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Introduction 1

1 Introduction

1.1 Purpose

The purpose of this document is to describe the RAISE Specification Language, RSL, in a
pedagogical manner. The description is supposed to be suited for sequential reading.

1.2 Target Group

The target group of this document is users of RSL.

1.3 Relations to Other Documents

A more formal and complete description of RSL than given here can be found in [1].

1.4 Structure of Document

The document is divided into four parts corresponding to the following four facets of RSL:

• Applicative Specifications.

• State-based Specifications.

• Concurrency-based Specifications.

• Composing Systems from Modules.

Finally, an appendix contains a syntax summary.

1.5 Acknowledgements

I would like to thank Jan Storbank Pedersen for reading and commenting on the document
during its production.

1.6 Shortcomings

Some facets of RSL are not described yet. The most important are the following

RAISE/CRI/DOC/1/V1



2 Introduction

• Part four: ‘Composing Systems from Modules’.

• Overloading.
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Part I

Applicative Specifications
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2 Some Basic Concepts

This section introduces some basic concepts. This is done mainly through an example RSL
specification of a database for registering voters at an election.

First some informal requirements are given for the election database. Then the formal specifi-
cation follows, annotated with explanatory comments. The annotations will introduce the basic
concepts as they occur in the specification.

2.1 Requirements for an Election Database

Consider the following requirements for an election database.

The database is supposed to support the administration of an election such that the database
at any point in time holds all the persons having given their votes until that point of time.

The database must provide the following “functions”

1. Register Person: Registers a person in the database when he or she has voted.

2. Check Person: Checks whether a person has been registered in the database.

3. Number Registered: Returns the number of persons currently registered in the database.

2.2 Formal Specification

Parts of the informal requirements specification (except for Number Registered) can be modelled
by the following RSL module.
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6 Some Basic Concepts

Example 2.1

DATABASE =
class

type
Person,
Database = Person-set

value
empty : Database,
register : Person × Database → Database,
check : Person × Database → Bool

axiom
empty = { },
∀ p : Person, db : Database •

register(p,db) = {p} ∪ db,
∀ p : Person, db : Database •

check(p,db) = p ∈ db
end

2

A module definition generally has the form

id =
class

declaration1
...
declarationn

end

where a declaration begins with a keyword (type, value, axiom) indicating the kind of decla-
ration to come and then follows one or more definitions of that kind, separated by commas.

The module definition contains three declarations,

1. A type declaration defining the types Person and Database.

2. A value declaration defining the values empty , register and check .

3. An axiom declaration expressing properties of the values.
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Some Basic Concepts 7

2.2.1 Type Declarations

A type is a set of logically related values together with a number of operations for generating
and manipulating these values. Types are well-known from most programming languages.

Types can be named in type declarations. A type declaration has the form

type
type definition1,
...
type definitionn

In our specification there are two such definitions.

The first type definition which is of the form

id

introduces the type Person as an abstract type. That is, a type with no predefined operations
for generating and manipulating its values, except for ‘=’ which compares two values of the
type to check whether they are equal.

In general, each type is associated with an equal operator ‘=’ as well as a not equal operator
‘6=’.

The fact that Person is defined as an abstract type reflects the requirements where no informa-
tion is given about how persons are identified in terms of their name and the like. We simply
abstract away from such details.

An abstract type is also referred to as a sort and a definition of such a type is referred to as a
sort definition.

The next type definition which is of the form

id = type expr

is an abbreviation definition where the name id is specified to be an abbreviation for the type
expression occurring on the right-hand side of =.

A database is specified to be a set of persons. The type operator -set when applied to the type
Person yields a new type containing as values all (finite) subsets of Person.
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8 Some Basic Concepts

A type obtained by applying a type operator to one or more other types is referred to as a
compound type. Abstract types (like Person) are thus not compound.

We could have chosen another representation for the database, but modelling it as a set seems
natural for our purpose. To see this, note that a set of elements is characterised by the property
that one cannot detect in which order the elements have been inserted into the set. By observing
the functions required in the informal requirements specification, one sees that none of these
need knowledge about insertion order.

2.2.2 Value Declarations

Values can be named in value declarations. A value declaration has the form

value
value definition1,
...
value definitionn

In our specification there are three such definitions.

A value definition is of the form

id : type expr

That is, the identifier id is defined to represent a value within the type represented by the type
expression.

The first value definition introduces the constant empty of the type Database. This value simply
represents the empty database.

The actual value that the name empty represents is not described in the value definition, but
instead in one of the axioms. Likewise for the other value names.

The second value definition defines the function register that adds a person to the database
when that person has voted. Suppose the “current” database is db and that we want to register
the person hamid , then

register(hamid,db)

represents the database after having made the registration.
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Some Basic Concepts 9

The type of register is represented by the type expression

Person × Database → Database

This type expression is built up by applying two type operators, just like the type expression
defining the Database using -set. To better illustrate how the type operators associate, it helps
to note that the above type expression is equivalent to the following

(Person × Database) → Database

The type operator × (cartesian product) is thus applied to the pair Person and Database, and
the type operator → (function space) is applied to the pair consisting of the resulting cartesian
product and Database.

The cartesian product of Person and Database is the type containing as values all pairs (p, db)
where p ∈ Person and db ∈ Database.

The third value definition defines the function check , that when applied to a person and a
database returns a boolean value true or false depending on whether the person is registered
in the database or not.

The type Bool is a built-in type. That is, it is predefined within RSL.

It contains two values represented by the literals true and false and with it comes a number
of operators which can be applied to its values. Examples of such operators are ∧ (and) and ∨
(or), for example

true ∧ false = false
true ∨ false = true

Just like abstract types, built-in types are not compound types, which are types obtained by
applying type operators.

Until now we have only explained how values are introduced by giving their name and type.
In the next paragraph, we shall see how the actual values that value names represent can be
characterised by axioms.

To summarise, in the simple case which we consider here, a module provides zero or more named
types together with zero or more named values.
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10 Some Basic Concepts

2.2.3 Axiom Declarations

Axioms express properties of value names. In our example there are three axioms. The first
axiom defines the name empty to represent the empty set (of persons). Remember that the
type of empty is Person−set.

The axiom equates two expressions, namely empty and {}. An expression evaluates to a value.
The expression empty evaluates to a set s1 and the expression {} evaluates to a set s2 (the
empty set). The axiom then requires s1 to be equal to s2.

In fact the whole axiom

empty = {}

is itself an expression of type Bool. In general, all axioms are boolean expressions.

An axiom declaration thus has the form

axiom
expr1,
...
exprn

The second axiom expresses that the function register adds a person p to a database db by
making the set union of the database, which is a set, and the singleton set containing the
person.

The axiom is a quantified expression reading as follows: for all persons p and for all databases
db, register applied to the pair (p, db) yields {p} ∪ db.

The third axiom defines the function check . A person has voted if he or she belongs to the set
representing the database.

2.2.4 Module Extension

The specification does not reflect all our requirements. We still need to specify a function for
returning the number of persons registered in the database. We can do that by extending our
first module with a value definition and an axiom

Example 2.2
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ELECTION DATABASE =
extend DATABASE with

value
number : Database → Nat

axiom
∀ db : Database •

number(db) = card db
end

2

The general form of an extending module is

id =
extend id1,...,idm with

declaration1
...
declarationn

end

where each idi is the name of some module. The module concept in its full power will be
explained in part IV of this document.

The function number , when applied to a database returns a natural number, another built-in
type, being the number of persons registered in the database.

The axiom defining number makes use of the cardinality (card) operator generally applicable
on any finite set.
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3 Built-in Types

3.1 Booleans

The boolean type literal

Bool

represents the type containing the two truth values

true

false

3.1.1 If Expressions

A boolean valued expression b expr can be used to choose between the evaluation of two alter-
native expressions expr1 and expr2 in an if-expression of the form

if b expr then expr1 else expr2 end

If b expr evaluates to true the first expression, expr1, is evaluated, otherwise the second ex-
pression, expr2, is evaluated.

As an example consider the following expression returning the non-negative difference between
two (non-negative) natural numbers

if x > y then x − y else y − x end

The two expressions expr1 and expr2 must have the same type which is also the type of the
if-expression.

3.1.2 Prefix and Infix Combinators

A boolean valued expression b expr can be negated
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∼ b expr

reading “not b expr” and which is short for

if b expr then false else true end

Two boolean valued expressions b expr1 and b expr2 can be combined with any of the binary
operators “and”, “or” and “implies” as shown below where the equivalent if-expressions are
listed.

b expr1 ∧ b expr2 ≡ if b expr1 then b expr2 else false end

b expr1 ∨ b expr2 ≡ if b expr1 then true else b expr2 end

b expr1 ⇒ b expr2 ≡ if b expr1 then b expr2 else true end

Note the use of ‘≡’ (equivalence) instead of ‘=’ (equality). The difference between the two
concepts will be explained when variables and channels are introduced. That is, the two concepts
are identical in applicative contexts.

As examples consider the following boolean valued expressions which are tautologies (evaluating
to true)

(x ≤ 0) ∨ (x > 0)

∼ ((x < 0) ∧ (x > 0))

(x > 0) ⇒ (x ≥ 1)

The explanation of the boolean combinators in terms of if-expressions requires that one con-
siders evaluation order when using the infix combinators. Consider for example the following
expression

(x 6= 0) ∧ (1/x < epsilon)

and suppose that x = 0. The evaluation of the sub-expression 1/x will not yield a well-
defined result. Fortunately, with the if-expression interpretation this sub-expression will never
be evaluated.

This can be seen by the following reduction where the original expression together with equiv-
alent expressions are listed
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(x 6= 0) ∧ (1/x < epsilon)
≡ if (x 6= 0) then (1/x < epsilon) else false end
≡ if (0 6= 0) then (1/0 < epsilon) else false end
≡ if false then (1/0 < epsilon) else false end
≡ false

The logic obtained follows a so-called conditional logic where in general the second sub-expression
is evaluated only if the value of the first sub-expression is not enough to determine the value of
the composite expression. In this way any partiallity of the second sub-expression (here caused
by 1/0) causes no evaluation error since evaluation is avoided.

3.1.3 Quantifiers

The following expression is an example of a quantified expression

∀ x : Nat • (x = 0) ∨ (x > 0)

and it reads: “for all natural numbers x , either x is equal to 0 or x is greather than 0”.

The quantifier ∀ binds the identifier x and we say that x is bound within the quantified expres-
sion expression. On the other hand, x is free within the expression

(x = 0) ∨ (x > 0)

A quantified expression in general has the form

quantifier typing1,...,typingn • boolean expr

where a quantifier is one of the following

∀, ∃, ∃!

reading “for all”, “there exists” and “there exists exactly one”, respectively

and where a typing in the simple case has the form

id1,...,idm : type expr
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Some more examples of quantified expressions

∃ x : Nat •

x > 99

∀ x,y : Nat •

∃! z : Nat •

x + y = z

∃ x,y : Nat, b : Bool •
b = (x = y)

3.1.4 Axiom Quantifications

Sometimes many of the axioms within an axiom declaration are quantified over a common set
of value names as is the case in our election DATABASE module (section 2)

axiom
empty = { },
∀ p : Person, db : Database •

register(p,db) = {p} ∪ db,
∀ p : Person, db : Database •

check(p,db) = p ∈ db

The axioms get somewhat “big” due to the repeated quantifications. One could instead make
a global quantification as follows

axiom
∀ p : Person, db : Database •

empty = { } ∧
register(p,db) = {p} ∪ db ∧
check(p,db) = p ∈ db

Note how the three axioms have been converted into one axiom by replacing commas with ‘∧’.

Unfortunately this solution makes the RAISE tools unparse (print) the single axiom “wrongly”
by not making appropriate linebreaks. In addition, the solution does not work if axioms are
named. Therefore the following form of axiom quantification has been introduced

axiom forall p : Person, db : Database •
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empty = { },
register(p,db) = {p} ∪ db,
check(p,db) = p ∈ db

Now there are three axioms again, separated by commas. In general,

axiom forall typing list •

opt axiom naming1 expr1,
...
opt axiom namingn exprn

is short for

axiom
opt axiom naming1 ∀ typing list • expr1,
...
opt axiom namingn ∀ typing list • exprn

3.2 Integers

The integer type literal

Int

represents the type containing the negative as well as non-negative whole numbers

...,-2,-1,0,1,2,...

3.2.1 Prefix Operators

There is one prefix operator for taking the “absolute value” of an integer

abs : Int → Nat

That is, if the argument is negative, the negated value is returned. The operator is the identity
on non-negative numbers. The result is a natural number (section 3.3).

Some examples are
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abs -5 = 5

abs 5 = 5

3.2.2 Infix Operators

A collection of binary infix operators are defined on integers.

There are the relational operators “greather than”, “less than”, “greather than or equal” and
“less than or equal”

> : Int × Int → Bool
< : Int × Int → Bool
≥ : Int × Int → Bool
≤ : Int × Int → Bool

Some examples are

5 > 2

1 ≤ 1

There are the four arithmetic operators for “addition”, “subtraction”, “multiplication” and
“division”

+ : Int × Int → Int
− : Int × Int → Int
∗ : Int × Int → Int
/ : Int × Int ∼→ Int

Note that the integer division operator returns an integer, the absolute value of which is the
number of times that the absolute value of the second argument can be within the absolute
value of the first. The sign of the result is the traditional product of the signs of the arguments.

The integer division operator is partial in that its result is undefined if the second argument is
zero.

Some examples are

2 ∗ (5 + 7 − 2) = 20
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5 / 2 = 2

5 / -2 = -2

-5 / 2 = -2

-5 / -2 = 2

Associated with integer division is the “integer remainder” operator

\ : Int × Int ∼→ Int

which returns an integer, the absolute value of which is the remainder after having divided the
absolute value of the second argument into the absolute value of the first argument. The sign
of the result is the sign of the first argument.

This implies the following relation between integer division and integer remainder. Let a and
b be integers, then

a = (a/b)∗b + (a\b)

Some examples are

5 \ 2 = 1

5 \ -2 = 1

-5 \ 2 = -1

-5 \ -2 = -1

There is finally the “exponentation” operator

↑ : Int × Int ∼→ Real

which raises the first integer to the power of the second integer. The result is a real number
(section 3.4).
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The exponentiation operator is partial in that its result is undefined if the first argument is zero
while the second argument is negative.

An example is

2 ↑ 2 = 4.0

3.3 Natural Numbers

The natural number type literal

Nat

represents the type containing the non-negative integers

0,1,2,...

3.3.1 Infix Operators

The natural number type is a subtype (section 9) of the integer type. Consequently, all the
integer infix operators are defined for the natural numbers.

3.4 Real Numbers

The real number type literal

Real

represents the type containing the real numbers

...,-4.3,...,1.0,...,12.23,...

Note that all real number literals must be written with a decimal point.
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3.4.1 Conversion Operators

The integer type is not considered a subtype (section 9) of the real number type, in contrast to
the natural number type which is a subtype of the integer type. One set of operators is thus
defined for the integers (section 3.2) and another set of operators is defined for the reals (see
below). There is for example an “integer addition” operator and a “real addition” operator.

Since the two worlds are thus separated and since there will typically in calculations be a need
to switch from one world to another, two operators “integer to real” and “real to integer” for
doing that are defined

it : Real → Int
rl : Int → Real

The it operator returns the nearest integer towards zero.

Some examples are

it 4.6 = 4

it -4.6 = -4

rl 5 = 5.0

rl((it 5.2)/2) = 2.0

3.4.2 Other Prefix Operators

As for integers there is one prefix operator for taking the “absolute value” of a real number

abs : Real → Real

3.4.3 Infix Operators

A collection of binary infix operators are defined on real numbers corresponding to the similarily
named infix integer operators.

> : Real × Real → Bool
< : Real × Real → Bool
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≥ : Real × Real → Bool
≤ : Real × Real → Bool
+ : Real × Real → Real
− : Real × Real → Real
∗ : Real × Real → Real
/ : Real × Real ∼→ Real
↑ : Real × Real ∼→ Real

Note that the “real division” performs the traditional arithmetic division without truncating as
does “integer division”.

As for integers, the exponentiation operator is partial in that its result is undefined if the first
argument is zero while the second argument is negative. In addition the result is undefined if
the first argument is negative and the second argument is not a whole number.

3.5 Characters

The character type literal

Char

represents the type containing the characters

′A′,′B′,...,′a′,′b′,...

Note that a character begins and ends with single quotes.

3.6 Texts

The text type literal

Text

represents the type containing strings of characters. A text begins and ends with double quotes
and has the general form

′′c1 ... cn
′′
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where for each ci , ′ci
′is a value of type Char.

Some examples are

′′this is a text′′

′′Formal Methods′′

′′′′

In section 7 more will be said about texts.

3.7 The Unit Value

The unit type literal

Unit

represents the type containing the single value

()

It might appear strange to have a type with only one value. It is, however, quite useful when
dealing with imperative and concurrent specifications as will be illustrated later in this docu-
ment.

RAISE/CRI/DOC/1/V1



24 Built-in Types

RAISE/CRI/DOC/1/V1



Products 25

4 Products

The cartesian product type expression

type expr1 × ... × type exprn

represents the type containing products of length n

(v1,...,vn)

where each vi is a value of type type expri .

As an example consider the type expression

Bool × Bool

The type represented by that is finite and contains the following four products of length 2

(true,true) (true,false) (false,true) (false,false)

As another example, the type expression

Nat × Nat × Bool

represents an infinite type containing the following products

(0,0,true) (0,0,false)
(0,1,true) (0,1,false)
(1,0,true) (1,0,false)
(2,0,true) (2,0,false)
...

4.1 Representing Products

An expression of the form
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(expr1,...,exprn)

evaluates to a product

(v1,...,vn)

where vi is the value of expri .

Some examples of expressions together with their types are

(true,p ⇒ q) : Bool × Bool

(x + 1,0,′′this is a text′′) : Nat × Nat × Text

4.2 Example

Example 4.1

A system of coordinates provides a set of positions

(x,y)

where x and y are real numbers. The center of a system of coordinates is (0.0, 0.0) and is
referred to as origo.

The distance between to positions is obtained by the well-known Pythagorean theorem.

SYSTEM OF COORDINATES =
class

type
Position = Real × Real

value
origo : Position,
distance : Position × Position → Real

axiom
origo = (0.0,0.0),
∀ x1,y1,x2,y2 : Real •

distance((x1,y1),(x2,y2)) =
((x2−x1)↑2.0 + (y2−y1)↑2.0)↑0.5

end
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The type Position contains all possible positions being pairs of real numbers.

In the axiom for distance the following product expressions occur

(x1,y1)
(x2,y2)
((x1,y1),(x2,y2))

The function distance is thus applied to a pair of positions, each being a pair of coordinates.

2
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5 Functions

5.1 Total Functions

A type expression of the form

type expr1 → type expr2

represents a type containing all total functions from the type represented by type expr1 to the
type represented by type expr2.

A total function

f : type expr1 → type expr2

has the following property

∀ x : type expr1 •

∃ y : type expr2 •

f(x) = y

We have already seen some examples of functions. In the election database (example 2.1 and
example 2.2) we defined

value
register : Person × Database → Database,
check : Person × Database → Bool,
number : Database → Nat

and in the system of coordinates (example 4.1) we defined

value
distance : Position → Real

We have also seen how functions are applied
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register(p,db)
check(p,db)
number(db)
distance((x1,y1),(x2,y2))

In general, a function is applied via an application expression of the form

expr(expr1,...,exprn)

where expr represents a function of the type

T1 × ... × Tn → T

and where each expri is of type Ti . The result is thus of type T .

In the following is illustrated how functions are defined.

5.2 Definitions by Axioms

For the purpose of illustration we shall choose an example, the factorial function n!, which
we shall specify in several ways in order to show different possibilities. The function has the
signature

value
fac : Nat → Nat

In mathematical notation

fac(n) = n ∗ (n − 1) ∗ ... ∗ 2 ∗ 1

However, since the factorial operator ‘!’ is not built into RSL we must specify fac ourselves. A
first solution is

axiom
∀ n : Nat •

fac(n) ≡ if n = 0 then 1 else n ∗ fac(n − 1) end
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One could alternatively define the function through two axioms, one for the zero case and one
for the non-zero case

axiom
fac(0) ≡ 1,
∀ n : Nat • n > 0 ⇒

fac(n) ≡ n ∗ fac(n − 1)

5.3 Explicit Definition of Total Functions

A shorter way of writing

value
fac : Nat → Nat

axiom
∀ n : Nat •

fac(n) ≡ if n = 0 then 1 else n ∗ fac(n − 1) end

is

value
fac : Nat → Nat
fac(n) ≡

if n = 0 then 1 else n ∗ fac(n − 1) end

Thus the signature and the axiom have been merged into one definition called an explicit
function definition. This saves writing the keyword axiom and the quantification over the
formal parameter.

The merging of signature and axiom also makes the axiom more “local” to the signature.

The explicit function definition is an instance of the form

value
id : type expr1 × ... × type exprn → type expr
id(id1,...,idn) ≡ expr

which is short for
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value
id : type expr1 × ... × type exprn → type expr

axiom
∀ (id1,...,idn) : type expr1 × ... × type exprn •

id(id1,...,idn) ≡ expr

5.4 Partial Functions

A type expression of the form

type expr1
∼→ type expr2

represents a type containing all partial functions from the type represented by type expr1 to the
type represented by type expr2. That is, for some function

f : type expr1
∼→ type expr2

there might exist a value v : type expr1 such that f (v) is not well-defined.

Note that the type of partial functions contains all total functions as well.

As an example consider the following function

value
fraction : Real ∼→ Real

axiom
∀ x : Real • x 6= 0.0 ⇒

fraction(x) ≡ 77.0/x

The axiom only defines the function for arguments different from zero. This is done by pre-
ceeding the the defining equivalence with a pre-condition.

5.5 Explicit Definition of Partial Functions

A shorter way of writing the above is

value
fraction : Real ∼→ Real
fraction(x) ≡ 77.0/x

pre x 6= 0
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It is thus possible to write an equivalent explicit function definition which includes the pre-
condition.

In the general case, however, this explicit definition is really short for

value
fraction : Real ∼→ Real

axiom
∀ x : Real •

fraction(x) ≡ 77.0/x pre x 6= 0

where the expression following the • is of the form

expr1 ≡ expr2 pre expr3

This is the general form of an equivalence expression, and in the simple case it is equivalent to

expr3 ⇒ (expr1 = expr2)

This is, however, in general only true in case all of the expressions expr1, expr2 and expr3 are
applicative. When describing the non-applicative language constructs in parts two and three
we will explain the general equivalence expression in more detail.

The above explicit definition of fraction is an instance of the form

value
id : type expr1 × ... × type exprn

∼→ type expr
id(id1,...,idn) ≡ expr1 pre expr2

5.6 Lambda Abstraction

The following axiom defines fac as the function represented by the lambda expression occurring
on the right-hand side of ‘≡’

axiom
fac ≡

λ n : Nat •

if n = 0 then 1 else n ∗ fac(n − 1) end
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The lambda expression evaluates to a function. The general form of a lambda expression consists
of a single typing (a binding and a type expression) and an expression

λ binding : type expr • expr

representing a function of type

type expr ∼→ T

where T is the type of expr .

Some other examples are

value
incr : Int → Int,
add : Int × Int → Int,
cond : Bool × (Nat × Nat) → Nat

axiom
incr ≡ λ x : Nat • x + 1,
add ≡ λ (x,y) : Nat × Nat • x + y
cond ≡

λ (b,(x,y)) : Bool × (Nat × Nat) • if b then x else y end

It is possible to write the lambda expressions defining add and cond in a slightly different way,
though the meaning is unchanged

axiom
add ≡ λ (x : Nat, y : Nat) • x + y,
cond ≡

λ (b : Bool, x,y : Nat) • if b then x else y end

In general a lambda expression can in addition to the previous form also have the following
form

λ (typing1,...,typingn) • expr

where n ≥ 0. This second form can be rewritten into the first form as indicated by the above
axioms.

The case where n = 0 in the last mentioned form represents expressions of the form
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λ () • expr

representing a function of type

Unit ∼→ T

where T is the type of expr . Such an expression can of course instead be written as

λ dummy : Unit • expr

where dummy is then not referred to within expr . The ‘()’ version, however, saves one from
inventing a parameter name.

Functions with parameter type Unit are, however, primarily interesting when expr has side-
effects as will be described in parts two and three of this document.

5.7 Higher Order Functions

Since function types are just like other types, a function can in particular take a function as
parameter and return a function as result. Consider for example the definition

value
twice : (Nat → Nat) → Nat → Nat
twice(f) ≡

λ n : Nat • f(f(n))

The function arrow ‘→’ associates to the right, so the type of twice could instead have been
written in the following way

twice : (Nat → Nat) → (Nat → Nat)

The function twice when applied to a function f yields a function (represented by the lambda
expression) that when applied to a natural number n applies f twice.

Some examples of twice applications are
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twice(fac) = λ n : Nat • fac(fac(n))

twice(fac)(3) = 720

twice(λ n : Nat • n + 1)(1) = 3

Note that twice can be partially applied as in the first expression.

A function that returns a function upon application is called a curried function.

We don’t need to use a lambda expression to define twice. We can also write an axiom like

axiom
∀ f : Nat → Nat, n : Nat •

twice(f)(n) ≡ f(f(n))

As a a third possibility we could use the built-in operator ‘◦’ for function composition which
for arbitrary types T1, T2 and T3 has the type

◦ : (T2
∼→ T3) × (T1

∼→ T2) → T1
∼→ T3

and which is defined as follows

(expr1 ◦ expr2)(expr) ≡ expr1(expr2(expr))

Our axiom for twice would then be

axiom
∀ f : Nat → Nat •

twice(f) ≡ f ◦ f

5.8 Explicit Definition of Curried Functions

A shorter way of writing

value
twice : (Nat → Nat) → Nat → Nat

axiom
∀ f : Nat → Nat, n : Nat •

twice(f)(n) ≡ f(f(n))
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is

value
twice : (Nat → Nat) → Nat → Nat
twice(f)(n) ≡ f(f(n))

This explicit function definition is an instance of the form

value
id : type expr1 → ... → type exprn → type expr
id(id1)...(idn) ≡ expr

5.9 Currying and Un-currying

The function twice above is curried. We can “un-curry” it by redefining it as

value
twice : (Nat → Nat) × Nat → Nat
twice(f,n) ≡ f(f(n))

We have turned an arrow ‘→’ into a cartesian product ‘×’. Previous applications of the form

twice(f)(x)

now have to be written

twice(f,x)

However, previous partial applications of the form

twice(f)

must now be written

λ n : Nat • twice(f,n)

which is longer. This is one reason for choosing the curried version.
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5.10 Predicative Definition of Functions

The function definitions given so far have all been algorithmic in the sense that they suggest a
strategy for constructing an answer.

Function definitions can also be more predicative in the sense of just saying what properties
the result must have based on the arguments.

Consider the following specification of the square-root function.

Example 5.1

SQUARE ROOT =
class

value
square root : Real ∼→ Real

axiom
∀ x : Real • x ≥ 0.0 ⇒
∃ s : Real •

square root(x) = s
∧

s ∗ s = x
∧

s ≥ 0.0
end

2

If the predicate did not include the s-property that s ≥ 0.0 then the square root function would
be underspecified yielding either a possitive or negative result on application – one would not
know.

5.11 Implicit Definition of Functions

A shorter way of writing the above is given below.

Example 5.2
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SQUARE ROOT =
class

value
square root : Real ∼→ Real
square root(x) as s

post
s ∗ s = x
∧

s ≥ 0.0
pre

x ≥ 0.0
end

2

This is an implicit function definition reading as follows.

The function square root is only well-defined for non-negative real numbers as expressed by
Real and the pre-condition following pre.

When applied to an x it returns a value, call it s, that satisfies the post-condition following
post.

The implicit value definition is an instance of the form

value
id : type expr1 × ... × type exprn

∼→ type expr
id(id1,...,idn) as idr

post expr1
pre expr2

where expr2 can refer to the arguments id1, . . . , idn and where expr1 in addition can refer to idr .

5.12 Algebraic Definition of Functions

Most of the function definitions we have seen until now are of the form

id(id1,...,idn) ≡ expr
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the key issue here being that between the brackets ‘(’ and ‘)’ is a list of identifiers. This
corresponds to the traditional way of defining functions also known from many programming
languages.

RSL, however, also allows for more algebraic function definitions. A well-known example from
arithmetic of this specification style is the set of properties satisfied by the ‘+’ operator (com-
mutativity, associativity, etc.)

a + b = b + a

a + (b + c) = (a + b) + c

Using this style function definitions will generally have the form

id(expr1,...,exprn) ≡ expr

where the expressions between ‘(’ and ‘)’ typically themselves contain calls of functions other
than id . In this way functions are defined by relating them to each other.

Consider the specification of integer lists. A list is an ordered sequence of elements. One can
construct a new list from another list by adding an element to it. The added element is referred
to as the head of the new list while the old list contained in the new list is referred to as the
tail.

Example 5.3

LIST =
class

type
List

value
empty : List,
add : Int × List → List,
head : List ∼→ Int,
tail : List ∼→ List

axiom
forall i : Int, l : List •

[head add]
head(add(i,l)) ≡ i,

[tail add]
tail(add(i,l)) ≡ l

end
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2

The List type is given as an abstract type since we will not explicitely say how lists are repre-
sented.

If the empty constant were not there, we would not be able to write any list expressions. The
list of numbers from 1 to 3 is for example expressed as

add(1,add(2,add(3,empty)))

The head and tail functions are partial in that they are not defined for the empty list. This is
reflected in the axioms where nothing is said about head(empty) and tail(empty).

The head axiom says that adding an element i to a list and then taking the head yields the
element just added.

The tail axiom says that adding an element to a list l and then taking the tail yields the original
list.

So we have

head(add(1,add(2,add(3,empty)))) ≡ 1

tail(add(1,add(2,add(3,empty)))) ≡ add(2,add(3,empty))

5.13 Examples

Example 5.4

Consider the specification of a database. The database associates unique keys with data. That
is, one key is associated with at most one data element in the database. The database should
provide the following functions

• Insert which associates a key with a data element in the database. If the key already is
associated with a data element the new association overrides the old.

• Remove which removes an association between a key and a data element.

• Defined which checks whether a key is associated with a data element.
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• Lookup which returns the data element associated with a particular key.

The specification of this can be given in terms of algebraic function definitions.

DATABASE =
class

type
Database,
Key, Data

value
empty : Database,
insert : Key × Data × Database → Database,
remove : Key × Database → Database,
defined : Key × Database → Bool,
lookup : Key × Database ∼→ Data

axiom
forall k,k1 : Key, d : Data, db : Database •

[remove empty]
remove(k,empty) ≡ empty,

[remove insert]
remove(k,insert(k1,d,db)) ≡

if k = k1 then remove(k,db) else insert(k1,d,remove(k,db)) end,
[defined empty]

defined(k,empty) ≡ false,
[defined insert]

defined(k,insert(k1,d,db)) ≡
k = k1 ∨ defined(k,db),

[lookup insert]
lookup(k,insert(k1,d,db)) ≡

if k = k1 then d else lookup(k,db) end
end

The Database type is given as an abstract type since we don’t want to say anything about
(bother with) how databases are represented. Likewise, nothing is said about keys and data.

The lookup function is partial since it is un-defined when applied to a key and a database not
associating that key with a data element. This is also reflected in that there is only one axiom
for lookup, namely lookup insert .

The remove insert axiom is the most elaborate of the axioms, so here follows a short explanation.
The right-hand side is an if-expression with two arms

• If the key k to be removed equals the inserted key k1, then the association of k with
d is ignored (removed) and the remove function is applied recursively to the rest. This
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recursive call may seem strange since one could argue that a key is at most associated
with one data element and therefore only needs to be removed once. A simpler axiom
would thus be

remove(k,insert(k1,d,db)) ≡
if k = k1 then db else ... end

This is, however, wrong and the reason is the following. We have quantified db over
Database and therefore db can be any database, especially one associating k with some
data element.

• If the key k to be removed does not equal the inserted key k1, then k must be removed
from the remaining database. The succeeding association of k1 with d is necessary to
keep that association.

The database example illustrates a useful technique for “inventing” axioms. The technique can
be characterised as follows

1. Identify the constructors by which any database can be constructed. These are the con-
stant empty and the function insert . Any database can thus be represented by an expres-
sion of the form

insert(k1,d1,insert(k2,d2,...insert(kn ,dn ,empty)... ))

2. Define the remaining functions “by case” over the constructors called with identifiers as
parameters. In the above axioms, remove, defined and lookup are thus defined over the
two constructor-expressions

empty

insert(k1,d,db)

We thus get “for free” all the left-hand sides of the axioms we must write. That is

remove(k,empty)
remove(k,insert(k1,d,db))

defined(k,empty)
defined(k,insert(k1,d,db))

lookup(k,empty)
lookup(k,insert(k1,d,db))

Note, however, that due the the partiality of lookup we don’t bother with giving the
right-hand side corresponding to lookup(k , empty).
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The list-axioms (example 5.3) actually has the same form.

The technique is useful in many applications, but there are of course applications where one
must be more imaginative when writing axioms.

2

Example 5.5

Consider the specification of natural numbers. This specification is not really needed from a
pragmatic viewpoint since RSL provides the built-in type Nat. The example is thus given for
illustration purposes. Functions will be defined algebraically.

PEANO =
class

type
N

value
zero : N,
succ : N → N,

axiom
forall n,n1,n2 : N •

[first is zero]
∼ (succ(n) ≡ zero),

[linear order]
succ(n1) ≡ succ(n2) ⇒ n1 ≡ n2,

[induction]
∀ p : N → Bool •

(p(zero) ∧ ∀ n : N • (p(n) ⇒ p(succ(n)))) ⇒
∀ n : N • p(n)

end

The axioms are Peano’s axioms for natural numbers. There is a zero value and a successor
function (adding one to its argument). The first is zero axiom says that zero is not the successor
of any number. The linear order axiom says that for any natural number there is at most one
predecessor, the successor of which is the natural number.

The induction axiom makes it possible to make proofs about natural numbers based on math-
ematical induction.

The axiom says: “for any predicate p, if p(zero) holds and if p(n) implies p(succ(n)) then p
holds for all n”.
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What may be difficult to see is that the induction axiom implies that N only contains numbers
that can be represented by RSL expressions of finite size. That is, for any number n in N , n is
represented by the expression

succ(succ(...(succ(zero))..))

with n applications of succ.

Note that a similar induction property should have been stated in example 5.3 and example 5.4.
In section 10 we shall see a shorthand for such induction axioms.

We could now extend our PEANO module with functions for performing addition and multi-
plication

NATURAL NUMBERS =
extend PEANO with

value
plus : N × N → N,
mult : N × N → N

axiom
forall n,n1,n2 : N •

[plus zero]
plus(n,zero) ≡ n,

[plus succ]
plus(n1,succ(n2)) ≡ succ(plus(n1,n2)),

[mult zero]
mult(n,zero) ≡ zero,

[mult succ]
mult(n1,succ(n2)) ≡ plus(mult(n1,n2),n1)

end

It may be a mystery that exactly these axioms define plus and mult , but it should be easy to
see that they are true – there is a difference.

2
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6 Sets

A set is an unordered collection of distinct values of the same type. Examples of sets are

{1,3,5}

{′′John′′,′′Peter′′,′′Ann′′}

The first set is an integer set and the second set is a text set.

A type expression of the form

type expr-set

represents a type of finite sets. Each set is a subset of the type represented by type expr .

Consider for example the type expression

Bool-set

which represents the type containing the four sets

{}
{true}
{false}
{true,false}

Note that the empty set {} is included.

The type expression

Nat-set

represents the infinite type containing all finite subsets of the natural numbers

{}
{0} {1} {0,1}
{2} {0,2} {1,2} {1,2,3}
...
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A type expression of the form

type expr-infset

represents the type of infinite as well as finite sets. Each set is a subset of the type represented
by type expr .

The type expression

Bool-infset

represents the same type as the finite set type above since there are no infinite subsets of a
finite type like Bool.

The type

Nat-infset

however, contains infinite sets in addition to the finite ones

{}
{0} {1} {0,1}
{2} {0,2} {1,2} {1,2,3}
...
{0,1,2,3,4,...}
{1,2,3,5,7,...}

The dots ‘. . .’ indicate the infinity (note that this is not RSL).

An example of an infinite set is Nat itself as indicated by the first infinite set above. Another
example of an infinite set is the set of all prime numbers as indicated by the second infinite set
above.

In general, for any type T , T−set is a subtype of T−infset. So all the sets belonging to
Nat-set belong to Nat-infset as well.

6.1 Representing Sets

A set may be written by explicitly enumerating its members. We have already seen examples
of such expressions
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{1,2,3}

{′′John′′,′′Peter′′,′′Ann′′}

The general form of an enumerated set expression is

{expr1,...,exprn}

Each expression is evaluated to a value which is included in the resulting set. The order of the
expressions does not matter. As an example consider the two set expressions which represent
the same set

{1,2,3} = {3,2,1}

A set contains distinct values, so the following set expressions represent the same sets

{1,2,3} = {1,2,3,3}

A special set is that with no members

{}

A set can be defined implicitly by giving a predicate which defines the members. An example
of such a so-called comprehended set expression is

{2∗n | n : Nat • n ≤ 3} = {0,2,4,6}

The comprehended set expression reads: “the set of values 2 ∗ n where n is a natural number
such that n is less than or equal to 3”.

Other examples are

{n | n : Nat • is a prime(n)} = {1,2,3,5,7,...}

{(x,y) | x,y : Nat • y = x + 1} = {(0,1),(1,2),(2,3),...}

The first set contains all the prime numbers. The function is a prime must have the signature
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value
is a prime : Nat → Bool

The second set contains pairs (x , y) where y is x plus one.

The general form of a comprehended set expression is

{expr1 | typing1,...,typingn • expr2}

where expr2 must be a boolean expression.

A ranged set expression gives a set of integers in a range delimited by a lower bound and an
upper bound

{3 .. 7} = {3,4,5,6,7}

{3 .. 3} = {3}

{3 .. 2} = {}

The general form of a ranged set expression is

{expr1 .. expr2}

where expr1 and expr2 are integer valued expressions. The expression represents the set of
integers between and including the two bounds.

6.2 Infix Operators

A basic operator on sets is the “test for membership” and its negated version. Let T be an
arbitrary type, then the signatures of these two operators are

∈ : T × T-infset → Bool
6∈ : T × T-infset → Bool

An expression

e ∈ s

RAISE/CRI/DOC/1/V1



Sets 51

is true if and only if e is a member of the set s. For the negated version we have

e 6∈ s ≡ ∼(e ∈ s)

Some examples are

3 ∈ {1,3} ≡ true

2 6∈ {1,3} ≡ true

2 ∈ {1,3} ≡ false

A new set can be composed from two other sets by taking their “union” or their “intersection”

∪ : T-infset × T-infset → T-infset
∩ : T-infset × T-infset → T-infset

These operators can be defined in terms of test for membership

s1 ∪ s2 ≡ {e | e : T • e ∈ s1 ∨ e ∈ s2}

s1 ∩ s2 ≡ {e | e : T • e ∈ s1 ∧ e ∈ s2}

Some examples are

{1,3,5} ∪ {5,7} ≡ {1,3,5,7}

{1,3,5} ∩ {5,7} ≡ {5}

{1,3,5} ∩ {7,8} ≡ {}

A new set can be obtained from two other sets by a “set difference”

\ : T-infset × T-infset → T-infset

Its definition is
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s1 \ s2 ≡ {e | e : T • e ∈ s1 ∧ e 6∈ s2}

Some examples are

{1,3,5} \ {1} ≡ {3,5}

{1,3,5} \ {7} ≡ {1,3,5}

{1,3,5} \ {n | n : Nat • is a prime(n)} ≡ {}

There are two operators for comparing sets, namely “subset” and “proper subset”

⊆ : T-infset × T-infset → Bool
⊂ : T-infset × T-infset → Bool

Their definitions are

s1 ⊆ s2 ≡ ∀ e : T • e ∈ s1 ⇒ e ∈ s2

s1 ⊂ s2 ≡ s1 ⊆ s2 ∧ s1 6= s2

Some examples are

{1,3,5} ⊆ {1,3,5} ≡ true

{1,3} ⊂ {1,3,5} ≡ true

{1,3,5} ⊂ {1,3,5} ≡ false

{1,3} ⊆ {3,5} ≡ false

For convenience there are reversed versions of the comparison operators

⊃ : T-infset × T-infset → Bool
⊇ : T-infset × T-infset → Bool
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6.3 Prefix Operators

The cardinality operator yields the “size” of a finite set, that is: the number of elements
contained in the set

card : T-set → Nat

Some examples are

card {1,4,67} ≡ 3
card {} ≡ 0

6.4 Examples

Example 6.1

Consider the specification of a resource manager. A number of resources are to be shared
between a number of users. A resource manager controls the resources by maintaining a pool
(a set) of free resources.

When a user wants a resource, the resource manager obtains an arbitrary one from the pool.
When the user no longer needs the resource, the manager releases it by putting it back into the
pool.

RESOURCE MANAGER =
class

type
Resource,
Pool = Resource-set

value
initial : Pool,
obtain : Pool ∼→ Pool × Resource,
release : Resource × Pool ∼→ Pool

axiom forall r : Resource, p : Pool •
obtain(p) as (p1,r)

post r ∈ p ∧ p1 = p\{r}
pre p 6= {},

release(r,p) ≡
p ∪ {r}
pre r ∈ initial\p

end
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The Resource type is defined as an abstract type since we don’t consider here what resources
are and how they are identified.

A Pool is defined as a set of resources. The initial pool is un-specified (there is no axiom for
initial).

The definition of obtain reads as follows. When applied to a pool p that is non-empty, a pair
(p1, r) is returned. The resource r must be a member of the old pool p. The new pool p1 is
equal to the old p except for r which has been removed.

Note that it is un-specified which resource is obtained from a pool containing more than one
resource. The function is, however, deterministic in that if applied twice to the same pool it
will return the same resource.

The release function just returns a resource to the pool. The resource must, however, not
already be free.

Different styles have been used for defining obtain and release. An implicit style has been used
to define obtain since there is no “algorithmic” strategy for selecting a member from a set. We
only say that the returned resource must belong to the argument pool.

An explicit style has been used for defining release since RSL provides the union operator ∪
which perfectly does the job.

2

Example 6.2

Consider a set version of the database from example 5.4.

SET DATABASE =
class

type
Record = Key × Data,
Database = Record-set,
Key, Data

value
is wf Database : Database → Bool,
empty : Database,
insert : Key × Data × Database → Database,
remove : Key × Database → Database,
defined : Key × Database → Bool,
lookup : Key × Database ∼→ Data
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axiom forall k : Key, d : Data, db : Database •

is wf Database(db) ≡
∀ k : Key, d1,d2 : Data •

((k,d1) ∈ db ∧ (k,d2) ∈ db) ⇒ d1 = d2,
empty ≡
{},

insert(k,d,db) ≡
remove(k,db) ∪ {(k,d)},

remove(k,db) ≡
db \ {(k,d) | d : Data},

defined(k,db) ≡
∃ d : Data • (k,d) ∈ db,

lookup(k,db) as d
post (k,d) ∈ db
pre defined(k,db)

end

A database is modelled as a set of records, where a record consists of a key and a data element.

Not all databases are “wellformed”. Some databases we are not interested in, namely those
holding more than one record with the same key. The function is wf Database defines when a
database is wellformed.

The empty database is represented by the empty set.

In order to insert a record into the database, one must first remove any existing record with
the same key. This is necessary in order to keep the database wellformed.

To remove a key corresponds to removing all records containing that key – note that there will
be at most one such record.

A key is defined if the database contains a record containing that key.

Finally, to lookup a key corresponds to finding a data element such that a record containing the
key and that data element is in the database.

The set database actually implements the database from example 5.4. We shall not go into a
detailed definition of the implementation relation here, but just outline a strategy for showing
implementation.

SET DATABASE implements DATABASE because

1. SET DATABASE defines all the types that DATABASE defines with the only change
that some sorts (Database) have been replaced by concrete definitions (Database =
Record−set).
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2. SET DATABASE defines all the constants and functions that DATABASE defines with
the same signatures.

3. All the axioms of DATABASE are true in SET DATABASE . As an example consider
the DATABASE axiom defined empty (ignoring quantification)

defined(k,empty) ≡ false

To prove that this axiom holds in SET DATABASE one can “unfold” the calls of defined
and empty . That is, we replace the calls with the definitions that these functions have in
SET DATABASE . We unfold the functions one by one starting with empty

defined(k,{}) ≡ false

Then we unfold defined putting brackets around the unfolded text

(∃ d : Data • (k,d) ∈ {}) ≡ false

which reduces to

false ≡ false

which reduces to

true

So the DATABASE axiom defined empty is true in SET DATABASE .

2

Example 6.3

Consider a specification of equivalence relations. A set consisting of disjoint sets of elements is
said to define an equivalence relation. We call the member sets for equivalence classes. All the
elements of an equivalence class are equivalent.

An essential function on equivalence relations is make equivalent for making two elements equiv-
alent. Basically this function will join the equivalence classes of the two elements.

Another essential function are equivalent tests whether two elements are equivalent. That is,
whether they belong to the same equivalence class.
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EQUIVALENCE RELATION =
class

type
Element,
Class = Element-set,
Relation = Class-infset

value
is wf Relation : Relation → Bool,
initial : Relation,
make equivalent : Element × Element × Relation → Relation,
are equivalent : Element × Element × Relation → Bool

axiom forall e,e1,e2 : Element, r : Relation •

is wf Relation(r) ≡
{} 6∈ r
∧

∀ e : Element •

∃ c : Class •

c ∈ r ∧ e ∈ c
∧

∀ c1,c2 : Class •

c1 ∈ r ∧ c2 ∈ r ∧ c1 6= c2 ⇒
c1 ∩ c2 = {},

initial ≡
{{e} | e : Element},

make equivalent(e1,e2,r) ≡
{c | c : Class • c ∈ r ∧ {e1,e2} ∩ c = {}}
∪

{c1 ∪ c2 | c1,c2 : Class •

c1 ∈ r ∧ c2 ∈ r ∧ e1 ∈ c1 ∧ e2 ∈ c2},
are equivalent(e1,e2,r) ≡
∃ c : Class • c ∈ r ∧ e1 ∈ c ∧ e2 ∈ c

end

Note that an equivalence class Class is a finite set of elements. This reflects the intuition that
elements can only be made equivalent by the function make equivalent and one can only apply
a function finitely many times (thinking of a user).

A Relation on the other hand may be an infinite set of equivalence classes. This may happen
if the type Element itself is infinite.

A relation is wellformed is wf Relation if

1. it does not contain the empty equivalence class,

2. every element in Element is represented in some equivalence class,

3. any two different equivalence classes are disjoint.
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The initial relation makes no elements equivalent. This corresponds to a class for each element.

Two elements are made equivalent make equivalent by collapsing into one class the two classes
to which the two elements belong. The right-hand side of the axiom defining make equivalent
is the union of two sets. The first set contains those classes that do not contain any of the two
elements. Such classes thus remain unchanged. The second set performs the collapse (union)
of those sets containing the respective elements. Note that they might already belong to the
same class in which case the relation remains completely unchanged.

Two elements are equivalent are equivalent if there exists a class to which both belong.

2
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7 Lists

A list is an ordered sequence of values of the same type, possibly including duplicates. Examples
of lists are

〈1,3,3,1,5〉

〈true,false,true〉

The first list is an integer list and the second is a boolean list.

A type expression of the form

type expr∗

represents a type of finite lists. Each list contains elements from the type represented by
type expr .

Consider for example the type expression

Bool∗

This type contains infinitely many finite lists of booleans

〈〉
〈true〉
〈false〉
〈true,false〉
〈false,true〉
〈true,true〉
〈false,false〉
〈true,false,true〉
...

Note that the empty list 〈〉 is included. The reader should compare the above boolean lists with
the boolean sets contained in Bool-set (section 6).

A type expression of the form
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type exprω

represents the type of infinite as well as finite lists. The type

Boolω

thus contains infinite boolean lists in addition to the finite ones

〈〉
〈true〉
〈false〉
〈true,false〉
〈false,true〉
〈true,true〉
〈false,false〉
〈true,false,true〉
...
〈false,true,true,true,false,... 〉

An example of an infinite list is the one containing all the prime numbers in increasing order.

In general, for any type T , T ∗ is a subtype of Tω. So, for example, all the lists belonging to
Bool∗ belong to Boolω as well.

7.1 Representing Lists

A list may be written by explicitly enumerating its elements. We have already seen examples
of such expressions

〈1,3,3,1,5〉

〈true,false,true〉

The general form of an enumerated list expression is

〈expr1,...,exprn〉
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Each expression is evaluated to a value which is included in the resulting list at the appropriate
position. Note that the order of the expressions matters. As an example consider the two list
expressions which represent different lists

〈1,2,3〉 6= 〈3,2,1〉

A list may contain duplicates, so the following list expressions represent different lists

〈1,2,3〉 6= 〈1,2,3,3〉

A special list is that with no members, the empty list

〈〉

A ranged list expression represents a list of integers in a range delimited by a lower bound and
an upper bound

〈3 .. 7〉 = 〈3,4,5,6,7〉

〈3 .. 3〉 = 〈3〉

〈3 .. 2〉 = 〈〉

The general form of a ranged list expression is

〈expr1 .. expr2〉

where expr1 and expr2 are integer valued expressions. The expression represents the list of
increasingly ordered integers between and including the two bounds, expr1 being the lower
bound.

A new list can be generated from an old list by applying a function to each member of the old
list. An example of such a so-called comprehended list expression is

〈2∗n | n in 〈0 .. 3〉〉 = 〈0,2,4,6〉
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The comprehended list expression reads: “the list of values 2 ∗ n where n ranges over the list
〈0..3〉”. Note that the ordering of the old list is preserved in the new list.

It is possible via a predicate to limit the selection of elements from the old list. Consider for
example the list consisting of all the prime numbers between 1 and 100, ordered increasingly

〈n | n in 〈1 .. 100〉 • is a prime(n)〉 = 〈1,2,3,5,7,...,97〉

This comprehended list expression reads as follows: “the list of values n where n ranges over
the list 〈1..100〉, considering only the prime numbers”.

As a third example consider a database which is a list of records

type
Record = Key × Data,
Database = Record∗

Suppose we want to extract a report from the database, only involving those records that are
interesting as defined by some boolean-valued function on keys. For each interesting record,
the report will contain an entry consisting of the key and a transformation of the corresponding
data element. So the following functions are assumed

value
is interesting : Key → Bool,
transformation : Data → Report Data

The report can then be represented by the following comprehended list expression, assuming
the existence of a database db

〈(k,transformation(d)) | (k,d) in db • is interesting(k)〉

The general form of a comprehended list expression is

〈expr1 | binding in expr2 • expr3〉

where expr2 is a list expression and expr3 is boolean expression. The binding must match the
elements of the list represented by expr2.
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7.2 List Indexing

A particular element of a list may be extracted by indexing, where the index must be a natural
number between one and the length of the list. As an example consider the list l defined by

value
l : Nat∗

axiom
l = 〈10,20,30〉

Then indexing l with index 2 yields the second element in the list

l(2) = 20

The general form of an indexing expression is

expr1(expr2)

where expr1 is a list expression and expr2 is an integer expression evaluating to a value between
one and the length of the list.

7.3 Defining Infinite Lists

An infinite list can be defined through a value definition and an axiom specifying it to be
infinite.

Consider for example the list containing all natural numbers in increasing order

value
all natural numbers : Natω

axiom
all natural numbers(1) = 0,
∀ idx : Nat •

idx ≥ 2 ⇒
all natural numbers(idx) = all natural numbers(idx − 1) + 1

From the infinite list of natural numbers we can define the list of all prime numbers by a
comprehended list expression

〈n | n in all natural numbers • is a prime(n)〉 = 〈1,2,3,5,7,... 〉
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7.4 Infix Operators

The “concatenation” operator concatenates two lists

̂ : T∗ × Tω → Tω

It produces the list containing all the elements from the first argument followed by all the
elements from second

〈e1,...,en〉 ̂ 〈en+1,... 〉 = 〈e1,...,en ,en+1,... 〉

Some examples are

〈1,2,3〉 ̂ 〈4,5〉 = 〈1,2,3,4,5〉

〈1,2,3〉 ̂ 〈〉 = 〈1,2,3〉

Note that the first argument to the concatenation operator must be a finite list (one cannot
append anything to the end of an infinite list since it has no end).

The second argument can, however, very well be infinite as in

〈0〉 ̂ all natural numbers = 〈0,0,1,2,3,4,5,... 〉

where all natural numbers is defined above.

7.5 Prefix Operators

Two basic operators on lists are “head” and “tail”

hd : Tω ∼→ T
tl : Tω → Tω

The head of a list is the first element in the list “from the left”

hd 〈e1,e2,... 〉 = e1
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The tail of a list is that list which remains after having removed the head element (if any)

tl 〈e1,e2,... 〉 = 〈e2,... 〉

Some examples are

hd 〈1,2,3〉 = 1

tl 〈1,2,3〉 = 〈2,3〉

tl 〈〉 = 〈〉

hd all natural numbers = 0

tl all natural numbers = 〈1,2,3,4,... 〉

Note that the head operator is only well-defined for non-empty list arguments.

The operators “last” and “front” are the reverse of the head and tail operators

last : T∗ ∼→ T
front : T∗ → T∗

The last of a list is the last element in the list “from the left”

last 〈e1,...,en−1,en〉 = en

The front of a list is that list which remains after having removed the last element (if any)

front 〈e1,...,en−1,en〉 = 〈e1,...,en−1〉

Some examples are

last 〈1,2,3〉 = 3

front 〈1,2,3〉 = 〈1,2〉

The “length” operator yields the length of a finite list
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len : T∗ → Nat

Some examples are

len 〈2,4,2〉 = 3

len 〈〉 = 0

Finally there are two operators for extracting the “indices” and “elements” of a list

inds : Tω → Nat-infset
elems : Tω → T-infset

The indices operator is defined as follows. Let fl be a finite list and let il be an infinite list

inds fl = {1 .. len fl}
inds il = {idx | idx : Nat • idx ≥ 1}

The elements operator is defined as follows

elems l = {l(idx) | idx : Nat • idx ∈ inds l}

Some examples are

inds 〈2,4,2〉 = {1,2,3}
elems 〈2,4,2〉 = {2,4}

inds 〈〉 = {}
elems 〈〉 = {}

inds all natural numbers = {i | i : Nat • i ≥ 1}
elems all natural numbers = {n | n : Nat}

7.6 Examples

Example 7.1

Consider the specification of a queue. Elements can be put into the queue, one by one. Elements
can leave the queue, “first in first out”, thereby reducing the queue.
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QUEUE =
class

type
Element,
Queue = Element∗

value
empty : Queue,
put : Element × Queue → Queue,
get : Queue ∼→ Queue × Element

axiom forall e : Element, q : Queue •

empty ≡
〈〉,

put(e,q) ≡
q ̂ 〈e〉,

get(q) ≡
(tl q,hd q)
pre q 6= empty

end

A Queue is conveniently modelled as a list. Note that a queue is characterised by having an
ordering on its members, just like lists. Only finite lists will be considered since infinite queues
make no sense.

The empty queue is represented by the empty list.

To put an element into the queue corresponds to adding the element to the end of the list.

To get an element from the queue corresponds to take the head of the list.

2

Example 7.2

Consider the specification of a sorting function that sorts an integer list to yield an increasingly
ordered list. We will not design an algorithm, but rather specify it implicitly in terms of the
two functions is permutation and is sorted

LIST PROPERTIES =
class

value
is permutation : Int∗ × Int∗ → Bool,
is sorted : Int∗ → Bool
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axiom forall l,l1,l2 : Int∗ •

is permutation(l1,l2) ≡
∀ i : Int •

card {idx | idx : Nat • idx ∈ inds l1 ∧ l1(idx) = i} =
card {idx | idx : Nat • idx ∈ inds l2 ∧ l2(idx) = i},

is sorted(l) ≡
∀ idx1,idx2 : Nat •

{idx1,idx2} ⊆ inds l ∧ idx1 < idx2 ⇒
l(idx1) ≤ l(idx2)

end

The function is permutation takes two lists and determines whether they are permutations of
each other: they have the same length, contain the same elements and each element occurs the
same number of times. In the definition this is expressed as follows: “for every integer i , the
number of indices in the one list which denote i must be equal the the number of indices in the
other list which denote i”.

The function is sorted takes a list and determines whether it is increasingly ordered: for any
two different indices, the element denoted by the smallest must be less than or equal to the
element denoted by the biggest.

We can now extend the LIST PROPERTIES module with the definition of a sorting function

SORTING =
extend LIST PROPERTIES with

value
sort : Int∗ → Int∗

axiom forall l : Int∗ •

sort(l) as l1
post is permutation(l1,l) ∧ is sorted(l1)

end

The sort function takes a list and returns a new list which is a permutation of the old one and
which is sorted.

2

Example 7.3

Consider a list version of the database from example 5.4. The database will now be a list of
records, corresponding to the traditional notion of a “sequential file”.
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To illustrate how a specification can be implementation oriented, we shall in addition require
the database to be sorted on keys. For that purpose we must assume a function less than
defined on pairs of keys.

The sortedness property can now be utilized when searching for a record with a particular key
k : the search is terminated as soon as a key greather than or equal to k is found. If the key
found is greather than k , the search has failed. This algorithm saves time (in average) in case
the key is not defined in the database.

We will also make the function lookup total such that when applied to a key and a database
not defining that key, an error data element will be returned. We thus introduce such an error
value named not found . The types Key and Data together with the function less than and the
constant not found are now defined in a separate module. The decomposition into sub-modules
reduces the size, and thereby the readability, of each module.

KEY AND DATA =
class

type
Key, Data

value
not found : Data,
less than : Key × Key → Bool

axiom forall k,k1,k2,k3 : Key •

[not reflexive]
∼less than(k,k),

[transitive]
less than(k1,k2) ∧ less than(k2,k3) ⇒ less than(k1,k3),

[anti symmetric]
less than(k1,k2) ⇒ ∼less than(k2,k1),

[total order]
less than(k1,k2) ∨ less than(k2,k1)

end

The error element not found is un-specified – we don’t care at this point.

The function less than is supposed to define an ordering on keys. If the keys were integers,
the ordering could be ‘<’. The function is specified through a number of axioms. The reader
should check that these axioms actually hold for ‘<’.

Considering records, we will make an abstraction, “hiding” the fact that they are pairs of key
and data. For that purpose we will define functions for generating new records new record , and
for decomposing records: key of and data of for extracting the key field and the data field of
a record, respectively.

A new module which is an extension of KEY AND DATA defines just these functions
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RECORD =
extend KEY AND DATA with

type
Record = Key × Data

value
new record : Key × Data → Record,
key of : Record → Key,
data of : Record → Data

axiom forall k : Key, d : Data •

new record(k,d) ≡
(k,d)

key of(k,d) ≡
k,

data of(k,d) ≡
d

end

The definition of new record may look a bit strange since it is the identify function, taking a
pair and yielding a pair. We have, however, obtained that we don’t need to bother anymore
with how records are represented. From now on records are only created and decomposed by
these three functions.

It is now time to define the database as a sorted list of records

LIST DATABASE =
extend RECORD with

type
Database = Record∗

value
is wf Database : Database → Bool,
empty : Database,
insert : Key × Data × Database → Database,
remove : Key × Database → Database,
defined : Key × Database → Bool,
lookup : Key × Database → Data

axiom forall k : Key, d : Data, db : Database •

is wf Database(db) ≡
∀ r1,r2 : Record, db left,db right : Database •

db = db left ̂ 〈r1,r2〉 ̂ db right ⇒
less than(key of(r1),key of(r2)),

empty ≡
〈〉,

insert(k,d,db) as db1
post

elems db1 = (elems remove(k,db)) ∪ {new record(k,d)}
∧
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is wf Database(db1),
remove(k,db) ≡
〈r | r in db • key of(r) 6= k〉,

defined(k,db) ≡
if db = 〈〉 ∨ less than(k,key of(hd db)) then

false
else

key of(hd db) = k ∨ defined(k,tl db)
end,

lookup(k,db) ≡
if db = 〈〉 ∨ less than(k,key of(hd db)) then

not found
else

if key of(hd db) = k then
data of(hd db)

else
lookup(k,tl db)

end
end

end

A database is well-formed, is wf Database, if for any two successive records, the key of the
“leftmost” record is less than the key of the “rightmost” record.

Note that this wellformedness condition also prevents duplicate keys, i.e. two records hav-
ing the same key. This is actally a consequence of the not reflexive axiom in the module
KEY AND DATA.

The function insert is defined implicitly by saying that the result of an insertion must con-
tain the correct set of records and that these in addition must be sorted, without duplicates
(is wf Database).

Although we are trying to be implementation oriented, the implicit style has been used here,
since our focus at this point will be to optimize especially the function lookup.

The funtion remove is defined by a list comprehension expression that removes all the records
having the specified key (there is at most one).

The functions defined and lookup are defined by nearly the same algorithm. They search the
database sequentially for a key until either the end is reached or a greater key is found or the
key is found. Note that due to the conditional interpretation of ‘∨’, the function defined will
not call itself recursively if the key is found.

In the case of lookup, note how the error value not found is returned in case of failure to find
the specified key.
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An interesting point to note here is that LIST DATABASE formally implements DATABASE
from example 5.4.

We have actually strived to obtain that relation, at the cost of some problems, however.

The first “problem” is that the function defined is really not needed any more. Instead of calling
defined one can call lookup and see whether the result differs from not found .

The other more severe problem is introduced by the constant not found which is a value of
Data just like any other value of Data. It is thus possible to insert it into the database by
insert . This is not the intension and users of LIST DATABASE should not do so.

We could have made the function insert partial with the pre-condition that the inserted data
element should be different from not found . This would, however, destroy the implementa-
tion relation: one cannot implement a total function with a partial function and still obtain
implementation.

The above list database specification is rather implementation oriented. We could have chosen
to give a more abstract specification, still in terms of lists, but without the “sorting”. That is
to say, one can also use lists for abstract high-level specifications.

2
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8 Maps

A map is a table-like structure that maps values of one type into values of another type.
Examples of maps are

[3 7→ true, 5 7→ false]

[′′Ib′′ 7→ 7, ′′John′′ 7→ 2, ′′Mary′′ 7→ 7]

The first is a map from integers to booleans. The value 3 is mapped to true while the value 5
is mapped to false. The second is a map from texts to integers.

The values for which a map is defined is referred to as the domain of the map. The second map
above thus has the domain

{′′Ib′′,′′John′′,′′Mary′′}

The range of a map is the set of values mapped to. The second map above thus has the range

{2,7}

Maps are very similar to functions in that a map can be applied to a domain value to yield the
associated range value.

The pragmatic difference between functions and maps is primarily a question of updating. Once
a function has been created, it will typically remain “unchanged”. A map, on the other hand,
will typically be subjected to dynamic updatings.

Essential operators on maps are therefore

1. Update a map with a new association between a domain value and a range value.

2. Delete an association from a map.

3. Check whether some value belongs to the domain of a map.

As a real-world example of a map, consider a file directory mapping file identifiers into files.
Such a map is typically subjected to the following operations

1. List all names of existing files.
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2. Add a file.

3. Change a file.

4. Delete a file.

A type expression of the form

type expr1 →m type expr2

represents a type of maps, each mapping type expr1 values into type expr2 values. A map can
be partial in having a domain which is only a subset of the type represented by type expr1.

Consider for example the type expression

Text →m Nat

This type contains infinitely many maps

[ ]
[′′3′′ 7→ 3]
[′′Ib′′ 7→ 7, ′′John′′ 7→ 2, ′′Mary′′ 7→ 7]
...

Note that the empty map [ ] is included.

Maps may be infinite in having an infinite domain. The above map type thus also contains
infinite maps.

8.1 Representing Maps

A map may be written by explicitly enumerating its associations. We have already seen examples
of such expressions

[3 7→ true, 5 7→ false]

[′′Ib′′ 7→ 7, ′′John′′ 7→ 2, ′′Mary′′ 7→ 7]

The general form of an enumerated map expression is
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[expr1 7→ expr1′,...,exprn 7→ exprn ′]

Each expression pair (expri ,expri ′) is evaluated to values vi and vi
′ and the resulting map then

maps vi to vi
′.

Note that the order of the associations does not matter. As an example consider the two map
expressions which represent the same map

[3 7→ true, 5 7→ false] = [5 7→ false, 3 7→ true]

A special map is that with no associations

[ ]

A map can be defined implicitly by giving a predicate which defines the associations. An
example of such a so-called comprehended map expression is

[n 7→ 2∗n | n : Nat • n ≤ 2] = [0 7→ 0, 1 7→ 2, 2 7→ 4]

The comprehended map expression reads: “the map from n to 2∗n where n is a natural number
such that n is less than or equal to 2”.

It is possible via a comprehended map expression to create an infinite map. Consider for
example

[n 7→ 2∗n | n : Nat • is a prime(n)] =
[1 7→ 2, 2 7→ 4, 3 7→ 6, 5 7→ 10, 7 7→ 14, ... ]

Cases like this are the reason for having infinite maps.

It is also possible via a comprehended map expression to create a so-called non-deterministic
map. Consider for example

[x 7→ y | x,y : Nat • {x,y} ⊆ {1,2}] =
[1 7→ 1, 1 7→ 2, 2 7→ 1, 2 7→ 2]

Such maps should be avoided in specifications and in the following we shall ignore their existence.
It is, however, possible to create them.

The general form of a comprehended map expression is

RAISE/CRI/DOC/1/V1



76 Maps

[expr1 7→ expr2 | typing1,...,typingn • expr3]

where expr3 is a boolean expression.

8.2 Looking Up a Value

A value can be looked up in a map if it belongs to the domain of the map. As an example
consider the map m defined by

value
m : Text →m Nat

axiom
m = [′′Ib′′ 7→ 7, ′′John′′ 7→ 2, ′′Mary′′ 7→ 7]

Then looking up ”John” in m yields the value 2

m(′′John′′) = 2

The general form of a map-lookup expression is

expr1(expr2)

where expr1 is a map expression and expr2 must yield a value within the domain of the map.

8.3 Prefix Operators

A basic operator on maps is the “domain” operator which for a particular map yields its domain

dom : (T1 →m T2) → T1-infset

Some examples are

dom [′′Ib′′ 7→ 7, ′′John′′ 7→ 2] = {′′Ib′′, ′′John′′}

dom [n 7→ 2∗n | n : Nat • is a prime(n)] = {n | n : Nat • is a prime(n)}

dom [ ] = {}
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A related operator is the “range” operator which yields the range of a map

rng : (T1 →m T2) → T2-infset

It is defined as follows

rng m = {m(d) | d : T1 • d ∈ dom m}

Some examples are

rng [′′Ib′′ 7→ 7, ′′John′′ 7→ 2] = {7,2}

rng [n 7→ 2∗n | n : Nat • is a prime(n)] = {2∗n | n : Nat • is a prime(n)}

rng [ ] = {}

8.4 Infix Operators

The “override” operator overrides one map with another

† : (T1 →m T2) × (T1 →m T2) → (T1 →m T2)

Priority is given to the associations in the second argument in cases where the domain values
match. Some examples are

[3 7→ true, 5 7→ false] † [5 7→ true] = [3 7→ true, 5 7→ true]

[3 7→ true] † [5 7→ false] = [3 7→ true, 5 7→ false]

[3 7→ true] † [ ] = [3 7→ true]

The “union” of two maps combines the two maps just like the override operator. The two maps
should, however, have disjoint domains

∪ : (T1 →m T2) × (T1 →m T2) → (T1 →m T2)

An example is
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[3 7→ true] ∪ [5 7→ false] = [3 7→ true, 5 7→ false]

The union operator is typically used when one wants to “signal” that the two arguments are
known to have disjoint domains.

There are two operators for restricting the domain of a map, namely “restrict with” and “restrict
to”

\ : (T1 →m T2) × T1-infset → (T1 →m T2)
/ : (T1 →m T2) × T1-infset → (T1 →m T2)

They are defined as follows

m \ s = [d 7→ m(d) | d : T1 • d ∈ dom m ∧ d 6∈ s]
m / s = [d 7→ m(d) | d : T1 • d ∈ dom m ∧ d ∈ s]

Some examples are

[3 7→ true, 5 7→ false] \ {3} = [5 7→ false]

[3 7→ true, 5 7→ false] / {3} = [3 7→ true]

The “map composition” operator makes it possible to compose two maps

◦ : (T2 →m T3) × (T1 →m T2) → (T1 →m T3)

It is defined as follows

(expr1 ◦ expr2)(expr) ≡ expr1(expr2(expr))

Some examples are

[3 7→ true] ◦ [′′Ib′′ 7→ 3] = [′′Ib′′ 7→ true]

[3 7→ true, 5 7→ false] ◦ [′′Ib′′ 7→ 3, ′′John′′ 7→ 7] = [′′Ib′′ 7→ true]

[3 7→ true] ◦ [′′Ib′′ 7→ 5] = [ ]

The second and third map compositions show what happens when the range of the second
argument include values that are not in the domain of the first argument: associations for
which no match exists are just removed.
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8.5 Examples

Example 8.1

Consider a map version of the database from example 5.4. The map datatype is very well suited
for modelling the database since the database operations correspond closely to map operators.

MAP DATABASE =
class

type
Database = Key →m Data,
Key, Data

value
empty : Database,
insert : Key × Data × Database → Database,
remove : Key × Database → Database,
defined : Key × Database → Bool,
lookup : Key × Database ∼→ Data

axiom forall k : Key, d : Data, db : Database •

empty ≡
[ ],

insert(k,d,db) ≡
db † [k 7→ d],

remove(k,db) ≡
db \ {k},

defined(k,db) ≡
k ∈ dom db,

lookup(k,db) ≡
db(k)
pre defined(k,db)

end

The Database is a mapping from keys to data.

The empty database is the empty mapping.

To insert an association between a key and a data element corresponds to overriding the original
database with the new association. Any old association between the key and some data element
will be overridden.

To remove a key corresponds to removing it from the domain.

To check whether a key is defined corresponds to finding out whether it belongs to the domain.
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To lookup a key corresponds to applying the map to the key.

2

Example 8.2

Consider a map version of the equivalence relation from example 6.3. It should be remembered
that elements of some type Element are separated into partitions. All the elements in the same
partition are said to be equivalent.

Partitions can be merged by a function make equivalent . Another function, are equivalent ,
makes it possible to test whether two elements belong to the same partition (are equivalent).

A relation will now be modelled as a map from elements to partition identifiers. All elements
in the same partition are mapped to the same partition identifier.

EQUIVALENCE RELATION =
class

type
Element,
Partition Id,
Relation = Element →m Partition Id

value
is wf Relation : Relation → Bool,
initial : Relation,
make equivalent : Element × Element × Relation ∼→ Relation,
are equivalent : Element × Element × Relation ∼→ Bool

axiom forall e1,e2 : Element, r : Relation •

is wf Relation(r) ≡
∀ e : Element •

e ∈ dom r,
is wf Relation(initial),
e1 6= e2 ⇒ initial(e1) 6= initial(e2),
make equivalent(e1,e2,r) ≡

r † [e 7→ r(e2) | e : Element • r(e) = r(e1)]
pre {e1,e2} ⊆ dom r

are equivalent(e1,e2,r) ≡
r(e1) = r(e2)
pre {e1,e2} ⊆ dom r

end

A relation is wellformed, is wf Relation, if it maps every element in Element into some partition
identifier. Every element thus belongs to a partition.
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The initial relation must be wellformed (the second axiom).

The initial relation must in addition map different elements to different partition identifiers
(the third axiom). No elements are thus equivalent from the beginning.

To make two elements e1 and e2 equivalent, make equivalent , all the elements e that belong to
the same partition as e1 are moved to the partition that e2 belongs to.

Two elements are equivalent, are equivalent , if they are mapped to the same partition identifier.

Note the pre-conditions to the functions make equivalent and are equivalent . We could have
replaced these with

pre is wf Relation(r)

In section 9 we shall see how a wellformedness predicate can be used to restrict a type via
a so-called subtype expression. This will make it possible to avoid pre-conditions as the one
above. Indeed the second axiom defining initial to be wellformed can also be avoided.

2

Example 8.3

Consider the specification of a bill of products. We are dealing with products, each of which
is either basic or compound. A compound product is built from one or more immediate sub-
products, each of which is either basic or again compound. A basic product is not built from
(immediate) sub-products.

The sub-products of a product are all the immediate ones plus their sub-products. Each product
thus defines a hierarchy with itself as the top-node.

Compound products cannot be recursively composed. That is, a product cannot have itself as
a sub-product.

Our system must keep track of which products are basic and which are compound, and in the
latter case what the sub-products are.

A function must thus be provided that for any product returns the set of its sub-products.

Functions must be provided for entering new products into the system and for deleting products
from the system.
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Finally, functions must be provided for adding and erasing sub-product relations between ex-
isting products.
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BILL OF PRODUCTS =
class

type
Product,
Bop = Product →m Product-set

value
empty : Bop,
is wf Bop : Bop → Bool,
sub products : Product × Bop ∼→ Product-set,
enter : Product × Product-set × Bop ∼→ Bop,
delete : Product × Bop ∼→ Bop,
add : Product × Product × Bop ∼→ Bop,
erase : Product × Product × Bop ∼→ Bop

axiom forall p,p1,p2 : Product, ps : Product-set, bop : Bop •

is wf Bop(bop) ≡
∀ ps : Product-set • ps ∈ rng bop ⇒ ps ⊆ dom bop
∧

∀ p : Product • p ∈ dom bop ⇒ p 6∈ sub products(p,bop),
empty ≡

[ ],
sub products(p,bop) as ps

post ps =
{p1 | p1 : Product • p1 ∈ dom bop ∧

(p1 ∈ bop(p)
∨

∃ p2 : Product • p2 ∈ ps ∧ p1 ∈ bop(p2))}
pre p ∈ dom bop,

enter(p,ps,bop) ≡
bop ∪ [p 7→ ps]
pre p 6∈ dom bop ∧ ps ⊆ dom bop,

delete(p,bop) ≡
bop\{p}
pre p ∈ dom bop ∧ ∼∃ ps : Product-set • ps ∈ rng bop ∧ p ∈ ps,

add(p1,p2,bop) ≡
bop † [p1 7→ bop(p1) ∪ {p2}]
pre
{p1,p2} ⊆ dom bop ∧ p1 6= p2 ∧ p2 6∈ bop(p1)
∧

p1 6∈ sub products(p2,bop),
erase(p1,p2,bop) ≡

bop † [p1 7→ bop(p1)\{p2}]
pre p1 ∈ dom bop ∧ p2 ∈ bop(p1)

end

The Product type is abstractly given since we don’t care about how to identify products.
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A bill of products, Bop, is a map from products to sets of products. A compound product p is
mapped to the set {p1, . . . , pn} if it consists of the immediate sub-products p1 . . . pn . A basic
product is mapped to the empty set.

A bill of products is wellformed, is wf Bop, if

1. every sub-product is in the domain of the map. That is, every product mentioned must
occur in the domain,

2. no product is a sub-product of itself. The call of the function sub products(p, bop) yields
all the sub-products of p.

The empty bill of products is the empty mapping.

The sub-products, sub products, of a product is the smallest set ps that satisfies the following

1. it must include a product p1 if p1 is an immediate sub-product,

2. it must include a product p1 if p1 is an immediate sub-product of a product p2 which is
in ps.

The RSL formulation of this condition may appear a bit tricky because of the occurrence of ps
on both sides of the equation.

The pre-condition of sub products says that the product examined must be an existing one.

To enter a new product together with an identification of all its immediate sub-products cor-
responds to directly appending that association to the map. The pre-condition says that the
product must not already exist but that all the immediate sub-products must.

To delete a product corresponds to removing it from the domain of the map. The pre-condition
says that the product must be an existing one and that it must not be a sub-product of some
other product.

To add an immediate sub-product to a product corresponds to adding it to the set mapped to
by the product. The pre-condition says that

1. the product as well as the sub-product must exist,

2. they must be different,

3. the sub-product must not already be an immediate sub-product of the product,

4. the product must not be a sub-product of the sub-product. This prevents the violation
of the wellformedness condition that a bill of products must be acyclic.
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To erase an immediate sub-product from a product corresponds to removing it from the set
mapped to by the product. Note that the sub-product is not deleted from the domain of the
map. The pre-condition says that the product must be an existing one and that the sub-product
really is an immediate sub-product.

2
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9 Subtypes

A type can be constrained by a predicate, resulting in a subtype (subset) of the original type.
Consider for example the type expression

{| t : Text • len t > 0 |}

The type Text is here constrained to the subtype containing “those t of type Text where the
length of t is greater than zero” (remember that a text is a list of characters). We thus get a
type containing non-empty texts.

Another example is

{| (x,y) : Int × Int • x < y |}

That is, “those pairs (x , y) of type Int× Int where x is less than y”.

The general form of a subtype expression is

{| binding : type expr • expr |}

where expr must be a boolean expression. The binding must match the values of the type
represented by type expr .

Generally, a type T1 is a subtype of a type T2 if there exists a predicate p : T2 → Bool such
that

T1 = {| x : T2 • p(x) |}

We have a meta-notation for this, namely

T1 ¹ T2

As a special case, any type is a subtype of itself

T ¹ T
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It should be no surprise that the subtype relation is transitive

T1 ¹ T2 ∧ T2 ¹ T3 ⇒
T1 ¹ T3

9.1 Maximal Types

We shall now define the concept of a maximal type. This concept is central for the automated
type-checker implemented as part of the RAISE-tools (see the next section). The concept of
maximal type, however, also helps us to see which types are generally subtypes of other ones.

A type is maximal if it is not a subtype of any other type than itself.

The maximal type of a type T is the largest type of which T is a subtype. We shall use the
meta-notation [T ] for the maximal type of T . Below is defined what the maximal types are for
the different possible type expressions introduced until now.

All the built-in types except Nat and Text have themselves as maximal types

[Bool] = Bool

[Int] = Int

[Real] = Real

[Char] = Char

[Unit] = Unit

For natural numbers we have

[Nat] = Int

The natural number type contains those integers from the maximal type that are greater than
or equal to zero. We can in fact write Nat as

{| n : Int • n ≥ 0 |}

The maximal type of Text will be given in connection with list type expresssions below.

For products we have
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[A1 × ... × An ] = [A1] × ... × [An ]

The product type contains those products of the maximal type that consist of components from
A1 to An only.

An example is

[Nat × Nat] = Int × Int

For finite sets we have

[A-set] = [A]-infset

The finite set type contains those sets from the maximal type that consist of A elements only
and have finite size.

An example is

[Nat-set] = Int-infset

For infinite sets we have

[A-infset] = [A]-infset

The infinite set type contains those sets from the maximal type that consist of A elements only.

An example is

[Nat-infset] = Int-infset

For finite lists we have

[A∗] = [A]ω

The finite list type contains those lists from the maximal type that consist of A elements only
and have finite size.

An example is
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[Nat∗] = Intω

For texts we have

[Text] = Charω

Recall that Text is short for Char∗. The text type contains those character lists from the
maximal type that have finite size.

For infinite lists we have

[Aω] = [A]ω

The infinite list type contains those lists from the maximal type that consist of A elements only.

An example is

[Natω] = Intω

For maps we have

[A →m B] = [A] →m [B]

The map type contains those maps from the maximal type that have a domain within A and a
range within B .

An example is

[Nat →m Nat] = Int →m Int

For partial functions we have

[A ∼→ B] = [A] ∼→ [B]

The partial function type contains those functions from the maximal type that for any A value
are either undefined or return a B value.

An example is
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[Nat ∼→ Nat] = Int ∼→ Int

As another example, consider the definition

value
f : Nat ∼→ Nat

The function f will when applied to a natural number either be undefined for that number or
yield a natural number.

When applied to a negative number, f will either be undefined or yield an integer. To see this
one can observe that f really is among the functions in the maximal type

Int ∼→ Int

which for natural numbers return natural numbers.

For total functions we have

[A → B] = [A] ∼→ [B]

The total function type contains those functions from the maximal type that for any A value
are defined and return a B value.

An example is

[Nat → Nat] = Int ∼→ Int

As another example, consider the definition

value
f : Nat → Nat

The function f will when applied to a natural number be defined for that number and yield
a natural number. When applied to a negative number, f will either be undefined or yield an
integer.
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9.2 Maximal Type Correctness

In this section we shall outline what it means for a RSL-specification to be maximal type correct.
The automated type-checker implemented as part of the RAISE-tools checks for exactly maximal
type correctness.

Loosely formulated, an expression is type correct with respect to the context in which it occurs,
if the type of the expression matches the type required by the context. All sub-expressions must
of course also be type correct.

To strengthen this definition we must specify what we mean by “type”, what we mean by
“context” and what we mean by “matches”. Consider the following example

Example 9.1

EXAMPLE1 =
class

value
is a prime : Nat → Bool,
four : Int

axiom
four ≡ 4,
is a prime(four) ≡ false

end

2

In the second axiom, the expression four occurs in the context is a prime(four). The declared
type of four is Int and the context requires the type Nat due to the declared type of is a prime.

The question is what it means for Int to match Nat. A reasonable answer could be to say that
the type of the expression must be a subtype of the type required by the context. That is, Int
must be a subtype of Nat. This is obviously not true, and the expression four is thus not type
correct with respect to its context is a prime(four).

This result is problematic since we from the axiom can deduce that four actually belongs to
Nat. From a pragmatic viewpoint we would thus like the specification to be type correct.

A second problem with the suggested solution is more severe: it is in general not possible to
design an algorithm that decides whether one type is a subtype of another. This is due to
subtype expressions that generally involve predicates of arbitrary complexity.
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In order to avoid these two problems, only maximal types are considered when deciding type
correctness.

An expression is maximal type correct with respect to the context in which it occurs, if the
maximal type of the expression equals the maximal type required by the context.

In our example above the maximal type of four is Int and this type obviously equals the
maximal type required by the context.

Consider another more complex example

Example 9.2

EXAMPLE2 =
class

type
Positive = {| n : Nat • n > 0 |}

value
apply : (Positive → Int) × Positive-infset → Int-infset,
square : Int → Nat,
one to five : Positive-set,
squares : Positive-set

axiom forall f : Positive → Int, s : Positive-infset, i : Int •

apply(f,s) ≡
{f(e) | e : Positive • e ∈ s},

square(i) ≡
i ↑ 2,

one to five ≡
{1 .. 5},

squares ≡
apply(square,one to five)

end

2

The interesting axiom is the last one defining squares. First of all the reader should convince
himself or herself that it would be pragmaticly usefull if it is maximal type correct and has a
proper meaning. Note especially that

1. the function square will be defined for all positive numbers and for these yield integers as
required by the function apply .
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2. the result of apply(square, one to five) will be a finite set of positive numbers.

It may, however, not be obvious that all the constituent sub-expressions of the axiom are
maximal type correct. Below follows the same specification transformed such that all types are
replaced by their corresponding maximal types. It should now be obvious that the axiom is
maximal type correct.

type
Positive = Int

value
apply : (Int ∼→ Int) × Int-infset ∼→ Int-infset,
square : Int ∼→ Int,
one to five : Int-infset,
squares : Int-infset

axiom forall f : Int ∼→ Int, s : Int-infset, i : Int •

apply(f,s) ≡
{f(e) | e : Int • e ∈ s},

square(i) ≡
i ↑ 2,

one to five ≡
{1 .. 5},

squares ≡
apply(square,one to five)

9.3 Proving Subtype Relations

Three ways of introducing subtypes have been introduced until now:

1. Through subtype expressions of the form

{| binding : type expr • expr |}

2. Through the built-in types of natural numbers and texts

Nat, Text

3. Through the type operators for finite sets and lists and the type operator for total functions

A-set, A∗ and A → B
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That is to say, one can only define a subtype by using at least one of these constructs. The
remaining type operators for products, infinite sets, infinite lists, maps and partial functions
only generate subtypes if their arguments are already subtypes.

Let us see how we in general decide whether one type is a subtype of another. Let there be
given two types T1 and T2 for which we want to prove that

T1 ¹ T2

First we recognize that the two types are subtypes of their maximal types

T1 = {| x : [T1] • p1(x) |}

T2 = {| x : [T2] • p2(x) |}

One then proves the subtype relation by ensuring that the maximal types are equal and by
proving that the subtype predicate p1 implies the subtype predicate p2. That is

T1 ¹ T2 ⇔

([T1] = [T2])
∧

(p1 ⇒ p2)

As an example, suppose we want to prove

Int → Nat ¹ Nat ∼→ Int

The two types can be written as subtypes of their maximal types

Int → Nat = {| f : Int ∼→ Int • p1(f) |}

Nat ∼→ Int = {| f : Int ∼→ Int • p2(f) |}

The maximal types are equal so it remains to be proven that p1 implies p2

The predicate p1(f ) says that f must be defined for all integers and further must yield natural
numbers for these.
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The predicate p2(f ) says that f must yield integers for natural numbers, if defined. This
is always true since the partial functions from integers to integers in particular map natural
numbers to integers, if defined.

Since p2 is always true p1 implies p2 and the subtype relation then holds.

9.4 Subtype Correctness

Maximal type correctness of an RSL specification is checked by the automated type-checker. In
addition the specifier should prove that the RSL specification is also subtype correct.

An expression is subtype correct with respect to the context in which it occurs, if the value of
the expression belongs to the subtype required by the context.

Consider again example 9.1. The expression four is subtype correct with respect to the context
is a prime(four) since the value of four , namely 4, belongs to the subtype, Nat, required by
the context.

Then consider again example 9.2. For the axiom defining squares we have to check that

1. for the application of apply , the actual parameter value belongs to the formal parameter
subtype

(square,one to five) ∈ (Positive → Int) × Positive-infset

For the one to five-parameter this is obviously true. The signature of one to five is
namely

one to five : Positive-set

and

Positive-set ¹ Positive-infset

For the square-parameter we have the following signature of square

square : Int → Nat

We must then prove that

Int → Nat ¹ Positive → Int

The proof is similar to the one given in the previous section.
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2. the result of apply belongs to the subtype of squares. That is

apply(square,one to five) ∈ Positive-set

Note that the result type of apply (Int-infset) does not help us, since Positive−set is a
subtype thereof. We can see that the required subtype constraint is satisfied by unfolding
the application of apply

{square(e) | e : Positive • e ∈ one to five} ∈ Positive-set

It is obvious that the result is a finite set of positive numbers.

9.5 Subtypes Versus Axioms

When defining a value to have some type and to have some properties, one has a choice between
specifying the properties as part of the type via a subtype predicate or to specify them in axioms.

Assume the type definition

type
Prime = {| n : Nat • is a prime(n) |}

Consider then the definition

value
p : Prime

This could also have been written as

value
p : Nat

axiom
is a prime(p)

or even as

value
p : Int

axiom
p ≥ 0 ∧ is a prime(p)
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As another example, consider the following function definition

value
f : Nat ∼→ Prime
f(n) as p

post p > 1/n
pre n 6= 0

This could almost equivalently have been written as

value
f : Int ∼→ Int
f(n) as p

post p > 1/n ∧ is a prime(n)
pre n > 0

Thus, for function definitions, predicates from subtypes in the domain will appear in the pre-
condition, and predicates from subtypes in the range will appear in the post-condition.

For arguments different from zero (0) the two specifications of f ’s behaviour are the same. The
specifications, however, differ when it comes to the zero argument. The first f is specified to
yield a prime number for zero, if defined at all. The second f may yield any integer number for
zero, if defined.

From a pragmatic viewpoint, the two specifications seem equally good since we are not inter-
ested in f ’s behaviour for the zero argument. When it comes to considering the implementation
relation between specifications, the difference, however, becomes important: the first f imple-
ments the second, but not the other way round. That is, if we assume that f maps zero to a
prime number, if defined for zero, then an implementation cannot violate that property.

9.6 Examples

Example 9.3

We have seen a number of examples where a wellformedness function expresses which values of
a particular type that are wellformed (example 6.2, 6.3, 7.3, 8.2 and 8.3). The general form has
been

type
T = ...
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value
is wf T : T → Bool

The function is wf T has, however, not been used to actually eliminate the undesired values
from T . This can now be done through a subtype expression.

Consider the map version of the equivalence relation from example 8.2. We recall that a relation
is a mapping from elements to partition identifiers. A relation is wellformed if it maps every
element into some partition identifier.

The Relation type can now be defined by a subtype expression restricting the values to those
relations that satisfy the wellformedness condition.

EQUIVALENCE RELATION =
class

type
Element,
Partition Id,
Relation =
{| r : Element →m Partition Id • is wf Relation(r) |}

value
is wf Relation : (Element →m Partition Id) → Bool,
initial : Relation,
make equivalent : Element × Element × Relation → Relation,
are equivalent : Element × Element × Relation → Bool

axiom forall e1,e2 : Element, r : Relation, m : Element →m Partition Id •

is wf Relation(m) ≡
∀ e : Element •

e ∈ dom m,
e1 6= e2 ⇒ initial(e1) 6= initial(e2),
make equivalent(e1,e2,r) ≡

r † [e 7→ r(e2) | e : Element • r(e) = r(e1)]
are equivalent(e1,e2,r) ≡

r(e1) = r(e2)
end

The following changes have been performed compared to the specification in example 8.2

1. The type Relation has been defined by a subtype expression which uses the function
is wf Relation.

2. The function is wf Relation has got a different signature in that the argument type has
become

(Element →m Partition Id)
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instead of Relation. This has been necessary in order to avoid a recursion between Relation
and the type of is wf Relation.

The functions make equivalent and are equivalent have become total. Their pre-conditions
are no longer needed due to the wellformedness of their arguments.

3. The axiom saying that initial must be wellformed has been removed. It will be satisfied
due to the type of initial .

We could have written the definition of type Relation in at least two other ways. The body of the
function is wf Relation could have been unfolded into the subtype expression, thus removing
the need to define the function explicitly

type
Relation =
{| r : Element →m Partition Id • ∀ e : Element • e ∈ dom r |}

The two solutions shown so far have the drawback that the “primary information”, which is
the map type expression, is textually hidden by the “secondary information”, which is the
wellformedness predicate.

An alternative solution could be to first give the primary information in one type definition,
and then to give the secondary in another one

type
Loose Relation = Element →m Partition Id,
Relation = {| r : Loose Relation • ∀ e : Element • e ∈ dom r |}

2

Example 9.4

Consider a bounded version of the queue from example 7.1. Elements can be put into the queue
and elements can be removed from the queue, in a “first in first out” manner. The queue is
bounded in that there is a maximum size, max , which is a natural number greater than zero,
such that no queue can have more than max elements.

The boundedness is expressed via a subtype expression. In addition, subtypes will be intro-
duced for extendable queues (with a size less than max ) and for reducable queues (different
from empty). The last two subtypes illustrate how partial functions can be replaced by total
functions, using subtypes.
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QUEUE =
class

type
Element,
Queue = {| q : Element∗ • len q ≤ max |},
Extendable Queue = {| q : Queue • len q < max |},
Reducable Queue = {| q : Queue • q 6= empty |}

value
max : Nat,
empty : Extendable Queue,
put : Element × Extendable Queue → Reducable Queue,
get : Reducable Queue → Extendable Queue × Element

axiom forall e : Element, eq : Extendable Queue, rq : Reducable Queue •

max > 0,
empty ≡
〈〉,

put(e,eq) ≡
eq ̂ 〈e〉,

get(rq) ≡
(tl rq,hd rq)

end

2
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10 Variant Definitions

Through a variant definition, one can in a short way define a sort together with a number of
functions and constants over that sort.

10.1 Constant Constructors

As a very simple example, consider the following variant definition, defining a type by enumer-
ating its values

type
Colour == black | white

The type Colour contains two values represented by the so-called constant constructors black
and white. In the scope of this definition one can then for example define a function for colour-
inversion

value
invert : Colour → Colour

axiom
invert(black) ≡ white,
invert(white) ≡ black

The definition of Colour is actually short for a sort definition, two value definitions and two
axioms. The above type definition is short for

type
Colour

value
black : Colour,
white : Colour

axiom
[disjoint]

black 6= white

and an additional axiom, which is described below. The axiom says that black is different from
white. This implies that the type Colour contains at least two values. Note, however, that no
axiom prevents Colour from containing more than two values. An extra axiom is thus needed
which expresses this limit on the size of Colour . The axiom should thus state that Colour
contains only the values represented by black and white.
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This is stated in a slightly different way: a so-called induction-axiom is generated

axiom
[induction]
∀ p : Colour → Bool •

(p(black) ∧ p(white)) ⇒ (∀ c : Colour • p(c))

The axiom says: “for all predicates p, if p holds for black and p holds for white, then p holds
for all colours”.

It may be a bit mysterious that this axiom implies that Colour only contains the values black
and white.

10.2 Record Constructors

The individual alternatives separated by bars (|) can be composite instead of just constant-
constructors. Consider the following variant definition

type
Set == empty | add(Elem,Set)

The type Set , which is recursively defined, contains two kinds of values

1. the value empty

2. values of the form add(e, s) where e ∈ Elem and s ∈ Set . add is a so-called “record
constructor”.

The definition is short for a sort definition, two value definitions and two axioms. Ignoring
again the induction-axiom, the above definition is short for

type
Set

value
empty : Set,
add : Elem × Set → Set

axiom
[disjoint]
∀ e : Elem, s : Set •

empty 6= add(e,s)
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The add constructor is a function generating values different from empty . Note that in general,
the bar implies disjointness.

The generated induction-axiom is a bit more complex than in the Colour -case

axiom
[induction]
∀ p : Set → Bool •

(p(empty) ∧ (∀ e : Elem, s : Set • p(s) ⇒ p(add(e,s)))) ⇒
∀ s : Set • p(s)

The axiom says: “for all predicates p, if p holds for empty and p holding for a set s implies p
holding for add(e, s) for any element e, then p holds for all sets”.

Note that the above variant definition is equivalent to the following

type
Set == empty | add(Elem × Set)

This can be seen by transforming the latter into its canonical form.

The disjoint-axiom says that empty differs from add(e, s) for any element e and set s. Note,
however, that there are no axioms stating that different applications of add yield different
sets in Set . In fact, nothing is said about add beyond the disjointness from empty and the
generatedness of Set by empty and add .

Given two different elements e1 and e2, the following property is thus not a consequence
although we would like it to be

add(e1,empty) 6= add(e2,empty)

To obtain this, we can introduce an observer function that tests whether a particular element
is in a set

value
is in : Elem × Set → Bool

axiom forall e,e1 : Elem, s : Set •

is in(e,empty) ≡
false

is in(e,add(e1,s)) ≡
e = e1 ∨ is in(e,s)

end
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This function will now distinguish the two sets above. That is

is in(e1,add(e1,empty)) = true

is in(e1,add(e2,empty)) = false

and as a consequence of this we get the desired property

add(e1,empty) 6= add(e2,empty)

Note that we can deduce that due to the rule that

f(x) 6= f(y) ⇒ x 6= y

The introduction of the function is in thus implies that those sets are destinguishable that we
want to be destinguishable. The definition of the function is in in general implies that sets
show the expected behaviour: one can decide whether a particular element has been added or
not.

Normally we think of a set as an unordered collection of distinct elements. The two important
words here being “unordered” and “distinct”.

None of the above axioms, however, prevents sets from being ordered or to contain duplicates.
That is, none of the following two axioms are consequences

axiom
forall e,e1,e2 : Elem, s : Set •

[unordered]
add(e1,add(e2,s)) ≡ add(e2,add(e1,s)),

[no duplicates]
add(e,add(e,s)) ≡ add(e,s)

Since they do not generally hold we can for example not compare two sets by ‘=’. Instead we
must define a function for comparing sets that makes two sets equal if and only if they can be
observed as equal through is in.

value
equal : Set × Set → Bool

axiom forall s1,s2 : Set •

equal(s1,s2) ≡
∀ e : Elem •

is in(e,s1) = is in(e,s2)
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By adding the axioms unordered and no duplicates we don’t need to define the function equal ,
but can instead use ‘=’ to test for equality between sets.

Irrespective of whether we add the axioms unordered and no duplicates we can define a function
for removing an element from a set and a function for returning an arbitrary element from a
set

value
remove : Elem × Set → Set
choose : Set ∼→ Elem

axiom
forall e,e1 : Elem, s : Set •

[remove empty]
remove(e,empty) ≡ empty,

[remove add]
remove(e,add(e1,s)) ≡

if e = e1 then
remove(e,s)

else
add(e1,remove(e,s))

end,
[choose]

choose(s) as e
post is in(e,s)
pre s 6= empty

Note in particular the definition of choose. It returns some arbitrary element which is just
required to be in the the set. Consider then the following alternative axiom for choose

axiom forall e : Elem, s : Set •

[choose add]
choose(add(e,s)) ≡ e

This axiom may seem harmless although it is not. It says that the choose function returns the
last inserted element. For two different elements e1 and e2 we have

choose(add(e1,add(e2,s))) = e1

choose(add(e2,add(e1,s))) = e2

implying that
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add(e1,add(e2,s)) 6= add(e2,add(e1,s))

We thus get an inconsistency with the unordered -axiom. The choose add axiom implies that a
set must contain information about which element has been added as the last one.

Note, however, that we were not forced to add the unordered -axiom. Suppose we did not.
Then we have got rid of the inconsistency. There is, however, still a problem concerned with
implementation.

The problem arises when implementing the above set specification with another more concrete
one. The implementing set specification must now implement choose to return the last added
element. This means that the following type definition will not be satisfactory as an implemen-
tation, although it seems an obvious choice

type
Set = Elem-set

Sets within this Set are mathematical sets and do thus not contain information about which
element is the last one added.

10.3 Destructors

Consider the following variant definition

type
List == empty | add(head : Elem, tail : List)

The difference between this definition and the previous Set-definition is, besides the new name
List instead of Set , the introduction of the destructors head and tail .

Like Set , the type List contains two kinds of values

1. the value empty

2. values of the form add(e, l) where e ∈ Elem and l ∈ List .

The definition is short for a sort definition, four value definitions and four axioms. Ignoring the
destructors, we get a sort definition, two value definitions and two axioms exactly as for Set
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type
List

value
empty : List,
add : Elem × List → List,

axiom
[disjoint]
∀ e : Elem, l : List •

empty 6= add(e,l),
[induction]
∀ p : List → Bool •

(p(empty) ∧ (∀ e : Elem, l : List • p(l) ⇒ p(add(e,l)))) ⇒
∀ l : List • p(l)

Beyond these definitions, the destructors give rise to the following ones

value
head : List ∼→ Elem,
tail : List ∼→ List

axiom
forall e : Elem, l : List •

[head add]
head(add(e,l)) ≡ e,

[tail add]
tail(add(e,l)) ≡ l

The destructors are partial in that their behaviour is un-specified for the empty list.

The destructors can be used to deconstruct List values generated by the add constructor. As
an example consider the following specification

value
replace head : Elem × List ∼→ List

axiom forall e : Elem, l : List •

replace head(e,l) ≡
add(e,tail(l))
pre l 6= empty

The destructor tail has here been used to remove the old head element before adding the new
one.

The axiom defining replace head could of course also have been written without the use of
destructors
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axiom forall e,e1 : Elem, l : List •

replace head(e1,add(e,l)) ≡ add(e1,l)

Destructors are thus not needed from a notational viewpoint in order to destruct values, but
they provide a convenient way of doing it.

The occurrence of destructors in a variant definition is, however, not just a matter of conve-
nience. The destructor-axioms, in this case head add and tail add , have an important effect
on the properties of the constructor, in this case add : the constructor must be information-
preserving. That is, the list value, say l1, generated by add(e, l) must be such that e can be
recovered by head(l1) and such that l can be recovered by tail(l1).

Stated more formally, the axioms unordered and no duplicates

axiom
forall e,e1,e2 : Elem, l : List •

[unordered]
add(e1,add(e2,l)) = add(e2,add(e1,l)),

[no duplicates]
add(e,add(e,l)) = add(e,l)

are inconsistent with the destructor-axioms head add and tail add . To see this for the unordered -
axiom consider the following deduction. Given two different elements

e1 6= e2

By using the head add -axiom, then the unordered -axiom and then again the head add -axiom
we can deduce the following

e1
=
head(add(e1,add(e2,l)))
=
head(add(e2,add(e1,l)))
=
e2

This is obviously inconsistent with the assumption that e1 and e2 are different.

The destructors thus really make List-values into ordered collections of elements, with the
possibility of duplicates.
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10.4 Reconstructors

The function replace head introduced in the previous section can be introduced in a slightly
more convenient way as a reconstructor. Below we repeat the definition of List with the addition
of the reconstructor

type
List == empty | add(head : Elem ↔ replace head, tail : List)

The occurrence of the reconstructor is short for the following definitions, to be added to the
previous ones

value
replace head : Elem × List ∼→ List

axiom
forall e : Elem, l : List •

[head replace head]
head(replace head(e,l)) ≡ e,

[tail replace head]
tail(replace head(e,l)) ≡ tail(l)

The two axioms relate the reconstructor replace head to the destructors head and tail . The
head replace head -axiom says that the head -destructor recovers the new head. The tail replace head -
axiom says that the tail is unaffected.

If there are no destructors, no reconstructor-axioms are generated.

10.5 Subtype Namings

Through subtype namings, it is possible to name subtypes of the type generated by a variant
definition. In the List-case, we can give the name Empty List to the subtype of List containing
the single value empty . Similarily we can give the name Non Empty List to the subtype of List
containing all the other lists, i.e. those generated by add .

A subtype naming is introduced by appending ‘@ subtype id’ to the variant alternative in
question. We thus get

type
List ==

empty @ Empty List |
add(head : Elem ↔ replace head, tail : List) @ Non Empty List
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The two subtype namings are short for the following type definitions

type
Empty List =
{| l : List • l = empty |},

Non Empty List =
{| l : List • ∃ e : Elem, l1 : List • l = add(e,l1) |}

Note that subtype namings do not change the properties of lists.

The subtype namings can be utilized when specifying functions over the variant type. Consider
for example a function for testing whether the heads of two non-empty lists are equal

value
equal heads : Non Empty List × Non Empty List → Bool

axiom forall l1,l2 : Non Empty List •

equal heads(l1,l2) ≡
head(l1) = head(l2)

10.6 Forming Disjoint Unions of Types

The types Set and List represent so-called “containers”, where a container is a collection of
elements. Variant definitions can also be used to form a type as a disjoint “union” of other
types, without necessarily defining a container. Consider the following definition of a type of
two-dimensional figures which are either boxes or circles

type
Figure == box(length : Real, width : Real) | circle(radius : Real)

10.7 Wildcard Constructors

We have mentioned that a variant definition is short for a number of definitions including
an induction-axiom. The induction-axiom restricts the variant type to contain only values
generated by the constructors mentioned in the variant definition.

Sometimes one, however, wants to be loose about what the constructors are. As an example
consider the above definition of the type Figure. Suppose that we are not sure whether there
are more figures than boxes and circles. The definition of Figure can then alternatively be
stated as follows
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type
Figure == box(length : Real, width : Real) | circle(radius : Real) |

The difference is the last added variant which is a wildcard variant ‘ ’. Formally, its occurrence
means that no induction-axiom is generated. As a consequence, a later implementation may
have more variants. An implementation may thus be

type
Figure ==

box(length : Real, width : Real) |
circle(radius : Real) |
triangle(base line : Real, left angle : Real, right angle : Real)

It is not only the number of constructors which can be left open in a variant definition. It is
also the components of a single constructor. Suppose for example that we are unsure of how to
represent a triangle. An alternative to the above is to represent it by a base-line, a left-angle
and a left-line length. This uncertancy can be stated as follows

type
Figure ==

box(length : Real, width : Real) |
circle(radius : Real) |

(base line : Real)

The difference from the previous definition of Figure is that the constructor triangle has been
replaced by a wildcard and that the left angle and right angle components have been left out
(we only know that a base-line component is needed).

Formally, the occurrence of the wildcard instead of the triangle-constructor means that there
will be generated no value definition of a (triangle) constructor. As a consequence, there will be
generated no axioms for the destructors, in this case base line (recall that axioms for destructors
relate these to corresponding constructors). As a third consequence, no induction-axiom will
be generated as was also the case in the former use of wildcard.

An implementation of the latter definition of Figure is the former one.

10.8 Overloading

Due to overloading, constructors, destructors and reconstructors may be operators. Consider
for example the following version of type List

RAISE/CRI/DOC/1/V1



114 Variant Definitions

type
List == empty | ̂(hd : Elem ↔ † , tl : List)

In the scope of this definition, the following expressions are valid for any e ∈ Elem and non-
empty l ∈ List

e ̂ l

hd l

tl l

e † l

10.9 The General Form of a Variant Definition

In general, a variant definition has the form

type
id == variant1 | ... | variantn

Each variant is either a constant variant of the form

id or op or wildcard @ subtype id

or a record variant of the form

id or op or wildcard(
destr id or op1 : type expr1 ↔ recon id or op1,
...
destr id or opn : type exprn ↔ recon id or opn) @ subtype id

Subtype namings, destructors and reconstructors are all optional.

10.10 Examples

Example 10.1
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Consider the specification of an ordered binary tree of elements. A binary tree is either

1. empty

2. or composed of an element and two sub-trees: a left tree and a right tree.

The ordering means that any of the elements in the left tree are less than the top element,
which again is less than any of the elements in the right tree.

A function less than represents the ordering on elements.

ORDERED TREE =
class

type
Elem,
Tree ==

empty |
node(

left : Tree,
elem : Elem,
right : Tree),

Ordered Tree =
{| t : Tree • is ordered(t) |}

value
is ordered : Tree → Bool,
extract elems : Tree → Elem-set,
less than : Elem × Elem → Bool

axiom
forall e : Elem, t1,t2 : Tree •

[is ordered empty]
is ordered(empty) ≡

true,
[is ordered node]

is ordered(node(t1,e,t2)) ≡
∀ e1 : Elem • e1 ∈ extract elems(t1) ⇒ less than(e1,e)
∧

∀ e2 : Elem • e2 ∈ extract elems(t2) ⇒ less than(e,e2)
∧

is ordered(t1)
∧

is ordered(t2),
[extract elems empty]

extract elems(empty) ≡
{},

[extract elems node]
extract elems(node(t1,e,t2)) ≡
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extract elems(t1) ∪ {e} ∪ extract elems(t2)
end

The type Tree is the type of binary trees, including the un-ordered ones. The type Ordered Tree
of ordered trees is defined as a subtype of Tree. Note that this two-step approach is necessary
when defining subtypes of variant types.

The function is ordered examines whether a tree is ordered.

The function extract elems yields all the elements contained in a tree.

When a goal is execution-time efficiency, ordered trees are well-suited for modelling large sets of
elements. The execution-time used for testing whether an element “belongs” to an ordered tree
can be kept relatively low since sub-trees can be ignored which only contain elements smaller
than or bigger than the element in question.

Consider an extension of the ORDERED TREE -module with set-like functions for adding an
element to a tree, add , and for testing whether an element belongs to a tree, is in

SET OPERATIONS =
extend ORDERED TREE with

value
add : Elem × Ordered Tree → Ordered Tree,
is in : Elem × Ordered Tree → Bool

axiom
forall e,e0 : Elem, t1,t2 : Ordered Tree •

[add empty]
add(e,empty) ≡

node(empty,e,empty),
[add node]

add(e,node(t1,e0,t2)) ≡
if e = e0 then

node(t1,e0,t2)
elsif less than(e,e0) then

node(add(e,t1),e0,t2)
else

node(t1,e0,add(e,t2))
end,

[is in empty]
is in(e,empty) ≡

false,
[is in node]

is in(e,node(t1,e0,t2)) ≡
if e = e0 then

true
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elsif less than(e,e0) then
is in(e,t1)

else
is in(e,t2)

end
end

The definition of the function is in utilizes the fact that trees are ordered. That is, a sub-tree
is ignored in the search of an element if all the elements in that sub-tree are either less than or
greater than the searched element. This improves execution-time efficiency of a search.

The effeciency could further be improved, if trees were always balanced. A tree is balanced,
if its two sub-trees have depths that at most differ by a choosen fixed maximum. The add
function should then make sure that the resulting tree is balanced.

Choosing the maximum to be one (1) we can obtain balanced trees as follows

BALANCED SET OPERATIONS =
extend SET OPERATIONS with

value
is balanced : Ordered Tree → Bool,
depth : Ordered Tree → Nat,
add balanced : Elem × Ordered Tree → Ordered Tree

axiom forall e : Elem, t,t1,t2 : Ordered Tree •

[is balanced empty]
is balanced(empty) ≡

true,
[is balanced node]

is balanced(node(t1,e,t2)) ≡
abs(depth(t1) − depth(t2)) ≤ 1
∧

is balanced(t1)
∧

is balanced(t2),
[depth empty]

depth(empty) ≡
0,

[depth node]
depth(node(t1,e,t2)) ≡

1 + if depth(t1) > depth(t2) then depth(t1) else depth(t2) end,
[add balanced]

add balanced(e,t) as rt
post

extract elems(rt) = extract elems(t) ∪ {e}
∧

is balanced(rt)
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end

The function is balanced examines whether a tree is balanced.

The function depth calculates the depth of a tree, which is the length of the longest path in the
tree.

The function add balanced adds an element to a tree, ensuring that the resulting tree is balanced.
Note that since the type Ordered Tree only includes ordered trees, the result tree will be ordered
due to the result type of add balanced .

The post-condition style used for specifying add balanced is an appropriate initial specification
of that function, since a concrete specification is rather more complicated.

We don’t have to re-specify the function is in since the one coming from SET OPERATIONS
is still sufficient.

2

Example 10.2

Consider a version of the map database from example 8.1. In that example, the database-
operations empty , insert , remove and lookup were modelled as functions, one function for each.
This style has in fact been applied in all examples until now.

An alternative is to only define a single function, say evaluate, which among its arguments takes
an input-command, being either an empty-command, an insert-command, a remove-command
or a lookup-command.

The evaluate-function further takes a database as argument. As result it yields a possibly
changed database and an output-result.

The type of input-commands is defined as the “union” of the different kinds of input-commands.
Likewise, the type of output-results is defined as the “union” of the different kinds of output-
results. Both types can be given as variant-types.

VARIANT DATABASE =
class

type
Database = Key →m Data,
Key, Data,
Input == mk empty | mk insert(Insert) | mk remove(Remove) | mk lookup(Lookup),
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Insert = Key × Data,
Remove = Key,
Lookup = Key,
Output == lookup failed | lookup succeeded(Data) | change done

value
evaluate : Input × Database → Database × Output

axiom forall k : Key, d : Data, db : Database •

evaluate(mk empty,db) ≡
([ ], change done),

evaluate(mk insert(k,d),db) ≡
(db † [k 7→ d], change done),

evaluate(mk remove(k),db) ≡
(db\{k}, change done),

evaluate(mk lookup(k),db) ≡
if k ∈ dom db then

(db, lookup succeeded(db(k)))
else

(db, lookup failed)
end

end

The type Output contains three variants of values. Values of the form lookup failed and
lookup succeeded(d), where d ∈ Data, are results of evaluating a mk lookup(k)-command, where
k ∈ Key . The result lookup failed is returned if the key k is not in the domain of the database.

The Output-value change done is the result of evaluating any of the commands mk empty ,
mk insert(k , d) and mk remove(k), where k ∈ Key and d ∈ Data. Note that this result is not
likely to be used for anything. In these cases it is only the changed database that is of interest.

The definition of type Input contains no destructors. We could instead have written

type
Input ==

mk empty |
mk insert(sel insert : Insert) |
mk remove(sel remove : Remove) |
mk lookup(sel lookup : Lookup)

As can be seen from the above specification, the destructors are not needed, and writing them
just increases the size of the specification and forces us to invent new names for the destructors.
There are thus good reasons for not writing them.

As stated earlier in connection with List , the occurrence of destructors has the effect of making
the constructors (in this case mk insert , mk remove and mk lookup) information-preserving.
This is a consequence of the axioms defining the destructors. It would thus be more correct to
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write them, although one can argue that it is just a matter of under-specification when leaving
them out.

The under-specification consists of not writing the axioms requiring the constructors to be
information-preserving, thus allowing unintended implementations. Destructors should only be
left out when it from the context is obvious what implementations are unintended.

Likewise for the type Output , which instead could be written as follows

type
Output ==

lookup failed | lookup succeeded(sel data : Data) | change done

Another observation is the two-step definition of type Input with the introduction of the types
Insert , Remove and Lookup. In the first step, the variant definition, we are thus only concerned
with identifying the different kinds of commands. In the second step, the definition of the types
Insert , Remove and Lookup, we further consider what these commands consist of.

We could alternatively have done all this in one step

Command ==
mk empty |
mk insert(sel key : Key, sel data : Data) |
mk remove(sel key : Key) |
mk lookup(sel key : Key),

2

Example 10.3

A number of examples have been given of recursive variant definitions (Set , List and Tree).
Variant definitions can also define mutually recursive types. That is, several types that are
recursively defined in terms of each other.

Consider the specification of a hierarchical file directory. Such a directory is a mapping from
identifiers to entries. An entry is either a file or again a directory.

FILE DIRECTORY =
class

type
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Id, File,
Directory = Id →m Entry,
Entry == mk file(sel file : File) | mk dir(sel dir : Directory)

end

2
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11 Case Expressions

The case expression allows for the selection of one of several alternative expressions, depending
on the value of some expression.

As an example of a case expression, consider the following definition of the function error message,
the “body” of which is a case expression

value
error message : Nat → Text

axiom forall error code : Nat •

error message(error code) ≡
case error code of

1 → ′′buffer is exceeded′′,
2 → ′′buffer is empty′′,
→ ′′error′′

end

The evaluation of the case expression is done by first evaluating the expression error code.
Depending of the obtained value, one of the texts ′′buffer is exceeded′′(if 1), ′′buffer is
empty′′(if 2) or ′′error′′(otherwise) is returned.

The general form of a case expression is

case expr of
pattern1 → expr1,
...
patternn → exprn

end

The literals ‘1’, ‘2’ and the wildcard ‘ ’ are all patterns. A number of different kinds of patterns
are allowed as will be described below.

The value of expr is matched against the patterns from top to bottom until a successful match
is obtained whereupon the corresponding expression is evaluated. If none of the matches are
successful, the result is undefined.

11.1 Literal Patterns

A pattern may be a value literal. That is, a literal of type Unit, Bool, Int, Real, Text
or Char. We have already seen an example above with the literal patterns 1 and 2. Let us
re-capture what the literals are for each built-in type
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Unit : ()
Bool : true, false
Int : 0,1,2,...
Real : 0.0,...,6.17,...
Text : ′′this is a text′′,′′′′,...
Char : ′A′,′a′,...

A value matches a literal pattern successfully if the value equals the literal.

11.2 Wildcard Patterns

A pattern may be a wildcard pattern ‘ ’ as already illustrated in the introductory example. Any
value matches a wildcard pattern succesfully. Wildcard patterns occurring at the outermost
level in a case expression should occur last, if at all, to catch values not successfully matching
previous patterns.

11.3 Name Patterns

A pattern may be a value name. A value matches a name pattern if the value equals the value
represented by the name. The most typical situation is where the name is a constant-constructor
introduced in a variant definition.

As an example recall the definition of type Colour in section 10 and the definition of the function
invert . Now (with a repetition of the type definition) invert can be written in terms of a case
expression

type
Colour == black | white

value
invert : Colour → Colour

axiom forall c : Colour •

invert(c) ≡
case c of

black → white,
white → black

end

11.4 Record Patterns

Consider the following example which essentially is a reformulation of the Set-function is in
defined in section 10
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type
Set == empty | add(Elem,Set)

axiom forall e,e1,e2 : Elem, s : Set •

[no duplicates]
add(e,add(e,s)) ≡ add(e,s),

[unordered]
add(e1,add(e2,s)) ≡ add(e2,add(e1,s))

value
is in : Elem × Set → Bool

axiom forall e : Elem, s : Set •

is in(e,s) ≡
case s of

empty → false,
add(e1,s1) → e = e1 ∨ is in(e,s1)

end

The pattern add(e1, s1) is a record-pattern. The value s matches this pattern successfully if
s is a non-empty Set-value generated by add . The names e1 and s1 are bound to the sub-
components of s and the succeeding expression is then evaluated within the scope of these two
bindings.

This can be re-formulated in a slightly more correct way, observing that add is a function: the
value s matches this pattern successfully if there exist values x ∈ Elem and y ∈ Set such that
s = add(x , y). If this is the case, e1 is bound to x while s1 is bound to y , and the succeeding
expression is then evaluated within the scope of these two bindings.

Note that there may exist several pairs of values (x , y) for which s = add(x , y). Assume for
example that s equals add(a, add(b, empty)). Due to the unordered -axiom, there are at least
two pairs (x , y) such that s = add(x , y)

(x,y) = (a,add(b,empty))

(x,y) = (b,add(a,empty))

In such a case, a non-deterministic choice is made between the pairs, whereupon e1 and t1 are
bound to the chosen x and y .

The non-determinism of the add(e1, s1)-pattern in the above example does, however, not make
the case expression non-deterministic since the order of selection of pairs (e1, t1) does not
influence its result.

An example where the non-determinism matters is the following. Assuming the same definition
of type Set , we define a function for selecting an arbitrary element from a set

type
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Choose Result == set is empty | element(sel element : Elem)
value

choose : Set ∼→ Coose Result
axiom forall s : Set •

choose(s) ≡
case s of

empty → set is empty,
add(e,s1) → element(e)

end

Note that since the function choose is non-deterministic, its type must involve a partial arrow
(a total arrow implies determinism). Due to its definition it will, however, be defined for all
values in the Set domain.

It may be worth noting that the above definition of choose is not equivalent to the following

value
choose : Set ∼→ Choose Result

axiom forall e : Elem, s : Set •

[choose empty]
choose(empty) ≡ set is empty,

[choose add]
choose(add(e,s)) ≡ e

The choose add -axiom says that choose selects the last added element. This axiom is, however,
inconsistent with the unordered -axiom which says that the order in which elements are added
is of no importance.

In general, a record-pattern has the form

name(inner pattern1,...,inner patternn), n ≥ 1

where name represents some function of the type

T1 × ... × Tn
∼→ T

T is the type of the expression the value of which is matched against the pattern. Each Ti

represents values that can be matched against inner patterni .

An inner pattern is either a binding or a wildcard pattern ‘ ’. Note that the identifiers occurring
in an inner pattern (that is, in the binding) are defining occurrences in that they are bound as
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part of the pattern matching. This is in contrast to the name which must have been defined
somewhere else. such a name is called a “referring occurrence”. The name constituting a name
pattern described in the previous section is also a referring occurrence.

As an example utilizing the possibilities of inner patterns consider the following

type
List == empty | add(head : Int × Int, tail : List)

value
sum of head : List → Int

axiom forall l : List •

sum of head(l) ≡
case l of

empty → 0,
add((i,j), ) → i + j

end

In contrast to the previous examples, all patterns are here deterministic. That is, the pattern
add((i , j ), ) is deterministic in that there for any list l exists at most one pair (x , y) such that
l = add(x , y). This is due to the occurrence of destructors head and tail .

11.5 List Patterns

Consider the following example of a function that calculates the sum of all the integers in a list

value
sum : Int∗ → Int

axiom forall l : Int∗ •

sum(l) ≡
case l of
〈〉 → 0,
〈i〉 ̂ l1 → i + sum(l1)

end

The list l matches the pattern 〈〉 successfully if l equals the empty list. If l is not empty, l
matches successfuly the next pattern 〈i〉̂l1 if there exist an x ∈ Int and a y ∈ Int∗ such that
l = 〈x 〉̂y . If such values x and y exist (and they do exist here since a list is either empty or it
contains at least one element) i is bound to x and l1 is bound to y .

In general, a list pattern has one of four forms. That is, it has either the form of a so-called
constructed list pattern
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〈inner pattern1,...,inner patternn〉

or the form of a so-called left-list pattern

〈inner pattern1,...,inner patternn〉 ̂ id or wildcard

or the form of a so-called right-list pattern

id or wildcard ̂ 〈inner pattern1,...,inner patternn〉

or the form of a so-called left-right-list pattern

〈inner pattern1,1,...,inner pattern1,m〉 ̂
id or wildcard ̂
〈inner pattern2,1,...,inner pattern2,n〉

where each m,n ≥ 0.

Examples of list patterns are

〈x,y〉

〈(x,y)〉 ̂

〈x〉 ̂ l ̂ 〈y, ,z〉

l ̂ 〈x〉

All identifiers occurring in list patterns are defining occurrences. That is, they are bound as
part of the pattern matching. Note that an infinite list can only successfully match a left-list
pattern.

An example using constructed list patterns as well as a left-right-list pattern is the definition
of a function that reverses the ends of a text (recall that a text is a list of characters).

value
reverse ends : Text → Text

axiom forall t : Text •
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reverse ends(t) ≡
case t of
〈〉 → t,
〈 〉 → t,
〈f〉 ̂ mid ̂ 〈l〉 → 〈l〉 ̂ mid ̂ 〈f〉

end

11.6 Product Patterns

Consider the definition of a function that calculates the “exclusive or” of two booleans (exactly
one must be true)

value
exclusive or : Bool × Bool → Bool

axiom forall b1,b2 : Bool •
exclusive or(b1,b2) ≡

case (b1,b2) of
(true,false) → true,
(false,true) → true,
→ false

end

In general, a product pattern has the form

(pattern1,...,patternn), n ≥ 2

As another example consider the definition of a function that determines whether two lists
match by examining pairs of corresponding elements. A function is assumed which determines
whether two elements match. Two lists then match if they have the same length and if elements
in corresponding positions match.

type
List == empty | add(left : Elem, head : List)

value
elements match : Elem × Elem → Bool,
lists match : List × List → Bool

axiom forall l1,l2 : List •

lists match(l1,l2) ≡
case (l1,l2) of

(〈〉,〈〉) →
true,
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(〈e1〉 ̂ l1 rest,〈e2〉 ̂ l2 rest) →
elements match(e1,e2) ∧ lists match(l1 rest,l2 rest),
→ false

end

11.7 Examples

Example 11.1

Consider a version of the ordered trees from example 10.1. The functions is ordered and
extract elems were defined by two axioms each, an axiom for each kind of argument. In the
example below, the two functions are instead defined in terms of case expressions

ORDERED TREE =
class

type
Elem,
Tree ==

empty |
node(

left : Tree,
elem : Elem,
right : Tree),

Ordered Tree =
{| t : Tree • is ordered(t) |}

value
is ordered : Tree → Bool,
extract elems : Tree → Elem-set,
less than : Elem × Elem → Bool

axiom forall t : Tree •

is ordered(t) ≡
case t of

empty →
true,

node(t1,e,t2) →
∀ e1 : Elem • e1 ∈ extract elems(t1) ⇒ less than(e1,e)
∧

∀ e2 : Elem • e2 ∈ extract elems(t2) ⇒ less than(e,e2)
∧

is ordered(t1)
∧

is ordered(t2)
end,

extract elems(t) ≡
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case t of
empty →
{},

node(t1,e,t2) →
extract elems(t1) ∪ {e} ∪ extract elems(t2)

end
end

2

Example 11.2

Consider a version of the database from example 10.2. In that example a function called evaluate
was defined by four axioms, one for each kind of argument. In the example below, the function
is instead defined in terms of a case expression.

VARIANT DATABASE =
class

type
Database = Key →m Data,
Key, Data,
Input ==

mk empty |
mk insert(sel insert : Insert) |
mk remove(sel remove : Remove) |
mk lookup(sel lookup : Lookup),

Insert = Key × Data,
Remove = Key,
Lookup = Key,
Output == lookup failed | lookup succeeded(sel data : Data) | change done

value
evaluate : Input × Database → Database × Output

axiom forall input : Input, db : Database •

evaluate(input,db) ≡
case input of

mk empty →
([ ], change done),

mk insert(k,d) →
(db † [k 7→ d], change done),

mk remove(k) →
(db\{k}, change done),

mk lookup(k) →
if k ∈ dom db then
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(db, lookup succeeded(db(k)))
else

(db, lookup failed)
end

end
end

2
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12 Let Expressions

By a let expression one can introduce local names for particular values. There are two kinds of
let expressions, namely explicit and implicit let expressions.

12.1 Explicit Let Expressions

Consider the following definition of a function that replaces the head of a non-empty list by its
square

value
square head : Int∗ ∼→ Int∗

axiom forall l : Int∗ •

square head(l) ≡
let h = hd l in
〈h∗h〉 ̂ tl l

end
pre l 6= 〈〉

The “body” of the function square head is a let expression. The expression hd l is evaluated
to an integer which is then bound to the value name h. The expression between in and end is
then evaluated within the scope of this binding.

An explicit let expression has one of three forms

let binding = expr1 in expr2 end

let record pattern = expr1 in expr2 end

let list pattern = expr1 in expr2 end

The reader is referred to section 11 for the description of record patterns and list patterns.

The above example is an instantiation of the first form. In general, the expression expr1 is eval-
uated to yield a value which is then matched against the binding , record pattern or list pattern.
If the match is successfull, the expression expr2 is then evaluated within the scope of the bind-
ings that occurred as part of the match. If the match is not successfull, the value of the whole
let expression is undefined.

The following equivalences hold between let expressions and case expressions
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let record pattern = expr1 in expr2 end
≡ case expr1 of record pattern → expr2 end

let list pattern = expr1 in expr2 end
≡ case expr1 of list pattern → expr2 end

Another way of defining the square head -function using a let expression with a (product) binding
is

value
square head : Int∗ ∼→ Int∗

axiom forall l : Int∗ •

square head(l) ≡
let (h,t) = (hd l,tl l) in
〈h∗h〉 ̂ t

end
pre l 6= 〈〉

An example of a let expression using a record pattern is

type
Set == empty | add(Elem,Set)

value
choose : Set ∼→ Elem

axiom forall s : Set •

choose(s) ≡
let add(e, ) = s in

e
end
pre s 6= empty

Note that the choose function is non-deterministically choosing some member e from s. This
can be seen by observing the equivalent case expression formulation

axiom forall s : Set •

choose(s) ≡
case s of

add(e, ) → e
end
pre s 6= empty

The reader may consult section 11 on case expressions for a discussion of this non-determinism.
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An example of a let expression using a list pattern is

value
square head : Int∗ ∼→ Int∗

axiom forall l : Int∗ •

square head(l) ≡
let 〈h〉 ̂ t = l in
〈h∗h〉 ̂ t

end
pre l 6= 〈〉

12.2 Implicit Let Expressions

Another kind of let expression is the implicit let expression. Consider the following definition
of a function that returns an arbitrary element from a set

value
choose : Elem-set ∼→ Elem

axiom forall s : Elem-set •

choose(s) ≡
let e : Elem • e ∈ s in

e
end
pre s 6= {}

The “body” of the function choose is an implicit let expression. The expression e between in
and end is evaluated in the scope of a binding of e to a value within Elem such that e ∈ s.

An implicit let expression has one of two forms

let binding : type expr • expr1 in expr2 end

let typing in expr end

The above example is an instantiation of the first form. An implicit let expression of the first
form is evaluated by evaluating expr2 in the scope of the binding where the identifiers in binding
are non-deterministically bound to values that make the boolean expression expr1 hold.

An implicit let expression of the second form is evaluated by evaluating the expression expr
within the scope of the identifiers introduced in the typing. These identifiers are only specified
via their type and are thus non-deterministically bound to values within their respective types.
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An example of an implicit let expression using a typing is

value
some number : Unit ∼→ Nat

axiom
some number() ≡

let n : Nat in
n

end

The function non-deterministically returns some arbitrary natural number. some number has
been defined as a function such that a new number is obtained on each application. We
could thus not have defined some number as a constant, see below, and still obtain this non-
determinism

value
some number : Nat

12.3 Nested Let Expressions

Often one may want to nest let expressions as in the following example. Suppose that a list is
represented by as a map from natural numbers (list positions) into elements together with a
pointer (a natural number) to the head. The function add can then be defined as follows

type
List = Nat × (Nat →m Elem)

value
add : Elem × List → List

axiom forall e : Elem, l : List •

add(e,l) ≡
let (top,map) = l in

let new top = top + 1 in
let new map = map † [new top 7→ e] in

(new top,new map)
end

end
end

A shorthand syntax allows us to avoid the nesting and instead to write the axiom for add as
follows
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axiom forall e : Elem, l : List •

add(e,l) ≡
let

(top,map) = l,
new top = top + 1,
new map = map † [new top 7→ e]

in
(new top,new map)

end

In general, a multiple let expression of the form

let let def1,...,let defn in expr end

is short for

let let def1 in
...
let let defn in

expr
end
...

end

where each let def has one of the forms

binding = expr

record pattern = expr

list pattern = expr

binding : type expr • expr

typing

12.4 Example

Example 12.1
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Consider a version of the resource manager from example 6.1. Recall that the resource manager
maintains a pool, which is a set of free resources. A function obtain selects an arbitrary resource
from the pool while the function release returns a resource to the pool.

In example 6.1 the function obtain was defined in terms of a post-condition. This implied de-
terminism: applied twice to the same pool, the function obtain would return the same resource.

We can now make the function non-deterministic by defining it in terms of an implicit let
expression. We repeat the entire RESOURCE MANAGER-module, although it is only the
obtain-function that has been changed.

RESOURCE MANAGER =
class

type
Resource,
Pool = Resource-set

value
initial : Pool,
obtain : Pool ∼→ Pool × Resource,
release : Resource × Pool ∼→ Pool

axiom forall r : Resource, p : Pool •
obtain(p) ≡

let r : Resource • r ∈ p in
(p\{r},r)

end
pre p 6= {},

release(r,p) ≡
p ∪ {r}
pre r ∈ initial\p

end

2
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13 Union and Record Definitions

There are situations where a type can be seen as a hierarchy of types. Consider for example
the following requirements specification for airport events

1. An airport event is either an airplane event or a passenger event.

2. An airplane event is either a landing or a take off. A landing is characterised by a flight
identification and a landing time. A take off is characterised by a flight identification.

3. A passenger event is either a reservation, a check in or a cancel. A reservation is charac-
terised by a passenger identification and a flight identification. A check in is characterised
by a passenger identification, a flight identification and a seat number. A cancel is char-
acterised by a passenger identification and a flight identification.

13.1 Using a Layered Variant Definition

Using variant definitions the above requirements specification can be expressed as follows. As-
sume the following basic types.

BASIC TYPES =
class

type
Flight,
Passenger,
Time,
Seat

end

The airport types are then defined as an extension as follows.

Example 13.1

AIRPORT TYPES =
extend BASIC TYPES with

type
Airport Event ==

mk airplane event(sel airplane event : Airplane Event) |
mk passenger event(sel passenger event : Passenger Event),
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Airplane Event ==
mk landing(sel landing : Landing) |
mk take off(sel take off : Take Off),

Passenger Event ==
mk reservation(sel reservation : Reservation) |
mk check in(sel check in : Check In) |
mk cancel(sel cancel : Cancel),

Landing = Flight × Time,
Take Off = Flight,

Reservation = Passenger × Flight,
Check In = Passenger × Flight × Seat,
Cancel = Passenger × Flight

end

2

An immediate observation is that two layers of constructors are introduced. That is, given a
f ∈ Flight and a t ∈ Time, we must apply two constructors in order to obtain the airport event
“landing flight”

mk airplane event(mk landing(f,t))

This may appear tedious when writing functions over the Airport Event-type. Consider for
example a function for extracting the flight identification of an event. This function can be
defined in terms of a nested case expression.

Example 13.2

FLIGHT IDENTIFICATION =
extend AIRPORT TYPES with

value
flight identification : Airport Event → Flight

axiom forall airport event : Airport Event •

flight identification(airport event) ≡
case airport event of

mk airplane event(airplane event) →
case airplane event of
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mk landing(flight, ) → flight,
mk take of(flight) → flight

end,
mk passenger event(passenger event) →

case passenger event of
mk reservation( ,flight) → flight,
mk check in( ,flight, ) → flight,
mk cancel( ,flight) → flight

end
end

end

2

The above example has two layers of constructors. One can imagine examples with three or
more layers, which thus become even more tedious.

13.2 Union Definitions

RSL provides a way of avoiding the constructors from layered variant definitions. Assume that
the identifiers id1 . . . idn are names for types, then a so-called “union definition” of the form

type
id = id1 | ... | idn

with n ≥ 2 is short for

type
id ==

id1 to id(id1 from id : id1) | ... | idn to id(idn from id : idn)

That is, the shorthand allows one to omit the constructors and destructors in the type definition.
What is more important is that one may omit the constructors when writing functions over the
type id , or more formally: they can be omitted when writing expressions. Omitting them is
short for writing them. Let us respecify the above example using union definitions.

Example 13.3
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AIRPORT TYPES =
extend BASIC TYPES with

type
Airport Event = Airplane Event | Passenger Event,
Airplane Event = Landing | Take Off,
Passenger Event = Reservation | Check In | Cancel,

Landing ==
mk landing(sel flight : Flight, sel time : Time),

Take Off ==
mk take off(sel flight : Flight),

Reservation ==
mk reservation(sel passenger : Passenger, sel flight : Flight),

Check In ==
mk check in(sel passenger : Passenger, sel flight : Flight, sel seat : Seat),

Cancel ==
mk cancel(sel passenger : Passenger, sel flight : Flight)

end

2

Note the definition of the types Landing , Take Off , Reservation, Check In and Cancel . They
are all defined by variant definitions, each with only a single alternative. We need to define
these types as constructed and thus not as abbreviations of cartesian products for the following
reason.

Our intension is to avoid referring to the implicit constructors introduced by the definition of
Airport Event , Airplane Event and Passenger Event . That is, no references will be made to
the constructors

Airplane Event to Airport Event
Passenger Event to Airport Event
Landing to Airplane Event
Take Off to Airplane Event
Reservation to Passenger Event
Check In to Passenger Event
Cancel to Passenger Event

So in order to be able to distinguish values of the type Airport Event , constructors must be
introduced “at the lowest level”.

Note also that we have to introduce destructors in order to make the constructors mk landing ,
mk take off , mk reservation, mk check in and mk cancel information-preserving.
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With these definitions one can now define the function flight identification as follows, recalling
that implicit constructors can be left out in patterns.

Example 13.4

FLIGHT IDENTIFICATION =
extend AIRPORT TYPES with

value
flight identification : Airport Event → Flight

axiom forall airport event : Airport Event •

flight identification(airport event) ≡
case airport event of

mk landing(flight, ) → flight,
mk take of(flight) → flight
mk reservation( ,flight) → flight,
mk check in( ,flight, ) → flight,
mk cancel( ,flight) → flight

end
end

2

13.3 Record Definitions

Referring back to the definitions of types Landing , Take Off , Reservation, Check In and Cancel
we recall that they are defined as variants, each with only a single alternative. Thus, for example
Landing was defined as follows

type
Landing ==

mk landing(sel flight : Flight, sel time : Time)

Such a definition appears somewhat odd since there is only one alternative. A slightly shorter
form allows us to omit the constructor in the type definition. We can thus write a so-called
“record definition”

type
Landing ::

sel flight : Flight
sel time : Time
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which is then short for

type
Landing ==

mk Landing(sel flight : Flight, sel time : Time)

In general, a type definition of the form

type
id ::

destr id1 : type expr1 ↔ recon id1
...
destr idn : type exprn ↔ recon idn

is standing for

type
id ==

mk id(
destr id1 : type expr1 ↔ recon id1,
...
destr idn : type exprn ↔ recon idn)

Note that the constructor mk id cannot be omitted when writing functions over the type id .
As for traditional variant definitions, destructors and reconstructors are optional.

We can thus finally write the airport types as follows.

Example 13.5

AIRPORT TYPES =
extend BASIC TYPES with

type
Airport Event = Airplane Event | Passenger Event,
Airplane Event = Landing | Take Off,
Passenger Event = Reservation | Check In | Cancel,

Landing ::

RAISE/CRI/DOC/1/V1



Union and Record Definitions 145

sel flight : Flight
sel time : Time,

Take Off ::
sel flight : Flight,

Reservation ::
sel passenger : Passenger
sel flight : Flight,

Check In ::
sel passenger : Passenger
sel flight : Flight
sel seat : Seat,

Cancel ::
sel passenger : Passenger
sel flight : Flight

end

2

The function flight identification can now be defined as follows.

Example 13.6

FLIGHT IDENTIFICATION =
extend AIRPORT TYPES with

value
flight identification : Airport Event → Flight

axiom forall airport event : Airport Event •

flight identification(airport event) ≡
case airport event of

mk Landing(flight, ) → flight,
mk Take Of(flight) → flight
mk Reservation( ,flight) → flight,
mk Check In( ,flight, ) → flight,
mk Cancel( ,flight) → flight

end
end

2
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13.4 Using a Flat Variant Definition

An alternative is of course to define the Airport Event-type by a flat variant definition and then
ignore the concepts of airplane event and passenger event in the formal specification. This is
done below.

Example 13.7

AIRPORT TYPES =
extend BASIC TYPES with

type
Airport Event ==

mk landing(flight : Flight, time : Time) |
mk take off(flight : Flight) |
mk reservation(passenger : Passenger, flight : Flight) |
mk check in(passenger : Passenger, flight : Flight, seat : Seat) |
mk cancel(passenger : Passenger, flight : Flight)

end

2

Alternatively, if the concepts of airplane event and passenger event are important, one can
define the types Airplane Event and Passenger Event as subtypes of Airport Event .

13.5 Example

Example 13.8

Consider a rewriting of the database from example 11.2 using union definitions instead of variant
definitions of the types Input and Output .

VARIANT DATABASE =
class

type
Database = Key →m Data,
Key, Data,
Input = Empty | Insert | Remove | Lookup,
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Empty == mk empty
Insert :: sel key : Key sel data : Data,
Remove :: sel key : Key,
Lookup :: sel key : Key,
Output = Lookup Output | Change Output,
Lookup Output = Lookup Failed | Lookup Succeeded,
Lookup Failed == lookup failed,
Lookup Succeeded :: sel data : Data,
Change Output == change done

value
evaluate : Input × Database → Database × Output

axiom forall input : Input, db : Database •

evaluate(input,db) ≡
case input of

mk empty →
([ ], change done),

mk Insert(k,d) →
(db † [k 7→ d], change done),

mk Remove(k) →
(db\{k}, change done),

mk Lookup(k) →
if k ∈ dom db then

(db, mk Lookup Succeeded(db(k)))
else

(db, lookup failed)
end

end
end

Although the type Input only “consists of one layer” it has been defined by a union definition
anyway. This is to illustrate that union definitions generally can be used as an alternative style
of specification instead of variant definitions.

2
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Part II

State-based Specifications
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14 Some Basic Concepts

RSL allows for the declaration of variables as known from most programming languages like
Ada, Pascal and C. A variable is a container capable of holding values of a particular type. The
contents of a variable can be changed by assigning a new value to the variable. A variable can
thus change contents within its lifetime.

The following module defines a variable counter and a function increase that increases the
counter by one for each call. The function additionally returns the value of the counter after
incrementation.

Example 14.1

COUNTER =
class

variable
counter : Nat := 0

value
increase : Unit → write counter Nat,

axiom
increase() ≡

counter := counter + 1 ; counter
end

2

We shall in the following explain the individual declarations of the module.

14.1 Variable Declarations

A variable declaration has the form

variable
variable definition1,
...
variable definitionn
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In our specification there is one such definition.

A variable definition has the form

id : type expr := expr

That is, the variable id is defined to contain values of the type represented by type expr . The
initial value of the variable is set to the value obtained by evaluating expr . The initialisation
is optional and if not given explicitly, the initial value will be some arbitray value within the
specified type.

The variable counter in the example is defined to contain values of type Nat, with the initial
value being zero (0).

When several variables have the same type, a multiple variable definition of the following form
can be used

id1,...,idn : type expr

which is short for

id1 : type expr,
...
idn : type expr

A particular association of values with all declared variables is called a state. As will be seen,
assignment is a state changing operation.

14.2 Functions with Variable Access

The function increase from the example has the type

Unit → write counter Nat

That is, it is a function that when applied to a value of type Unit returns a value of type Nat.
As a side-effect it writes to the variable counter . A function with variable access, like increase,
is also called an operation.
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The example illustrates a typical use of the type Unit: as parameter type for operations that
only depend on the state and not on any additional parameters. The parameter type of an
operation can of course be any type. We shall later see examples of operations with result type
Unit. That is, where the only interesting effect of an operation is the way it changes the state.

In general, a type expression for total operations has the form

type expr1 → access desc1 ... access descn type expr2

A function of this type takes arguments from the type represented by type expr1 and returns
results within the type represented by type expr2.

Each of the access descriptors access desci is either of the form

write id1,...,idn

expressing which variables may be written to (as well as read from), or of the form

read id1,...,idn

expressing which variables may only be read from. As an example illustrating the occurrence of
a read access description, consider the definition of an operation that just returns the current
value of the counter.

Example 14.2

READ COUNTER =
extend COUNTER with

value
return counter : Unit → read counter Nat

axiom
return counter() ≡

counter
end

2

A type expression for partial operations has the form

type expr1
∼→ access desc1 ... access descn type expr2
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14.3 Assignment Expressions

A variable id can be assigned to by an assignment expression of the form

id := expr

The effect of such an expression is to assign the value of the expression to the variable represented
by id .

Our example contains one assignment expression, namely

counter := counter + 1

There is an important point to note here. Assignment is an expression. In general there is
no destinction between expressions and statements as often seen in traditional programming
languages such as Ada and Pascal. In RSL there are only expressions.

Since assignment is an expression, it must in addition to its side-effect also yield a value of a
certain type. The value returned by an assignment expression is the value ‘()’ of type Unit.

14.4 Sequencing Expressions

Two expressions can be combined with the sequencing combinator yielding a new composite
expression

expr1 ; expr2

The composite expression is evaluated by first evaluating expr1 for the purpose of its possible
side-effect on variables, and then by evaluating expr2 in the changed state. The value returned
by the composite expression is the value returned by expr2. The type of expr1 must be Unit.

Our example contains the following sequencing expression

counter := counter + 1 ; counter

14.5 Pure and Read-only Expressions

Expressions can occur in contexts where they are not allowed to refer to variables at all. There
are other contexts where they must not write to variables, although reading from variables is
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allowed. We shall thus in the following often refer to the terms pure expression and read-only
expression, defined as follows.

A pure expression is an expression that does not access variables. That is, a pure expression
neither reads from or writes to variables. Examples of pure expressions are

5

{n | n : Nat • n > 0}

A read-only expression is an expression that does not write to variables, but it may read from
variables. As example, assume the variable definition

variable
x : Int

then the following are read-only expressions

5

x + 1

An expression that is neither pure nor read-only is

x := x + 1

An occurrence of an expression which is required to be pure is the initialisation expression in a
variable definition.

14.6 Quantification over States

How do we interprete axioms in the context of variables? The most natural thing is to say
that an axiom is true if it is true in any possible state satisfying the variable definitions. A
state satisfies a variable definition if it associates the defined variable with a value within the
specified type.

The always-combinator ‘2’ performs this universal quantification over states. An always-
expression has the form
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2 expr

and has the type Bool. The value of the always-expression is true if and only if for all
states satisfying the variable definitions, the expression expr evaluates deterministically to true.
Otherwise, the always-expression evaluates to false.

The expression expr must not change the state, but it may depend on the state by reading
from variables. That is, expr must be read-only. The always-expression itself is pure: it does
not write to variables and it does not depend on the current value of variables (due to the
quantification).

Axioms are interpreted with a universal quantification over all states. An axiom of the form

axiom
expr1

is thus short for

axiom
2 expr

Since ‘2’ requires the expression to be read-only (see above), axioms must in general be read-
only.

In the general case, an axiom declaration of the form

axiom forall typing1,...,typingm •

opt axiom naming1 expr1,
...
opt axiom namingn exprn

is short for

axiom
opt axiom naming1 2 ∀ typing1,...,typingm • expr1,
...
opt axiom namingn 2 ∀ typing1,...,typingm • exprn
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14.7 Equivalence Expressions

Our example contains a single axiom

increase() ≡
counter := counter + 1 ; counter

which is an equivalence expression of the form

expr1 ≡ expr2

Since this equivalence expression occurs as an axiom, it is short for

2 expr1 ≡ expr2

The left-hand side of the equivalence (expr1) is the expression

increase()

which represents the application of the operation increase to the unit value ‘()’. Note here that
an application expression of the form

expr()

is short for

expr(())

The right-hand side of the equivalence (expr2) is the sequencing expression

counter := counter + 1 ; counter

We will now explain in more detail what equivalence ‘≡’ means.

The expression
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expr1 ≡ expr2

is a boolean expression which is evaluated in the current state. It evaluates to true if and only
if the effect of expr1 evaluated in the current state is exactly the same as the effect of expr2

evaluated in the same state. That is, the two expressions must have the same side-effects on
variables as well as yield the same result value. If this is not the case, the equivalence expression
evaluates to false.

The equivalence also requires equivalent effects concerning undefinedness. That is, if one of
the expressions is undefined, the other one must also be. Note that an equivalence expression
always evaluates to either true or false, it will never be undefined itself.

Finally, if one of the expressions is non-deterministic, the other one must show exactly the same
degree of non-determinism in order for the equivalence to hold.

The equivalence expression itself has no side-effects since the side-effects obtained by evaluating
the two sub-expressions are only utilized in the comparison of effects, and are thus ignored there-
after. The value of the equivalence expression may, however, depend on the state if variables
are accessed. An equivalence expression is thus defined to be read-only.

When an equivalence expression occurs as an axiom, it says that for all states satisfying the
visible variable definitions, the effects of the two expressions must be the same. This implies
that any occurrence of expr1 within the scope of the variable definitions can be replaced by
expr2 and vice versa.

The axiom from our example above says that the increment operation for any possible state
must have the same effect as the right-hand side of the equivalence, just as one would expect
from reading the axiom.

In later sections we shall see more “advanced” uses of equivalence where the left-hand side is
not just a single function application, but a general expression. One can thus specify operations
in an algebraic style similar to that decsribed in section 5 for applicative functions.

14.8 Conditional Equivalence Expressions

An equivalence may be conditional. Such an equivalence contains a pre-condition

expr1 ≡ expr2 pre expr3

where expr3 must be a read-only boolean expression. This is short for

(expr3 ≡ true) ⇒ (expr1 ≡ expr2)
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As an example, suppose we want to specify also a decrease operation, but only for states where
the counter is greater than zero. This could be done as follows.

Example 14.3

DECREASE =
extend COUNTER with

value
decrease : Unit ∼→ write counter Nat,

axiom
decrease() ≡

counter := counter − 1 ; counter
pre counter > 0

end

2

14.9 Equivalence and Equality

Consider two expressions expr1 and expr2. If these have no side-effects on variables, are both
defined and are both deterministic, equality ‘=’ and equivalence ‘≡’ mean the same. That is,
the expression

expr1 = expr2

has the same meaning as

expr1 ≡ expr2

If one of the expressions has side-effects, is undefined or is non-deterministic, the meaning of
equivalence is different from the meaning of equality. The expression

expr1 = expr2

is a boolean expression evaluated as follows.
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If one of the expressions is undefined, the equality expression becomes undefined. That is to
say, equality is a so-called “strict” operator. If both expressions are defined, they each (possibly
non-deterministically) yield a side-effect and a value. The value of the equality expression is
then true if the two values are equal, otherwise it is false. The side-effect of the equality
expression is the sum of the side-effects of the sub-expressions.

The two sub-expressions of an equality must be independent in the following sense: if one
expression writes to a variable, the other expression must not access that variable (read from it
or write to it). This independency-requirement has the desired consequence that the order of
evaluation of the two sub-expressions does not influence the result.

14.10 Operation Calls and the Result-type Unit

The operation increase can be called via an application expression, just like any other function.
Consider the following definition of an operation that increments the counter and returns a
boolean value depending on a comparison of the value of the resulting counter and the param-
eter.

Example 14.4

TEST COUNTER =
extend COUNTER with

value
increase and test : Nat → write counter Bool

axiom forall n : Nat •

increase and test(n) ≡
increase() ≤ n

end

2

Suppose now that we want to specify an operation for incrementing the counter twice and that
we want to specify it in terms of two calls of the increment operation. We observe that the
following expression is not allowed

increment() ; increment()

due to the rule that the expression before the semicolon must have the type Unit. Instead we
can specify the increment twice function as follows.
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Example 14.5

INCREMENT TWICE =
extend COUNTER with

value
increment twice : Unit → write counter Nat

axiom
increment twice() ≡

let dummy = increment() in
increment()

end
end

2

We thus have to introduce a dummy name for the result returned by the first application of
increment . In general one should be careful when letting an operation have a result type
different from Unit. It means that such an operation cannot be called immediately in front of
semicolon.

In our example one could easily separate the operations for incrementing the counter and for
reading the counter. This is done below.

Example 14.6

COUNTER =
class

variable
counter : Nat := 0

value
increment : Unit → write counter Unit,
return counter : Unit → read counter Nat

axiom
increment() ≡

counter := counter + 1,
return counter() ≡

counter
end

2
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The operation increment twice (with unchanged signature) will then become as follows.

Example 14.7

INCREMENT TWICE =
extend COUNTER with

value
increment twice : Unit → write counter Nat

axiom
increment twice() ≡

increment() ; increment() ; return counter()
end

2

14.11 Example

Example 14.8

Consider a state-based version of the database from example 8.1. A variable containing the
database is introduced, and all operations then read from and write to this variable.

DATABASE =
class

type
Key, Data

variable
database : Key →m Data

value
empty : Unit → write database Unit,
insert : Key × Data → write database Unit,
remove : Key → write database Unit,
defined : Key → read database Bool,
lookup : Key ∼→ read database Data

axiom forall k : Key, d : Data •

empty() ≡
database := [ ],

insert(k,d) ≡
database := database † [k 7→ d],
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remove(k) ≡
database := database \ {k},

defined(k) ≡
k ∈ dom database,

lookup(k) ≡
database(k)
pre defined(k)

end

There may be several reasons for writing state-based specifications instead of applicative spec-
ifications. Some typical reasons are:

1. Programs written in traditional programming languages are typically state-based. Thus,
at some point in the development of a program from a specification, one may want to
switch to a state-based specification style, if the starting point was an applicative one.

2. The state-based style of specification reduces the number of parameters to functions.
Thus, a call of insert has the form

insert(k,d)

for some k ∈ Key and d ∈ Data. A call of the applicative insert from example 8.1 has an
extra parameter, namely the database

insert(k,d,db)

for some k ∈ Key , d ∈ Data and db ∈ Database. Recall that the applicative version of
insert had the type

value
insert : Key × Data × Database → Database

This argument for state-based specification can be reversed to an argument against the
style: one cannot from the call of an operation see what variables are accessed, one has
to look into the type of the operation.

3. Certain problems can be said to be of a state-based nature, like the database example.
One may then prefer to model them as such.

2
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15 Expressions Revisited

In general, all expressions are evaluated in a state. This also holds for the expressions introduced
in part one on applicative specifications. In this section we shall shortly revisit these expressions
in the light of their evaluation in a state.

15.1 Pure and Read-only Expressions

That an expression is introduced in part one does not mean that it cannot access variables. We
have already seen examples of both if-expressions and let-expressions accessing variables.

There are though generally restrictions on how variables can be accessed as already indicated
by the introduction of pure an read-only expressions in section 14. We shall not revisit all
expressions here but just give some examples. The concrete syntax in appendix A describes the
occurrences of expressions that must either be pure or read-only.

An example of an expression occurrence that is required to be pure is the predicate within a
subtype expression (section 9)

{| binding : type expr • expr |}

That is, expr must be pure. Examples of expression occurrences that are required to be read-
only are the sub-expressions of a comprehended set expression (section 6)

{expr1 | typing1,...,typingn • expr2}

That is, expr1 and expr2 must be read-only.

15.2 Independent Expressions

Recall from section 14 that the two sub-expressions of an equality expression

expr1 = expr2

must be independent: if one sub-expression writes to a variable, the other must not access
that variable. The two expressions can thus be evaluated in any order without changing the
meaning. In general, the sub-expressions of an infix expression of the form
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expr1 op expr2

are required to be independent, where ‘op’ is one of the operators

= 6=
+ − / ∗ \ ↑
> < ≥ ≤
∈ 6∈
∪ ∩
⊂ ⊃ ⊆ ⊇
̂
†
◦

There are two other places where sub-expressions are required to be independent. The sub-
expressions of a product expression (section 4)

(expr1,...,exprn)

are required to be independent.

The sub-expressions of an application expression (section 5)

expr(expr1,...,exprn)

are required to be independent.

15.3 If Expressions

Recall that an if-expression has been described as having the form

if expr1 then expr2 else expr3 end

It contains thus both a then-branch and an else-branch. In state-based specifications, a form
without else-branch is often useful

if expr1 then expr2 end
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This is short for

if expr1 then expr2 else skip end

where skip is a predefined side-effect free expression of type Unit. In fact

skip ≡ ()

The reason for introducing skip when ‘()’ is available is for reasons of readability.

Note that since both branches of an if-expression must have the same type, the type of expr2

must also be Unit.

As an example illustrating an if-expression without else-branch, consider an operation for de-
creasing a counter. The counter is only decreased if it is greater than zero

variable
counter : Nat

value
decrease : Unit → write counter Unit

axiom
decrease() ≡

if counter > 0 then counter := counter − 1 end
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16 Repetitive Expressions

A repetitive expression specifies that a certain expression shall be repeatedly evaluated for the
purpose of its side-effect. There are three forms, all known from most traditional programming
languages: ‘while’ expressions, ‘until’ expressions and ‘for’ expressions.

The three kinds of repetitive expressions all have result-type Unit since they are only evaluated
for the purpose of their side-effects.

16.1 While Expressions

A while expression evaluates an expression as long as some predicate is satisfied. A while
expression has the form

while expr1 do expr2 end

The expression expr1 is the controlling expression which must be of type Bool. The expression
expr2 is the expression to be repeatedly evaluated for the purpose of its side-effect, and must
be of type Unit.

For each iteration, expr1 is evaluated. If it evaluates to true, expr2 is evaluated, and a new
iteration is begun. If expr1 on the other hand evaluates to false, the while expression terminates.

Note that due to the introduction of repetetive expressions, it becomes relevant to talk about
termination and non-termination.

A while expression of the above form is equivalent to

if expr1 then
expr2 ; while expr1 do expr2 end

else
skip

end

Example 16.1

Consider an operation, fraction sum, for calculating the number

1 + 1/2 + ... + 1/n
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for some natural number n. The operation delivers the result in the variable result . An auxiliary
variable, counter , is used to control the calculation.

FRACTION SUM =
class

variable
counter : Nat,
result : Real

value
fraction sum : Nat ∼→ write counter, result Unit

axiom
fraction sum(n) ≡

counter := n;
result := 0.0;
while counter > 0 do

result := result + 1.0/(rl counter);
counter := counter − 1

end
pre n > 0

end

Note that the counter variable must be converted to a real number before a real number fraction
can be calculated.

2

16.2 Until Expressions

An until expression evaluates an expression until some predicate is satisfied. An until expression
has the form

do expr1 until expr2 end

The expression expr2 is the controlling expression which must be of type Bool. The expression
expr1 is the expression to be repeatedly evaluated for the purpose of its side-effect, and must
be of type Unit. It is evaluated repeatedly until expr2 evaluates to true, and is thus evaluated
at least once.

An until expression of the above form is equivalent to

expr1 ; while ∼expr2 do expr1 end
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Example 16.2

Consider a reformulation of the fraction sum operation in terms of an until expression.

FRACTION SUM =
class

variable
counter : Nat,
result : Real

value
fraction sum : Nat ∼→ write counter, result Unit

axiom
fraction sum(n) ≡

counter := n;
result := 0.0;
do

result := result + 1.0/(rl counter);
counter := counter − 1

until counter = 0
pre n > 0

end

2

16.3 For Expressions

A for expression “runs through a list” and evaluates an expression for each list member. A for
expression in the simplest case has the form

for binding in expr1 do expr2 end

The expression expr1 must be of a list type, T ∗, for some type T . The expression expr2 is the
one to be repeatedly evaluated and must have type Unit.

The for expression is evaluated as follows

1. expr1 is evaluated to yield a (possibly empty) list

〈e1,...,en〉
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2. for each value, ei , in the list, processed from left to right, expr2 is evaluated in the scope
of the bindings obtained by matching ei against the binding .

Example 16.3

Consider a reformulation of the fraction sum operation in terms of a for expression. Since the
for expression itself scans all the numbers from 1 to n, there is no need for an auxiliary counter
variable.

FRACTION SUM =
class

variable
result : Real

value
fraction sum : Nat ∼→ write result Unit

axiom forall n : Nat •

fraction sum(n) ≡
result := 0.0;
for i in 〈1 .. n〉 do

result := result + 1.0/(rl i)
end
pre n > 0

end

2

In an extended form of the for expression, one can state a predicate, exprp of type Bool, that
specifies which elements from the list

〈e1,...,en〉

returned by expr1 that shall lead to an evaluation of expr2. The extended version has the form

for binding in expr1 • exprp do expr2 end

An element ei from the list returned by expr1 only leads to an evaluation of expr2 if the predicate
exprp deterministically evaluates to true (in the scope of the bindings obtained by matching ei

against the binding).

The expressions expr1 and exprp must be read-only.
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Example 16.4

Consider the specification of a database being a list of records, each consisting of a key and
some data.

DATABASE =
class

type
Key, Data,
Record = Key × Data,
Database = Record∗,

variable
database : Database

end

The database is stored in a variable.

Suppose we want to generate reports based on the database. A report should only involve those
records that are “interesting” as defined by some boolean-valued function, is interesting , on
keys. For each interesting record, the report will contain an entry consisting of the key and a
transformation of the corresponding data element.

An operation, make report , is defined that reads the database and delivers a report in the
variable report .

REPORT =
extend DATABASE with

type
Report Data,
Report Record = Key × Report Data,
Report = Report Record∗

variable
report : Report

value
is interesting : Key → Bool,
transformation : Data → Report Data,
make report : Unit → read database write report Unit

axiom
make report() ≡

report := 〈〉;
for (key,data) in database • is interesting(key) do

report := report ̂ 〈(key,transformation(data))〉
end

end
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2
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17 Algebraic Definition of Operations

In section 5 it was described how applicative functions can be defined abstractly in terms of
algebraic equivalences. Recall in particular the algebraic specification of the LIST -module from
example 5.3, which is repeated below. Constants and functions have been subscripted with an
a to indicate that they are applicative.

LIST =
class

type
List

value
emptya : List,
adda : Int × List → List,
heada : List ∼→ Int,
taila : List ∼→ List

axiom
forall i : Int, l : List •

[head add]
heada(adda(i,l)) ≡ i,

[tail add]
taila(adda(i,l)) ≡ l

end

The important point to note here is that nothing has been said about how lists are repre-
sented. The type List is a sort and the functions are defined without assuming any particular
representation of lists.

The question now arises whether a state-based specification of lists can be given, that ignores
representation details in a similar way. There are at least three ways of doing this and we shall
treat each of them below.

17.1 Extending an Applicative Module

The first approach is to use the entities from the applicative LIST -module in defining the
state-based module. The state-based module thus becomes an extension of the LIST -module.

Example 17.1

STATE BASED LIST =
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extend LIST with
variable

list : List
value

empty : Unit → write list Unit,
is empty : Unit → read list Bool,
add : Int → write list Unit,
head : Unit ∼→ read list Int,
tail : Unit ∼→ write list Unit

axiom
empty() ≡

list := emptya ,
is empty() ≡

list = emptya ,
add(i) ≡

list := adda(i,list),
head() ≡

heada(list)
pre ∼is empty(),

tail() ≡
list := taila(list)
pre ∼is empty()

end

2

A variable of type List is defined. This type comes from the LIST -module and is a sort. Nothing
has thus been said about representation of its values.

The operations working on the list variable are defined by simple calls of the corresponding
applicative functions. Since these are defined without assuming any particular representation,
the operations share that property.

The operation is empty has been introduced in order to make it possible to test whether the
list is empty. In the applicative case, we could just compare a list l with emptya as follows

l = emptya

if we wanted to test whether l was empty. In the state-based case, empty has been turned
into an operation that resets the variable to contain the empty list. If we want all accesses to
the variable to be done through operation calls (a reasonable requirement), we must introduce
is empty .
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The approach of using an applicative specification in defining a state-based one may seem
tedious, especially if the applicative one does not exist already.

17.2 Algebraic Equivalences

The second approach to abstractly specifying the state-based list module is to give algebraic
equivalences between operation calls in a way very similar to the equivalences in the applicative
LIST -module.

As an example, consider the applicative axiom head add from LIST

axiom
forall i : Int, l : List •

[head add]
heada(adda(i,l)) ≡ i

The axiom says that adding an element i to a list and then taking the head yields the element
just added. The corresponding “state-based” axiom is

axiom
forall i : Int •

[head add]
add(i) ; head() ≡ add(i) ; i

The extra occurrence of add(i) on the right-hand side of the equivalence is necessary in order
to make the equivalence true. Recall that in order for an equivalence to be true, the left-hand
side and the right-hand side must have exactly the same side-effects.

The complete state-based specification of lists is as follows.

Example 17.2

LIST =
class

type
List

variable
list : List

value
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empty : Unit → write list Unit,
is empty : Unit → read list Bool,
add : Int → write list Unit,
head : Unit ∼→ read list Int,
tail : Unit ∼→ write list Unit

axiom
forall i : Int •

[is empty empty]
empty() ; is empty() ≡ empty() ; true,

[is empty add]
add(i) ; is empty() ≡ add(i) ; false,

[head add]
add(i) ; head() ≡ add(i) ; i,

[tail add]
add(i) ; tail() ≡ skip

end

2

The variable list is defined to have type List which is a sort. Nothing has thus been said about
representation. The operations are defined without assuming any particular representation of
lists.

Note in particular the tail add axiom. It says that adding an element (add(i)) followed by
removing the head (tail()) is equivalent to doing nothing (skip).

17.3 Being Implicit about Variables

An interesting observation concerning example 17.2 is that the variable list is not referred to in
the axioms. It is only mentioned in the operation types where its role is to state what variables
are accessed from the operations and how they are accessed.

It thus appears that we have said as little as possible about the variable: it is not mentioned in
the axioms and its type is a sort. There is, however, a possibility of saying even less than that.
In the third approach we shall be totally implicit about what the variables are, by simply not
defining any. We can thus modify example 17.2 by removing the following definitions, observing
that the type List is only used to give a type to the variable

type
List

variable
list : List
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The operation types must now be modified such that they do not mention the variable list . As
an example, the type of the operation is empty was defined as follows

is empty : Unit → read list Bool,

That is, its type contains the access description

read list

Instead of list one can write any in the access description to indicate that “any” variable defined
my be read from. An access description can thus have the form

read any

The definition of the type of is empty becomes

is empty : Unit → read any Bool

A write-access description can similarily have the form

write any

indicating that the operation may write to any variable. Note that since a variable being written
to is also regarded as being read from, only one of these two “any” forms should occur in a
single operation type.

After having performed these changes, and leaving the axioms unchanged, the state-based list
module becomes as follows.

Example 17.3

LIST =
class

value
empty : Unit → write any Unit,
is empty : Unit → read any Bool,
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add : Int → write any Unit,
head : Unit ∼→ read any Int,
tail : Unit ∼→ write any Unit

axiom
forall i : Int •

[is empty empty]
empty() ; is empty() ≡ empty() ; true,

[is empty add]
add(i) ; is empty() ≡ add(i) ; false,

[head add]
add(i) ; head() ≡ add(i) ; i,

[tail add]
add(i) ; tail() ≡ skip

end

2

The following has been gained by being implicit about variables

• We have avoided deciding what the variables shall be and what their types shall be.

• Suppose we later develop an implementation of the LIST -module from example 17.3. Our
specification then places no restriction on what the variables of an implementation shall
be.

• The specification places no restrictions on what variables the operations are allowed to
access.

Note that any-accesses can also be used in operation types even if variables have been defined
in the context. It then allows the operations to access any of the defined variables. Again, one
can see this as giving freedom to an implementation.

A natural question is when to be implicit about variables and when to be explicit. It is difficult
to give exact rules. Very roughly, one may be implicit in the following situations.

• One will not be bothered with what the variables are.

• One wants to leave freedom to a later development that is expected to be an implemen-
tation in the formal sense.

Being explicit, however, has its benefits.
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• One can from the type of an operation see exactly what variables may be accessed and
how they may be accessed. This makes state-based specifications a lot easier to read and
prove properties about.

• One may simply prefer the explicit style since it perhaps more clearly expresses “what
goes on”.

A more detailed description of any-accesses will be given in part four on modules.

17.4 Example

Example 17.4

Consider an algebraic specification of the state-based database from example 14.8. We will be
implicit about variables by not defining any. As a consequence, all access descriptions will use
any.

DATABASE =
class

type
Key, Data

value
empty : Unit → write any Unit,
insert : Key × Data → write any Unit,
remove : Key → write any Unit,
defined : Key → read any Bool,
lookup : Key ∼→ read any Data

axiom
forall k,k1 : Key, d : Data •

[remove empty]
empty() ; remove(k) ≡ empty(),

[remove insert]
insert(k1,d) ; remove(k) ≡

if k = k1 then
remove(k)

else
remove(k) ; insert(k1,d)

end,
[defined empty]

empty() ; defined(k) ≡ empty() ; false,
[defined insert]

insert(k1,d) ; defined(k) ≡
if k = k1 then
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insert(k1,d) ; true
else

let result = defined(k) in insert(k1,d) ; result end
end,

[lookup insert]
insert(k1,d) ; lookup(k) ≡

if k = k1 then
insert(k1,d) ; d

else
let result = lookup(k) in insert(k1,d) ; result end

end
end

The reader should compare this specification with the algebraic specification of the correspond-
ing applicative module from example 5.4.

The state-based database example illustrates the “constructor” technique for inventing axioms,
which we also saw in example 5.4. The technique used in the state-based case can be charac-
terised as follows

1. Identify the “constructor operations” by which any database can be constructed. These
are the operations empty and insert . Any database can thus be generated as the side-effect
of an expression of the form

empty() ; insert(k1,d1) ; ... ; insert(kn ,dn)

2. Define the remaining operations “by case” over the constructor operations called with
identifiers as parameters. In the above axioms, remove, defined and lookup are thus
defined over the two constructor-expressions

empty()

insert(k1,d)

We thus get “for free” all the left-hand sides of the axioms we must write. That is

empty() ; remove(k)
insert(k1,d) ; remove(k)

empty() ; defined(k)
insert(k1,d) ; defined(k)

empty() ; lookup(k)
insert(k1,d) ; lookup(k)
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Note, however, that due the the partiality of lookup we don’t bother with giving the
right-hand side corresponding to empty() ; lookup(k).

The list-axioms (example 17.2 and example 17.3) actually have the same form.

The technique is useful in many applications, but there are of course applications where one
must be more imaginative when writing axioms.

The right-hand sides of the axioms defined insert and defined lookup are somewhat different
from the corresponding applicative ones. This is due to the requirement that the side-effect of
the left-hand side of an equivalence must be the same as the side-effect of the right-hand side.

More specifically, the call insert(k1, d) must occur on the right-hand side since it occurs on the
left-hand side and since it has side-effects.

Note also the use of let expressions in the two axioms. These are necessary in order to get
defined(k), respectively lookup(k), evaluated before insert(k1, d).

2
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18 Post Expressions

We have just seen how operations can be defined in a very abstract way in terms of algebraic
equivalences. Another way of being abstract about operations is to use post expressions. We
have in fact already seen several examples of this style in the applicative case. See for instance
example 5.2.

Consider the following specification of a choose operation that returns an arbitrary element
from a set that is contained in a variable. The returned element is at the same time removed
from the set, thus changing the contents of the variable.

Example 18.1

CHOOSE =
class

variable
set : Int-set

value
choose : Unit ∼→ write set Int

axiom
choose() as i

post i ∈ set̀ ∧ set = set̀ \{i}
pre set 6= {}

end

2

The pre-condition says that the operation is only specified for states where the contents of set
is a non-empty set.

The post-condition is a conjunction of two boolean expressions. The first one

i ∈ set̀

says that the returned i must be a member of set as this was before the call. In general, a
hooked variable in a post-condition refers to the contents of that variable before calling the
operation. Conversely, a normal non-hooked variable refers to the contents of the variable
after having called the operation. Such a non-hooked variable occurs in the second part of the
post-condition
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set = set̀ \{i}

This says that the new set after a call must be equal to the set before the call, except for the
chosen element which has been removed.

Let us examine the meaning of a post expression in more detail. The general form of a post
expression without a pre-condition is

expr1 as binding post expr2

with the result naming ‘as binding ’ being optional.

The post-condition expr2 must be of type Bool, which is also the type of the post expression
itself.

The post expression is evaluated in the current state as follows. The expression expr1 is eval-
uated in the current state, the pre-state, thus yielding a result, named by the binding , and a
possibly changed state, the post-state. The value of the post expression is then true if and
only if

1. expr1 is defined and deterministic,

2. expr2 ≡ true when evaluated in the post-state and in the scope of the binding . Hooked
variables of the form id ‘ though refer to the pre-state.

The post-condition expr2 must be read-only. Concerning the post expression itself, the side-
effect obtained by evaluating expr1 is only used for evaluating the post-condition and is ignored
thereafter. The post expression is thus read-only. A post expression is always defined and
deterministic (both expr1 and expr2 are required to be deterministic).

Condition 1 above says that expr1 must be defined and deterministic. In the above CHOOSE -
module, expr1 corresponds to choose(). The choose operation thus is defined where the pre-
condition holds and, moreover, it is deterministic. That is, two applications of choose in the
same state yield the same result state and result value.

A post expression may include a pre-condition, which is a read-only expression of type Bool

expr1 as binding post expr2 pre expr3

This is short for
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(expr3 ≡ true) ⇒
expr1 as binding post expr2

As said before, a post expression is evaluated in the current state. Recall, however, that when it
occurs as an axiom, it is implicitly preceeded by the always-combinator ‘2’ implying a universal
quantification over all states.

Example 18.2

Consider the specification of an insert operation that inserts an integer into a list contained in
a variable. The contents of the variable after insertion must be a sorted list without duplicates.
Think of the variable as containing an effecient representation of a set.

INSERT SORTED =
class

variable
list : Int∗ := 〈〉

value
is sorted : Unit → read list Bool,
insert : Int → write list Unit

axiom forall i : Int •

is sorted() ≡
∀ idx1,idx2 : Nat •

({idx1,idx2} ⊆ inds list ∧ idx1 < idx2) ⇒
list(idx1) < list(idx2),

insert(i)
post

elems list = elems list̀ ∪ {i}
∧

is sorted()
end

The operation is sorted examines the list contained in the variable and yields true if the list is
sorted in increasing order.

The post-condition for the operation insert consists of two parts. The first part says that the
elements of the new list must be those of the old list with the addition of the new element. The
example thus illustrates how the parameters of an operation are referred to in the post-condition.

The second part of the post-condition says that the new list must be sorted. Note that one can
generally call read-only operations in post-conditions. Such operation calls will be evaluated in
the post-state.
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Note finally that the post expression contains no result naming or pre-condition. The result
naming is omitted since the result type is Unit. One is of course allowed to write a result
naming, but in the Unit-case this makes little sense.

2
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Part III

Concurrency-based Specifications
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19 Some Basic Concepts

RSL provides means for specifying concurrent systems. More precisely, operators are provided
for specifying the parallel evaluation of expressions. Moreover, communication primitives are
provided such that parallel evaluating expressions can communicate with each other through
“channels”.

Concurrency becomes relevant in basically two situations. The first situation is where the system
to be modelled is inherently concurrent. An example is a system where a number of airport
check-in counters have access to the same passenger-flight database. This kind of concurrency
could be called “conceptual concurrency”.

The second situation is where an inherently sequential system due to efficiency reasons is made
concurrent. An example is some number-calculation function which is specified to perform some
of its calculations in parallel to save time. This kind of concurrency could be called “efficiency
concurrency”.

One can possibly from some philosophical viewpoint discuss this differentiation, but from a
pragmatic viewpoint it appears useful.

The following module defines a ‘one place buffer’, opb, that communicates with the surrounding
world through the two channels add and get . Values of type Elem are input from the add channel
and are then output to the get channel.

Example 19.1

ONE PLACE BUFFER =
class

type
Elem

channel
add : Elem,
get : Elem

value
opb : Unit → in add out get Unit

axiom
opb() ≡

let v = add? in get!v end ; opb()
end

2
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We shall in the following explain the individual declarations of the module.

19.1 Channel Declarations

A channel declaration has the form

channel
channel definition1,
...
channel definitionn

In our specification there are two such definitions.

A channel definition has the form

id : type expr

That is, the channel id is defined to “transport” values of the type represented by type expr .

The channels add and get in the example are both defined to have the type Elem.

When several channels have the same type, a multiple channel definition of the following form
can be used

id1,...,idn : type expr

which is short for

id1 : type expr,
...
idn : type expr

19.2 Functions with Channel Access

The function opb from the example has the type

Unit → in add out get Unit
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That is, it is a function that, when called, communicates with the surroundings through the
channels add and get . More specifically, it receives values from the surroundings through the
add channel and it sends values to the surroundings through the get channel. A function with
channel access, like opb, is also called a process.

The function will only be called for the purpose of its ability to communicate through add and
get , and therefore its parameter type and result type are Unit. We shall later see examples of
more interesting parameter and result types.

The process opb can be pictured as follows

add → opb → get

In general, a type expression for total processes has the form

type expr1 → access desc1 ... access descn type expr2

A function of this type takes arguments from the type represented by type expr1 and returns
results within the type represented by type expr2. In addition, the function accesses the channels
mentioned in the access descriptors.

Each of the access descriptors access desci can be of the form

in id1,...,idn

expressing which channels processes of the type may be input from, or it can be of the form

out id1,...,idn

expressing which channels may be output to. In addition, since processes can also access
variables, access descriptors can describe access to variables as explained in section 14 and in
section 17.

A type expression for partial processes has the form

type expr1
∼→ access desc1 ... access descn type expr2
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19.3 Communication Expressions

RSL provides two communication primitives: one for inputting a value from a channel and one
for outputting a value to a channel. An expression may input a value from a channel by an
input expression of the form

id?

where id is the channel input from. Upon input from id , the received value is returned as result
of the input expression. That is, the type of the input expression is the type T , where the
channel has been defined to have type T :

channel
id : T

An expression may output a value to a channel by an output expression of the form

id!expr

where id is the channel output to. The expression, expr , is evaluated to return a value, which
is then output to the channel id . The type of the expression must be the same as the type of
the channel. The type of the output expression itself is the type Unit.

Our example contains an input expression

add?

as well as an output expression

get!v

So the process opb repeatedly inputs a value from the add channel and then outputs the same
value to the get channel. Note how the value input from the add channel is temporarily named
in a let expression. The process calls itself recursively to obtain the repetition.

Note that input and output are just expressions. As stated earlier in connection with assign-
ment: “there are only expressions”. No special syntax category is thus introduced for expressing
communication, just like no special syntax category was introduced for expressing assignment.
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19.4 Putting Expressions in Parallel

Communication through channels is the means by which parallel evaluating expressions interact.
Two expressions are put in parallel as follows

expr1 ‖ expr2

The two expressions expr1 and expr2 must both have type Unit, which is also the type of the
composite expression itself.

As an example consider the following definitions

channel
c : Int

variable
x : Int

In the scope of these definitions, the two expressions x := c? and c!5 can be put in parallel as
follows

x:=c? ‖ c!5

The evaluation of the composite expression may lead to an interaction between the two ex-
pressions in that the rightmost expression outputs the value 5 on the channel c, which is then
input from by the leftmost expression. If the communication takes place, the effect of the above
parallel expression will be the following

x:=5

Communication is synchronized: the outputting expression only outputs to the channel if the
inputting expression simultaniously inputs from the channel.

Parallel attempts to input from a channel and to output to the channel does, however, not
necessarily lead to a communication. Whether it does, depends on an internal choice. The two
expressions can thus communicate with a third expression which is put in parallel with the two.
One can for example put the expression c!7 in parallel with the two expressions as follows

(x:=c? ‖ c!5) ‖ c!7
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and then as one possible effect obtain

x:=7 ; c!5

That is, the rightmost expression outputs the value 7 to the channel c. The leftmost expression
inputs the value and stores it in x . After the communication, the communication c!5 still
remains to be performed.

Note, however, that the effect may also be

x:=5 ; c!7

or the effect may even be that no communication takes place at all.

The parallel operator is commutative as well as associative. That is

expr1 ‖ expr2 ≡
expr2 ‖ expr1

expr1 ‖ (expr2 ‖ expr3) ≡
(expr1 ‖ expr2) ‖ expr3

Two expressions running in parallel should be state-independent: if the one expression writes
to a variable, the other should not access that variable (neither read from it or write to it). The
RSL type checker does not force state-independency, but it is highly recommended.

As an example, suppose we want to use the one place buffer as a connection between two
processes called reader and writer . The following figure illustrates the parallel processes and
the channels that connect them.

input → reader → add → opb → get → writer → output

The reader process inputs values from the input channel and the writer process outputs values
to the output channel. Values moves from the reader process to the writer process via the one
place buffer opb.

The reader and writer processes can be specified as follows.

Example 19.2
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READER WRITER =
extend ONE PLACE BUFFER with

type
Input,
Output

channel
input : Input,
output : Output

value
transform1 : Input → Elem,
transform2 : Elem → Output
reader : Unit → in input out add Unit,
writer : Unit → in get out output Unit,

axiom
reader() ≡

let v = input? in add!(transform1(v)) end ; reader(),
writer() ≡

let v = get? in output!(transform2(v)) end ; writer(),
end

2

The abstract types Input and Output are the types of the input channel respectively the output
channel. We are abstract about the types since we want to illustrate the parallelism and not
the particular kinds of values communicated.

The reader process repeatedly inputs a value v from the input channel and outputs the value
transform1(v) to the add channel. The writer process repeatedly inputs a value v from the get
channel and outputs the value transform2(v) to the output channel. The functions transform1
and transform2 are un-specified.

We can now put the processes reader , opb and writer together in parallel, calling the composed
process for system.

Example 19.3

SYSTEM =
extend READER WRITER with

value
system : Unit → in input,add,get out output,add,get Unit

axiom
system() ≡
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reader() ‖ opb() ‖ writer()
end

2

The type of the process system states that the process has in access as well as out access to the
channels add and get . That is, the system process may unfortunately input from and output
to both these channels as well as input from input and output to output . To better illustate
this, we can unfold the calls of reader(), opb() and writer() in the axiom defining system

axiom
system() ≡

let v = input? in add!(transform1(v)) end ; reader()
‖
let v = add? in get!v end ; opb()
‖
let v = get? in output!(transform2(v)) end ; writer()

We see that the system process is ready to input from any of the three channels input , add and
get . Suppose for example that system is put in parallel as follows

system() ‖ add!e

The effect of this expression may be

let v = input? in add!(transform1(v)) end ; reader()
‖
get!e ; opb()
‖
let v = get? in output!(transform2(v)) end ; writer()

That is, the value e has been communicated over the add channel and the resulting expression
is ready to either output e to the get channel or input from either of the channels input and
get .

The expression may though perform an “internal” communication by communicating the value
e over the get channel. In that case, the effect of the expression becomes
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let v = input? in add!(transform1(v)) end ; reader()
‖
opb()
‖
output!(transform2(e)) ; writer()

19.5 Hiding Channels

We have just seen how the channels add and get are part of the interface of the system process.
This is unfortunate since these channels together with the one place buffer should really be
“internal stuff”. The following figure illustrates how we really would like to regard the system
process from the outside

input → system → output

That is, we want to hide the channels add and get . The only way channel hiding can be done
in RSL is in terms of a local expression. Consider for example the following expression in the
scope of the integer variable x

local
channel

c : Int
in

x:=c? ‖ c!5
end

The scope of the definition of channel c is the expression

x:=c? ‖ c!5

The channel c is thus hidden outside the local expression. The effect of leaving the scope
(moving beyound the end in the local expression) is that all internal communication via local
channels is forced through. In the above expression, the communication of the value 5 over the
channel c is forced through such that the effect becomes

x:=5

In fact, the following equivalence holds
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local
channel

c : Int
in

x:=c? ‖ c!5
end
≡
x:=5

We can now specify our system process such that the channels add and get are hidden. What
we must do is to define all the processes to be put in parallel and their internal channels in a
local expression. We thus get the following module.

Example 19.4

SYSTEM =
class

type
Input,
Output

channel
input : Input,
output : Output

value
system : Unit → in input out output Unit

axiom
system() ≡

local
type

Elem
channel

add : Elem,
get : Elem

value
opb : Unit → in add out get Unit

axiom
opb() ≡

let v = add? in get!v end ; opb()
value

transform1 : Input → Elem,
transform2 : Elem → Output,
reader : Unit → in input out add Unit,
writer : Unit → in get out output Unit,

axiom
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reader() ≡
let v = input? in add!(transform1(v)) end ; reader(),

writer() ≡
let v = get? in output!(transform2(v)) end ; writer(),

in
reader() ‖ opb() ‖ writer()

end
end

2

The types Input and Output and the channels input and output are still defined at the outermost
level since all these items are part of the interface of the system process. The rest is locally
defined since it is internal stuff.

It may seem tedious to be forced to define all sub-processes of a process within a local expression.
Especially when a system consists of many sub-processes and these perhaps again are composed.
Part four of this document describes how the module concept can be used in combination with
the local expression to model a hierarchy of processes.

19.6 External Choice

Reconsider the axiom defining the one place buffer

axiom
opb() ≡

let v = add? in get!v end ; opb()

An application, opb(), of the buffer process offers a single kind of communication to the sur-
roundings: an input from the add channel. After an input, still a single kind of communication
is offered: an output to the get channel.

There are, however, situations where we want a process to offer several different kinds of com-
munications at the same time. The system process from example 19.3 did in fact, though
unintended, offer several communications since the “internal” channels add and get were not
hidden. The call system() thus offered to input from any of the channels input , add and get .

The external choice combinator ‘[]’ serves to explicitely specify a choice between different kinds
of communications. As an example, assume the following definitions

channel
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c,d : Int
variable

x : Int

Then consider the external choice expression

x:=c? debc d!5

This expression offers two communications: either an input from the c channel or an output
to the d channel. The choice is called external since it will be up the surroundings to choose
between the two. Suppose we put this expression in parallel with the expression c!1 as follows

(x:=c? debc d!5) ‖ c!1

A possible effect of this expression is that the value 1 is communicated over the channel c thus
resulting in

x:=1

Recall, however, that parallel composition does only force communication to happen when
channels are hidden in a local expression.

The external choice combinator in general puts expressions together as follows

expr1 debc expr2

The two expressions must have the same type. Typically, expr1 and expr2 each begins with
some kind of communication. Only one of the expressions will be evaluated, depending on
which kind of communication the surroundings want to do. The external choice combinator is
commutative and associative.

As an example illustrating the use of external choice, consider a specification of a many place
buffer capable of holding several elements at one time. There is no limit on the size of the
buffer, except that it at any time can contain only finitely many elements.

The many place buffer process, mpb, holds all buffered elements in a list. The list is a parameter
to mpb in the sense that any recursive call of mpb takes a possible modified list as actual
parameter.
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Example 19.5

MANY PLACE BUFFER =
class

type
Elem,
Buffer = Elem∗

channel
empty : Unit,
add : Elem,
get : Elem

value
mpb : Buffer → in empty,add out get Unit

axiom forall b : Buffer •

mpb(b) ≡
empty? ; mpb(〈〉)
debc
let v = add? in mpb(b ̂ 〈v〉) end
debc
if b 6= 〈〉 then

get!(hd b) ; mpb(tl b)
else

stop
end

end

2

The buffer is connected with the surroundings by three channels. Values are added to the buffer
via the add channel and leave the buffer again via the get channel. The empty channel makes
it possible to empty the buffer. This is done by sending a signal (the unit value ‘()’ of type
Unit) on the empty channel.

The axiom defining mpb reads as follows. Assuming the buffer b, three kinds of communications
may be offered:

• A value (the unit value) may be input from the empty channel. Upon input, the buffer
process continues with the empty list as parameter, representing the empty buffer.

• A value, v , may be input from the add channel. Upon input, the buffer process continues
with an extended list as parameter.
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• If the list b is non-empty, the process may output the head of the list to the get channel
and then continue with the tail of the list as parameter.

The else-branch of the if expression is entered if the list b is empty. That is, the else-
branch is entered if the buffer contains no elements to be output to the get channel. The
predefined expression stop represents the “do nothing” effect. stop has the property that
for any expression expr , the following equivalence holds

expr debc stop ≡ expr

From this property we can deduce the following

mpb(〈〉)

≡

empty? ; mpb(〈〉)
debc
let v = add? in mpb(〈〉 ̂ 〈v〉) end
debc
if 〈〉 6= 〈〉 then

get!(hd 〈〉) ; mpb(tl 〈〉)
else

stop
end

≡

empty? ; mpb(〈〉)
debc
let v = add? in mpb(〈v〉) end
debc
stop

≡

empty? ; mpb(〈〉)
debc
let v = add? in mpb(〈v〉) end

The many place buffer is put in parallel with an expression expr as follows, assuming the buffer
to be initially empty

mpb(〈〉) ‖ expr
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19.7 Internal Choice

The external choice combinator expresses a choice between two expressions. The term ‘external’
says that it is the surroundings that decide which expression to be selected. As an example,
consider the expression

(x:=c? debc d!5) ‖ c!1

If a communication takes place, it will be the communication of the value 1 over the channel c,
thus resulting in

x:=1

In addition to the external choice combinator, RSL provides an internal choice combinator ‘u’
that specifies an internal choice between two expressions

expr1 de expr2

Whether expr1 is evaluated or whether expr2 is evaluated depends on an internal choice, which
the surroundings cannot influence. The two expressions must have the same type. The internal
choice combinator is commutative and assocative. As an example, consider the expression

(x:=c? de d!5) ‖ c!1

The expression c!1 has no influence on which of the two expressions x := c? and d !5 are
evaluated. If the internal choice falls on x := c?, the expression becomes equivalent to

x:=c? ‖ c!1

thus potentially leading to a communication over c. If the internal choice on the other hand
falls on d !5, the expression becomes equivalent to

d!5 ‖ c!1

thus preventing any communication to take place.

The internal choice combinator is typically used in proofs about concurrent RSL specifications.
One can, however, also use the combinator when writing specifications. Consider for example
the specificaton of a “die-thrower”.
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type
Face Of Die == one|two|three|four|five|six

value
throw die : Unit ∼→ Face Of Die

axiom
throw die() ≡

one de two de three de four de five de six

The function throw die will non-deterministically return a face of die. The axiom could also
have been written as follows

axiom
throw die() ≡

let face of die : Face Of Die in
face of die

end

19.8 Examples

Example 19.6

Consider a concurrent version of the database from example 8.1. A database process, database,
is introduced together with channels for communicating with it.

DATABASE =
class

type
Key, Data,
Database = Key →m Data

channel
empty : Unit,
insert : Key × Data,
remove : Key,
defined : Key,
defined res : Bool,
lookup : Key,
lookup res : Data

value
database : Database →

in empty,insert,remove,defined,lookup
out defined res,lookup res
Unit
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axiom forall db : Database •

database(db) ≡
empty? ; database([ ])
debc
let (k,d) = insert? in

database(db † [k 7→ d])
end
debc
let k = remove? in

database(db\{k})
end
debc
let k = defined? in

defined res!(k ∈ dom db) ; database(db)
end
debc
let k = lookup? in

if k ∈ dom db then
lookup res!(db(k)) ; database(db)

else
chaos

end
end

end

Note how the “partialness” of a lookup communication is modelled by the use of chaos. The
database process itself is not partial since it has to participate in at least one communication
(an input from the lookup channel) before eventually diverging.

An essential task when specifying a process is to decide what the channels are and what the
protocol is for their use. The above specification illustrates for example how certain channels
may be connected: an ingoing communication on the defined channel is always followed by
an outgoing communication on the defined res channel. Likewise for the channels lookup and
lookup res.

It is quite illustrative to compare the channel definitions from the example above with the
function and constant types from the applicative database in example 8.1. This is done below
by listing the channels and the corresponding applicative functions and constants.

channel
empty : Unit,

value
empty : Database

channel
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insert : Key × Data,
value

insert : Key × Data × Database → Database

channel
remove : Key,

value
remove : Key × Database → Database

channel
defined : Key,
defined res : Bool,

value
defined : Key × Database → Bool

channel
lookup : Key,
lookup res : Data

value
lookup : Key × Database ∼→ Data

2

Example 19.7

Suppose we want to lookup a key k in the concurrent database defined in the previous example.
We will have to write two communications

lookup!k ; ... lookup res? ...

This may seem slightly tedious. The “problem” is that the interface to the database process is
a set of channels. One can instead define a set of interaction processes that do all the channel
communication and then recommend users to call these instead.

The module below is an extension of the concurrent DATABASE module with the definition of
such interaction processes.

INTERFACED DATABASE =
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extend DATABASE with
value

Empty : Unit → out empty Unit,
Insert : Key × Data → out insert Unit,
Remove : Key → out remove Unit,
Defined : Key → out defined in defined res Bool,
Lookup : Key → out lookup in lookup res Data

axiom forall k : Key, d : Data •

Empty() ≡
empty!(),

Insert(k,d) ≡
insert!(k,d),

Remove(k) ≡
remove!k,

Defined(k) ≡
defined!k ; defined res?,

Lookup(k) ≡
lookup!k ; lookup res?

end

Note that the two interaction processes Defined and Lookup both have result types different
from Unit.

An interaction that before (with a channel interface) had the following form, assuming a k ∈ Key
and a db ∈ Database

(lookup!k ; x := lookup res?) ‖ database(db)

is written as follows when using the interaction process Lookup

(x := Lookup(k)) ‖ database(db)

The use of interaction processes shorten specifications. In addition, they represent information
hiding in that the specifier is not required to know about the details of channel communication.

2
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20 Expressions Revisited

In this section we shall shortly revisit some of the expressions introduced in part one and part
two of the document in the light of concurrency.

20.1 Pure and Read-only Expressions

In section 14 the concepts of pure expressions and read-only expressions were introduced. These
concepts need a redefinition.

A pure expression is an expression that does not access variables and that does not communicate
on channels.

A read-only expression is an expression that does not write to variables and that does not
communicate on channels. It may though read from variables.

The concrete syntax in appendix A describes the occurrences of expressions that must either
be pure or read-only.

20.2 Independent Expressions

In section 14 the concept of independent expressions was introduced. Recall for example that
the two sub-expressions of an equality

expr1 = expr2

must be independent: if one sub-expression writes to a variable, the other must not access
that variable. The two expressions can thus be evaluated in any order without changing the
meaning.

With the possibility of channel communication we must additionally require that at most one
of the expressions communicate. Otherwise the evaluation order would influence the order of
communications.

The reader is referred to section 14 for a description of where expressions are required indepen-
dent.

20.3 Equivalence Expressions

En equivalence expression (section 14) of the form
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expr1 ≡ expr2

requires the two sub-expressions to represent the same communication behaviour in order to
hold. The equivalence expression itself does not communicate since the communications of the
two sub-expressions are only utilized in the comparison, and are thus kept “invisible” for the
surroundings. An equivalence expression is thus still read-only.
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21 State-based Processes

The many place buffer process, mpb, in example 19.5 is applicative in the sense that it is
parameterised with respect to the “current” buffer contents. That is, it has the type

value
mpb : Buffer → in empty,add out get Unit

An alternative is to keep the current buffer contents in a variable which the process then
continuously modifies by means of assignments. There are essentially two approaches:

1. Introducing a variable global to the process which the process then has write access to.

2. Introducing a variable local to the process.

We shall treat each of the two approaches below.

21.1 Introducing a Global Variable

An alternative is to keep the current buffer contents in a global variable which the process then
has write access to:

variable
buffer : Buffer

value
mpb : Unit → in empty,add out get write buffer Unit

Note that the parameter type of mpb now becomes Unit. The modified specification is as
follows.

Example 21.1

MANY PLACE BUFFER =
class

type
Elem,
Buffer = Elem∗

RAISE/CRI/DOC/1/V1



212 State-based Processes

variable
buffer : Buffer := 〈〉

channel
empty : Unit,
add : Elem,
get : Elem

value
mpb : Unit → in empty,add out get write buffer Unit

axiom
mpb() ≡

empty? ; buffer := 〈〉 ; mpb()
debc
let v = add? in

buffer := buffer ̂ 〈v〉
end;
mpb()
debc
if buffer 6= 〈〉 then

get!(hd buffer);
buffer := tl buffer;
mpb()

else
stop

end
end

2

The imperative version differs from the applicative one in the following ways

• It defines the variable buffer with the initial contents being the empty buffer.

• The buffer process, mpb, has write access to the buffer variable. The parameter type has
consequently become Unit.

• The axiom defining mpb specifies how the buffer variable is modified in terms of assign-
ments.

21.2 Introducing a Local Variable

Another alternative is to keep the current buffer contents in a local variable:
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value
mpb : Unit → in empty,add out get Unit

axiom
mpb() ≡

local
type

Buffer = Elem∗

variable
buffer : Buffer

in
...

end

In this way the process remains applicative by not accessing global variables.

The modified specification is as follows.

Example 21.2

MANY PLACE BUFFER =
class

type
Elem

channel
empty : Unit,
add : Elem,
get : Elem

value
mpb : Unit → in empty,add out get Unit

axiom
mpb() ≡

local
type

Buffer = Elem∗

variable
buffer : Buffer := 〈〉

in
while true do

empty? ; buffer := 〈〉
debc
let v = add? in

buffer := buffer ̂ 〈v〉
end
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debc
if buffer 6= 〈〉 then

get!(hd buffer);
buffer := tl buffer;

else
stop

end
end

end
end

2

Beyound making the variable local, the iterative evaluation of mpb has now been modelled by
means of a while expression of the form

while true do
...

end

This formulation of infinite iteration is the most natural in connection with local variables, since
the alternative of recursive process calls leads to re-initialisation of local variables for each call.

RAISE/CRI/DOC/1/V1



Algebraic Definition of Processes 215

22 Algebraic Definition of Processes

Processes can be defined abstractly in terms of algebraic equivalences. We have already seen
how this can be done for applicative functions (section 5) and for operations (section 17).

For the purpose of being able to compare with the applicative and imperative case, we shall ab-
stractly specify a concurrent list module. Recall the algebraic specification of the LIST -module
from example 5.3, which is repeated below. Constants and functions have been subscripted
with an a to indicate that they are applicative.

LIST =
class

type
List

value
emptya : List,
adda : Int × List → List,
heada : List ∼→ Int,
taila : List ∼→ List

axiom
forall i : Int, l : List •

[head add]
heada(adda(i,l)) ≡ i,

[tail add]
taila(adda(i,l)) ≡ l

end

There are at least three ways of abstractly specifying a concurrent list module and we shall
treat each of them below. The three ways correspond closely to the three ways outlined for the
state-based case in section 17.

22.1 Extending an Applicative Module

The first approach is to use the entities from the applicative LIST -module in defining the
concurrent module. The concurrent module thus becomes an extension of the LIST -module.

Example 22.1

CONCURRENT LIST =
extend LIST with
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channel
empty : Unit,
is empty : Bool,
add : Int,
head : Int,
tail : Unit

value
list : List → in empty,add,tail out is empty,head Unit

axiom forall l : List •

list(l) ≡
empty? ; list(emptya)
debc
is empty!(l = emptya) ; list(l)
debc
let i = add? in

list(adda(i,l))
end
debc
if ∼(l = emptya) then

head!(heada(l)) ; list(l)
else

stop
end
debc
if ∼(l = emptya) then

tail? ; list(taila(l))
else

stop
end

end

2

A list process, list , is defined which communicates with its surroundings via the channels empty ,
is empty , add , head and tail .

The process is parameterised with its “state” of the type List . This type comes from the
LIST -module and is a sort. Nothing has thus been said about representation of its values.

The process behaviour following communication on the channels is defined by simple calls of the
corresponding applicative functions. Since these are defined without assuming any particular
representation, the process share that property.

The approach of using an applicative specification in defining a concurrent one may seem tedious,
especially if the applicative one does not exist already.
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22.2 Algebraic Equivalences

The second approach to abstractly specifying the concurrent list module is to give algebraic
equivalences between process communications in a way very similar to the equivalences in the
applicative LIST -module.

As an example, consider the applicative axiom head add from LIST

axiom
forall i : Int, l : List •

[head add]
heada(adda(i,l)) ≡ i

The axiom says that adding an element i to a list and then taking the head yields the element
just added.

In the concurrent case, we have to write a bit more. First of all, we shall need a variable to
hold the value returned from the head channel

variable
head res : Int

The axiom could then be stated as follows

axiom
forall i : Int, l : List •

[head add]
list(l) ‖ (add!i ; head res := head?) ≡

list(l) ‖ (add!i ; head res := i)

The axiom is supposed to make the following two interactions equivalent:

• Left-hand side: send a value i to the process on the add channel and then store in head res
the value received from the head channel.

• Right-hand side: send the value i to the process on the add channel and then store i in
head res.

In other words: one will from the head channel always get the element last added on the add
channel. In adition, a communication on the head channel does not effect the state of the
process.
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The variable head res has been necessary to introduce since the parallel operator needs both
ingoing sub-expressions to have the type Unit.

The axiom is, however, not sufficient. The reason is that the parallel operator does not force
communication to happen and thus allows other parallel evaluating expressions to interfeer.
Such an interfeering expression could thus perform an add !i1 in between add !i and head res :=
head?.

In other words, if the above axiom is to hold, then the following property must also hold
(equivalence implies substitutability)

∀ i,i1 : Int, l : List •

add!i1 ‖ (list(l) ‖ (add!i ; head res := head?)) ≡
add!i1 ‖ (list(l) ‖ (add!i ; head res := i))

Let us first observe the left-hand side of this derived property. A possible evaluation will be the
following

1. list(l) accepts the communication add !i , thus resulting in

add!i1 ‖ list(adda(i,l)) ‖ head res := head?

2. list(adda(i , l)) accepts the communication add !i1, thus resulting in

list(adda(i1,adda(i,l))) ‖ head res := head?

3. list(adda(i1, adda(i , l))) accepts the communication head?, thus resulting in

head res := i1 ; list(adda(i,l))

This final expression is obviously not equivalent to the right-hand side of the derived property.
The conclusion must thus be that the original axiom does not hold.

The solution is to introduce a new parallel combinator that is more “aggressive” in forcing
communication between the two expressions to happen. The interlocking combinator does
exactly that. An expression of the form

expr1 –‖ expr2

is evaluated by evaluating the two sub-expressions (both having type Unit) in interlocked
parallel: the two expressions are evaluated in parallel until one of them comes to an end,
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whereupon evaluation continues with the other. During the parallel evaluation, any external
communication is disregarded. In our example above, add !i1 was the external communication
that should have been disregarded.

The interlocking combinator can maybe best be explained by stating some equivalences between
expressions using it.

Assume the following channel definitions and variable definition

channel
c,c1,c2 : T

variable
x : T

Then the following equivalence holds

x := c? –‖ c!e ≡
x := e

That is: since the two expressions x := c? and c!e can communicate, they will communicate.

The corresponding equivalence for the normal parallel combinator is somewhat more compli-
cated

x := c? ‖ c!e ≡
(x := e) de ((x := c? ; c!e) debc (c!e ; x := c?) debc (x := e))

That is: the two expressions may communicate, leading to

x := e

Whether they do depends on an internal choice. Alternatively, it will be up the surroundings
to make an external choice between communications. Note that in this case, the surroundings
can choose to let the two expressions communicate.

Another example involving the external choice combinator is the following

(x := c1 debc c2!e2) –‖ c1!e1 ≡
x := e1
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That is: the interlocking combinator forces through the external choice of the expression x := c1.

These equivalences show how the interlocking combinator leaves no possible communications
outstanding. In the reverse case, where both of the interlocked expressions want to communi-
cate, but not with each other, the result will be a deadlock. This is illustrated by the following
equivalence

x := c1? –‖ c2!e ≡
stop

The corresponding equivalence for the normal parallel combinator is as follows

x := c1? ‖ c2!e ≡
(x := c1? ; c2!e) debc (c2!e ; x := c1?)

That is: since the two expressions cannot communicate with each other, they can only commu-
nicate with the surroundings.

The interlocking combinator is well suited for illustrating the difference between external choice
and internal choice. Recall the equivalence given above for external choice and then compare
with the following one for internal choice

(x := c1 de c2!e2) –‖ c1!e1 ≡
x := e1 de stop

That is: if the internal choice falls on the expression x := c1, then a communication takes
place (resulting in x := e1). If on the other hand, the internal choice falls on c2!e2, then both
interlocked expressions want to communicate, but not with each other, and the result will be a
deadlock.

The interlocking combinator is commutative but it is not associative like the normal parallel
combinator.

The interlocking combinator can now be used to correctly write the head add axiom

axiom
forall i : Int, l : List •

[head add]
list(l) –‖ (add!i ; head res := head?) ≡

list(l) –‖ (add!i ; head res := i)
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We shall, however, prefer to write this axiom in a slightly different way. Note first that the
interlocking combinator satisfies the following property

expr1 –‖ (expr2 ; id1 := id2) ≡
(expr1 –‖ expr2) ; id1 := id2

That is: since the assignment does not communicate with expr1 it can be “sequentialised”. We
shall thus write our axiom instead as follows

axiom
forall i : Int, l : List •

[head add]
list(l) –‖ (add!i ; head res := head?) ≡

(list(l) –‖ add!i) ; head res := i

This presentation has the advantage of separating what the effect on the process is, namely
list(l) –‖ add !i , from what the returned value is, namely head res := i .

The complete concurrency-based specification of lists is as follows.

Example 22.2

LIST =
class

type
List

channel
empty : Unit,
is empty : Bool,
add : Int,
head : Int,
tail : Unit

variable
is empty res : Bool,
head res : Int

value
list : List → in empty,add,tail out is empty,head Unit

axiom
forall i : Int, l : List •

[is empty empty]
list(l) –‖ (empty!() ; is empty res := is empty?) ≡
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(list(l) –‖ empty!()) ; is empty res := true,
[is empty add]

list(l) –‖ (add!i ; is empty res := is empty?) ≡
(list(l) –‖ add!i) ; is empty res := false,

[head add]
list(l) –‖ (add!i ; head res := head?) ≡

(list(l) –‖ add!i) ; head res := i,
[tail add]

list(l) –‖ (add!i ; tail!()) ≡
list(l)

end

2

The parameter type of the list process is List which is a sort. Nothing has thus been said about
representation. The axioms likewise assume no particular representation of lists.

22.3 Being Implicit about Channels

Until now we have been abstract only about data representation. There is, however, a possibility
of being even more abstract than that. In the third approach we shall additionally be implicit
about what the channels are, by simply not defining any. The technique is to instead define
the interface to the list process as a set of interaction processes (see example 19.7) and then to
state their properties in terms of the interlocking combinator.

We can thus modify example 22.2 by removing the following definitions

channel
empty : Unit,
is empty : Bool,
add : Int,
head : Int,
tail : Unit

The list process type must now be modified such that it does not mention the channels. Recall
that it had the following definition

list : List → in empty,add,tail out is empty,head Unit

Instead of channel names one can write any in the access description to indicate that “any”
channel defined my be communicated on. An access description can thus have one of the forms
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in any

out any

The definition of the type of list becomes

list : List → in any out any Unit

The interaction processes must also have any accesses. As an example let us consider the add
and head interaction processes which could be given the types

add : Int → in any out any Unit
head : Unit → in any out any Int

Since the interlocking combinator requires its argument expressions to have the type Unit we
shall need a variable to hold the value returned from the head process

variable
head res : Int

The axiom head add can now be written as follows

axiom
forall i : Int, l : List •

[head add]
list(l) –‖ (add(i) ; head res := head()) ≡

(list(i) –‖ add(i)) ; head res := i

An alternative style is to let the interaction process head itself write to the result variable, thus
giving head the type

head : Unit → in any out any write head res Unit

The axiom will in this case become a bit more elegant

axiom
forall i : Int, l : List •

[head add]
list(l) –‖ (add(i) ; head()) ≡

(list(i) –‖ add(i)) ; head res := i
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Using this style also makes calls of head simpler since one does not have to consider the storing
of the result: head does it for you. The complete specification of the list module can be written
as follows.

Example 22.3

LIST =
class

type
List

value
empty : Unit → in any out any Unit,
is empty : Unit → in any out any write is empty res Unit,
add : Int → in any out any Unit,
head : Unit → in any out any write head res Unit,
tail : Unit → in any out any Unit

variable
is empty res : Bool,
head res : Int

value
list : List → in any out any Unit

axiom
forall i : Int, l : List •

[is empty empty]
list(l) –‖ (empty() ; is empty()) ≡

(list(l) –‖ empty()) ; is empty res := true,
[is empty add]

list(l) –‖ (add(i) ; is empty()) ≡
(list(l) –‖ add(i)) ; is empty res := false,

[head add]
list(l) –‖ (add(i) ; head()) ≡

(list(l) –‖ add(i)) ; head res := i,
[tail add]

list(l) –‖ (add(i) ; tail()) ≡
list(l)

end

2

The following has been gained by being implicit about channels and using interaction processes

• We have avoided deciding what the channels shall be and what their types shall be.
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• Suppose we later develop an implementation of the LIST -module from example 22.3. Our
specification then places no restriction on what the channels of an implementation shall
be.

• The specification places no restrictions on what channels the processes are allowed to
access. The implementation of abstract interaction processes in terms of concrete interac-
tion processes that do explicit channel communication is sometimes referred to as event
refinement.

Note that any-accesses can also be used in process types even if channels have been defined in
the context. It then allows the processes to access any of the defined channels. Again, one can
see this as giving freedom to an implementation.

A natural question is when to be implicit about channels and when to be explicit. It is difficult
to give exact rules. Very roughly, one may be implicit in the following situations.

• One will not be bothered with what the channels are.

• One wants to leave freedom to a later development that is expected to be an implemen-
tation in the formal sense.

Being explicit, however, has its benefits.

• One can from the type of a process see exactly what channels may be accessed and how
they may be accessed. This makes concurrency-based specifications a lot easier to read
and prove properties about.

• One may simply prefer the explicit style since it perhaps more clearly expresses “what
goes on”.

A more detailed description of any-accesses will be given in part four on modules.

22.4 Example

Example 22.4

Consider an algebraic specification of a concurrency-based database. We will be implicit about
channels by not defining any. Consequently, we must define a set of interaction processes.

DATABASE =
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class
type

Key, Data,
Database

value
empty : Unit → in any out any Unit,
insert : Key × Data → in any out any Unit,
remove : Key → in any out any Unit,
defined : Key → in any out any write defined res Unit,
lookup : Key → in any out any write lookup res Unit

variable
defined res : Bool,
lookup res : Data

value
database : Database → in any out any Unit

axiom
forall k,k1 : Key, d : Data, db : Database •

[remove empty]
database(db) –‖ (empty() ; remove(k)) ≡

database(db) –‖ empty(),
[remove insert]

database(db) –‖ (insert(k1,d) ; remove(k)) ≡
if k = k1 then

database(db) –‖ remove(k)
else

database(db) –‖ (remove(k) ; insert(k1,d))
end,

[defined empty]
database(db) –‖ (empty() ; defined(k)) ≡

(database(db) –‖ empty()) ; defined res := false,
[defined insert]

database(db) –‖ (insert(k1,d) ; defined(k)) ≡
if k = k1 then

(database(db) –‖ insert(k1,d)) ; defined res := true
else

database(db) –‖ (defined(k) ; insert(k1,d))
end,

[lookup insert]
database(db) –‖ (insert(k1,d) ; lookup(k)) ≡

if k = k1 then
(database(db) –‖ insert(k1,d)) ; lookup res := d

else
database(db) –‖ (lookup(k) ; insert(k1,d))

end
end
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The concurrency-based database example illustrates the “constructor” technique for inventing
axioms, which we until now have seen applied in the state-based case as well as in the applicative
case. The technique used in the concurrency-based case with interaction processes can be
characterised as follows

1. Identify the “constructor interaction processes” by which any database can be constructed.
These are the processes empty and insert . Any database can thus be generated by an
expression of the form

database(db) –‖ (empty() ; insert(k1,d1) ; ... ; insert(kn ,dn))

2. Define the remaining processes “by case” over the constructor processes called with iden-
tifiers as parameters. In the above axioms, remove, defined and lookup are thus defined
over the two constructor-expressions

empty()

insert(k1,d)

We thus get “for free” all the left-hand sides of the axioms we must write. That is

database(db) –‖ (empty() ; remove(k))
database(db) –‖ (insert(k1,d) ; remove(k))

database(db) –‖ (empty() ; defined(k))
database(db) –‖ (insert(k1,d) ; defined(k))

database(db) –‖ (empty() ; lookup(k))
database(db) –‖ (insert(k1,d) ; lookup(k))

Note, however, that due to the partiality of a lookup communication we don’t bother with
giving the right-hand side corresponding to database(db) –‖ (empty() ; lookup(k)).

The list-axioms in example 22.3 actually have the same form. The list-axioms in example 22.2
illustrate a similar technique applied in the case where the process interface is a set of channels
and not a set of interaction processes.

The technique is useful in many applications, but there are of course applications where one
must be more imaginative when writing axioms.

2
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Part IV

Composing Systems from Modules

To be written.
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A Syntax Summary

The syntax defines the syntactically correct strings of the language. The strings are divided
into syntax categories with the top syntax category containing all syntactically correct RSL
specifications. Each syntax category is defined by a rule.

Each rule is of the form

category name ::=
alternative1|
...
alternativen

where n ≥ 1. This rule introduces the syntax category named category name and defines that
category as the union of the strings generated by the alternatives. As an example consider

set type expr ::=
finite set type expr|
infinite set type expr

Each alternative consists of a sequence of tokens where a token is of one of three kinds

• A keyword in bolded font such as ‘Bool’

• A symbol such as ‘(’.

• A sub-category name such as ‘expr’, possibly prefixed with a text such as ‘logical-’ in
italics. Text in italics states a context condition that syntactically correct strings must
satisfy in order to be statically correct.

The strings generated by an alternative are those obtained by concatenating keywords, symbols
and strings from sub-categories – in the order of appearance. As examples consider

finite set type expr ::=
type expr-set

map type expr ::=
type expr →m type expr

The below convention is used for defining optional presence (ε represents absence): For any
syntax category name ‘x’ the following rule is assumed.
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opt x ::=
ε|
x

The below conventions are used for defining repetition: For any syntax category name ‘x’ the
following rules are assumed.

x−string ::=
x|
x x−string

x-list ::=
x|
x , x-list

x-list2 ::=
x , x-list

x−choice ::=
x|
x | x−choice

x−choice2 ::=
x | x−choice

x−product2 ::=
x × x−product

x−product ::=
x|
x × x−product
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Specifications

specification ::=
module decl-string

module decl ::=
object decl |
scheme decl

Object declarations

object decl ::=
object object def-list

object def ::=
opt-comment-string id opt-formal array parameter : class expr

formal array parameter ::=
[ typing-list ]

Scheme declarations

scheme decl ::=
scheme scheme def-list

scheme def ::=
opt-comment-string id opt-formal scheme parameter = class expr

formal scheme parameter ::=
( formal scheme argument-list )

formal scheme argument ::=
object def

Class expressions

class expr ::=
basic class expr |
importing class expr |
extending class expr |
hiding class expr |
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renaming class expr |
scheme instantiation

Basic class expressions

basic class expr ::=
class opt-decl-string end

Importing class expressions

importing class expr ::=
import object expr-list in class expr

Extending class expressions

extending class expr ::=
extend class expr-list with opt-decl-string end

Hiding class expressions

hiding class expr ::=
hide defined item-list in class expr

Renaming class expressions

renaming class expr ::=
use rename pair-list in class expr

Scheme instantiations

scheme instantiation ::=
scheme-name opt-actual scheme parameter

actual scheme parameter ::=
( object expr-list )
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Object expressions

object expr ::=
object-name |
element object expr |
array object expr |
fitting object expr

Element object expressions

element object expr ::=
array-object expr actual array parameter

actual array parameter ::=
[ pure-expr-list ]

Array object expressions

array object expr ::=
[| typing-list • element-object expr |]

Fitting object expressions

fitting object expr ::=
object expr renaming

Renamings

renaming ::=
{ rename pair-list }

rename pair ::=
defined item for defined item

defined item ::=
id or op |
disambiguated item

disambiguated item ::=
id or op : type expr
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Declarations

decl ::=
object decl |
scheme decl |
type decl |
value decl |
variable decl |
channel decl |
axiom decl

Type declarations

type decl ::=
type commented type def-list

commented type def ::=
opt-comment-string type def

type def ::=
sort def |
variant def |
union def |
short record def |
abbreviation def

Sort definitions

sort def ::=
id

Variant definitions

variant def ::=
id == variant-choice

variant ::=
constant variant |
record variant

constant variant ::=
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constructor opt-subtype naming

record variant ::=
constructor component kinds opt-subtype naming

constructor ::=
id or op |

component kinds ::=
( component kind-list )

component kind ::=
opt-destructor type expr opt-reconstructor

destructor ::=
id or op :

reconstructor ::=
↔ id or op

subtype naming ::=
@ id

Union definitions

union def ::=
id = type-name-choice2

Short record definitions

short record def ::=
id :: component kind-string

Abbreviation definitions

abbreviation def ::=
id = type expr
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Value declarations

value decl ::=
value commented value def-list

commented value def ::=
opt-comment-string value def

value def ::=
typing |
explicit value def |
implicit value def |
explicit function def |
implicit function def

Explicit value definitions

explicit value def ::=
single typing = pure-expr

Implicit value definitions

implicit value def ::=
single typing pure-restriction

Explicit function definitions

explicit function def ::=
single typing formal function application ≡ expr opt-pre condition

formal function application ::=
id application |
prefix application |
infix application

id application ::=
value-id formal function parameter-string

formal function parameter ::=
( opt-binding-list )
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prefix application ::=
prefix op id

infix application ::=
id infix op id

pre condition ::=
pre readonly logical-expr

Implicit function definitions

implicit function def ::=
single typing formal function application post condition opt-pre condition

post condition ::=
opt-result naming post readonly logical-expr

result naming ::=
as binding

Variable declarations

variable decl ::=
variable commented variable def-list

commented variable def ::=
opt-comment-string variable def

variable def ::=
single variable def |
multiple variable def

single variable def ::=
id : type expr opt-initialisation

initialisation ::=
:= pure-expr

multiple variable def ::=
id-list2 : type expr
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Channel declarations

channel decl ::=
channel commented channel def-list

commented channel def ::=
opt-comment-string channel def

channel def ::=
single channel def |
multiple channel def

single channel def ::=
id : type expr

multiple channel def ::=
id-list2 : type expr

Axiom declarations

axiom decl ::=
axiom opt-axiom quantification axiom def-list

axiom quantification ::=
forall typing-list •

axiom def ::=
opt-comment-string opt-axiom naming pure logical-expr

axiom naming ::=
[ id ]
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Type expressions

type expr ::=
type literal |
type-name |
product type expr |
set type expr |
list type expr |
map type expr |
function type expr |
subtype expr |
bracketted type expr

Type literals

type literal ::=
Unit |
Bool |
Int |
Nat |
Real |
Text |
Char

Product type expressions

product type expr ::=
type expr-product2

Set type expressions

set type expr ::=
finite set type expr |
infinite set type expr

finite set type expr ::=
type expr-set

infinite set type expr ::=
type expr-infset
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List type expressions

list type expr ::=
finite list type expr |
infinite list type expr

finite list type expr ::=
type expr∗

infinite list type expr ::=
type exprω

Map type expressions

map type expr ::=
type expr →m type expr

Function type expressions

function type expr ::=
type expr function arrow result desc

function arrow ::=
∼→ |
→

result desc ::=
opt-access desc-string type expr

Access descriptions

access desc ::=
access mode access-list

access mode ::=
read |
write |
in |
out

access ::=

RAISE/CRI/DOC/1/V1



Syntax Summary 245

variable or channel-name |
completed access |
comprehended access

completed access ::=
opt-qualification any

comprehended access ::=
{ access-list | pure-set limitation }

Subtype expressions

subtype expr ::=
{| single typing pure-restriction |}

Bracketted type expressions

bracketted type expr ::=
( type expr )
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Expressions

expr ::=
value literal |
value or variable-name |
pre name |
basic expr |
product expr |
set expr |
list expr |
map expr |
function expr |
application expr |
quantified expr |
equivalence expr |
post expr |
disambiguation expr |
bracketted expr |
infix expr |
prefix expr |
comprehended expr |
initialise expr |
assignment expr |
input expr |
output expr |
structured expr

Value literals

value literal ::=
unit literal |
bool literal |
int literal |
real literal |
text literal |
char literal

unit literal ::=
( )

bool literal ::=
true |
false
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Pre names

pre name ::=
variable-name `

Basic expressions

basic expr ::=
chaos |
skip |
stop |
swap

Product expressions

product expr ::=
( expr-list2 )

Set expressions

set expr ::=
ranged set expr |
enumerated set expr |
comprehended set expr

Ranged set expressions

ranged set expr ::=
{ readonly integer-expr .. readonly integer-expr }

Enumerated set expressions

enumerated set expr ::=
{ readonly-opt-expr-list }
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Comprehended set expressions

comprehended set expr ::=
{ readonly-expr | set limitation }

set limitation ::=
typing-list opt-restriction

restriction ::=
• readonly logical-expr

List expressions

list expr ::=
ranged list expr |
enumerated list expr |
comprehended list expr

Ranged list expressions

ranged list expr ::=
〈 readonly integer-expr .. readonly integer-expr 〉

Enumerated list expressions

enumerated list expr ::=
〈 readonly-opt-expr-list 〉

Comprehended list expressions

comprehended list expr ::=
〈 readonly-expr | list limitation 〉

list limitation ::=
binding in readonly list-expr opt-restriction
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Map expressions

map expr ::=
enumerated map expr |
comprehended map expr

Enumerated map expressions

enumerated map expr ::=
[ opt-expr pair-list ]

expr pair ::=
readonly-expr 7→ readonly-expr

Comprehended map expressions

comprehended map expr ::=
[ expr pair | set limitation ]

Function expressions

function expr ::=
λ lambda parameter • expr

lambda parameter ::=
lambda typing |
single typing

lambda typing ::=
( opt-typing-list )

Application expressions

application expr ::=
list or map or function-expr actual function parameter-string

actual function parameter ::=
( opt-expr-list )
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Quantified expressions

quantified expr ::=
quantifier typing-list restriction

quantifier ::=
∀ |
∃ |
∃!

Equivalence expressions

equivalence expr ::=
expr ≡ expr opt-pre condition

Post expressions

post expr ::=
expr post condition opt-pre condition

Disambiguation expressions

disambiguation expr ::=
expr : type expr

Bracketted expressions

bracketted expr ::=
( expr )

Infix expressions

infix expr ::=
stmt infix expr |
axiom infix expr |
value infix expr
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Stmt infix expressions

stmt infix expr ::=
expr infix combinator expr

Axiom infix expressions

axiom infix expr ::=
logical-expr infix connective logical-expr

Value infix expressions

value infix expr ::=
expr infix op expr

Prefix expressions

prefix expr ::=
axiom prefix expr |
value prefix expr

Axiom prefix expressions

axiom prefix expr ::=
prefix connective logical-expr

Value prefix expressions

value prefix expr ::=
prefix op expr

Comprehended expressions

comprehended expr ::=
associative commutative-infix combinator { expr | set limitation }
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Initialise expressions

initialise expr ::=
opt-qualification initialise

Assignment expressions

assignment expr ::=
variable-name := expr

Input expressions

input expr ::=
channel-name ?

Output expressions

output expr ::=
channel-name ! expr

Structured expressions

structured expr ::=
local expr |
let expr |
if expr |
case expr |
for expr |
while expr |
until expr

Local expressions

local expr ::=
local opt-decl-string in expr end
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Let expressions

let expr ::=
let let def-list in expr end

let def ::=
typing |
explicit let |
implicit let

explicit let ::=
let binding = expr

implicit let ::=
single typing restriction

let binding ::=
binding |
record pattern |
list pattern

If expressions

if expr ::=
if logical-expr then

expr
opt-elsif branch-string
opt-else branch
end

elsif branch ::=
elsif logical-expr then expr

else branch ::=
else expr

Case expressions

case expr ::=
case expr of case branch-list end

case branch ::=
pattern → expr
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For expressions

for expr ::=
for list limitation do unit-expr end

While expressions

while expr ::=
while logical-expr do unit-expr end

Until expressions

until expr ::=
do unit-expr until logical-expr end
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Bindings

binding ::=
id or op |
product binding

product binding ::=
( binding-list2 )
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Typings

typing ::=
single typing |
multiple typing

single typing ::=
binding : type expr

multiple typing ::=
binding-list2 : type expr
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Patterns

pattern ::=
value literal |
pure value-name |
wildcard pattern |
product pattern |
record pattern |
list pattern

Wildcard patterns

wildcard pattern ::=

Product patterns

product pattern ::=
( pattern-list2 )

Record patterns

record pattern ::=
pure value-name component patterns

component patterns ::=
( inner pattern-list )

inner pattern ::=
binding |
wildcard pattern

List patterns

list pattern ::=
constructed list pattern |
left list pattern |
right list pattern |
left right list pattern
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Constructed list patterns

constructed list pattern ::=
〈 opt-inner pattern-list 〉

Left list patterns

left list pattern ::=
constructed list pattern ̂ id or wildcard

id or wildcard ::=
id |
wildcard pattern

Right list patterns

right list pattern ::=
id or wildcard ̂ constructed list pattern

Left right list patterns

left right list pattern ::=
constructed list pattern ̂ id or wildcard ̂ constructed list pattern
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Names

name ::=
qualified id |
qualified op

Qualified ids

qualified id ::=
opt-qualification id

qualification ::=
element-object expr .

Qualified ops

qualified op ::=
opt-qualification ( op )

Identifiers and operators

id or op ::=
id |
op

op ::=
infix op |
prefix op

Infix ops

infix op ::=
= |
6= |
> |
< |
≥ |
≤ |
⊃ |
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⊂ |
⊇ |
⊆ |
∈ |
6∈ |
+ |
− |
\ |
̂ |
∪ |
† |
∗ |
/ |
◦ |
∩ |
↑ |
$

Prefix ops

prefix op ::=
abs |
it |
rl |
card |
len |
inds |
elems |
hd |
tl |
front |
last |
dom |
rng
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Connectives

connective ::=
infix connective |
prefix connective

Infix connectives

infix connective ::=
⇒ |
∨ |
∧

Prefix connectives

prefix connective ::=
∼ |
2
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Infix combinators

infix combinator ::=
debc |
de |
‖ |
–‖ |
;
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