition
element the object expr must represent a model
array the object expr must represent an array

Table 6: Prefixes of object expr and the context conditions they convey

prefix context condition
associative the infix combinator must be associative
commutative the infix combinator must be commutative

Table 7: Prefixes of infix combinator and the context conditions they convey

RAISE/CRI/DOC/2/V1

Declarative constructs and visibility rules 7

2 Declarative constructs and visibility rules

A declarative construct is a language construct representing one or more definitions. A definition
introduces an identifier or operator for an entity such as a scheme, an object, a type, a value,
a variable, a channel or an axiom. A definition stems from one of the following declarative
constructs:

module decl, decl, formal scheme parameter, formal array parameter, lambda parameter,
single typing, typing, axiom quantification, let def, class expr, object expr, list limitation,
formal function application, result naming, pattern

Notice, that some declarative constructs give first rise to definitions when they are in a context.
For instance, a pattern gives first rise to definitions when a value in the context is matched
against it. For such constructs the maximal types of the identifiers and/or operators introduced
by the definitions is determined by a maximal type given by the context. Such a maximal type
is called a maximal context type for (or of) the declarative construct.

A definition has an associated region of RSL text, called the scope of the definition. Within
this scope, and only there, there are places where its entity may be referred to by its identifier
or operator. We will talk also about the scope of a declarative construct meaning the scope of
its definitions. The scope rules of the language determine the scope of definitions.

A definition is said to be visible at a point of RSL text if its entity may be referred to by
its identifier or operator at that point. At such a point the identifier or operator is said to
represent the entity or to be a name of the entity. The visibility rules of the language determine
the visibility of definitions.

Two definitions are said to be compatible if they introduce distinct identifiers and operators
or if they are both value definitions introducing the same identifier or operator but with dis-
tinguishable maximal types. Two declarative constructs are said to be compatible if all their
definitions are compatible.

The context conditions ensure that at each point of RSL text all visible definitions are compat-
ible.

Scope rules

The scope of a declarative construct depends on the context in which it occurs. Therefore for
each construct containing a declarative construct the scope of this must be given. This is done
in the subsections called ”Properties” using the following conventions:

1. For declarative constructs occuring in non declarative constructs the scope is always ex-
plicitly stated. (This is for instance the case for the declarations in a local expression, see
the example below.)

RAISE/CRI/DOC/2/V1

8 Declarative constructs and visibility rules

Example 2.1

local
value

x : Int = 3
in

x + 2
end

The scope of the definition of x is the expression x + 2.
2

2. For declarative constructs occuring in declarative constructs there are the following pos-
sibilities:

(a) The scope is explicitly stated. (This is for instance the case for the typings in an
object definition, see the example below.)

Example 2.2

object
O[i : Int] :

class
variable

v : Int := i − 7
end

The scope of the definition of i is the class expression.
2

(b) An immediate scope is stated. (This is for instance the case for the declarations
in a basic class expression, see the example below.) In this case the scope is the
immediate scope plus possible extensions. The extensions depend on the context for
the outer declarative construct and is given for all occurrences of it. (For instance
for the class expressions in an extending class expression.)

Example 2.3

scheme
S = extend

class
value

x : Int = 3,
end

with
value

y : Int = x
end

The immediate scope of the definition of x is the region between class and end. The
total scope of x is this region plus the region between with and end.
2

RAISE/CRI/DOC/2/V1

Declarative constructs and visibility rules 9

(c) No scope is given. (This is for instance the case for the value definitions in a value
declaration, see the example below.) In this case it is implicitly understood that the
scope of the inner construct is given by the scope of the outer construct in which it
occurs.

Example 2.4

value
x : Int = y,
y : Int

The scope of the value definition of x is equal to the the scope of the whole value
declaration.
2

Visibility rules

The visibility rules are:

1. A definition is not visible outside its scope.

2. A definition is potentially visible throughout its scope. However, there may be places
in the scope, where the definition is hidden, i.e. not visible. For instance, if the identi-
fier or operator introduced by a definition is also introduced by another definition in an
inner scope then the outer definition is hidden throughout the scope of the inner defini-
tion. For values the latter is only the case if the maximal types of the two values are
undistinguishable. Other cases in which definitions are hidden are stated in the property
sections.

Example 2.5

class
variable

v : Bool := true
axiom local

variable
v : Int := 3

in
v = 7

end
end

The scope of the variable definition ”v : Bool := true” is the whole class expression, while
the scope of the local variable definition ”v : Int := 3” is the expression ”v = 7”. Therefore,
according to visibility rule number 2, in the expression ”v = 7” only the local variable definition

RAISE/CRI/DOC/2/V1

10 Declarative constructs and visibility rules

is visible.
2

Example 2.6

class
value

v : Bool = true
axiom

local
value

v : Int = 3
in

v
end

end

In the local expression the local value definition does not hide the outer value definition as the
maximal types of the two value definitions are distinguishable. Therefore, both value definitions
are visible in the local expression.
2

RAISE/CRI/DOC/2/V1

Overloading 11

3 Overloading

An identifier or operator is said to be overloaded at a certain point if there are several definitions
of that identifier or operator which are visible at that point.

Only value identifiers and operators are allowed to be overloaded.

Note that all operators have one or more predefined meanings which have the whole specification
as scope. This implies that if the user defines an operator to have a maximal type distinguishable
from the maximal types of the predefined meanings of the operator then in the scope of the
user definition the operator is overloaded, cf. the visibility rules. If the user defines an operator
to have a maximal type undistinguishable from one of the maximal types of the predefined
meanings of the operator then this predefined meaning is hidden in the scope of the user-
defined, cf. the visibility rules.

Overload resolution

For a specification to be useful there must be a unique legal interpretation of each identifier and
operator, where we by an interpretation mean a corresponding definition. Now, an occurrence
of an overloaded identifier or operator has several possible interpretations (namely one for each
visible definition of it) and therefore the problem is to find its legal corresponding definition (if
it has any).

Considering the context of the identifier or operator, some of the possible interpretations may be
illegal according to the context conditions. In general the more context one considers the more
information (context conditions) exists to identify illegal interpretations. But if the context
considered is an expression which has the same maximal type for several different possible
interpretations of the constituent overloaded identifiers and operators then further context will
never make it possible to choose one of these interpretations over the other ones. Therefore all
such interpretations are illegal.

In general the legal interpretations of the constituent identifiers and operators in a given context
(a construct) are those

1. which satisfy the context conditions given by the construct, and

2. for which the construct has distinguishable maximal types if the construct is an expression
(belongs to the syntactic category expr).

The overloading is said to be resolvable if there is exactly one legal interpretation of each
identifier and operator in its innermost enclosing so-called ”complete context”.

A complete context is one of the following:

RAISE/CRI/DOC/2/V1

12 Overloading

• The expr in a list limitation.

• The expr in an explicit let.

• The expr in a case expr.

• A defined item which is just an id or op.

• A specification.

Example 3.1

class
value

v : Int,
v : Bool

axiom
v

end

The occurrence of v in the axiom is overloaded – it has two possible interpretations: either it
is an integer or it is a boolean. However, only the latter interpretation satisfies the context
condition that an axiom must have the maximal type Bool, and hence only this interpretation
is legal.
2

Example 3.2

class
value

+ : Bool × Bool → Bool,
v : Real

axiom
true + false ≡ true

axiom
v ≡ 1.7 + 2.2

end

The two occurrences of the operator, +, in the axioms are overloaded – each of the occur-
rences has three possible interpretations: either it is the predefined integer addition (having
the maximal type Int × Int ∼→ Int) or it is the predefined real addition (having the maximal
type Real × Real ∼→ Real) or it is the user-defined boolean addition (having the maximal
type Bool × Bool ∼→ Bool). Only the user-defined one satisfies the context conditions for the
first occurrence, while only the predefined real addition satisfies the context conditions for the
second occurrence.
2

RAISE/CRI/DOC/2/V1

Overloading 13

Example 3.3

class
value

+ : Real × Real → Real
v : Real

axiom
v ≡ 1.7 + 2.2

end

The occurrence of the operator, +, in the axiom has two possible interpretations: either it is the
predefined integer addition (having the maximal type Int × Int ∼→ Int) or it is the user-defined
real addition (having the maximal type Real × Real ∼→ Real). The predefined real addition
is hidden since its maximal type is undistinguishable from the maximal type of the user-defined
one. Only the user-defined real addition satisfies the context conditions, and hence only this
interpretation is legal.

2

Example 3.4

value
v : Int,
v : Bool,
f : Int → Int,
f : Bool → Nat

axiom
f(v) ≡ 7

There are two combinations of interpretations for f and v satisfying the context conditions.
These are:

1. f : Int → Int, v : Int

2. f : Bool → Nat, v : Bool

However, for both combinations the maximal type of f(v) is the same, namely Int, and hence
the expression f(v) has no legal interpretations.
2

Example 3.5

RAISE/CRI/DOC/2/V1

14 Overloading

type
B,
C,
A = B | C

value
b : B,
v : B,
v : C,
f : A → Bool,
/* illegal */ a : A = v

axiom
/* legal */ f(b),
/* illegal */ f(v)

In the first axiom the identifier b has exactly one legal interpretation. Hence, the overloading
is resolvable.

In the second axiom the identifier v has two possible interpretations: v : B and v : C. Both of
these satisfy the context conditions, but for both the maximal type of the expression f(v) has
the same maximal type. Therefore there are no legal interpretations of v in the expression f(v).
Hence, the overloading is not resolvable.

In the definition of a the identifier v has two possible interpretations: v : B and v : C. Both of
these satisfies the context conditions and are legal. Hence, the overloading is not resolvable.
2

RAISE/CRI/DOC/2/V1

Specifications 15

4 Specifications

Syntax

specification ::=
module decl-string

module decl ::=
object decl |
scheme decl

Terminology

A module is either an object or a scheme.

Meaning

A specification defines one or more modules.

Properties

In a specification the scope of the constituent module decl-string is the module decl-string itself.
Note, that this means that the order of definitions is indifferent - an object or a scheme may
be used before it is defined.

Context conditions

The constituent module declss must be compatible, i.e. introduce distinct object and scheme
identifiers.

4.1 Object declarations

Syntax

object decl ::=
object object def-list

RAISE/CRI/DOC/2/V1

16 Specifications

object def ::=
opt-comment-string id opt-formal array parameter : class expr

formal array parameter ::=
[typing-list]

Terminology

An object is either a model or an array of models.

An array of models – also termed an array – is a mapping from values to models: each value is
mapped to a single model.

The index type of an array is the type of values, all of which are mapped to a model by the
array. An index value is a value within the index type.

An array maps any two distinct index values into two models that do not have variables or
channels in common.

Meaning

An object declaration defines one or more objects.

• A model is defined by a definition of the form

id : class expr

By this definition the identifier is bound to a model. The model is an arbitrary one
belonging to the class represented by the class expression.

• An array of models is defined by a definition of the form

id[typing list] : class expr

By this definition the identifier is bound to an array of models. The index type of the array
is the type represented by the typing list. Each index value belonging to the index type
is mapped to a model. The model is an arbitrary one belonging to the class represented
by the class expression – evaluated in the environment obtained by matching the index
value against the decomposer also represented by the typing list.

An array may be applied to an index value in an element object expression as described
in section 4.4.2.

Any two defined objects do not have variables or channels in common.

RAISE/CRI/DOC/2/V1

Specifications 17

Properties

In an object def the scope of the opt-formal array parameter is the class expr.

An object def introduces the constituent id for an object. The object is an array if a for-
mal array parameter is present else it is a model. If it is an array the maximal parameter type
is the maximal type of the formal array parameter. The body is the constituent class expr.

The maximal type of a formal array parameter is the maximal type of the single typing the
typing list is a shorthand for.

Context conditions

In an object decl the constituent object defs must be compatible, i.e. introduce distinct identi-
fiers.

4.2 Scheme declarations

Syntax

scheme decl ::=
scheme scheme def-list

scheme def ::=
opt-comment-string id opt-formal scheme parameter = class expr

formal scheme parameter ::=
(formal scheme argument-list)

formal scheme argument ::=
object def

Terminology

A scheme is either a class or a parameterised class.

A parameterised class is a mapping from lists of objects to classes: each object list is mapped
to a class.

RAISE/CRI/DOC/2/V1

18 Specifications

Meaning

A scheme declaration defines one or more schemes.

• A class is defined by a definition of the form

id = class expr

By this definition the identifier is bound to a class. The class is the one represented by
the class expression.

• A parameterised class is defined by a definition of the form

id(formal scheme argument list) = class expr

By this definition the identifier is bound to a parameterised class.

A parameterised class may be applied to a list of objects in a scheme instantiation as
described in section 4.3.6. Under that section it is described which actual parameters are
allowed and what the class resulting from the instantiation is.

Properties

In a scheme def the scope of the opt-formal scheme parameter is the opt-formal scheme parameter
itself and the class expr.

A scheme def introduces the constituent id for a scheme.

Context conditions

In a scheme decl the constituent scheme defs must be compatible, i.e. introduce distinct iden-
tifiers.

In a formal scheme parameter the constituent formal scheme arguments must be compatible, i.e.
introduce distinct identifiers.

4.3 Class expressions

Syntax

class expr ::=

RAISE/CRI/DOC/2/V1

Specifications 19

basic class expr |
importing class expr |
extending class expr |
hiding class expr |
renaming class expr |
scheme instantiation

Terminology

A model is an association of names with entities: each name is associated with a single entity.
A model provides a name if it associates that name with an entity.

A model satisfies a definition if it provides the name introduced by that definition and if the
entity associated with the name has the defined kind and if the properties stated in the definition
hold in the model.

A class is a collection of models.

A name is under-specified if there exists at least two models in the class in which the name
is associated with different entities. This corresponds to the case where the properties stated
about the name are not complete.

Meaning

A class expression stands for a collection of definitions and represents the class consisting of all
models that satisfy each of the definitions. Each model associates the identifiers and operators
defined in the class expression with particular entities. For each alternative it is stated which
definitions the class expression stands for.

4.3.1 Basic class expressions

Syntax

basic class expr ::=
class opt-decl-string end

Meaning

A basic class expression stands for the definitions appearing in the declarations.

RAISE/CRI/DOC/2/V1

20 Specifications

Properties

The immediate scope of the opt-decl-string is the opt-decl-string itself. Note, that this means
that the order of definitions is indifferent.

Context conditions

The constituent decls must be compatible.

4.3.2 Importing class expression

Syntax

importing class expr ::=
import object expr-list in class expr

Meaning

An importing class expression has the same meaning as the constituent class expression.

4.3.3 Extending class expressions

Syntax

extending class expr ::=
extend class expr-list with opt-decl-string end

Meaning

An extending class expression stands for the definitions which the class expressions stand for
and the definitions which appear in the declarations.

RAISE/CRI/DOC/2/V1

Specifications 21

Properties

The immediate scope of the opt-decl-string is the opt-decl-string itself. (Note, that this means
that the order of definitions is indifferent.) The scopes of the class exprs extend to the opt-decl-
string.

Context conditions

The constituent class exprs and decls must be compatible.

4.3.4 Hiding class expressions

Syntax

hiding class expr ::=
hide defined item-list in class expr

Meaning

A hiding class expression stands roughly speaking for the definitions that the constituent class
expression stands for. The names that are mentioned in the defined item list can, however, not
be referred to outside the class expression.

Properties

The scope of the class expr extends to the id or ops in the defined item-list, while all other
definitions (than those of the class expr) are hidden there. (From this and the visibility rules it
follows that the defined items must be defined in the class expr.) The scope of the the definitions
of the defined items in the class expr cannot be extended beyond the hiding class expr.

Context conditions

The constituent defined items must be distinct.

A sort must not be hidden if it is used by a non-hidden entity.

RAISE/CRI/DOC/2/V1

22 Specifications

4.3.5 Renaming class expression

Syntax

renaming class expr ::=
use rename pair-list in class expr

Meaning

A renaming class expression stands for the definitions that the constituent class expression
stands for, but renamed according to the rename pairs in the renaming pair list.

Properties

The scope of the class expr extends to the id or ops in the defined items in the rename pair-list,
while all other definitions (than those of the class expr) are hidden there. (From this and the
visibility rules it follows that the defined (or old) items of the rename pair-list must be defined
in the class expr.)

Context conditions

All new names must be distinct except if they are new names for values of distinguishable
maximal types.

All old items of the rename pair-list must be distinct. (In other words: there must not be more
than one new name for each old item).

The new names must be different from the names of those old items (of the class expr) which
are not renamed, except for values, where a new name may be equal to the name of an old item,
if the maximal type of the old item is distinguishable from the maximal type of the new.

4.3.6 Scheme instantiations

Syntax

scheme instantiation ::=
scheme-name opt-actual scheme parameter

RAISE/CRI/DOC/2/V1

Specifications 23

actual scheme parameter ::=
(object expr-list)

Meaning

An instantiation is either an instantiation of a named class or of a named parameterised class.

• An instantiation of a named class has the form:

name

The name has the form opt qualification id and the parameterised class must have been
defined by a scheme definition (section 4.2) as follows:

scheme
id = body class expr

The instantiation stands for the definitions that the body class expression stands for.

• An instantiation of a named parameterised class has the form:

name(object expr1, ... ,object exprn)

The name has the form opt qualification id and the parameterised class must have been
defined by a scheme definition (section 4.2) as follows:

scheme
id(

id1 opt formal array parameter1 : class expr1, ... ,
idn opt formal array parametern : class exprn) =

body class expr

The instantiation stands for the definitions that the body class expression stands for –
evaluated in an environment where each idi has been bound to the object obtained by
evaluating object expri .

Terminology

An object expr-list is a static implementation of a formal scheme argument-list, if and only if:

• The number of the object exprs is equal to the number of formal scheme arguments.

RAISE/CRI/DOC/2/V1

24 Specifications

• Each of the object exprs is a static implementation of the corresponding formal scheme argument.

An object expr is a static implementation of a formal scheme argument if and only if:

• The object represented by the object expr and the object defined by the formal scheme argument
are either both arrays or both models.

• If they are both arrays then the maximal parameter types are the same.

• The body (a class expr) of the object expr is a static implementation of the body (a
class expr) of the formal scheme argument (which is an object def.)

A class expr is a static implementation of another (old) class expr if and only if:

• For each non-axiom definition in the old class expr there is a definition in the new class expr
of the same kind implementating it. (Here value definitions that are formed by multiple
typings and product bindings, union definitions, short record definitions, variant defini-
tions, multiple variable definitions and multiple channel definitions should be expanded
to the collection of definitions they are shorthands for).

A type definition is a static implementation of another (old) type definition, if and only if:

• They introduce the same identifier.

• If the old type definition is an abbreviation definition then the new one is also an abbre-
viation definition and the maximal type of the new is equal to the maximal type of the
old with all old sorts replaced by their corresponding new types.

A (single) value definition is a static implementation of another (old) (single) value definition,
if and only if:

• They introduce the same name.

• The maximal type of the new is equal to the maximal type of the old with all old sorts
replaced by their corresponding new types.

A (single) variable definition / (single) channel definition is a static implementation of another
(old) (single) variable definition / (single) channel definition, if and only if:

• They introduce the same name.

RAISE/CRI/DOC/2/V1

Specifications 25

• The maximal type of the new is equal to the maximal type of the old with all old sorts
replaced by their corresponding new types.

An object definition is a static implementation of another (old) object definition, if and only if:

• They introduce the same name.

• They define either both an array or both a model.

• If they define arrays then they have the same maximal parameter type.

• The class expression of the new object definition is a static implementation of the class
expression of the old object definition.

A scheme definition is a static implementation of another (old) scheme definition, if and only if:

• They introduce the same name.

• They have the same number of formal scheme arguments.

• The maximal parameter types of the formal scheme arguments of the old scheme definition
are equal of the corresponding maximal parameter types of the new scheme definition.

• The class expressions of the formal scheme arguments of the old scheme definition are static
implementations of the corresponding class expressions of the new scheme definition.

• The class expression of the new scheme definition is a static implementation of the class
expression of the old scheme definition.

Context conditions

In a scheme instantiation the name must represent a scheme. There must be an
actual scheme parameter present if and only if the scheme is parameterised,
(i.e. a formal scheme parameter is present in the corresponding scheme def). If an
actual scheme parameter is present then the constituent object expr-list must be a static im-
plementation of the formal scheme argument-list (of the formal scheme parameter) of the corre-
sponding scheme definition. The definitions introduced by the scheme instantiation must not
contain type cycles and must be compatible.

In an actual scheme parameter any two object exprs must not provide the same variable or chan-
nel.

RAISE/CRI/DOC/2/V1

26 Specifications

4.4 Object expressions

Syntax

object expr ::=
object-name |
element object expr |
array object expr |
fitting object expr

Meaning

An object expression represents an object.

Properties

An object expr has an associated class expression, called the body. If it represents an array, then
it also has an associated maximal parameter type.

4.4.1 Names

Properties

The body of a name is the class expr of the corresponding object definition. The maximal
parameter type of a name representing an array is the maximal type of the formal array parameter
of the corresponding object definition.

Context conditions

For an object expr being a name, this name must represent an object.

4.4.2 Element object expressions

Syntax

element object expr ::=

RAISE/CRI/DOC/2/V1

Specifications 27

array-object expr actual array parameter

actual array parameter ::=
[pure-expr-list]

Meaning

An element object expession represents a model obtained as follows. The object expression
represents an array and the actual array parameter represents the value obtained by evaluating
the expression list as a product. This value should be an index value of the array. The model
is obtained by applying the array to the value (i.e. the model is that model which the value is
mapped to by the array).

Properties

The body is the body of the constituent object expr. Note, that in the context conditions, two
applications of the same array to distinct actual array parameters are considered as defining
the same entities.

The maximal type of an actual array parameter
of the form [e1] is t1
and of the form [e1, . . . , en] is t1 × ... × tn ,
where t1, . . . , tn are the maximal types of the constituent exprs e1, . . . , en .

Context conditions

In an element object expr the constituent object expr must represent an array.

In an element object expr the maximal type of the actual array parameter must be less than or
equal to the maximal parameter type of the object expr.

The exprs in the actual array parameter must be pure.

4.4.3 Array object expressions

Syntax

array object expr ::=
[| typing-list • element-object expr |]

RAISE/CRI/DOC/2/V1

28 Specifications

Meaning

An array object expression represents an array. The index type of the array is the type repre-
sented by the typing list. Each index value belonging to the index type is mapped to a model.
This model is the model obtained by evaluating the element object expression in the environ-
ment obtained by matching the index value against the decomposer also represented by the
typing list.

Properties

The scope of the constituent typings is the object expr.

The maximal parameter type is the maximal type of the single typing the constituent typing-list
is a shorthand for. The body is the body of the constituent object expr.

Context conditions

The object exp must represent a model.

4.4.4 Fitting object expressions

Syntax

fitting object expr ::=
object expr renaming

Meaning

A fitting object expression represents the object represented by the object expression, but with
provided names renamed according to the renaming.

In case the object represented by the object expression is an array, the names in each of the
models which the index values are mapped to are renamed.

RAISE/CRI/DOC/2/V1

Specifications 29

Properties

In a fitting object expr the scope of the body of the constituent object expr extends to the
id or ops in the defined items in the renaming, while all other definitions (than those of the body
of the constituent object expr) are hidden there. (From this and the visibility rules it follows
that the defined (or old) items of the renaming must be defined in the body of the object expr.)

If a fitting object expr represents an array the maximal parameter type is the maximal parameter
type of constituent object expr. The body is the body of the constituent object expr renamed
according to the constituent renaming.

4.5 Renamings

Syntax

renaming ::=
{ rename pair-list }

rename pair ::=
defined item for defined item

defined item ::=
id or op |
disambiguated item

disambiguated item ::=
id or op : type expr

Terminology

If a rename pair occurs in the renaming of a fitting object expr then the name on the right-hand
side of for is called a new name and the name on the left-hand side of for is called an old name.
If it occurs in a rename class expr then the name on the left-hand side of for is called a new
name and the name on the right-hand side of for is called an old name.

To rename something according to a rename pair means to replace all occurrences of the old
name with the new name.

RAISE/CRI/DOC/2/V1

30 Specifications

Meaning

A renaming represents the combination of the renamings represented by each rename pair in
the rename pair list.

The type expression within a disambiguated item is useful when the name due to overloading
represents several values with different types. The type expression then identifies precisely one
of the values.

Context conditions

In a rename pair there must not be a type expr in that defined item which contains a new name.

In a renaming all new names must be distinct except if they are new names for values of
distinguishable maximal types.

In a renaming all old items must be distinct. (In other words: there must not be more than one
new name for each old item).

In a disambiguated item the id or op must represent a value and its maximal type and the
maximal type of type expr must be the same.

RAISE/CRI/DOC/2/V1

Declarations 31

5 Declarations

Syntax

decl ::=
object decl |
scheme decl |
type decl |
value decl |
variable decl |
channel decl |
axiom decl

Terminology

A declaration is a list of definitions all of the same kind – scheme, object, type, value, variable,
channel or axiom. Each definition normally introduces a name for an entity of that kind, and
one or more properties.

Object and scheme declarations are described in sections 4.1 and 4.2.

5.1 Type declarations

Syntax

type decl ::=
type commented type def-list

commented type def ::=
opt-comment-string type def

type def ::=
sort def |
variant def |
union def |
short record def |
abbreviation def

RAISE/CRI/DOC/2/V1

32 Declarations

Meaning

A type declaration defines one or more types and zero or more values.

Context conditions

The type names introduced in the constituent type defs must be distinct from each other and
the introduced value names.

The value names introduced in the constituent type defs must be distinct unless their maximal
types are distinguishable.

5.1.1 Sort definitions

Syntax

sort def ::=
id

Terminology

A sort – or synonymously abstract type – is a type with no predefined operations for generating
and manipulating its values.

Meaning

A sort definition defines a sort by just giving its name.

Since a sort is not born with predefined operations for generating and manipulating its values,
the writer of a specification must define these as values him- or herself. Their definition indirectly
states properties about the sort. If for example two values of the same sort are defined and they
are required to be different, then indirectly the sort is required to contain at least two values.

Properties

The maximal type of a sort is the sort itself.

RAISE/CRI/DOC/2/V1

Declarations 33

5.1.2 Variant definitions

Syntax

variant def ::=
id == variant-choice

variant ::=
constant variant |
record variant

constant variant ::=
constructor opt-subtype naming

record variant ::=
constructor component kinds opt-subtype naming

constructor ::=
id or op |

component kinds ::=
(component kind-list)

component kind ::=
opt-destructor type expr opt-reconstructor

destructor ::=
id or op :

reconstructor ::=
↔ id or op

subtype naming ::=
@ id

Meaning

A variant definition is a shorthand for writing a name for an abstract type, names for its
constructors and names for destructors and reconstructors. Additionally it generally provides
an implicit induction axiom. We shall in the following describe how a variant definition of the
form

type

RAISE/CRI/DOC/2/V1

34 Declarations

id == variant1| ... |variantn

represents a sort definition, some subtype definitions, some value definitions and some axioms.
We will deal in turn with constructors, subtypes, destructors, reconstructors and induction
axioms. We will also use the following example throughout.

type
Tree ==

empty @ Empty Tree |
node(

left : Tree,
val : Elem ↔ repl value,
right : Tree) @ Non Empty Tree

• Constructors

Tree has two variants, one of which is constant and one a record variant. It has two
subtype namings.

The subtype naming is dealt with below, and so we will ignore it here. We also deal with
destructors and reconstructors below, and so ignore them here.

We can now construct a series of declarations that are equivalent to the original. Firstly,
we have an abstract type declaration for the variant type being defined:

type
id

For our example this declaration would be

type
Tree

Secondly, for each variant, indexed i say, which is not a wildcard, we obtain a value
declaration.

If the variant is a constant variant, say coni , we obtain the value declaration

value
coni : id

which simply says that coni is a (constant) value of type id . For our example we would
have the single value declaration

value
empty : Tree

RAISE/CRI/DOC/2/V1

Declarations 35

If the variant is a record variant having ni components, say,

coni(Ti ,1, ..., Ti ,ni)

we obtain the value declaration

value
coni : Ti ,1 × ... × Ti ,ni → id

which says that coni is a total function from the product of its component types to the
type id . coni constructs values of type id from values of its component types, (as indicated
by the name, ”constructor”, of its syntactic category).

For our example we would have the single value declaration

value
node : Tree × Elem × Tree → Tree

Constant and record variants which have wildcards for their constructors do not gener-
ate any value declarations (except for any destructors or reconstructors attached to the
components of a record variant).

• Subtypes

Any variant can have a subtype name (an identifier, type idi) associated with it. This
will generate an additional type declaration as follows

– for a non-wildcard constant variant

type
type idi = {| x : id • x = idi |}

– for a non-wildcard record variant

type
type idi =
{| x : id •

∃ x1 : Ti ,1, ..., xni : Ti ,ni
•

x = coni(x1, ..., xni) |}
– for a constant or record wildcard variant

type
type idi = {| x : id • p(x) |}

value
p : id → Bool

The identifier p is under-specified. It must not be already in scope, and should be
hidden at the level of the smallest enclosing class expression.
Our example introduces two subtype names which generates the subtype declarations

RAISE/CRI/DOC/2/V1

36 Declarations

type
Empty tree = {| x : Tree • x = empty |},
Non empty tree =
{| x : Tree •

∃ x1 : Tree, x2 : Elem, x3 : Tree •

x = node(x1,x2,x3) |}

• Destructors

Each destructor desti ,j introduced in a record variant

coni(..., desti ,j : Ti ,j , ...)

generates firstly a value declaration

value
desti ,j : id ∼→ Ti ,j

For our example we would have the following declarations

value
left : Tree ∼→ Tree,
val : Tree ∼→ Elem,
right : Tree ∼→ Tree

If a constructor is present, it also generates an axiom of the following form

axiom
∀ x1 : Ti ,1, ..., xni : Ti ,ni

•

desti ,j (coni(x1, ..., xni)) ≡ xj

For our example we would have the axioms

axiom
∀ x1 : Tree, x2 : Elem, x3 : Tree •

left(node(x1, x2, x3)) = x1,
∀ x1 : Tree, x2 : Elem, x3 : Tree •

val(node(x1, x2, x3)) = x2,
∀ x1 : Tree, x2 : Elem, x3 : Tree •

right(node(x1, x2, x3)) = x3,

• Reconstructors

Each reconstructor reconi ,j introduced in a record variant

coni(..., ... Ti ,j ↔ reconi ,j , ...)

RAISE/CRI/DOC/2/V1

Declarations 37

generates firstly a value declaration

value
reconi ,j : Ti ,j × id ∼→ id

For our example we would have, for the one reconstructor repl val

value
repl val : Elem × Tree ∼→ Tree

If there are destructors associated with the variant then for each destructor desti ,k there
is an axiom relating it to the reconstructor reconi ,j . For the case when j and k are equal
we obtain the axiom

∀ xj : Ti ,j , x : id •

desti ,j (reconi ,j (xj ,x)) ≡ xj

which expresses the fact that a destructor recovers the component value changed by a
corresponding reconstructor.

When j and k are different we obtain the axiom

∀ xj : Ti ,j , x : id •

desti ,k (reconi ,j (xj ,x)) ≡ desti ,k (x)

which expresses the fact that changing a component value by a reconstructor does not
affect other components.

In our example, we obtain the following three axioms

axiom
∀ x2 : Elem, x : Tree •

left(repl val(x2,x)) ≡ left(x),
∀ x2 : Elem, x : Tree •

val(repl val(x2,x)) ≡ x2,
∀ x2 : Elem, x : Tree •

right(repl val(x2,x)) ≡ right(x)

• Induction axioms

Provided there are no wildcard variants in our type definition we will also obtain an
induction axiom. (The removal of the induction axiom is the main reason for using
wildcard variants — they allow us to later add further variants, or components of variants,
and obtain implementation. If there were an induction axiom, making such additions
would negate it and so could not give implementation.)

If there is no recursion in the type, i.e. none of the component types in any variants involve
id , then the induction axiom is simple:

RAISE/CRI/DOC/2/V1

38 Declarations

∀ f : id → Bool •
(

(∀ x1 : T1,1, ..., xn1 : T1,n1
•

f(con1(x1,...,xn1)))
∧ ... ∧
(∀ x1 : Tn,1, ..., xnn : Tn,nn

•

f(conn(x1,...,xnn)))
) ⇒
∀ x : id • f(x)

(In this definition, for any variant, index i , say, that is constant we take ni to be zero so
that the quantification in the conjunct disappears and we obtain a conjunct f (coni).)

Suppose now that the type is recursive, and that the j’th component in the i’th variant is
id . Then in the above definition the i’th conjunct becomes

(∀ x1 : Ti ,1, ..., xj : id, ..., xni : Ti ,ni
•

f(xj) ⇒ f(coni(x1,...,xj ,...,xni)))

There are obvious extensions to this when there are two or more component types in a
variant equal to id . For two such we would get a conjunct of the form

(∀ x1 : Ti ,1, ..., xj : id, ..., xk : id, ..., xni : Ti ,ni
•

(f(xj) ∧ f(xk)) ⇒
f(coni(x1,...,xj ,...,xk ,...,xni)))

This is the case in our example, which has the induction axiom

axiom
∀ f : Tree → Bool •

(
f(empty)
∧

(∀ x1 : Tree, x2 : Elem, x3 : Tree •

(f(x1) ∧ f(x3)) ⇒ f(node(x1,x2,x3)))
) ⇒
∀ x : Tree • f(x)

So to prove some property of the type Tree we prove it for empty and we prove it for a
constructed node assuming it is true for the left and right subtrees.

Another extension is when id is a component of Ti ,j instead of equal to it. For instance,
suppose Ti ,j is U × id . Then the conjunct would be

(∀ x1 : Ti ,1, ..., (y,z) : (U × id), ..., xni : Ti ,ni
•

f(z) ⇒ f(coni(x1,...,(y,z),...,xni)))

RAISE/CRI/DOC/2/V1

Declarations 39

This leads us to the possibility that id is a component of a variant type Ti ,j and hence
to the problem of mutually recursive variant types. The general rule here is fairly com-
plicated, and the reader is referred to the proof rules ([2]) for its formulation. We will
present an example. Suppose we generalise trees to have lists of subnodes, and define lists
by variants. Then we might have the definitions

type
Tree ==

empty tree |
node(

val : Elem,
sub : List),

List ==
empty list |
list(

head : Tree,
tail : List)

The induction axiom for these is a joint one, formulated as follows:

axiom
∀ tf : Tree → Bool, lf : List → Bool •

(
tf(empty tree)
∧

(∀ x1 : Elem, x2 : List •

lf(x2) ⇒ tf(node(x1,x2)))
∧

lf(empty list)
∧

(∀ x1 : Tree, x2 : List •

(tf(x1) ∧ lf(x2)) ⇒ lf(list(x1,x2)))
) ⇒
∀ x1 : Tree, x2 : List • (tf(x1) ∧ lf(x2))

So to prove a pair of properties of Tree and List we prove the appropriate properties for
the constants empty tree and empty list , and also prove them for the constructed values
assuming the appropriate properties of components.

Properties

The maximal type of the type being defined is the type itself.

The constituent constructors, destructors and reconstructors introduce names of values. The
maximal types of these are the maximal types of the types given in the meaning section.

RAISE/CRI/DOC/2/V1

40 Declarations

The constituent subtype namings introduces names for types. The maximal type of these is the
variant type.

Context conditions

The name of the variant type being defined and all names of the subtypes introduced in the con-
stituent subtype namings must be distinct from each other and from the names in the constituent
constructors, destructors and reconstructors.

The constructors, deconstructors and reconstructors must only have the same name if their max-
imal types are distinguishable.

5.1.3 Union definitions

Syntax

union def ::=
id = type-name-choice2

Meaning

A union definition is a shorthand for writing a variant definition including constructors and
destructors. A union definition of the form

type
id = opt qualification1 id1| ... | opt qualificationn idn

is a shorthand for

type
id ==

id1 to id(id1 from id : opt qualification1 id1)| ... |
idn to id(idn from id : opt qualificationn idn)

In addition, in contexts where an expression is required to have a type which is ”less than or
equal to” id , any expression, say expr , having one of the types idi (1 ≤ i ≤ n) is allowed - it is
not necessary to apply the corresponding constructor, idi to id , in order to get an expression
of type id . Loosely, expr is a shorthand for writing idi to id(expr). This may be generalized.
See section 6, where the ordering ”less than” is defined.

RAISE/CRI/DOC/2/V1

Declarations 41

Properties

The maximal type of the type being defined is the type itself.

The implicit constructors and destructors introduce names of values. The maximal types of these
are given by the variant def the union def is a shorthand for.

Context conditions

The constituent names must represent types and the last ids in the names must be distinct.

5.1.4 Short record definitions

Syntax

short record def ::=
id :: component kind-string

Meaning

A short record definition is a shorthand for a variant definition with a single variant including
a constructor. A short record definition of the form

type
id :: component kind1 ... component kindn

is a shorthand for

type
id == mk id(component kind1, ... ,component kindn)

Properties

The maximal type of the type being defined is the type itself.

The implicit constructor, the constituent destructors and the reconstructors introduce names of
values. The maximal type of these are given by the variant def the short record def is a short-
hand for.

RAISE/CRI/DOC/2/V1

42 Declarations

Context conditions

The name of the short record type being defined must be distinct from any name in the con-
stituent destructors and reconstructors.

The implicit constructor, the deconstructors and the reconstructors must only have the same
name if their maximal types are distinguishable.

5.1.5 Abbreviation definitions

Syntax

abbreviation def ::=
id = type expr

Meaning

An abbreviation definition introduces a name for the type represented by the type expression.

Properties

The maximal type of the type being defined is the maximal type of the constituent type expr.

Context conditions

The type being defined must not be among the types that the right-hand side of the abbrevia-
tion def depends on. In this case the definition would be illegally cyclic.

5.2 Value declarations

Syntax

value decl ::=
value commented value def-list

commented value def ::=

RAISE/CRI/DOC/2/V1

Declarations 43

opt-comment-string value def

value def ::=
typing |
explicit value def |
implicit value def |
explicit function def |
implicit function def

Meaning

A value declaration defines one or more values.

A typing introduces one or more identifiers and/or operators for values of particular types.

Context conditions

The value names introduced in the constituent value defs must be distinct unless their maximal
types are distinguishable.

5.2.1 Explicit value definitions

Syntax

explicit value def ::=
single typing = pure-expr

Meaning

An explicit value definition of the form

value
single typing = expr

is a shorthand for

value

RAISE/CRI/DOC/2/V1

44 Declarations

single typing
axiom

E(single typing) = expr

The meta function

E : single typing → expr

turns the binding part of a single typing into an expression simply by copying identifiers, commas
and parentheses and by bracketting operators. The type part of the single typing is ignored by
the function. For example,

E((x,+) : T) = (x,(+))

Context conditions

The maximal type of the expr must be less than or equal to the maximal type of the single typing.

The constituent expr must be pure.

5.2.2 Implicit value definitions

Syntax

implicit value def ::=
single typing pure-restriction

Meaning

An implicit value definition of the form

value
single typing • expr

is a shorthand for

RAISE/CRI/DOC/2/V1

Declarations 45

value
single typing

axiom
expr

Context conditions

The restriction must be pure.

5.2.3 Explicit function definitions

Syntax

explicit function def ::=
single typing formal function application ≡ expr opt-pre condition

formal function application ::=
id application |
prefix application |
infix application

id application ::=
value-id formal function parameter-string

formal function parameter ::=
(opt-binding-list)

prefix application ::=
prefix op id

infix application ::=
id infix op id

pre condition ::=
pre readonly logical-expr

Meaning

An explicit function definition of the form

value

RAISE/CRI/DOC/2/V1

46 Declarations

single typing
formal function application ≡ expr opt pre condition

is a shorthand for

value
single typing

axiom
Q(formal function application)(D)

E(formal function application) ≡ expr opt pre condition

Two meta functions E and Q have been applied here. The function

Q : formal function application → type expr → ‘an optional quantification’

extracts a parameter quantification from a formal function application. The second argument
to the function is a type expression representing the domain type of the function being defined
(how to obtain D should be obvious in the individual case). The function works as follows

Q(id())(D) =
‘no quantification’

Q(id(binding))(D) =
∀ binding : D •

Q(id(binding1,...,bindingn))(D) =
∀ (binding1,...,bindingn) : D •

Q(op id) =
∀ id : D •

Q(id1 op id2) =
∀ (id1,id2) : D •

The function

E : formal function application → expr

turns a formal function application into an expression simply by copying identifiers, operators,
commas and parentheses – bracketting operators in case of an id application. For example,

E(f(x,+)) = f(x,(+))
E(card s) = card s
E(x + y) = x + y

RAISE/CRI/DOC/2/V1

Declarations 47

Properties

In an explicit function def the scope of the formal function application is expr and opt-pre condition.

The context of a formal function application determines a maximal context type for the for-
mal function application.

In an explicit function def the maximal context type of the formal function application is the
maximal type of the single typing.

In a formal function parameter of the form (b1, . . . , bn) the maximal context types of the con-
stituent bindings b1, . . . , bn are t1, . . . , tn , respectively, where t1 × . . .× tn is the parameter
part of the maximal context type (a function type).

The maximal type of the id introduced in a prefix application is the parameter type part, t1, of
the maximal context type, t1

∼→ acc t2.

The maximal types of the first and second id in an infix application are t1 and t2, respectively,
where the maximal context type is t1 × t2

∼→ acc t3.

Context conditions

The binding in the single typing must be an id or op (i.e. not a product binding).

If the id or op in the single typing is an identifier then the formal function application must be
an id application of this identifier.

If the id or op in the single typing is a prefix operator then the formal function application must
be a prefix application of this prefix operator.

If the id or op in the single typing is an infix operator then the formal function application must
be an infix application of this infix operator.

The maximal type of the single typing must be a function type. If the formal function application
is an infix application then the parameter part of the function type must be a product type of
length 2. If the formal function application is an id application then the function type must be
curried at least as many times as there are formal function parameters.

I.e. there are the three following forms, where some of the arrows may be substituted with ∼→:

id : t1 → acc1 t2 ... → accn tn+1

id(id1)(id2)...(idn) ≡ expr opt−pre condition

prefix op : t1 → acc t2

RAISE/CRI/DOC/2/V1

48 Declarations

prefix op id ≡ expr opt−pre condition

infix op : t1 × t2 → acc t3
id infix op id′ ≡ expr opt−pre condition

The maximal type of the expr must be less than or equal to the type one obtains from the
maximal type of the single typing, when one strips as many parameter types as there are for-
mal function parameters in the formal function application.

The expr and the opt-pre condition must only access those variables and channels that are
accessible according to the access descriptors acc1 - accn in the first form example above and
the access descriptor acc in the two last form examples.

In an id application, the identifiers introduced in the constituent formal function parameters must
be distinct unless they have distinguishable maximal types. In an infix application the two
identifiers must be distinct unless they have distinguishable maximal types.

In a pre condition the expr must be readonly and must have the maximal type Bool.

5.2.4 Implicit function definitions

Syntax

implicit function def ::=
single typing formal function application post condition opt-pre condition

post condition ::=
opt-result naming post readonly logical-expr

result naming ::=
as binding

Meaning

An implicit function definition of the form

value
single typing

formal function application post condition opt pre condition

is a shorthand for

RAISE/CRI/DOC/2/V1

Declarations 49

value
single typing

axiom
Q(formal function application)(D)

E(formal function application) post condition opt pre condition

The two functions E and Q and the type expression D have been defined above.

Properties

In an implicit function def the scope of the formal function application is the post condition and
opt-pre condition.

The context of a post condition determines a maximal context type for the post condition.

In an implicit function def the maximal context type of the formal function application is the
maximal type of the single typing and the maximal context type of the post condition is the
result part of the type one obtains from the maximal type of the single typing, when one strips as
many parameter types as there are formal function parameters in the formal function application.

In a post condition the scope of the opt-result naming is the expr.

In a result naming the maximal context type of the binding is the maximal context type of the
innermost enclosing post condition.

Context conditions

The binding in the single typing must be an id or op (i.e. not a product binding).

If the id or op in the single typing is an identifier then the formal function application must be
an id application of this identifier.

If the id or op in the single typing is a prefix operator then the formal function application must
be a prefix application of this prefix operator.

If the id or op in the single typing is an infix operator then the formal function application must
be an infix application of this infix operator.

The maximal type of the single typing must be a function type. If the formal function application
is an infix application then the parameter part of the function type must be a product type of
length 2. If the formal function application is an id application then the function type must be
curried at least as many times as there are formal function parameters.

RAISE/CRI/DOC/2/V1

50 Declarations

I.e. there are the three following forms, where some of the arrows may be substituted with ∼→:

id : t1 → acc1 t2 ... → accn tn+1

id(id1)(id2)...(idn) post condition opt−pre condition

prefix op : t1 → acc t2
prefix op id post condition opt−pre condition

infix op : t1 × t2 → acc t3
id infix op id′ post condition opt−pre condition

The post condition and the opt-pre condition must only read those variables and channels that
are accessible according to the access descriptors acc1 - accn in the first form example above
and the access descriptor acc in the two last form examples.

In a post condition the expr must be readonly and must have the maximal type Bool.

5.3 Variable declarations

Syntax

variable decl ::=
variable commented variable def-list

commented variable def ::=
opt-comment-string variable def

variable def ::=
single variable def |
multiple variable def

single variable def ::=
id : type expr opt-initialisation

initialisation ::=
:= pure-expr

multiple variable def ::=
id-list2 : type expr

RAISE/CRI/DOC/2/V1

Declarations 51

Terminology

A variable is a container capable of holding values of a particular type. All variables are kept
in the so-called state.

The contents of a variable can be changed explicitly by an assignment expression. It can thus
change contents within its lifetime. Variables are in particular used to define functions with
side-effects on some global state.

Meaning

A single variable definition defines a variable and its associated type. In addition, an initialisa-
tion expression can be given, the value of which is the initial value of the variable. The initial
value is the value kept in the variable ‘when its surrounding class expression is instantiated’
and restored to it by an initialise expression (section 7.19).

If no initialisation is given, the initial value of the variable is just some arbitrarily chosen value
within its type.

A multiple variable definition is just a shorthand for two or more single variable definitions. A
multiple variable definition of the form

variable
id1, ... ,idn : type expr

is a shorthand for

variable
id1 : type expr,
...
idn : type expr

Properties

In a variable def the maximal types of the constituent ids is the maximal type of the type expr.

Context conditions

The names introduced in the constituent variable defs must be distinct.

RAISE/CRI/DOC/2/V1

52 Declarations

The expr in an initialisation must be pure.

5.4 Channel declarations

Syntax

channel decl ::=
channel commented channel def-list

commented channel def ::=
opt-comment-string channel def

channel def ::=
single channel def |
multiple channel def

single channel def ::=
id : type expr

multiple channel def ::=
id-list2 : type expr

Terminology

A channel is a medium that concurrently executing expressions can communicate through.

In order for two expressions to communicate through a channel, one expression must offer an
output communication to the channel whilst the other expression must offer an input commu-
nication from the channel.

Communication is synchronized: the outputting expression only outputs to the channel if the
inputting expression simultaniously inputs from the channel.

Meaning

A single channel definition defines a channel and its associated type. All values communicated
over the channel must have this type.

A multiple channel definition is just a shorthand for two or more single channel definitions. A
multiple channel definition of the form

RAISE/CRI/DOC/2/V1

Declarations 53

channel
id1, ... ,idn : type expr

is a shorthand for

channel
id1 : type expr,
...
idn : type expr

Properties

In a channel def the maximal types of the constituent ids is the maximal type of the type expr.

Context conditions

The names introduced in the constituent channel defs must be distinct.

5.5 Axiom declarations

Syntax

axiom decl ::=
axiom opt-axiom quantification axiom def-list

axiom quantification ::=
forall typing-list •

axiom def ::=
opt-comment-string opt-axiom naming pure logical-expr

axiom naming ::=
[id]

Meaning

An axiom decl defines one or more axioms, each being a boolean expr defining additional prop-
erties of names introduced by other definitions.

RAISE/CRI/DOC/2/V1

54 Declarations

An axiom can be given a name (axiom naming), but such a naming does not add to the prop-
erties.

Each axiom is implicitly prefixed with ‘2’. That is, an axiom decl of the form

axiom
opt axiom naming1 expr1,
...
opt axiom namingn exprn

is a shorthand for

axiom
opt axiom naming1 2 expr1,
...
opt axiom namingn 2 exprn

An axiom quantification is a shorthand for a distributed quantification. That is, an axiom decl
of the form

axiom forall typing list •

opt axiom naming1 expr1,
...
opt axiom namingn exprn

is a shorthand for

axiom
opt axiom naming1 2 ∀ typing list • expr1,
...
opt axiom namingn 2 typing list • exprn

Properties

In an axiom decl the scope of the opt-axiom quantification is the axiom def-list.

RAISE/CRI/DOC/2/V1

Declarations 55

Context conditions

The names introduced in the constituent axiom defs must be distinct.

The expr in an axiom def must be readonly and have the maximal type Bool.

RAISE/CRI/DOC/2/V1

56 Declarations

RAISE/CRI/DOC/2/V1

Type expressions 57

6 Type expressions

Syntax

type expr ::=
type literal |
type-name |
product type expr |
set type expr |
list type expr |
map type expr |
function type expr |
subtype expr |
bracketted type expr

Terminology

A type is a set of values. We distinguish between three kinds of types:

• predefined types are represented by literals build into the language. These types include
for example the integers and the booleans.

• abstract types are represented by sort names defined in sort definitions (section 5.1.1).

• compound types are build from other types by application of a type operator to one or
more types.

A type T1 is a subtype of a type T2 if T1 is a subset of T2.

A type is said to be maximal if (it can be representated by a type expression and) it is not a
subtype of any other type (which can be represented by a type expression).

The maximal type of a type is the maximal type of which it is a subtype.

Two types are undistinguishable if their maximal types only differ wrt. constituent access
descriptors in constituent function types.

Two types are distinguishable if they are not undistinguisable.

The union definitions in a specification give rise to an ordering on types, called less than. This
ordering is defined inductively by the following rules:

RAISE/CRI/DOC/2/V1

58 Type expressions

1. Each type, t, represented on the right-hand side of a union definition is less than the type,
t’, represented on the left-hand side.

2. If t is less than t’ and t’ is less than t” then t is less than t”. (The ordering is transitive.)

3. If t is less than t’ and acc’ contains all the accesses of acc then

(a) . . .× t × . . . is less than . . .× t’ × . . .

(b) t-infset is less than t’-infset

(c) tω is less than t’ω

(d) t →m s is less than t’ →m s, where s is some type

(e) s →m t is less than s →m t’, where s is some type

(f) s ∼→ acc t is less than s ∼→ acc’ t’, where s is some type

A type, t, is said to be an upper bound of a collection of types if all types in the collection is
less than or equal to t.

A type is said to be a least upper bound of a collection of types if it is an upper bound of this
collection and it is less than all other upper bounds.

Meaning

A type expression represents a type.

Properties

A type expr has an associated maximal type, which is equal to the maximal type of the type it
represents.

6.1 Names

Context conditions

For a type expr being a name, the name must represent a type.

RAISE/CRI/DOC/2/V1

Type expressions 59

6.2 Type literals

Syntax

type literal ::=
Unit |
Bool |
Int |
Nat |
Real |
Text |
Char

Meaning

A type literal represents a predefined type. There are the following literals:

Unit =
{ () }

Bool =
{ true,false }

Int =
{ ...,-2,-1,0,1,2,... }

Nat =
{| i : Int • i ≥ 0 |}

Real =
{ ...,-4.3,...,12.23,... }

Text =
Char∗

Char =
{ ′a′,′b′,... }

The unit value ‘()’ represents the single value in type Unit. The natural numbers Nat is a
subtype of the integers Int. Characters Char are the ASCII characters. Texts Text are just
character lists. A Text literal in double quotes (′′...′′) is a shorthand for a list of characters.
That is, a text of the form

′′c1 ... cn
′′

is a shorthand for

〈′c1
′,...,′cn

′〉

RAISE/CRI/DOC/2/V1

60 Type expressions

Properties

The maximal type of Unit is Unit.
The maximal type of Bool is Bool.
The maximal type of Int is Int.
The maximal type of Nat is Int.
The maximal type of Real is Real.
The maximal type of Text is Charw .
The maximal type of Char is Char.

6.3 Product type expressions

Syntax

product type expr ::=
type expr-product2

Terminology

A product is a value of the form

(v1,...,vn)

The length of a product type expr is the number of constituent type exprs.

Meaning

A product type expression of the form

type expr1 × ... × type exprn

represents the type of all products of the form

(v1,...,vn)

where each vi has the type represented by type expri .

RAISE/CRI/DOC/2/V1

Type expressions 61

Properties

The maximal type of a product type expr of the form t1 × ... × tn is t’1 × ... × t’n ,
where t’1, . . . , t’n are the maximal types of the constituent type exprs t1, . . . , tn .

6.4 Set type expressions

Syntax

set type expr ::=
finite set type expr |
infinite set type expr

finite set type expr ::=
type expr-set

infinite set type expr ::=
type expr-infset

Terminology

A set is an unordered collection of distinct values of the same type.

Meaning

A set type expression represents a type of subsets of the type represented by the constituent
type expression. If the type operator is -set, the type will contain all finite subsets. If the type
operator is -infset, the type will contain all (infinite as well as finite) subsets.

Properties

The maximal type of a set type expr of the form t-set or t-infset is t’-infset,
where t’ is the maximal type of the constituent type expr t.

RAISE/CRI/DOC/2/V1

62 Type expressions

6.5 List type expressions

Syntax

list type expr ::=
finite list type expr |
infinite list type expr

finite list type expr ::=
type expr∗

infinite list type expr ::=
type exprω

Terminology

A list is an ordered sequence of values of the same type, possibly including duplicates.

Meaning

A list type expression represents a type of lists of elements of the type represented by the
constituent type expression. If the type operator is ∗, the type will contain all finite lists. If
the type operator is ω, the type will contain all (infinite as well as finite) lists.

Properties

The maximal type of a list type expr of the form t∗ or tω is t’ω,
where t’ is the maximal type of the constituent type expr t.

6.6 Map type expressions

Syntax

map type expr ::=
type expr →m type expr

RAISE/CRI/DOC/2/V1

Type expressions 63

Terminology

A map can be conceived as a (possibly infinite) collection of pairs (v1, v2) where v1 is a domain
value, v2 is a range value and v1 is related to v2. The domain of a map is the set of values, v1,
for which there exists a value, v2, such that (v1, v2) is in the map. The range of a map is the
set of values, v2, for which there exists a value, v1, such that (v1, v2) is in the map.

A map is said to be non-deterministic if it relates a domain value with more than one range
value.

A map can be applied to a value in its domain to find a corresponding value in the range –
arbitrarily chosen among the possible in the non-deterministic case.

Meaning

A map type expression represents the type of all maps, each of which has a subset of the first
type as domain and a subset of the second type as range.

Properties

The maximal type of a map type expr of the form t1 →m t2 is t’1 →m t’2,
where t’1 and t’2 are the maximal types of the constituent type exprs t1 and t2.

6.7 Function type expressions

Syntax

function type expr ::=
type expr function arrow result desc

function arrow ::=
∼→ |
→

result desc ::=
opt-access desc-string type expr

RAISE/CRI/DOC/2/V1

64 Type expressions

Terminology

A function maps the values of one type – the parameter type – into values of another type – the
result type. In addition a function can, when applied:

• Access variables by reading from them or writing to them.

• Access channels by inputting from them or outputting to them.

An applicative function is a function that does not access variables or channels. An imperative
function is a function that accesses variables or channels.

An operation is an imperative function that does not access channels, only variables. A process
is an imperative function that accesses channels.

A function’s extended parameter type can be defined as:

• its parameter type,

• the variables it can read from together with their types,

• the channels it can input from together with their types.

A function’s extended result type can be defined as:

• its result type,

• the variables it can write to together with their types,

• the channels it can output to together with their types.

In general, if a function is applied to a value, evaluated in a state and inputs values from
channels, then if all of these satisfy the subtype constraints of the extended parameter type,
then the subtype constraints of the extended result type will be satisfied. Otherwise, one can
only be guaranteed that the maximal type constraints of the extended result type are satisfied.

Meaning

A function type expression represents a type of functions from the parameter type represented
by the type expression to the result type represented by the type expression in the result
description. The access description string specifies which accesses to variables and channels the
functions are allowed when applied. Depending on the function arrow the functions are either
partial or total as described below.

RAISE/CRI/DOC/2/V1

Type expressions 65

• Partial functions

A partial function type expression of the form

type expr1
∼→ opt access desc string type expr2

defines a set of functions, f , such that for any x belonging to the maximal type of
type expr1, the application

f(x)

is an expression that might deadlock, default or diverge at any stage in its execution.

If

– x : type expr1,

– and the current state satisfies the subtype constraints on the variables,

– and any inputs satisfy the subtype constraints on the channels,

then any outputs will satisfy the subtype constraints on the channels.

If additionally the application expression terminates – possibly after some sequence of
communication, then

– the resulting value will be within type expr2,

– and the resulting state will satisfy the subtype constraints on the variables.

Alternatively, if

– not(x : type expr1) but x belonging to the maximal type of type expr1,

– or the current state does not satisfy the subtype constraints on the variables,

– or some inputs do not satisfy the subtype constraints on the channels,

then the subtype constraints on outputs, resulting value and resulting state cannot be
guaranteed. The maximal type constraints will, however, still be guaranteed.

• Total functions

A total function type expression of the form

type expr1 → opt access desc string type expr2

defines the subset of the partial functions f :

type expr1
∼→ opt access desc string type expr2

such that if

– x : type expr1,

RAISE/CRI/DOC/2/V1

66 Type expressions

– and the current state satisfies the subtype constraints on the variables,
– and any inputs satisfy the subtype constraints on the channels,

then the application

f(x)

is a total expression. This can also be expressed by defining total functions as a subtype
of partial functions. A type expression of the form

type expr → result desc

is a shorthand for

{| f : type expr ∼→ result desc •

∀ x : type expr • f(x) post true |}

Properties

The maximal type of a function type expr of the form t1
∼→ acc t2 or t1 → acc t2 is

t’1
∼→ acc t’2, where t’1 and t’2 are the maximal types of the constituent type exprs t1 and t2.

6.7.1 Access descriptions

Syntax

access desc ::=
access mode access-list

access mode ::=
read |
write |
in |
out

access ::=
variable or channel-name |
completed access |
comprehended access

completed access ::=
opt-qualification any

comprehended access ::=
{ access-list | pure-set limitation }

RAISE/CRI/DOC/2/V1

Type expressions 67

Meaning

A function type expression describes what global variables and channels can be accessed from
the functions it represents. For each variable and channel it is additionally described in what
way it can be accessed.

An access description describes the variables/channels having a particular access-mode. A
variable can be given access-mode:

• read if it may only be read from.

• write if it may be written to, that is: changed by an assignment; variables with this
access-mode have automatically read access-mode.

A channel can be given access-mode:

• in if it may be input from.

• out if it may be output to.

An access describes a logically related set of variables/channels having the access-mode. An
access list gives access to the union of the individual accesses. An access can besides a name
be a:

• completed access

A completed access gives access to all variables/channels introduced by a particular model.

If the qualification is absent, all variables/channels in the innermost enclosing model are
given access to, except that completed accesses within schemes refer to the model at the
point of instantiation, not that at the point of definition.

If the qualification is present, it represents a model. All the variables/channels in that
model are then given access to.

• comprehended access

A comprehended access gives access to the set of variables/channels obtained as follows:
for each environment in the set of environments represented by the set limitation, the
union of the acesses in the access list is obtained. The result is the union of all these
unions.

Context conditions

For an access being a name, the name must represent

RAISE/CRI/DOC/2/V1

68 Type expressions

• a variable if it occurs in the access-list of an access descr having read or write as ac-
cess mode

• a channel if it occurs in the access-list of an access descr having in or out as access mode

In a comprehended access the set limitation must be pure.

6.8 Subtype expressions

Syntax

subtype expr ::=
{| single typing pure-restriction |}

Meaning

A subtype expression represents a subtype of the type represented by the single typing. The
subtype contains any value that makes the restriction hold – evaluated in the environment
obtained by matching the value against the decomposer also represented by the single typing.

Properties

The maximal type of a subtype expr is the maximal type of the constituent single typing.

Context conditions

The restriction must be pure.

6.9 Bracketted type expressions

Syntax

bracketted type expr ::=
(type expr)

RAISE/CRI/DOC/2/V1

Type expressions 69

Meaning

A bracketted type expression represents the same type as represented by the type expression.

Properties

The maximal type of a bracketted type expr is the maximal type of the constituent type expr.

RAISE/CRI/DOC/2/V1

70 Type expressions

RAISE/CRI/DOC/2/V1

Expressions 71

7 Expressions

Syntax

expr ::=
value literal |
value or variable-name |
pre name |
basic expr |
product expr |
set expr |
list expr |
map expr |
function expr |
application expr |
quantified expr |
equivalence expr |
post expr |
disambiguation expr |
bracketted expr |
infix expr |
prefix expr |
comprehended expr |
initialise expr |
assignment expr |
input expr |
output expr |
structured expr

Terminology

An expression is evaluated – or synonymously ‘executed’ – in a state to yield a value. In
addition, the expression may

• read the value of variables,

• write to variables by assignments,

• input from channels,

• output to channels.

More formally, the effect of an expression – evaluated in a state – is to offer zero or more
communications on channels and then to do one of the following

RAISE/CRI/DOC/2/V1

72 Expressions

• terminate succesfully thereby returning a value and a possibly changed state. B

• deadlock when it has as its only possible effect to communicate with the surroundings
through a channel that is concealed from (not visible in) the surroundings. Such a situation
can for example arise when the expression locally declares a channel and then tries to
communicate with the surroundings through it.

• default when its effect can never be selected in an internal choice.

• diverge when it has as a possible effect to continue executing without terminating, without
attempting to input from or output to channels, and without deadlocking or defaulting.

An expression is non-deterministic if it may choose internally between a set of possible effects.
Two evaluations of the expression in the same state might thus give two different effects. As a
consequence, the eventually returned value can be one of a set of possible values. Likewise the
returned state can be one of a set of possible states.

An expression is converging if it has as the only possible behaviour to terminate succesfully.

An expression is total if

• there is no possibility of deadlock, default or divergence at any stage in the execution of
the expression (even after some sequence of communications),

• if at any stage in the execution of the expression it comes to an end then the result
returned is deterministic,

An expression may be build from sub-expressions. Unless otherwise stated the following holds:

1. Any sub-expression may be non-deterministic and this non-determinism propagates such
that the whole expression gets non-deterministic.

2. Any sub-expression may be diverging, deadlocking or defaulting. The diverging, deadlock-
ing or defaulting of the sub-expression propagates such that the whole expression becomes
diverging, deadlocking or defaulting.

An expr is said to access a variable if it reads (from) or writes to it.

An expr is said to access a channel if it inputs from or outputs to it.

An expr is said to be pure if it does not access any variable or channel.

An expr is said to be readonly if it does not write to any variable and it does not input from or
output to any channel.

RAISE/CRI/DOC/2/V1

Expressions 73

Two exprs are said to access the state independently if each of the exprs does not read any of
the variables which are written in by the other expr.

Two exprs are said to be parallelizable if they access the state independently.

An expr is said to offer a communication, if it inputs from or outputs to a channel.

Properties

An expr has an associated maximal type (such that if the expr terminates successfully then its
value belongs to its maximal type).

An expr also has an associated description of which variables it reads, which variables it writes
to, which channels it inputs from and which channels it outputs to. In this description the
following conventions has been used: If an expr writes to a variable, then it also reads that
variable.

7.1 Value literals

Syntax

value literal ::=
unit literal |
bool literal |
int literal |
real literal |
text literal |
char literal

unit literal ::=
()

bool literal ::=
true |
false

Meaning

The effect of a value literal is to return the value represented by the literal.

RAISE/CRI/DOC/2/V1

74 Expressions

Properties

The maximal type of a unit literal is Unit.
The maximal type of a bool literal is Bool.
The maximal type of a int literal is Int.
The maximal type of a real literal is Real.
The maximal type of a text literal is Charω.
The maximal type of a char literal is Char.

A value literal does not access any variables or channels.

7.2 Names

Properties

A name representing a value does not access any variables or channels. A name representing a
variable reads that variable.

Context conditions

For an expr being a name, the name must represent a value or a variable.

7.3 Pre names

Syntax

pre name ::=
variable-name `

Meaning

A pre name occurs within a post condition, see section 7.13. The effect of a pre name is to return
the contents in the pre-state of the variable represented by name.

Properties

The local variable definitions of the innermost enclosing post condition are hidden in the name.

RAISE/CRI/DOC/2/V1

Expressions 75

The maximal type of a pre name is the maximal type of the constituent name.

A pre name reads the variable it represents.

Context conditions

A pre name must occur within a post condition.

The name must represent a variable.

7.4 Basic expressions

Syntax

basic expr ::=
chaos |
skip |
stop |
swap

Meaning

• The effect of chaos is to diverge.

• The effect of skip is to return the unit value of type Unit.

• The effect of stop is to deadlock.

• The effect of swap is to default.

Properties

The maximal type of a basic expr is Unit.

A basic expr does not access any variables or channels.

RAISE/CRI/DOC/2/V1

76 Expressions

7.5 Product expressions

Syntax

product expr ::=
(expr-list2)

Meaning

The effect of a product expression is the effect of the expression list evaluated as a product.

Properties

The maximal type of a product expr of the form (e1, ...,en) is t1 × ... × tn ,
where t1, . . . , tn are the maximal types of the constituent exprs e1, . . . , en .

A product expr accesses any of the variables and channels which the constituent exprs access.

Context conditions

The constituent exprs must access the state independently and at most one of them may offer
a communication.

7.6 Set expressions

Syntax

set expr ::=
ranged set expr |
enumerated set expr |
comprehended set expr

RAISE/CRI/DOC/2/V1

Expressions 77

7.6.1 Ranged set expressions

Syntax

ranged set expr ::=
{ readonly integer-expr .. readonly integer-expr }

Meaning

The effect of a ranged set expression is to return a set of integers in a range delimited by a
lower bound and an upper bound.

The first constituent expression is evaluated to return the lower bound i1 and the second con-
stituent expression is evaluated to return the upper bound i2. The set contains all integers i
such that i1 ≤ i ≤ i2.

Properties

The maximal type of a ranged set expr is Int-infset.

A ranged set expr accesses any of the variables and channels which the constituent exprs access.

Context conditions

The constituent exprs must be readonly and must have the maximal type Int.

7.6.2 Enumerated set expressions

Syntax

enumerated set expr ::=
{ readonly-opt-expr-list }

Meaning

The effect of an enumerated set expression is to return a set of explicitely specified values.

RAISE/CRI/DOC/2/V1

78 Expressions

The set contains all elements in the list returned by the expression list – evaluated as a list.

Properties

The maximal type of an enumerated set expr having one or more constituent exprs is t-infset,
where t is the least upper bound of the maximal types of the constituent exprs. The maximal
type of an enumerated set expr having no constituent exprs is t-infset, where t is free to be any
type.

An enumerated set expr accesses any of the variables and channels which the constituent exprs
access.

Context conditions

The constituent exprs must be readonly.

The maximal types of the constituent exprs must have a least upper bound.

7.6.3 Comprehended set expressions

Syntax

comprehended set expr ::=
{ readonly-expr | set limitation }

set limitation ::=
typing-list opt-restriction

restriction ::=
• readonly logical-expr

Meaning

The effect of a comprehended set expression is to return a set, the elements of which are
obtained by evaluating the constituent expression in all those environments that satisfies a
certain restriction.

For each environment in the set of environments represented by the set limitation (see below),
the expression is evaluated. If the expression is convergent and deterministic, the returned

RAISE/CRI/DOC/2/V1

Expressions 79

value is included in the set. In the case of non-convergence or non-determinism, the particular
evaluation does not contribute with a set member. A comprehended set expression is convergent
and deterministic.

A set limitation represents a subset of the environments that the typing list represents: those
that makes the restriction hold. An absent restriction is equivalent to the restriction • true.

We say that a restriction holds if it is convergent and deterministic and returns the value true.

Properties

In a comprehended set expr the scope of the set limitation extends to the constituent expr.

In a set limitation the immediate scope of the typings is the constituent restriction.

The maximal type of a comprehended set expr is t-infset, where t is the maximal type of the
constituent expr.

A comprehended set expr reads any of the variables and channels which the constituent expr and
set limitation read.

A set limitation reads any of the variables and channels which the constituent restriction reads.

A restriction reads any of the variables and channels which the constituent expr reads.

Context conditions

In a comprehended set expr the constituent expr must be readonly.

In a restriction the constituent expr must be readonly and must have the maximal type Bool.

7.7 List expressions

Syntax

list expr ::=
ranged list expr |
enumerated list expr |
comprehended list expr

RAISE/CRI/DOC/2/V1

80 Expressions

7.7.1 Ranged list expressions

Syntax

ranged list expr ::=
〈 readonly integer-expr .. readonly integer-expr 〉

Meaning

The effect of a ranged list expression is to return a list of integers in a range delimited by a
lower bound and an upper bound.

The two constituent expressions are evaluated to return the integers i1 – the value of the first
constituent expression – and i2 – the value of the second constituent expression. The list
contains all integers i such that i1 ≤ i ≤ i2, occurring in increasing order.

Properties

The maximal type of a ranged list expr is Intω.

A ranged list expr reads any of the variables and channels which the constituent exprs read.

Context conditions

The constituent exprs must be readonly and must have maximal type Int.

7.7.2 Enumerated list expressions

Syntax

enumerated list expr ::=
〈 readonly-opt-expr-list 〉

Meaning

The effect of an enumerated list expression is the effect of the expression list evaluated as a list.

RAISE/CRI/DOC/2/V1

Expressions 81

Properties

The maximal type of an enumerated list expr having one or more constituent exprs is tω, where
t is the least upper bound of the maximal types of the constituent exprs.

The maximal type of an enumerated list expr having no constituent exprs is tω, where t is free
to be any type.

An enumerated list expr reads any of the variables and channels which the constituent exprs
read.

Context conditions

The constituent exprs must be readonly.

The maximal types of the constituent exprs must have a least upper bound.

7.7.3 Comprehended list expressions

Syntax

comprehended list expr ::=
〈 readonly-expr | list limitation 〉

list limitation ::=
binding in readonly list-expr opt-restriction

Meaning

The effect of a comprehended list expression is to return a list generated on the basis of another
list.

For each environment in the list of environments represented by the list limitation (see below)
– processed from left to right – the constituent expression is evaluated. The returned value is
included in the list at the corresponding position.

A list limitation evaluates to a list of environments as follows. The constituent expression
returns a list. Each list element in the list – processed from left to right – is then matched
against the binding to obtain an environment. In case this environment makes the restriction
hold, the environment is included in the resulting environment list at the corresponding position.

RAISE/CRI/DOC/2/V1

82 Expressions

An absent restriction is equivalent to the restriction • true.

Properties

In a comprehended list expr the scope of the list limitation extends to the constituent expr.

In a list limitation the immediate scope of the binding is the constituent restriction.

The maximal type of a comprehended list expr is tω, where t is the maximal type of the con-
stituent expr.

In a list limitation the maximal context type of the constituent binding is t, where tω is the
maximal type of the constituent expr.

A comprehended list expr reads any of the variables and channels which the constituent expr and
list limitation read.

A list limitation reads any of the variables and channels which the constituent expr and restriction
read.

Context conditions

In a comprehended list expr the constituent expr must be readonly.

In a list limitation the constituent expr must be readonly and must have a maximal type which
is a list type.

7.8 Map expressions

Syntax

map expr ::=
enumerated map expr |
comprehended map expr

RAISE/CRI/DOC/2/V1

Expressions 83

7.8.1 Enumerated map expression

Syntax

enumerated map expr ::=
[opt-expr pair-list]

expr pair ::=
readonly-expr 7→ readonly-expr

Meaning

The effect of an enumerated map expression is to return a map of explicitly specified pairs.

Each expression pair in the expression pair list represents a pair of values. The map contains
all the pairs represented by such expression pairs. In case the expression pair list is empty the
map is empty.

Properties

The maximal type of an enumerated map expr having one or more constituent expr pairs
is t1 →m t2, where t1 is the least upper bound of the domain types and t2 is the least upper
bound of the range types of the constituent expr pairs.

The maximal type of an enumerated map expr having no constituent exprs is t1 →m t2, where t1
and t2 are free to be any types.

The maximal domain type and the maximal range type of an expr pair are the maximal types
of the first and the second constituent expr, respectively.

An enumerated map expr reads any of the variables and channels which the constituent expr pairs
read.

An expr pair reads any of the variables and channels which the constituent exprs read.

Context conditions

In an enumerated map expr the maximal domain types of the the constituent expr pairs must
have a least upper bound and the maximal range types of the the constituent expr pairs must
have a least upper bound.

RAISE/CRI/DOC/2/V1

84 Expressions

In an expr pair the exprs must be readonly.

7.8.2 Comprehended map expressions

Syntax

comprehended map expr ::=
[expr pair | set limitation]

Meaning

The effect of a comprehended map expression is to return a map the pairs of which are obtained
by evaluating the expression pair in all those environments that satisfies a certain restriction.

For each environment in the set of environments represented by the set limitation, the expression
pair is evaluated. If the expression pair is convergent and deterministic, the resulting value pair
is included in the map. In the case of non-convergence or non-determinism, the particular
evaluation does not contribute with a pair. A comprehended map expression is convergent and
deterministic.

Properties

In a comprehended map expr the scope of the set limitation extends to the constituent expr pair.

The maximal type of a comprehended map expr is t1 →m t2, where t1 is the maximal domain type
and t2 is the maximal range type of the constituent expr pair.

A comprehended map expr reads any of the variables and channels which the constituent expr pair
and set limitation read.

7.9 Function expressions

Syntax

function expr ::=
λ lambda parameter • expr

lambda parameter ::=
lambda typing |

RAISE/CRI/DOC/2/V1

Expressions 85

single typing

lambda typing ::=
(opt-typing-list)

Meaning

The effect of a function expression is to return a function. The lambda parameter represents:

• a type – the parameter type of the function,

• a decomposer – against which an actual parameter is matched to yield a parameter envi-
ronment mapping formal parameter identifiers and operators to actual parameter values.

In the case of a single typing the type and decomposer are those represented by the single
typing. In the case of a lambda typing, the type and decomposer are those represented by the
optional typing list.

When the function is applied to an actual parameter p within the parameter type, p is matched
against the decomposer to yield an environment in which the body expression is evaluated.

Properties

In a function expr the scope of the lambda parameter is expr.

The maximal type of a function expr is t1
∼→ acc t2, where t1 is the maximal type of the

lambda parameter, t2 is the maximal type of the expr and acc is a description of which variables
and channels the expr accesses.

The maximal type of an lambda parameter is given for each of its alternatives.

The maximal type of a lambda typing is Unit if there is no typing-list present else it is the
maximal type of the typing the typing-list is a shorthand for.

A function expr does not access any variables or channels.

7.10 Application expressions

Syntax

application expr ::=

RAISE/CRI/DOC/2/V1

86 Expressions

list or map or function-expr actual function parameter-string

actual function parameter ::=
(opt-expr-list)

Meaning

The effect of an application expression is obtained by applying a function, a map or a list to an
actual parameter.

An application of the form where there is only one actual function parameter:

expr actual function parameter

represents the application of a function, map or list to an actual parameter. The expression
and actual function parameter are evaluated to return respectively an applicable value and an
actual parameter. The actual parameter is the value returned by the optional expression list
evaluated as a product.

In the case the applicable value is a:

• function – this is just applied to the actual parameter.

• map – the returned value is non-deterministically chosen between those mapped to by the
actual parameter in the map. If the actual parameter maps to no values in the map , the
application defaults.

• list – the actual parameter must be a positive number between one and the length of the
list. In that case, the list element at that position becomes the value returned. In case
the actual parameter does not indicate a position in the list, the application diverges.

An application expression of the form

expr actual function parameter1 ... actual function parametern

is equivalent to

(...(expr actual function parameter1)...) actual function parametern

RAISE/CRI/DOC/2/V1

Expressions 87

Properties

The properties of an application expr are given for the case, where there is only one actual function parameter.
The properties for the case where there are more than one actual function parameter is given by
the properties of its equivalent application expr (see above).

The maximal type of an application expr is determined by the maximal type of the constituent
expr. If this is:

• a function type, t1
∼→ acc t2, then it is the result type, t2,

• list type, tω, then it is the element type, t,

• a map type, t1 →m t2, then it is the range type t2.

An application expr accesses any of the variables and channels which the constituent expr and
actual function parameter access and if the expr has a maximal type which is a function type,
t1

∼→ acc t2, then also any of the variables and channels which the function body accesses as
described in acc.

Context conditions

The context conditions of an application expr are given for the case, where there is only one
actual function parameter. The context conditions for the case where there are more than one
actual function parameter is given by the context conditions of its equivalent application expr (see
above).

In an application expr the maximal type of the expr must be a function type, a list type or a
map type. Furthermore, if the maximal type of the expr is:

• a function type, t1
∼→ acc t2, then the maximal type of the actual function parameter must

be less than or equal to the type t1

• a list type, tω, then the maximal type of the actual function parameter must be equal to
Int

• a map type, t1 →m t2, then the maximal type of the actual function parameter must be less
than or equal to the type t1

In an application expr the following constructs must access the state independently and at most
one of them may offer a communication: the expr and the actual function parameter and if the
expr has a maximal type which is a function type, t1

∼→ acc t2, then also the function body (the
access of which is described in acc).

RAISE/CRI/DOC/2/V1

88 Expressions

In an actual function parameter the constituent exprs must access the state independently and
at most one of them may offer a communication.

7.11 Quantified expressions

Syntax

quantified expr ::=
quantifier typing-list restriction

quantifier ::=
∀ |
∃ |
∃!

Meaning

The effect of a quantified expression is to return a boolean value depending on the value returned
by a predicate for each environment in a set of environments. The typing list represents a set
of environments. In case the quantifier is:

∀ , the returned value is true iff. the restriction holds for all the environments.

∃ , the returned value is true iff. the restriction holds for at least one of the environments.

∃! , the returned value is true iff. the restriction holds for exactly one of the environments.

A quantified expression is convergent and deterministic.

Properties

In a quantified expr the scope of the constituent typings is the restriction.

The maximal type of a quantified expr is Bool.

A quantified expr reads any of the variables and channels which the constituent restriction reads.

RAISE/CRI/DOC/2/V1

Expressions 89

7.12 Equivalence expressions

Syntax

equivalence expr ::=
expr ≡ expr opt-pre condition

Meaning

The effect of an equivalence expr is to return a boolean value that depends on whether the two
exprs yield the same effect, when each is evaluated in the current state. The returned value is
true if and only if at least one of the following two conditions are satisfied

• The pre condition, if present, does not hold.

A pre condition holds in a given state if the constituent expr is convergent and deterministic
and returns the value true.

• The equivalence holds.

The equivalence holds if and only if the first expr evaluated in the current state represents
exactly the same effect as the second expr evaluated in the same state. That is, the two
exprs must represent the same effect concerning non-determinism, state-modification, ex-
ternal communication and returned value, but also the same effect concerning divergence,
deadlock and defaulting.

An equivalence expr is convergent and deterministic.

Properties

The maximal type of an equivalence expr is Bool.

An equivalence expr reads any of the variables which the constituent exprs read.

Context conditions

The maximal types of the the constituent exprs must have a least upper bound.

RAISE/CRI/DOC/2/V1

90 Expressions

7.13 Post expressions

Syntax

post expr ::=
expr post condition opt-pre condition

Meaning

The effect of a post expr is to return a boolean value that depends on the effect of expr when
evaluated in the current state, the pre-state. The effect of expr is only used to determine this
boolean value and is ignored thereafter.

The value returned by the post expr is true if and only if one or more of the following conditions
are satisfied

• The pre condition, if pressent, does not hold in the pre-state. A pre condition holds in a
given state if the constituent expr is convergent and deterministic and returns the value
true.

• The subtype constraints on variables are not satisfied in the pre-state.

• Inputs performed within expr do not satisfy subtype constraints on channels.

• The post condition holds.

The post condition holds if and only if all of the following conditions are satisfied

• The expr is total.

• Any outputs performed within expr satisfy the subtype constraints on the channels.

• If expr terminates:

– the returned state, the post-state, satisfies the subtype constraints on the variables,

– the value returned – matched against the post condition result naming if present – and
the post-state make the post-condition expr hold: it is convergent and deterministic
and returns the value true.
Within the post-condition expr, variables in the pre-state can be referred to by suffix-
ing them with a hook (pre name). Variables of the post-state are accessed through
their normal (un-hooked) names.

A post expr is convergent and deterministic.

RAISE/CRI/DOC/2/V1

Expressions 91

Properties

The maximal type of a post expr is Bool.

The maximal context type for the post condition is the maximal type of the constituent expr.

A post expr reads any of the variables or channels which the constituent expr reads.

7.14 Disambiguation expressions

Syntax

disambiguation expr ::=
expr : type expr

Meaning

The effect of a disambiguation expression is the effect of the constituent expression. Due to
overloading the constituent expression may represent many values with different types. The
type expression identifies exactly one of these values.

Properties

The maximal type of a disambiguated expr is the maximal type of the type expr.

A disambiguated expr accesses any of the variables and channels which the constituent expr
accesses.

Context conditions

The maximal type of the expr must be less than or equal to the maximal type of the type expr.

7.15 Bracketted expressions

Syntax

bracketted expr ::=

RAISE/CRI/DOC/2/V1

92 Expressions

(expr)

Meaning

The effect of a bracketted expression is the effect of the constituent expression.

7.16 Infix expressions

Syntax

infix expr ::=
stmt infix expr |
axiom infix expr |
value infix expr

7.16.1 Statement infix expressions

Syntax

stmt infix expr ::=
expr infix combinator expr

Meaning

See the definition of infix combinators.

Properties

For the infix combinator being

debc, de: the maximal type of the stmt infix expr is the least upper bound of the maximal types of
the constituent exprs.

‖, –‖: the maximal type of the stmt infix expr is Unit.

; : the maximal type of the stmt infix expr is the maximal type of the second constituent expr.

RAISE/CRI/DOC/2/V1

Expressions 93

A statement infix expr accesses any of the variables and channels which the two constituent exprs
access.

Context conditions

For the infix combinator being

debc, de: the maximal types of the two exprs must have a least upper bound.

‖, –‖: the two exprs must have the maximal type Unit and must be parallelizable.

; : the first expr must have the maximal type Unit.

7.16.2 Axiom infix expressions

Syntax

axiom infix expr ::=
logical-expr infix connective logical-expr

Meaning

See the definition of infix connectives.

Properties

The maximal type of an axiom infix expr is Bool.

An axiom infix expr accesses any of the variables and channels which the two constituent exprs
access.

Context conditions

The two exprs must have the maximal type Bool.

RAISE/CRI/DOC/2/V1

94 Expressions

7.16.3 Value infix expressions

Syntax

value infix expr ::=
expr infix op expr

Meaning

The effect of a value infix expression is to return the value obtained by applying the infix
operator to a pair of values. Each of the constituent expressions are evaluated to return the
values v1 – the value of the first constituent expression – and v2 – the value of the second
constituent expression. The infix operator is then applied to the pair (v1, v2).

Properties

The maximal type of a value infix expr is the result type part of the maximal type of the infix op.

A value infix expr accesses any of the variables and channels which the two constituent exprs
access and any of the variables and channels which the function body accesses as described in
the access description part of the maximal type of the infix op.

Context conditions

The type t1 × t2, where t1 and t2 are the maximal types of the two exprs, must be less than or
equal to the parameter type part of the maximal type of the infix op. The two exprs and the
function body (the access of which is described in the access description part of the maximal
type of the infix op) must access the state independently and at most one of them may offer a
communication.

7.17 Prefix expressions

Syntax

prefix expr ::=
axiom prefix expr |
value prefix expr

RAISE/CRI/DOC/2/V1

Expressions 95

7.17.1 Axiom prefix expressions

Syntax

axiom prefix expr ::=
prefix connective logical-expr

Meaning

See the definition of prefix connectives.

Properties

The maximal type of an axiom prefix expr is Bool.

An axiom prefix expr does not access any variables or channels if the prefix connective is 2, else
it accesses any of the variables and channels which the constituent expr accesses.

Context conditions

The expr must have the maximal type Bool.

If the constituent prefix connective is 2 then the constituent expr must be readonly.

7.17.2 Value prefix expressions

Syntax

value prefix expr ::=
prefix op expr

Meaning

The effect of a value prefix expression is to return the value obtained by applying the prefix
operator to the value returned by the constituent expression.

RAISE/CRI/DOC/2/V1

96 Expressions

Properties

The maximal type of a value prefix expr is the result type part of the maximal type of the
prefix op.

A value prefix expr accesses any of the variables and channels which the constituent expr accesses
and any of the variables and channels which the function body accesses as described in the access
description part of the maximal type of the prefix op.

Context conditions

The maximal type of the expr must be less than or equal to the parameter part of the maximal
type of the prefix op.

The expr and the function body (the access of which is described in the access description part
of the maximal type of the prefix op) must access the state independently and at most one of
them may offer a communication.

7.18 Comprehended expressions

Syntax

comprehended expr ::=
associative commutative-infix combinator { expr | set limitation }

Meaning

The effect of a comprehended expression is obtained by applying a binary infix combinator to a
set of expressions instead of to just two expressions. This has the straight-forward explanation
since the infix combinators possible here are all commutative and associative:

debc de ‖

The set contains an expression for each environment in the set of environments represented by
the set limitation. The expression is evaluated in that environment and in the current state.

In the case the set contains a single expression, the comprehended expression represents the
same effect as the expression. In the case the set is empty we have:

RAISE/CRI/DOC/2/V1

Expressions 97

debc {} ≡ stop
de {} ≡ swap
‖ {} ≡ skip

Properties

In a comprehended expr the scope of the set limitation extends to the expr.

The maximal type of a comprehended expr is the maximal type of the expr.

A comprehended expr accesses any of the variables and channels which the constituent expr and
set limitation access.

Context conditions

The infix combinator must be associative and commutative, that is, it must be one of the fol-
lowing: ‖, debc, de .

For the infix combinator, ‖, the expr must have the maximal type Unit.

7.19 Initialise expressions

Syntax

initialise expr ::=
opt-qualification initialise

Meaning

The effect of an initialise expression is to re-assign to selected variables their initial values. The
value returned by the initialise expression is the unit value. The initial value of a variable is
given in connection with its definition.

In case the qualification is absent, all variables introduced by the innermost enclosing model
are initialised, except that initialisations within schemes refer to the model at the point of
instantiation, not that at the point of definition.

In the case the qualification is present, it represents a model. All the variables in that model
are then initialised.

RAISE/CRI/DOC/2/V1

98 Expressions

Properties

The maximal type of an initialise expr is Unit.

An initialise expr writes to all variables initialised by it.

7.20 Assignment expressions

Syntax

assignment expr ::=
variable-name := expr

Meaning

The effect of an assignment expression is to assign the value of the constituent expression to
the variable represented by the name. The value returned by the assignment expression is the
unit value.

Properties

The maximal type of an assignment expr is Unit.

An assignment expr writes to the variable represented by the constituent name and accesses
any of the variables or channels which the constituent expr accesses.

Context conditions

The name must represent a variable.

The maximal type of the expr must be less than or equal to the maximal type of the name.

7.21 Input expressions

Syntax

input expr ::=

RAISE/CRI/DOC/2/V1

Expressions 99

channel-name ?

Meaning

The effect of an input expression is to offer an input communication from the channel represented
by the name. The value returned by the input expression is the value input from the channel.

Properties

The maximal type of an input expr is the maximal type of the constituent name.

An input expr inputs from the channel represented by the constituent name.

Context conditions

The name must represent a channel.

7.22 Output expressions

Syntax

output expr ::=
channel-name ! expr

Meaning

The effect of an output expression is to offer an output communication to the channel repre-
sented by the name, of the value returned by the constituent expression. The value returned
by the output expression is the unit value.

Properties

The maximal type of an output expr is Unit.

An output expr outputs to the channel represented by the constituent name and accesses any of
the variables or channels which the constituent expr accesses.

RAISE/CRI/DOC/2/V1

100 Expressions

Context conditions

The name must represent a channel.

The maximal type of the expr must be less than or equal to the maximal type of the name.

7.23 Structured expressions

Syntax

structured expr ::=
local expr |
let expr |
if expr |
case expr |
for expr |
while expr |
until expr

7.23.1 Local expressions

Syntax

local expr ::=
local opt-decl-string in expr end

Meaning

The effect of a local expression is the effect of the constituent expression evaluated in the
scope of the declarations. The names defined by the declarations may be under-specified thus
resulting in a set of environments. A non-deterministic choice is made between the effects
of evaluating the constituent expression in these environments. The local expression is thus
capable of introducing non-determinism.

If the constituent expression offers a communication via a locally declared channel to the outside
world, the local expression deadlocks.

RAISE/CRI/DOC/2/V1

Expressions 101

Properties

The scope of the opt-decl-string is opt-decl-string itself and the expr. Note, that this means that
the order of the definitions in the opt-decl string is indifferent.

The maximal type of a local expr is the maximal type of the expr.

A local expr accesses any of the non-local variables and channels (i.e. variables and channels
not defined in the opt-decl-string) which the expr accesses.

7.23.2 Let expressions

Syntax

let expr ::=
let let def-list in expr end

let def ::=
typing |
explicit let |
implicit let

explicit let ::=
let binding = expr

implicit let ::=
single typing restriction

let binding ::=
binding |
record pattern |
list pattern

Meaning

The effect of a let expression is the effect of the constituent expression evaluated in the scope
of the definitions occurring in the let definition list. A let expression – with only a single let
definition – of the form

let let def in
expr

end

RAISE/CRI/DOC/2/V1

102 Expressions

defines through the let-definition local names to be visible only within the constituent expres-
sion. The names defined by the let-definition may be under-specified thus resulting in a set of
environments. A non-deterministic choice is made between the effects of evaluating the con-
stituent expression in these environments. The let expression is thus capable of introducing
non-determinism.

There are three kinds of let-definitions.

• A let-definition of the form of a typing represents the set of environments represented by
the typing.

• A let-definition of the form of an implicit let represents a subset of the environments that
the single typing represents: those that makes the restriction hold.

• A let-definition of the form of an explicit let represents the set of environments obtained
as follows. The expression is evaluated to return a value which is then matched against
the let-binding resulting in a set of environments.

A let expression involving more than one let definition is a shorthand for a number of nested
let expressions with single let definitions. That is, a let expression of the form

let let def1, ... ,let defn in
expr

end

is a shorthand for

let let def1 in
...

let let defn in
expr

end
...

end

Properties

In a let expr of the form

let let def1, ... ,let defn in
expr

end

RAISE/CRI/DOC/2/V1

Expressions 103

the scope of let defi (1 ≤ i ≤ n) is expr and all let defj for j > i.

The maximal type of a let expr is the maximal type of the expr.

In an explicit let the maximal context type of the let binding is the maximal type of the expr.

A let expr accesses any of the variables and channels which the constituent let defs and expr
access.

A typing does not access any variables or channels.

An explicit let accesses any of the variables and channels which the constituent expr accesses.

An implicit let reads any of the variables which the constituent restriction reads.

7.23.3 If expressions

Syntax

if expr ::=
if logical-expr then

expr
opt-elsif branch-string
opt-else branch
end

elsif branch ::=
elsif logical-expr then expr

else branch ::=
else expr

Meaning

The effect of an if expression is to determine the applicable alternative followed by the effect of
that alternative. An if expression of the form

if expr1 then expr2 else expr3 end

is evaluated by evaluating the first constituent expression to return a boolean value – the
test value. If the test value is equal to true, the second constituent expression is evaluated.
Alternatively, if the test value is equal to false the third constituent expression is evaluated.

RAISE/CRI/DOC/2/V1

104 Expressions

An if expression involving elsif-branches is a shorthand for a number of nested if expressions
without elsif-branches. An if expression of the form

if expr1 then expr1′
elsif expr2 then expr2′
...
elsif exprn then exprn ′
opt else branch
end

is a shorthand for

if expr1 then expr1′ else
if expr2 then expr2′ else

...
if exprn then exprn ′ opt else branch end

...
end

end

An if expression of the form

if expr1 then expr2 end

is a shorthand for

if expr1 then expr2 else skip end

Properties

The maximal type of an if expr is the least upper bound of the maximal type of the second
constituent expr and all the constituent branches.

The maximal type of an else if branch is the maximal type of second constituent expr.

The maximal type of an else branch is the maximal type of the constituent expr.

An if expr accesses any of the variables and channels which the constituent exprs and branches
access.

RAISE/CRI/DOC/2/V1

Expressions 105

An elsif branch accesses any of the variables and channels which the constituent exprs access.

An else branch accesses any of the variables and channels which the constituent expr accesses.

Context conditions

In an if expr the first expr must have the maximal type Bool. The maximal types of the second
expr and all the constituent branches must have a least upper bound.

In an else if branch the first expr must have the maximal type Bool.

7.23.4 Case expressions

Syntax

case expr ::=
case expr of case branch-list end

case branch ::=
pattern → expr

Meaning

The effect of a case expression is to evaluate the constituent expression, determine the matching
case branch and then to evaluate the expression part of that case branch.

The constituent expression is evaluated to return a value – the test value. Then the case
branches are processed from left to right until the test value succeedes to match a pattern.
The successful pattern matching then results in a set of environments. The corresponding
expression in the matching case branch is then evaluated in each of these environments and a
non-deterministic choice is made between the resulting effects.

If there is no matching case branch, the whole case expression defaults.

Properties

In a case branch the scope of the pattern is the expr.

The maximal type of a case expr is the least upper bound of the maximal types of the exprs in

RAISE/CRI/DOC/2/V1

106 Expressions

the constituent case branches.

In a case expr the maximal context type of the patterns in the case branches is the maximal type
of the expr.

A case expr accesses any of the variables and channels which the constituent expr and case branches
access.

A case branch accesses any of the variables and channels which the constituent expr accesses.

Context conditions

In a case expr the maximal types of the exprs in the constituent case branches must have a least
upper bound.

7.23.5 For expressions

Syntax

for expr ::=
for list limitation do unit-expr end

Meaning

The effect of a for expression is to repeat the evaluation of the constituent expression for each
element of a list value. For each environment in the list of environments represented by the list
limitation – processed from left to right – the constituent expression is evaluated. The value
returned by the for expression is the unit value.

Properties

In a for expr the scope of the list limitation extends to the expr.

The maximal type of a for expr is Unit.

A for expr accesses any of the variables and channels which the constituent list limitation and
expr access.

RAISE/CRI/DOC/2/V1

Expressions 107

Context conditions

The expr must have the maximal type Unit.

7.23.6 While expressions

Syntax

while expr ::=
while logical-expr do unit-expr end

Meaning

The effect of a while expression is to repeat the evaluation of the second constituent expression
while the first boolean constituent expression evaluates to true. The value returned by the
while expression is the unit value.

A while expression of the form

while expr1 do expr2 end

is equivalent to

if expr1 then
expr2 ; while expr1 do expr2 end

else
skip

end

Properties

The maximal type of a while expr is Unit.

A while expr accesses any of the variables and channels which the constituent exprs access.

RAISE/CRI/DOC/2/V1

108 Expressions

Context conditions

The first expr must have the maximal type Bool. The second expr must have the maximal type
Unit.

7.23.7 Until expressions

Syntax

until expr ::=
do unit-expr until logical-expr end

Meaning

The effect of an until expression is to repeat the evaluation of the first constituent expression
until the second boolean constituent expression evaluates to true. The value returned by the
until expression is the unit value.

An until expression of the form

do expr1 until expr2 end

is a shorthand for

expr1 ; while ∼expr2 do expr1 end

Properties

The maximal type of an until expr is Unit.

An until expr accesses any of the variables and channels which the constituent exprs access.

Context conditions

The first expr must have the maximal type Unit. The second expr must have the maximal type
Bool.

RAISE/CRI/DOC/2/V1

Expressions 109

7.24 Expression lists

Meaning

An expression list is evaluated either as a product or as a list.

• The effect of an expression list evaluated as a product is to return a value obtained as
follows.

The value of an expression list containing a single expression:

expr

is the value returned by the expression. The value of an expression list containing more
than one expression:

expr1, ... ,exprn

is obtained by evaluating each expression expri to yield a resulting value vi and then
forming the product value:

(v1, ... ,vn)

An optional expression list is evaluated as follows. If the expression list is absent, the
resulting value is the unit value ‘()’ of type Unit. If the expression list is present, the
resulting value is the resulting value of the expression list evaluated as a product.

• The effect of an expression list evaluated as a list is to return a list obtained as follows.

The resulting value of an expression list containing a single expression:

expr

is the one-element list containing the resulting value of the expression. The value of an
expression list containing more than one expression:

expr1, ... ,exprn

is obtained by evaluating each expression expri to yield a resulting value vi and then
forming the list value:

〈v1, ... ,vn〉

An optional expression list is evaluated as follows. If the expression list is absent, the
resulting value is the empty list. If the expression list is present, the resulting value is the
resulting value of the expression list evaluated as a list.

RAISE/CRI/DOC/2/V1

110 Expressions

RAISE/CRI/DOC/2/V1

Bindings 111

8 Bindings

Syntax

binding ::=
id or op |
product binding

product binding ::=
(binding-list2)

Terminology

An environment is a mapping from identifiers and operators to values. One environment env1

can be overwritten with another environent env2 using †. That is, the environment resulting
from

env1 † env2

is equal to env2 for all the identifiers and operators for which env2 is defined. For identifiers
and operators only defined by env1 the resulting environment equals env1.

A decomposer is a mapping from values to environments. Matching a value against a decomposer
means to apply the decomposer to the value and thus obtain an environment.

Meaning

A binding represents a decomposer. In the below explanation we shall use the convention of
writing

b(v)

for the environment obtained by matching the value v against the (decomposer represented by
the) binding b.

The environment obtained by matching the value v against a binding is defined as follows. In
case the binding is

• an id or op then the environment obtained is

RAISE/CRI/DOC/2/V1

112 Bindings

[id or op 7→ v]

• a product binding of the form

(binding1, ... ,bindingn)

then v must be a product value of the form

(v1, ... ,vn)

and the resulting environment is

binding1(v1) † ... † bindingn(vn)

Properties

The context of a binding determines a maximal context type for the binding. For constructs
containing bindings, this maximal context type is stated.

An id or op being a binding has as maximal type the maximal context type of the binding.

In a product binding of the form (b1, ..., bn) having a context type of the form t1 × ... × tn ,
the maximal context types of the constituent bindings b1, ..., bn are t1, ..., tn , respectively.

Context conditions

The maximal context type of a product binding must be a product type of the same length as
the binding-list2. The names introduced in the constituent bindings must be distinct unless they
have distinguishable maximal types.

RAISE/CRI/DOC/2/V1

Typings 113

9 Typings

Syntax

typing ::=
single typing |
multiple typing

single typing ::=
binding : type expr

multiple typing ::=
binding-list2 : type expr

Meaning

The basic form of typing is the single typing. All multiple typings and typing lists are shorthands
for single typings. A single typing represents

• a type t – represented by the type expression.

• a decomposer d – represented by the binding – against which a value can be matched to
yield an environment.

• a set of environments – obtained by applying the decomposer to each value in the type:

{d(v) | v ∈ t}

A multiple typing of the form

binding1, ... ,bindingn : type expr

is a shorthand for the single typing

(binding1, ... ,bindingn) : type expr × ... × type expr

where the product type expression has length n.

A typing list of the form

RAISE/CRI/DOC/2/V1

114 Typings

binding1 : type expr1, ... ,bindingn : type exprn

is a shorthand for a single typing

(binding1, ... ,bindingn) : type expr1 × ... × type exprn

A typing list involving multiple typings is first re-written by re-writing the multiple typings into
single typings.

An optional typing list where the typing list is present, represents the type and decomposer
represented by the typing list. In case the typing list is absent, the type and decomposer are
as follows:

• the type is Unit.

• the decomposer is the wildcard decomposer which when matched against a value yields
the empty environment.

Properties

The maximal type of a single typing is the maximal type of the type expr.

The maximal type of a multiple typing is the maximal type of the single typing it is a shorthand
for.

In a typing the maximal context type of the constituent bindings is the maximal type of the
constituent type expr.

Context conditions

In a multiple typing the names introduced in the constituent bindings must be distinct unless
they have distinguishable maximal types.

RAISE/CRI/DOC/2/V1

Patterns 115

10 Patterns

Syntax

pattern ::=
value literal |
pure value-name |
wildcard pattern |
product pattern |
record pattern |
list pattern

Terminology

A pattern has two roles:

• To control, in conditional contexts, the choice between alternatives on the basis of pattern
matching.

• To provide names for the constituent parts of compound values.

Matching a value against a pattern yields either failure or success. In the case of success the
result of the matching is a set of environments, each mapping identifiers and operators occurring
in the pattern into constituent parts of the value.

The fact that the result of a successful pattern matching is a set (of environments) is due to
record patterns that may introduce non-deterministic decomposition of compound values.

In the following explanation of patterns we shall use the convention of writing

p(v)

for the set of environments obtained by the successful matching of the value v against the
pattern p.

For each pattern kind, the criteria for match success is given together with the resulting envi-
ronments in case of match success. The value matched against the pattern will be referred to
as the test value.

RAISE/CRI/DOC/2/V1

116 Patterns

Properties

The context of a pattern determines a maximal context type for the pattern. For constructs
containing patterns, this maximal context type is stated.

10.1 Value literals

Meaning

• match success: The value literal must be equal to the test value.

• resulting environment set: {[]}

Context conditions

The maximal type of a value literal considered as an expr must be less than or equal to the
maximal context type of the value literal.

10.2 Names

Meaning

• match success: The value represented by the name must be equal to the test value.

• resulting environment set: {[]}

Context conditions

For a pattern being a name, the name must represent a value.

The maximal type of the name must be less than or equal to the maximal context type of the
pattern.

10.3 Wildcard patterns

Syntax

wildcard pattern ::=

RAISE/CRI/DOC/2/V1

Patterns 117

Meaning

• match success: All values match a wildcard pattern.

• resulting environment set: {[]}

10.4 Product patterns

Syntax

product pattern ::=
(pattern-list2)

Meaning

• match success: If the product pattern is of the form

(pattern1, ... ,patternn)

then the test value must be a product value of the form

(v1, ... ,vn)

and each vi must additionally match the corresponding pattern patterni .

• resulting environment set:

{environment1 † ... † environmentn |
environment1 ∈ pattern1(v1)
∧ ... ∧
environmentn ∈ patternn(vn)}

Properties

In a product pattern of the form (pattern1, ..., patternn) having a maximal context type of the
form t1 × ... × tn , the maximal context type of the constituent patterns pattern1, ..., patternn

is t1, ..., tn , respectively.

RAISE/CRI/DOC/2/V1

118 Patterns

Context conditions

The maximal context type of a product pattern must be a product type of the same length as
the pattern-list2.

The names introduced in the constituent patterns must be distinct unless they have distinguish-
able maximal types.

10.5 Record patterns

Syntax

record pattern ::=
pure value-name component patterns

component patterns ::=
(inner pattern-list)

inner pattern ::=
binding |
wildcard pattern

Meaning

• match success: The name must represent a function c:

c : t0
∼→ t

where t is the type of the test value. Let v be the test value, then there must exist at
least one value v0 : t0 such that:

c(v0) = v

By this is meant that c when applied to v0 is converging and deterministically returning
the value v .

• resulting environment set: Let cp be the component pattern, the meaning of which is
described below. The resulting set of environments is thus:

{ cp(v0) | v0 ∈ t0 ∧ c(v0) = v }

RAISE/CRI/DOC/2/V1

Patterns 119

Component patterns are deterministic since they cannot involve record patterns. When a value
is matched against a component pattern, the result is thus a single environment.

The environment resulting from matching a value against a component pattern of the form

(inner pattern)

is the environment obtained by matching the value against the inner pattern.

The environment resulting from matching a value of the form

(v1, ... , vn)

against a component pattern of the form

(inner pattern1, ... ,inner patternn)

is

inner pattern1(v1) † ... † inner patternn(vn)

The environment resulting from matching a value against an inner pattern with the form of a
binding is the environment obtained by matching the value against the binding.

The environment resulting from matching a value against an inner pattern with the form of a
wildcard pattern is the empty environment.

Properties

In a record pattern the maximal context type of the component patterns is the domain part of
the maximal type of the name.

In a component pattern of the form (p1, ..., pn) having a maximal context type of the form
t1 × ... × tn , the maximal context types of the constituent inner patterns p1, ..., pn is t1, ...,
tn , respectively.

In a component pattern of the form (p) having a context type t the maximal context type of
the constituent inner pattern p is t.

RAISE/CRI/DOC/2/V1

120 Patterns

Context conditions

In a record pattern the name must represent a value and have a maximal type which is a function
type. The result type part of this type must be less than or equal to the maximal context type
of the record pattern.

In a component patterns the names introduced in the constituent inner patternss must be distinct
unless they have distinguishable maximal types. A component pattern of the form (p1, ..., pn)
, n>1, must have a maximal context type of the form t1 × ... × tn .

10.6 List patterns

Syntax

list pattern ::=
constructed list pattern |
left list pattern |
right list pattern |
left right list pattern

Context conditions

The maximal context type of a list pattern must be a list type.

10.6.1 Constructed list patterns

Syntax

constructed list pattern ::=
〈 opt-inner pattern-list 〉

Meaning

• match success: When the constructed list pattern is of the form

〈inner pattern1, ... ,inner patternn〉

the test value must be a list of the form

RAISE/CRI/DOC/2/V1

Patterns 121

〈v1, ... ,vn〉

We shall refer to n as the length of the constructed list pattern. The criteria for match
success can thus be re-formulated as ”the length of the test value must be equal to the
length of the constructed list pattern”.

• resulting environment set:

{inner pattern1(v1) † ... † inner patternn(vn)}

Properties

The maximal context type of each of the constituent inner patterns is the element part of the
maximal context type of the constructed list pattern.

Context conditions

The names introduced in the constituent inner patternss must be distinct unless they have
distinguishable maximal types.

10.6.2 Left list patterns

Syntax

left list pattern ::=
constructed list pattern ̂ id or wildcard

id or wildcard ::=
id |
wildcard pattern

Meaning

For an inner pattern we have

• match success: The test value must be a list and its length must be greater than or equal
to the length of the constructed list pattern. Thus if the left list pattern is of the form

〈inner pattern1, ... ,inner patternn〉 ̂ id or wildcard

RAISE/CRI/DOC/2/V1

122 Patterns

then the test value must be a list of the form

〈v1, ... ,vn〉 ̂ suffix

• resulting environment set:

{inner pattern1(v1) † ... † inner patternn(vn)
† id or wildcard(suffix)}

For an id or wild card pattern we have

• match success: All values match an id or wildcard pattern.

• resulting environment set:

Matching a value v against an id or wildcard pattern of the form of an id yields the
environment set

{ [id 7→ v] }

and of the form of a wildcard yields the environment set{[]}

Properties

In a left list pattern the maximal context type of the constituent constructed list pattern and
id or wildcard is the maximal context type of the left list pattern.

The maximal type of an id in an id or wildcard is the maximal context type.

Context conditions

The names introduced in the constructed list pattern and in id or wildcard must be distinct unless
they have distinguishable maximal types.

10.6.3 Right list patterns

Syntax

right list pattern ::=
id or wildcard ̂ constructed list pattern

RAISE/CRI/DOC/2/V1

Patterns 123

Meaning

• match success: The test value must be a finite list and its length must be greater than or
equal to the length of the constructed list pattern. Thus if the right list pattern is of the
form

id or wildcard ̂ 〈inner pattern1, ... ,inner patternn〉

then the test value must be of the form

prefix ̂ 〈v1, ... ,vn〉

• resulting environment set:

{id or wildcard(prefix) †
inner pattern1(v1) † ... † inner patternn(vn)}

Properties

In a right list pattern the maximal context type of the constituent constructed list pattern and
id or wildcard is the maximal context type of the right list pattern itself.

Context conditions

The names introduced in the constructed list pattern and in id or wildcard must be distinct unless
they have distinguishable maximal types.

10.6.4 Left right list patterns

Syntax

left right list pattern ::=
constructed list pattern ̂ id or wildcard ̂ constructed list pattern

Meaning

• match success: The test value must be a finite list and its length must be greater than or
equal to the sum of the lengths of the two constructed list patterns. Thus if the left right
list pattern is of the form

RAISE/CRI/DOC/2/V1

124 Patterns

〈inner pattern1,1, ... ,inner pattern1,n1〉
̂ id or wildcard ̂
〈inner pattern2,1, ... ,inner pattern2,n2〉

then the test value must be of the form

〈v1,1, ... ,v1,n1〉
̂ infix ̂
〈v2,1, ... ,v2,n2〉

• resulting environment set:

{
inner pattern1,1(v1,1) † ... † inner pattern1,n1(v1,n1)
† id or wildcard(infix) †
inner pattern2,1(v2,1) † ... † inner pattern2,n2(v2,n2)

}

Properties

In a left right list pattern the maximal context type of the constituent constructed list patterns
and id or wildcard is the maximal context type of the left right list pattern itself.

Context conditions

The names introduced in the constructed list patterns and in id or wildcard must be distinct
unless they have distinguishable maximal types.

RAISE/CRI/DOC/2/V1

Names 125

11 Names

Syntax

name ::=
qualified id |
qualified op

Meaning

A name represents an entity such as a scheme, object, type, value, variable or channel.

Properties

If a name represents a value, a variable, a channel or a type then it has an associated maximal
type.

11.1 Qualified identifiers

Syntax

qualified id ::=
opt-qualification id

qualification ::=
element-object expr .

Meaning

An un-qualified identifier represents the entity to which it has been bound by an enclosing
definition.

A qualified identifier represents the entity obtained by looking up the identifier in the model
represented by the qualification.

A qualification represents the model represented by the object expression.

RAISE/CRI/DOC/2/V1

126 Names

Properties

A qualified id represents the entity represented by the constituent id.

The maximal type of a qualified id representing a value, a variable, a channel or a type is the
maximal type of the constituent id.

In a qualified id the scope of a qualification is extended to the id, while all other definitions are
hidden there.

Context conditions

In a qualification the object expr must represent a model.

11.2 Qualified operators

Syntax

qualified op ::=
opt-qualification (op)

Meaning

An un-qualified operator in brackets represents a function value. The operator can either
be predefined or it can have been introduced in an enclosing definition. If the operator has
been introduced by a definition, the choice between predefined and defined version depends on
overload-resolution.

A qualified operator represents the function obtained by looking up the operator in the model
represented by the qualification.

The brackets turn the operator into a function that must be applied with prefix notation via
an application expression. Assume the prefix operator p op and the infix binary operator i op,
then the following equivalences hold:

p op expr ≡ (p op)(expr)

expr1 i op expr2 ≡ (i op)(expr1,expr2)

RAISE/CRI/DOC/2/V1

Names 127

Properties

A qualified op represents the value represented by the constituent op.

The maximal type of a qualified op is the maximal type of the constituent op.

In a qualified op in which a qualification is present the scope of this qualification is extended to
the op, while all other definitions are hidden there.

In a qualified op in which no qualification is present all predefined polymorphic meanings of
operators are hidden.

11.3 Identifiers and operators

Syntax

id or op ::=
id |
op

op ::=
infix op |
prefix op

Properties

Each occurrence of an identifier or operator (id, op or id or op) is either a defining or an applied
occurrence.

The following occurrences are defining occurrences:

• The id (or ids) occurring immediately within a scheme def, object def, axiom naming, vari-
able def, channel def, sort def variant def, union def, short record def, abbreviation def, sub-
type naming, prefix application, infix application and id or wildcard.

• The new id or op in a rename pair.

• The id or op occurring immediately within a constructor, destructor, reconstructor and
binding.

All other occurrences are applied occurrences.

RAISE/CRI/DOC/2/V1

128 Names

Each defining occurrence of an identifier or operator is part of a declarative construct that
represents at least a definition introducing this identifier or operator.

An applied occurrence of an identifier or operator is said to be visible if there is a visible
definition introducing it.

A legal applied occurrence of an identifier or operator has a corresponding definition (or inter-
pretation). There are three cases for an applied occurrence of an identifier or operator:

1. There is no visible definition introducing it, i.e. it is not visible. In that case the occurrence
is illegal, cf. the context condition below, and hence the identifier or operator has no
corresponding definition.

2. There is exactly one visible definition introducing it. This definition is the corresponding
definition of the identifier or operator.

3. There are two or more visible definitions introducing it. According to the visibility rules
and context conditions for declarative constructs this can only be the case for names
of values. In the section on overloading it is explained how to find the corresponding
definition in this case, if possible.

An applied occurrence of an identifier or operator represents the entity of its corresponding
definition.

For an identifier or operator representing a value, a variable, a channel or a type, its maximal
type is determined by its corresponding definition.

Note, that all operators have one or more predefined meanings which has the whole specification
as scope. A predefined meaning is said to be polymorphic if its type contains type variables.

Context conditions

An applied occurrence of an identifier and operator must be visible.

11.3.1 Infix operators

Syntax

infix op ::=
= |
6= |
> |

RAISE/CRI/DOC/2/V1

Names 129

< |
≥ |
≤ |
⊃ |
⊂ |
⊇ |
⊆ |
∈ |
6∈ |
+ |
− |
\ |
̂ |
∪ |
† |
∗ |
/ |
◦ |
∩ |
↑ |
$

Meaning

Below, the predefined meanings of the infix operators are stated.

The infix operators operate on pairs of values referred to as arguments. Some operators may
have pre-conditions that must hold for the arguments. When a pre-condition is violated the
result of the value infix expression is not well-defined.

The type T and subscripted versions of T occurring in the operator signatures are type variables
representing arbitrary types.

• Equal:

= : T × T → Bool

The result is true iff. the two arguments are equal.

• Not equal:

6= : T × T → Bool

The result is true iff. the two arguments are not equal.

RAISE/CRI/DOC/2/V1

130 Names

• Integer addition:

+ : Int × Int → Int

The result is the sum of the two integers.

• Real addition:

+ : Real × Real → Real

The result is the sum of the two reals.

• Integer subtraction:

− : Int × Int → Int

The result is the difference between the first integer and the second integer.

• Real subtraction:

− : Real × Real → Real

The result is the difference between the first real and the second real.

• Integer multiplication:

∗ : Int × Int → Int

The result is the product of the two integers.

• Real multiplication:

∗ : Real × Real → Real

The result is the product of the two reals.

• Integer exponentiation:

↑ : Int × Int ∼→ Real

Pre-condition: If the second integer is negative the first integer must be different from
zero (0).

The result is the first integer raised to the power of the second integer.

• Real exponentiation:

↑ : Real × Real ∼→ Real

RAISE/CRI/DOC/2/V1

Names 131

Pre-condition: If the second real is negative the first real must be different from zero (0).
If the second real is not a whole number the first real must be non-negative.

The result is the first real raised to the power of the second real.

• Function composition:

◦ : (T2
∼→ acc T3) × (T1

∼→ acc′ T2) → (T1
∼→ acc′′T3)

where acc” is the union of acc and acc’.

The result is the composition of the two functions defined as follows:

(expr1 ◦ expr2)(expr) ≡ expr1(expr2(expr))

• Map composition:

◦ : (T2 →m T3) × (T1 →m T2) → (T1 →m T3)

The result is the composition of the two maps defined as follows:

(expr1 ◦ expr2)(expr) ≡ expr1(expr2(expr))

• Integer division:

/ : Int × Int ∼→ Int

Pre-condition: The second integer must not be zero (0).

The absolute value (without sign) of the result is the number of times that the absolute
value of the second integer can be within the absolute value of the first integer. The sign
of the result is the traditional product of the signs of the arguments.

• Real division:

/ : Real × Real ∼→ Real

Pre-condition: The second real must not be zero (0).

The result is obtained by dividing the first real with the second real.

• Map restriction to:

/ : (T1 →m T2) × T1-infset → (T1 →m T2)

The result is the map with its domain limited to the elements of the set.

• Integer remainder:

RAISE/CRI/DOC/2/V1

132 Names

\ : Int × Int ∼→ Int

Pre-condition: The second integer must not be zero (0).

The absolute value of the result is the remainder after having divided the absolute value
of the second integer into the absolute value of the first integer. The sign of the result is
the sign of the first integer. This implies the following relation between integer division
and integer remainder. Let a and b be integers:

a = (a/b)∗b + (a\b)

• Set difference:

\ : T-infset × T-infset → T-infset

The result is the set of all elements which appear in the first set and not in the second.

• Map restriction with:

\ : (T1 →m T2) × T1-infset → (T1 →m T2)

The result is the map with the elements of the set removed from its domain.

• Integer greater than:

> : Int × Int → Bool

The result is true iff. the first integer is greater than the second integer.

• Real greater than:

> : Real × Real → Bool

The result is true iff. the first real is greater than the second real.

• Integer less than:

< : Int × Int → Bool

The result is true iff. the first integer is less than the second integer.

• Real less than:

< : Real × Real → Bool

The result is true iff. the first real is less than the second real.

• Integer greater than or equal to:

RAISE/CRI/DOC/2/V1

Names 133

≥ : Int × Int → Bool

The result is true iff. the first integer is greater than or equal to the second integer.

• Real greater than or equal to:

≥ : Real × Real → Bool

The result is true iff. the first real is greater than or equal to the second real.

• Integer less than or equal to:

≤ : Int × Int → Bool

The result is true iff. the first integer is less than or equal to the second integer.

• Real less than or equal to:

≤ : Real × Real → Bool

The result is true iff. the first real is less than or equal to the second real.

• Proper superset:

⊃ : T-infset × T-infset → Bool

The result is true iff. the second set is a proper subset of the first set. That is, it is a
subset of the first set but not equal to it.

• Proper subset:

⊂ : T-infset × T-infset → Bool

The result is true iff. the first set is a proper subset of the second set. That is, it is a
subset of the second set but not equal to it.

• Superset:

⊇ : T-infset × T-infset → Bool

The result is true iff. the second set is a subset of the first set.

• Subset:

⊆ : T-infset × T-infset → Bool

The result is true iff. the first set is a subset of the second set.

RAISE/CRI/DOC/2/V1

134 Names

• Within:

∈ : T × T-infset → Bool

The result is true iff. the first argument is a member of the set.

• Not within:

6∈ : T × T-infset → Bool

The result is true iff. the first argument is not a member of the set.

• Intersection:

∩ : T-infset × T-infset → T-infset

The result is the set containing all elements which appear in both of the two sets.

• Set union:

∪ : T-infset × T-infset → T-infset

The result is the set containing all elements which appear in one or both of the two sets.

• Map union:

∪ : (T1 →m T2) × (T1 →m T2) → (T1 →m T2)

The result is the map containing all the pairs of the first map and all the pairs of the
second map. Note that if the intersection of the domains of the two maps is not empty,
the union may lead to a non-deterministic map.

• List concatenation:

̂ : T∗ × Tω ∼→ Tω

The result is the concatenation of the two lists. That is, the list containing all the
elements of the two lists, ordered as in the two lists and with all the elements of the first
list appearing first.

• Map overwrite:

† : (T1 →m T2) × (T1 →m T2) → (T1 →m T2)

The result is the first map overwritten with the second map. Where the two maps have
common domain elements, the second map overwrites the first.

• Set distribution:

RAISE/CRI/DOC/2/V1

Names 135

$: (T × T ∼→ T) × T-set ∼→ T

Pre-condition: The function, say f , must be associative, be commutative and have exactly
one unit u such that:

∀ x : T • f(u,x) = x

The result is the value obtained by applying the function to ‘all the elements’ of the set
– pair-wise:

f $ s ≡
if s = {} then

u
else

let x : T • x ∈ s in
f(x,f $ s\{x})

end
end

The above definition of f applied to a set with more than one element depends on a
repeated non-deterministic choice of element from the set. This does, however, not make
the result non-deterministic since f is commutative and associative.

• List distribution:

$: (T × T ∼→ T) × T∗ ∼→ T

Pre-condition: The function, say f , must be associative and have exactly one right unit
u such that:

∀ x : T • f(x,u) = x

The result is the value obtained by applying the function to ‘all the elements’ of the list
– pair-wise – in order left to right:

f $ l ≡
if l = 〈〉 then

u
else

f(hd l,f $ (tl l))
end

RAISE/CRI/DOC/2/V1

136 Names

11.3.2 Prefix operators

Syntax

prefix op ::=
abs |
it |
rl |
card |
len |
inds |
elems |
hd |
tl |
front |
last |
dom |
rng

Meaning

Below, the predefined meanings of the prefix operators are stated.

The prefix operators operate on values (arguments). Some operators may have pre-conditions
that must hold for the argument. When a pre-condition is violated the result of the value prefix
expression is not well-defined.

The type T occurring in the operator signatures is a type variable representing an arbitrary
type.

• Absolute value of integer:

abs : Int → Nat

The result is the absolute value of the integer. That is, if the integer is negative, the
negated value is returned. The operator is the identity on non-negative integers.

• Absolute value of real:

abs : Real → Real

The result is the absolute value of the real. That is, if the real is negative, the negated
value is returned. The operator is the identity on non-negative reals.

RAISE/CRI/DOC/2/V1

Names 137

• Real to integer conversion:

it : Real → Int

The absolute value (without sign) of the result is the greatest integer that is smaller than
or equal to the absolute value of the real. the sign is the sign of the real.

• Integer to real conversion:

rl : Int → Real

The result is the identity on the argument, just changing its type.

• Cardinality of set:

card : T-set ∼→ Nat

The result is the number of elements in the set.

• Length of list:

len : T∗ → Nat

The result is the length of the list.

• Indices of list:

inds : Tω → Nat-infset

The result is the set of indices in the list. Let f list be a finite list and let i list be an
infinite list, then:

inds f list = {n | n : Nat • n ≥ 1 ∧ n ≤ len f list}

inds i list = {n | n : Nat • n ≥ 1}

• Elements of list:

elems : Tω → T-infset

The result is the set of elements of the list.

• Head of list:

hd : Tω ∼→ T

RAISE/CRI/DOC/2/V1

138 Names

Pre-condition: The list must be non-empty.

The result is the first element in the list.

• Tail of list:

tl : Tω → Tω

The result is the list which remains after removing the first element if present. The
operator is the identity on the empty list.

• Front of list:

front : T∗ → T∗

The result is the list which remains after removing the last element if present. The
operator is the identity on the empty list.

• Last of list:

last : T∗ ∼→ T

Pre-condition: The list must be non-empty.

The result is the last element of the list.

• Domain of map:

dom : (T1 →m T2) → T1-infset

The result is the domain of the map: the values for which it is defined.

• Range of map:

rng : (T1 →m T2) → T2-infset

The result is the range of the map: the values that can be obtained by applying the map
to the values in its domain.

RAISE/CRI/DOC/2/V1

Infix combinators 139

12 Infix combinators

Syntax

infix combinator ::=
debc |
de |
‖ |
–‖ |
;

Meaning

The infix combinators are intended to compose expressions that either communicate or at least
have side-effects on variables. Some simple proof-rules are associated with each combinator in
order to clarify its semantics.

• External Choice:

expr1 debc expr2

An external choice is made between the effects of the two expressions. That is, the possible
effect of a concurrently executing third expression can influence the choice.

External choice has unit stop, has zero chaos, is idempotent, is commutative, is associa-
tive, and is distributive through internal choice:

expr debc stop ≡
expr

expr debc chaos ≡
chaos

expr debc expr ≡
expr

expr1 debc expr2 ≡
expr2 debc expr1

expr1 debc (expr2 debc expr3) ≡
(expr1 debc expr2) debc expr3

expr1 debc (expr2 de expr3) ≡
(expr1 debc expr2) de (expr1 debc expr3)

RAISE/CRI/DOC/2/V1

140 Infix combinators

• Internal choice:

expr1 de expr2

An internal – non-deterministic – choice is made between the effects of the two expressions.
That is, the possible effect of a concurrently executing third expression cannot influence
the choice.

Internal choice has unit swap, has zero chaos, is idempotent, is commutative, and is
associative:

expr de swap ≡
expr

expr de chaos ≡
chaos

expr de expr ≡
expr

expr1 de expr2 ≡
expr2 de expr1

expr1 de (expr2 de expr3) ≡
(expr1 de expr2) de expr3

• Concurrent composition:

expr1 ‖ expr2

The two expressions are made to execute concurrently with another. The two expressions
can communicate through channels: one expression inputs from a channel which is output
to by the other expression.

Concurrent attempts to input from a channel and to output to the channel does, however,
not necesarily lead to a communication. Whether it does, depends on an internal choice.
The two expressions can thus communicate with a third expression which is concurrently
composed with the two.

Concurrent composition has unit skip, has zero chaos, is commutative, is associtive, and
is distributive through internal choice:

expr ‖ skip ≡
expr

expr ‖ chaos ≡
chaos

RAISE/CRI/DOC/2/V1

Infix combinators 141

expr1 ‖ expr2 ≡
expr2 ‖ expr1

expr1 ‖ (expr2 ‖ expr3) ≡
(expr1 ‖ expr2) ‖ expr3

expr1 ‖ (expr2 de expr3) ≡
(expr1 ‖ expr2) de (expr1 ‖ expr3)

The following two equivalences hold if the expression s expr is a total one which also does
not involve communication and if c1 6= c2.

x:=c1? ‖ c2!s expr ≡
(x:=c1? ; c2!s expr) debc (c2!s expr ; x:=c1?)

x:=c? ‖ c!s expr ≡
(((x:=c? ; c!s expr) debc (c!s expr ; x:=c?)) debc (x:=s expr)) de (x:=s expr)

These are special cases of a more general law.

• Interlocked composition:

expr1 –‖ expr2

The two expressions are made to execute interlocked with another. The effect is similar
to concurrent composition except that the two expressions are obliged to communicate
exclusively with each other. Thus: concurrent attempts to input from a channel and
to output to the channel does lead to a communication. On the other hand, if the two
expressions only want to communicate, but not on the same channel, then the whole
expression deadlocks.

Interlocked composition has unit skip, has zero chaos, is commutative, and is distributive
through internal choice:

expr –‖ skip ≡
expr

expr –‖ chaos ≡
chaos

expr1 –‖ expr2 ≡
expr2 –‖ expr1

expr1 –‖ (expr2 de expr3) ≡
(expr1 –‖ expr2) de (expr1 –‖ expr3)

The following two equivalences hold if the expression s expr is a total one which does not
involve communication, and if c1 6= c2.

RAISE/CRI/DOC/2/V1

142 Infix combinators

x:=c1? –‖ c2!expr ≡
stop

x:=c? –‖ c!s expr ≡
x:=s expr

As with the corresponding equivalences for concurrent composition, these are special cases
of a more general law.

In general, the interlocking combinator illustrates the distinction between external choice
and internal choice. The following equivalences hold if s expr1 and s expr2 are total
expressions which do not involve communication, and if c1 6= c2.

(x:=c1? debc c2!s expr2) –‖ c1!s expr1 ≡
x := s expr1

(x:=c1? de c2!s expr2) –‖ c1!s expr1 ≡
(x := s expr1) de stop

• Sequential composition:

expr1 ; expr2

The second expression is made to execute sequentially after the first expression. The value
returned is the value returned by the second expression.

Sequential composition has unit skip, is associative, and is distributive on the right
through internal choice:

expr ; skip ≡
expr

skip ; expr ≡
expr

expr1 ; (expr2 ; expr3) ≡
(expr1 ; expr2) ; expr3

(expr1 de expr2) ; expr3 ≡
(expr1 ; expr3) de (expr2 ; expr3)

RAISE/CRI/DOC/2/V1

Connectives 143

13 Connectives

13.1 Infix connectives

Syntax

infix connective ::=
⇒ |
∨ |
∧

Meaning

The infix connectives are intended to compose boolean expressions into new boolean expressions.

The effect of a composed expression follows a so-called conditional logic where in general the
second constituent expression is evaluated only if the value of the first constituent expression is
not enough to determine the value of the composed expression. In this way the eventual diver-
gence, deadlock or default in the second constituent expression can be avoided when possible.
The meaning of the connectives is given in terms of equivalences with the if expressions they
are shorthands for.

• And:

expr1 ∧ expr2 ≡
if expr1 then expr2 else false end

• Or:

expr1 ∨ expr2 ≡
if expr1 then true else expr2 end

• Implies:

expr1 ⇒ expr2 ≡
if expr1 then expr2 else true end

13.2 Prefix connectives

Syntax

prefix connective ::=

RAISE/CRI/DOC/2/V1

144 Connectives

∼ |
2

Meaning

The prefix connectives compose boolean expressions into new boolean expressions.

• Not:

An axiom prefix expr of the form

∼expr

is a shorthand for

if expr then false else true end

• Always:

An axiom prefix expr of the form

2 expr

yields true if and only if for all states satisfying the subtype constraints for visible vari-
ables, the expr is convergent and deterministic and yields the value true.

The axiom prefix expr itself is convergent and deterministic.

RAISE/CRI/DOC/2/V1

References 145

References

[1] An RSL Tutorial
RAISE/CRI/DOC/1/V1

[2] RSL Proof Rules
RAISE/CRI/DOC/5/V1

RAISE/CRI/DOC/2/V1

Index
a name of 7
abstract type 32,57
access 71
applicative function 64
applied 128
array of models 16
body 26
channel 54
class 19
compatible 7
complete context 11
complete 19
compound types 57
converging 71
corresponding definition 128
deadlock 71
declarative construct 7
decomposer 111
default 71
defining 128
definition 7
distinguishable 57
diverge 71
domain 63
effect 71
entity 31
environment 111
extended parameter type 64
extended result type 64
failure 115
function 64
hidden 9
hold 19
imperative function 64
independently 72
index type 16
index value 16
interpretation 11,128
kind 31
least upper bound 58
legal 11
length 60

list 62
maximal context type 7,112,116
maximal parameter type 26
maximal 57
model 19
module 15
new 30
non-deterministic 63,71
object 15
offer a communication 72
old 30
operation 64
overloaded 10
parallelizable 72
parameter type 64
parameterised class 17
pattern matching 111,115
polymorphic 129
predefined types 57
process 64
product 60
properties 31
provides 19
pure 72
range 63
readonly 72
rename 30
represent 7,129
resolvable 11
result type 64
satisfies 19
scheme 17
scope rules 7
set 61
sort 32
state 52
static implementation 24
subtype 57
success 115
synchronized 54
terminate 71
total 71

146

Index 147

type operator 57
type 57
under-specified 19
undistinguishable 57
upper bound 58
variable 52
visibility rules 7
visible 7,128

RAISE/CRI/DOC/2/V1

148 Index

RAISE/CRI/DOC/2/V1

Lexical Matters 149

A Lexical Matters

This section describes lexical matters, i.e. the micro-syntax for RSL.

Basically, RSL follows the rules now in current practise for most programming languages: a
text (i.e. an RSL specification) is represented as a string of characters, which is interpreted
left-to-right and broken into a string of tokens. The characters are drawn from a superset of the
ASCII characters called the full RSL character set . Tokens may be separated by “whitespace”,
which is strings of zero or more of the following characters: line-feed, carriage-return, space
and tab. (Note that comments are part of the RSL syntax and thus cannot be used freely as
whitespace. Also note that comments may be nested.)

There are two types of tokens in RSL: varying and fixed.

A.1 Varying Tokens

The micro-syntax for varying tokens is defined by the below syntax rules, where the characters
used in forming tokens are shown in quotes, as in ‘$’. Furthermore, LF, CR and TAB are used
to denote the ASCII characters line-feed, carriage-return and tab.

id ::=
letter opt-letter or digit or underline or prime-string

letter or digit or underline or prime ::=
letter |
digit |
underline |
prime

letter ::=
ascii letter |
greek letter

comment ::=
‘/’ ‘∗’ comment item-string ‘∗’ ‘/’

comment item ::=
comment char |
comment

comment char ::=
LF |
CR |
TAB |

RAISE/CRI/DOC/2/V1

150 Lexical Matters

ascii letter |
digit |
graphic |
prime |
quote

int value literal ::=
opt-sign digit-string

real value literal ::=
opt-sign digit-string ‘.’ digit-string

text value literal ::=
‘′′’ opt-text character-string ‘′′’

char value literal ::=
‘′’ char character ‘′’

text character ::=
character |
prime

char character ::=
character |
quote

character ::=
ascii letter |
digit |
graphic |
escape

digit ::=
‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

ascii letter ::=
‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ | ‘g’ | ‘h’ | ‘i’ | ‘j’ | ‘k’ | ‘l’ | ‘m’ |
‘n’ | ‘o’ | ‘p’ | ‘q’ | ‘r’ | ‘s’ | ‘t’ | ‘u’ | ‘v’ | ‘w’ | ‘x’ | ‘y’ | ‘z’ |
‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’ | ‘H’ | ‘I’ | ‘J’ | ‘K’ | ‘L’ | ‘M’ |
‘N’ | ‘O’ | ‘P’ | ‘Q’ | ‘R’ | ‘S’ | ‘T’ | ‘U’ | ‘V’ | ‘W’ | ‘X’ | ‘Y’ | ‘Z’

greek letter ::=
‘α’ | ‘β’ | ‘γ’ | ‘δ’ | ‘ε’ | ‘ζ’ | ‘η’ | ‘θ’ | ‘ι’ | ‘κ’ | ‘µ’ |
‘ν’ | ‘ξ’ | ‘π’ | ‘ρ’ | ‘σ’ | ‘τ ’ | ‘υ’ | ‘φ’ | ‘χ’ | ‘ψ’ | ‘ω’ |
‘Γ’ | ‘∆’ | ‘Θ’ | ‘Λ’ | ‘Ξ’ | ‘Π’ | ‘Σ’ | ‘Υ’ | ‘Φ’ | ‘Ψ’ | ‘Ω’

RAISE/CRI/DOC/2/V1

Lexical Matters 151

underline ::=
‘ ’

sign ::=
‘−’

prime ::=
‘′’

quote ::=
‘′′’

graphic ::=
‘ ’ | ‘!’ | ‘#’ | ‘$’ | ‘%’ | ‘&’ | ‘(’ | ‘)’ | ‘∗’ | ‘+’ | ‘,’ | ‘−’ | ‘.’ | ‘/’ |
‘:’ | ‘;’ | ‘<’ | ‘=’ | ‘>’ | ‘?’ | ‘@’ | ‘[’ | ‘\’ | ‘]’ | ‘̂’ | ‘ ’ | ‘̀ ’ | ‘{’ | ‘|’ | ‘}’ | ‘∼’

escape ::=
‘\’‘r’ | ‘\’‘n’ | ‘\’‘t’ | ‘\’‘a’ | ‘\’‘b’ | ‘\’‘f’ | ‘\’‘v’ | ‘\’‘?’ |
‘\’‘\’ | ‘\’‘′’ | ‘\’‘′′’ | ‘\’ oct constant | ‘\’‘x’ hex constant

oct constant ::=
oct digit |
oct digit oct digit |
oct digit oct digit oct digit

hex constant ::=
hex digit-string

oct digit ::=
‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’

hex digit ::=
digit |
‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ |
‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’

A.1.1 ASCII Forms of Greek Letters

Greek letters, which may be used in identifiers, have ASCII forms as follows:

RAISE/CRI/DOC/2/V1

152 Lexical Matters

ASCII LaTEX ASCII LaTEX
‘alpha α
‘beta β
‘gamma γ ‘Gamma Γ
‘delta δ ‘Delta ∆
‘epsilon ε
‘zeta ζ
‘eta η
‘theta θ ‘Theta Θ
‘iota ι
‘kappa κ

‘Lambda Λ
‘mu µ
‘nu ν
‘xi ξ ‘Xi Ξ
‘pi π ‘Pi Π
‘rho ρ
‘sigma σ ‘Sigma Σ
‘tau τ
‘upsilon υ ‘Upsilon Υ
‘phi φ ‘Phi Φ
‘chi χ
‘psi ψ ‘Psi Ψ
‘omega ω ‘Omega Ω

A.2 Fixed Tokens

The representation of individual fixed tokens is given directly in the syntax rules for RSL.
However, a representation using only ASCII characters is possible, as defined in the following
table:

RAISE/CRI/DOC/2/V1

Lexical Matters 153

ASCII Full ASCII Full ASCII Full
>< × isin ∈ ~isin 6∈
|| ‖ ++ –‖ -\ λ
|=| debc |^| de -list ∗

** ↑ -inflist ω ~= 6=
/\ ∧ \/ ∨ +> 7→
>= ≥ exists ∃ all ∀
<= ≤ union ∪ !! †
inter ∩ << ⊂ always 2

-m-> →m <<= ⊆ => ⇒
-~->

∼→ >> ⊃ is ≡
-> → >>= ⊇ <-> ↔
◦ <. 〈 .> 〉
:- •

The word equivalents of certain symbols: all, exists, union, inter, isin, always are
reserved, and cannot be used as identifiers.

A.3 RSL keywords

The RSL keywords are listed below. They cannot be used as identifiers.

Keywords for RSL

Bool do it swap
Char dom last then
Int elems len tl
Nat else let true
Real elsif local type
Text end object until
Unit extend of use
abs false out value
any for post variable
axiom forall pre while
begin front read with
card hd rl write
case hide rng with
channel if scheme
chaos import skip
class in stop

RAISE/CRI/DOC/2/V1

154 Lexical Matters

RAISE/CRI/DOC/2/V1

Precedence and associativity of operators 155

B Precedence and associativity of operators

Value operator precedence – increasing

Prec Operator(s) Associativity
14 λ ∀ ∃ ∃! Right
13 ≡ post –
12 debc de ‖ –‖ Right
11 ; Right
10 := ! –
9 ⇒ Right
8 ∨ Right
7 ∧ Right
6 = 6= > < ≥ ≤ ⊂ ⊆ ⊃ ⊇ ∈ 6∈ –
5 + − \ ̂ ∪ † Left
4 ∗ / ◦ ∩ Left
3 ↑ $ –
2 : –
1 ∼ 2 prefix op –

Type operator precedence – increasing

Prec Operator(s) Associativity

3 →m ∼→ → Right
2 × –
1 -set -infset ∗ ω –

RAISE/CRI/DOC/2/V1

156 Precedence and associativity of operators

RAISE/CRI/DOC/2/V1

Syntax summary 157

C Syntax summary

RAISE/CRI/DOC/2/V1

158 Syntax summary

RAISE/CRI/DOC/2/V1

Syntax summary 159

Specifications

specification ::=
module decl-string

module decl ::=
object decl |
scheme decl

Object declarations

object decl ::=
object object def-list

object def ::=
opt-comment-string id opt-formal array parameter : class expr

formal array parameter ::=
[typing-list]

Scheme declarations

scheme decl ::=
scheme scheme def-list

scheme def ::=
opt-comment-string id opt-formal scheme parameter = class expr

formal scheme parameter ::=
(formal scheme argument-list)

formal scheme argument ::=
object def

Class expressions

class expr ::=
basic class expr |
importing class expr |
extending class expr |
hiding class expr |

RAISE/CRI/DOC/2/V1

160 Syntax summary

renaming class expr |
scheme instantiation

Basic class expressions

basic class expr ::=
class opt-decl-string end

Importing class expressions

importing class expr ::=
import object expr-list in class expr

Extending class expressions

extending class expr ::=
extend class expr-list with opt-decl-string end

Hiding class expressions

hiding class expr ::=
hide defined item-list in class expr

Renaming class expressions

renaming class expr ::=
use rename pair-list in class expr

Scheme instantiations

scheme instantiation ::=
scheme-name opt-actual scheme parameter

actual scheme parameter ::=
(object expr-list)

RAISE/CRI/DOC/2/V1

Syntax summary 161

Object expressions

object expr ::=
object-name |
element object expr |
array object expr |
fitting object expr

Element object expressions

element object expr ::=
array-object expr actual array parameter

actual array parameter ::=
[pure-expr-list]

Array object expressions

array object expr ::=
[| typing-list • element-object expr |]

Fitting object expressions

fitting object expr ::=
object expr renaming

Renamings

renaming ::=
{ rename pair-list }

rename pair ::=
defined item for defined item

defined item ::=
id or op |
disambiguated item

disambiguated item ::=
id or op : type expr

RAISE/CRI/DOC/2/V1

162 Syntax summary

RAISE/CRI/DOC/2/V1

Syntax summary 163

Declarations

decl ::=
object decl |
scheme decl |
type decl |
value decl |
variable decl |
channel decl |
axiom decl

Type declarations

type decl ::=
type commented type def-list

commented type def ::=
opt-comment-string type def

type def ::=
sort def |
variant def |
union def |
short record def |
abbreviation def

Sort definitions

sort def ::=
id

Variant definitions

variant def ::=
id == variant-choice

variant ::=
constant variant |
record variant

constant variant ::=

RAISE/CRI/DOC/2/V1

164 Syntax summary

constructor opt-subtype naming

record variant ::=
constructor component kinds opt-subtype naming

constructor ::=
id or op |

component kinds ::=
(component kind-list)

component kind ::=
opt-destructor type expr opt-reconstructor

destructor ::=
id or op :

reconstructor ::=
↔ id or op

subtype naming ::=
@ id

Union definitions

union def ::=
id = type-name-choice2

Short record definitions

short record def ::=
id :: component kind-string

Abbreviation definitions

abbreviation def ::=
id = type expr

RAISE/CRI/DOC/2/V1

Syntax summary 165

Value declarations

value decl ::=
value commented value def-list

commented value def ::=
opt-comment-string value def

value def ::=
typing |
explicit value def |
implicit value def |
explicit function def |
implicit function def

Explicit value definitions

explicit value def ::=
single typing = pure-expr

Implicit value definitions

implicit value def ::=
single typing pure-restriction

Explicit function definitions

explicit function def ::=
single typing formal function application ≡ expr opt-pre condition

formal function application ::=
id application |
prefix application |
infix application

id application ::=
value-id formal function parameter-string

formal function parameter ::=
(opt-binding-list)

RAISE/CRI/DOC/2/V1

166 Syntax summary

prefix application ::=
prefix op id

infix application ::=
id infix op id

pre condition ::=
pre readonly logical-expr

Implicit function definitions

implicit function def ::=
single typing formal function application post condition opt-pre condition

post condition ::=
opt-result naming post readonly logical-expr

result naming ::=
as binding

Variable declarations

variable decl ::=
variable commented variable def-list

commented variable def ::=
opt-comment-string variable def

variable def ::=
single variable def |
multiple variable def

single variable def ::=
id : type expr opt-initialisation

initialisation ::=
:= pure-expr

multiple variable def ::=
id-list2 : type expr

RAISE/CRI/DOC/2/V1

Syntax summary 167

Channel declarations

channel decl ::=
channel commented channel def-list

commented channel def ::=
opt-comment-string channel def

channel def ::=
single channel def |
multiple channel def

single channel def ::=
id : type expr

multiple channel def ::=
id-list2 : type expr

Axiom declarations

axiom decl ::=
axiom opt-axiom quantification axiom def-list

axiom quantification ::=
forall typing-list •

axiom def ::=
opt-comment-string opt-axiom naming pure logical-expr

axiom naming ::=
[id]

RAISE/CRI/DOC/2/V1

168 Syntax summary

RAISE/CRI/DOC/2/V1

Syntax summary 169

Type expressions

type expr ::=
type literal |
type-name |
product type expr |
set type expr |
list type expr |
map type expr |
function type expr |
subtype expr |
bracketted type expr

Type literals

type literal ::=
Unit |
Bool |
Int |
Nat |
Real |
Text |
Char

Product type expressions

product type expr ::=
type expr-product2

Set type expressions

set type expr ::=
finite set type expr |
infinite set type expr

finite set type expr ::=
type expr-set

infinite set type expr ::=
type expr-infset

RAISE/CRI/DOC/2/V1

170 Syntax summary

List type expressions

list type expr ::=
finite list type expr |
infinite list type expr

finite list type expr ::=
type expr∗

infinite list type expr ::=
type exprω

Map type expressions

map type expr ::=
type expr →m type expr

Function type expressions

function type expr ::=
type expr function arrow result desc

function arrow ::=
∼→ |
→

result desc ::=
opt-access desc-string type expr

Access descriptions

access desc ::=
access mode access-list

access mode ::=
read |
write |
in |
out

access ::=

RAISE/CRI/DOC/2/V1

Syntax summary 171

variable or channel-name |
completed access |
comprehended access

completed access ::=
opt-qualification any

comprehended access ::=
{ access-list | pure-set limitation }

Subtype expressions

subtype expr ::=
{| single typing pure-restriction |}

Bracketted type expressions

bracketted type expr ::=
(type expr)

RAISE/CRI/DOC/2/V1

172 Syntax summary

RAISE/CRI/DOC/2/V1

Syntax summary 173

Expressions

expr ::=
value literal |
value or variable-name |
pre name |
basic expr |
product expr |
set expr |
list expr |
map expr |
function expr |
application expr |
quantified expr |
equivalence expr |
post expr |
disambiguation expr |
bracketted expr |
infix expr |
prefix expr |
comprehended expr |
initialise expr |
assignment expr |
input expr |
output expr |
structured expr

Value literals

value literal ::=
unit literal |
bool literal |
int literal |
real literal |
text literal |
char literal

unit literal ::=
()

bool literal ::=
true |
false

RAISE/CRI/DOC/2/V1

174 Syntax summary

Pre names

pre name ::=
variable-name `

Basic expressions

basic expr ::=
chaos |
skip |
stop |
swap

Product expressions

product expr ::=
(expr-list2)

Set expressions

set expr ::=
ranged set expr |
enumerated set expr |
comprehended set expr

Ranged set expressions

ranged set expr ::=
{ readonly integer-expr .. readonly integer-expr }

Enumerated set expressions

enumerated set expr ::=
{ readonly-opt-expr-list }

RAISE/CRI/DOC/2/V1

Syntax summary 175

Comprehended set expressions

comprehended set expr ::=
{ readonly-expr | set limitation }

set limitation ::=
typing-list opt-restriction

restriction ::=
• readonly logical-expr

List expressions

list expr ::=
ranged list expr |
enumerated list expr |
comprehended list expr

Ranged list expressions

ranged list expr ::=
〈 readonly integer-expr .. readonly integer-expr 〉

Enumerated list expressions

enumerated list expr ::=
〈 readonly-opt-expr-list 〉

Comprehended list expressions

comprehended list expr ::=
〈 readonly-expr | list limitation 〉

list limitation ::=
binding in readonly list-expr opt-restriction

RAISE/CRI/DOC/2/V1

176 Syntax summary

Map expressions

map expr ::=
enumerated map expr |
comprehended map expr

Enumerated map expressions

enumerated map expr ::=
[opt-expr pair-list]

expr pair ::=
readonly-expr 7→ readonly-expr

Comprehended map expressions

comprehended map expr ::=
[expr pair | set limitation]

Function expressions

function expr ::=
λ lambda parameter • expr

lambda parameter ::=
lambda typing |
single typing

lambda typing ::=
(opt-typing-list)

Application expressions

application expr ::=
list or map or function-expr actual function parameter-string

actual function parameter ::=
(opt-expr-list)

RAISE/CRI/DOC/2/V1

Syntax summary 177

Quantified expressions

quantified expr ::=
quantifier typing-list restriction

quantifier ::=
∀ |
∃ |
∃!

Equivalence expressions

equivalence expr ::=
expr ≡ expr opt-pre condition

Post expressions

post expr ::=
expr post condition opt-pre condition

Disambiguation expressions

disambiguation expr ::=
expr : type expr

Bracketted expressions

bracketted expr ::=
(expr)

Infix expressions

infix expr ::=
stmt infix expr |
axiom infix expr |
value infix expr

RAISE/CRI/DOC/2/V1

178 Syntax summary

Stmt infix expressions

stmt infix expr ::=
expr infix combinator expr

Axiom infix expressions

axiom infix expr ::=
logical-expr infix connective logical-expr

Value infix expressions

value infix expr ::=
expr infix op expr

Prefix expressions

prefix expr ::=
axiom prefix expr |
value prefix expr

Axiom prefix expressions

axiom prefix expr ::=
prefix connective logical-expr

Value prefix expressions

value prefix expr ::=
prefix op expr

Comprehended expressions

comprehended expr ::=
associative commutative-infix combinator { expr | set limitation }

RAISE/CRI/DOC/2/V1

Syntax summary 179

Initialise expressions

initialise expr ::=
opt-qualification initialise

Assignment expressions

assignment expr ::=
variable-name := expr

Input expressions

input expr ::=
channel-name ?

Output expressions

output expr ::=
channel-name ! expr

Structured expressions

structured expr ::=
local expr |
let expr |
if expr |
case expr |
for expr |
while expr |
until expr

Local expressions

local expr ::=
local opt-decl-string in expr end

RAISE/CRI/DOC/2/V1

180 Syntax summary

Let expressions

let expr ::=
let let def-list in expr end

let def ::=
typing |
explicit let |
implicit let

explicit let ::=
let binding = expr

implicit let ::=
single typing restriction

let binding ::=
binding |
record pattern |
list pattern

If expressions

if expr ::=
if logical-expr then

expr
opt-elsif branch-string
opt-else branch
end

elsif branch ::=
elsif logical-expr then expr

else branch ::=
else expr

Case expressions

case expr ::=
case expr of case branch-list end

case branch ::=
pattern → expr

RAISE/CRI/DOC/2/V1

Syntax summary 181

For expressions

for expr ::=
for list limitation do unit-expr end

While expressions

while expr ::=
while logical-expr do unit-expr end

Until expressions

until expr ::=
do unit-expr until logical-expr end

RAISE/CRI/DOC/2/V1

182 Syntax summary

RAISE/CRI/DOC/2/V1

Syntax summary 183

Bindings

binding ::=
id or op |
product binding

product binding ::=
(binding-list2)

RAISE/CRI/DOC/2/V1

184 Syntax summary

RAISE/CRI/DOC/2/V1

Syntax summary 185

Typings

typing ::=
single typing |
multiple typing

single typing ::=
binding : type expr

multiple typing ::=
binding-list2 : type expr

RAISE/CRI/DOC/2/V1

186 Syntax summary

RAISE/CRI/DOC/2/V1

Syntax summary 187

Patterns

pattern ::=
value literal |
pure value-name |
wildcard pattern |
product pattern |
record pattern |
list pattern

Wildcard patterns

wildcard pattern ::=

Product patterns

product pattern ::=
(pattern-list2)

Record patterns

record pattern ::=
pure value-name component patterns

component patterns ::=
(inner pattern-list)

inner pattern ::=
binding |
wildcard pattern

List patterns

list pattern ::=
constructed list pattern |
left list pattern |
right list pattern |
left right list pattern

RAISE/CRI/DOC/2/V1

188 Syntax summary

Constructed list patterns

constructed list pattern ::=
〈 opt-inner pattern-list 〉

Left list patterns

left list pattern ::=
constructed list pattern ̂ id or wildcard

id or wildcard ::=
id |
wildcard pattern

Right list patterns

right list pattern ::=
id or wildcard ̂ constructed list pattern

Left right list patterns

left right list pattern ::=
constructed list pattern ̂ id or wildcard ̂ constructed list pattern

RAISE/CRI/DOC/2/V1

Syntax summary 189

Names

name ::=
qualified id |
qualified op

Qualified ids

qualified id ::=
opt-qualification id

qualification ::=
element-object expr .

Qualified ops

qualified op ::=
opt-qualification (op)

Identifiers and operators

id or op ::=
id |
op

op ::=
infix op |
prefix op

Infix ops

infix op ::=
= |
6= |
> |
< |
≥ |
≤ |
⊃ |

RAISE/CRI/DOC/2/V1

190 Syntax summary

⊂ |
⊇ |
⊆ |
∈ |
6∈ |
+ |
− |
\ |
̂ |
∪ |
† |
∗ |
/ |
◦ |
∩ |
↑ |
$

Prefix ops

prefix op ::=
abs |
it |
rl |
card |
len |
inds |
elems |
hd |
tl |
front |
last |
dom |
rng

RAISE/CRI/DOC/2/V1

Syntax summary 191

Connectives

connective ::=
infix connective |
prefix connective

Infix connectives

infix connective ::=
⇒ |
∨ |
∧

Prefix connectives

prefix connective ::=
∼ |
2

RAISE/CRI/DOC/2/V1

192 Syntax summary

RAISE/CRI/DOC/2/V1

Syntax summary 193

Infix combinators

infix combinator ::=
debc |
de |
‖ |
–‖ |
;

RAISE/CRI/DOC/2/V1

