Combining Modeling and Programming - Towards
Advanced Languages for Software Development

Manfred Broy, Technical University of Munich, Munich, Germany
Klaus Havelund, NASA Jet Propulsion Laboratory, Pasadena, USA

1 Introduction

Over the last several decades we have observed the development of a large
collection of specification and modeling languages and associated method
methodologies, and tools. Their purpose is to support modeling of requirements and
high-level designs before programming is initiated. Agile approaches advocate to
avoid explicit modeling entirely and suggest to go directly to coding. Other
approaches advocate avoiding manual “coding” in a programming language entirely
and suggest instead the generation of code directly from the models. This way
modeling languages replace programming languages. We can divide these modeling
languages into formal specification languages (formal methods), usually focusing on
textual languages based on mathematical logic and set theory, and associated proof
tools (theorem provers, model checkers, etc.), and on the other hand model-based
engineering languages (UML, SysML, Modelica, Mathematica, ...), focusing more on
design, code generation and simulation. Many of these modeling languages have
similarities with programming languages.

In parallel, and frankly seemingly independent, we have seen the development of
numerous new programming languages. Few languages have had the success of C,
which still today is the main programming language for embedded systems. The
success is so outstanding that nearly no progress wrt. praxis has been made in this
domain (embedded programming) since the 1970ties. In application programming
a collection of new languages came ago such as Ada, C++, Eiffel etc. At the same time
we have seen several high-level languages appear targeting the softer side of
software engineering (such as web-programming, user interfaces, scripting),
including languages such as Java, JavaScript, Ruby, Python and Scala. More
academic languages include Haskell and the ML family, including OCaml.

In this white paper we will give a brief overview of some of the, in our view,
important developments in modeling and programming languages. Subsequently we
will propose en effort to develop a specification, design and implementation
language that combines modeling and programming.



2 Observed concepts in modeling

2.1 Formal methods

Early work on formal methods include the work of John Mclarthy, Robert Floyd
(Assigning Meanings to Programs), Edsger Dijkstra (A Discipline of Programming),
Tony Hoare (An Axiomatic Basis for Computer Programming), and Dana Scott and
Christopher Strachey (Towards a Mathematical Semantics for Computer
Languages), to mention a few. These ideas were theoretic in nature and deeply
influential. They brought us the ideas of annotating programs with assertions, such
as pre- and post-conditions, and invariants, correct by construction development
(refinement), and giving semantics to programming languages (denotational
semantics).

These ideas were subsequently the basis for several, what we could call second
generation, formal specification languages such as VDM, RAISE, Z, TLA, and CIP.
Each of these languages were full specification languages, with rich type systems
and detailed rules (grammars) for what constituted a valid specification. These
languages were ahead of their time wrt. language constructs in the sense that many
of the language features found in these languages slowly are finding their way into
modern programming languages of today.

The VDM language for example was a wide-spectrum specification language offering
a combination of high-level specification constructs and low level programming
constructs. The methodology consists in part, as in CIP, of refining a high-level
specification into a program in a stepwise manner. The language offered concepts
such as the combination of imperative (procedural and later object oriented in
VDM++) and functional programming; exceptions; algebraic data types and pattern
matching; functions as values and lambda abstractions; built-in collection types
such as sets, lists and maps, with mathematical notation for creating values of these
types, such as for example set comprehension; design-by-contract through pre- and
post conditions and invariants; predicate subtypes (so one for example can define
natural numbers as a subset of the integers); and predicate logic including universal
and existential quantification over any type as Boolean expressions. VDM and Z are
so-called model-oriented specification languages, meaning that a specification is an
example model of the desired system. This means that such specifications are
somewhat close to high-level programs. This is in contrast to so-called property
oriented specification languages, such as OB]J.

A different branch of formal methods include theorem proving and model checking.
In theorem proving we have seen specification languages, which resemble



functional programming languages, including for example ACL, PVS and Cog. In
model checking early work focused on modeling notations somewhat removed from
programming languages. However, recent research has focused on software model
checking, where the target of model checking is code, as for example seen in the Java
PathFinder model checker, JPF. JPF was created due to the observation that a
powerful programming language might be a better modeling language than the, at
the time existing, model checker input languages. Today’s efforts in model checking
furthermore include numerous efforts in model checking of C programs.

As can be seen from the above discussion, formal specification languages have for a
long time been flirting with programming language like notations, and vice versa.
However, the two classes of languages have by tradition been considered as
belonging to strictly separate categories. VDM for example was always, and still is,
considered a specification language, albeit with code generation capabilities. It has
never, in spite of the possibility, been considered (named) a programming language,
which one may consider being as one of the reasons it is not more wide spread.
Writing specifications in VDM and generating code in Java, for example, has not
become popular. Programmers feel uncomfortable working with two languages (a
specification language and a programming language) when the two languages are
too similar. This is an argument for merging the concepts into a specification,
design and implementation language.

2.2 Model-based engineering

Model-based engineering includes modeling frameworks that are usually
visual/graphical of nature. One of the main contributions in this field is UML for
software development, and its derivatives, such as SysML for systems development.
The graphical nature of the UML family of languages has caused it to become rather
popular and wide-spread in engineering communities. Engineers are at first
encounter more willing to work with graphical notations, such as class diagrams
and state machines, than they are working with sets, lists and maps and function
definitions. It seems clearly more accepted than formal methods as described in the
previous section. At JPL for example, there are three people working with formal
methods and over hundred working with UML/SysML technology.

One of the important notations in UML/SysML is class diagrams. Class diagrams are
- just like E/R-diagrams - really a simple way of defining data, an alternative to
working with sets, lists and maps as found in VDM and modern programming
languages. For example, to state that a person can own zero or more cars one draws
a box for Person and a box for Car and draws a line between them. It is an idea that
quickly be picked up by a systems engineer, quicker than learn to program with sets.
Another notation is that of state machines, a concept that strangely enough has not
found its way into programming languages, in spite of its usefulness in especially
embedded programming. UML/SysML also focuses to some extent on requirements,



a concept that usually is not embedded as a first class object in programming. It
would be interesting to see requirements as part of programming.

The above observations are rather positive. However, UML/SysML are very complex
and weakly defined formalisms. The combined syntax for all UML for example
corresponds to the sum of approximately 20 programming languages
(approximately 17,000 lines of abstract syntax, a programming language can
normally be defined in between 500 and 2500 lines of grammar rules). The
UML/SysML standards are long and complex documents. The connection between
models and code is fragile, relying on the correctness of translators from for
example UML state machines to code.

3 Observed concepts in programming

Several new programming languages have emerged over the last decade, which
include abstraction mechanisms known from the formal specification languages
mentioned above. Such languages include Eiffel, Java, Python, Scala, Fortress, C#,
Spec#, F#, Dafny, D, RUST, Swift, Go, Agda, and SPARK. Some languages support
design-by-contract with pre-post conditions, and in some cases with invariants.
These languages include for example Eiffel, Spec#, Dafny, SPARK, and to some
limited extent Scala. Java supports contracts through JML, which, however, is not
integrated with Java, but an add-on comment language (JML specifications are
comments in a Java program). Most of the languages above support abstract
collections such as sets, lists and maps. It is interesting to observe that SUN’s
Fortress language (which unfortunately was not finished by the designers) supports
a mathematical notation for collections very similar to VDM. The Dafny language is
interesting since it is developed specifically with specification and verification in
mind.

A trend on the rise is likely the combination of object oriented and functional
programming, as seen in perhaps most prominently Scala, but also in the earlier
Python, and now in Java which got closures in version 1.8. Ocaml is a similar earlier
attempt to integrate object oriented and functional programming, although in a
layered manner, and not integrated with the standard module system. Some
interesting new directions of research include dependent types as found in Agda (to
some extent related to predicate subtypes in VDM) and session types. Session types
are temporal patterns that can be checked at compile time. They are much related to
temporal logic as used within the formal methods community to express properties
of concurrent programs. At the same time there are also attempts to make more
conservative moves away from C, but without losing too much efficiency. Examples
include the languages D and RUST.



4 Requirements for a programming language

A specification, design and implementation language will have to serve quite
different goals. First of all, it has to represent the concepts of the application domain
at an adequate level of abstraction such that the specialities of the applications
domains are directly represented and not covered by awkward implementation
concepts. This may for example include support for user-defined extensions of the
language with domain-specific languages (DSLs). Second it has to address the
structuring of algorithms and data structures in a way such that programs stay
understandable, modular and support the most important methods of structured
program development. And finally it has to allow addressing specific
implementation properties of execution machines including their operating
systems, such that it can be controlled how the implementation uses resources and
exploits the possibilities of the execution platform and its hardware.

These three different goals are clearly in some contradiction. Nevertheless in a piece
of software all three goals have to be addressed. What we would like to have is a
specification, design, and implementation language, which represents the concepts
of the application domain as adequate as possible, which allows at the same time to
structure the software in a readable and manageable form, and which allows
addressing of particular execution concepts on the execution platform and the
machine to the extent needed.

An obvious problem here of course is to what extent then the particular application
domain influences the programming languages, and to what extent this is true for
the execution platform and also for the different forms of structured design
concepts. In this section we shall try to outline what we see as the desired
requirements of a programming language.

4.1 Target domain

We can observe three major domains of interest, namely modeling; programming of
non-critical systems, such as web applications, including scripting; and finally
programming of embedded/cyber-physical systems. It is clear that these three
domains till date have been addressed by different communities and different
languages, as outlined above. Our goal is to address the three domains in one
language. Such a goal usually provokes a reactions which can be summarized as

“a silver bullet does not exist” and “each problem requires its own solution”.
However, we do question this constraining view based on the observation that all of
the languages above share a big set of language constructs.

4.2 Support for modeling



This item is less well defined, and generally means support for modeling and
understanding a problem in addition to programming the solution. This is about
combining modeling and programming into one language. No separate UML models
etc. Itincludes design-by-contract as we know it, including pre- and post-
conditions, as well as class invariants. Such can for example be found in Eiffel as well
as in SPARK. However, we believe that it can be carried further to for example
include such topics as temporal logic, program monitoring, program visualization,
including diagramming of static structure as well as dynamic behavior, as built in
concepts, and of course verification to the point where it is practical, unit testing
built in as in Fortress, etc.

4.3 Design and architecture: programming in the large

Large programs have to be structured. They have to be structured on one hand in
independent or at least rather independent pieces that can be reused, independently
changed, translated and executed on different hardware, such that a flexible
deployment is achieved. They have to offer appropriate techniques for
encapsulation and parameterisation. This structuring may also address issues of
execution such as deployment and parallel execution.

4.3.1 Components, modularity and encapsulation

What is needed, in particular, is an appropriate notion of component as a unit of
modularity and encapsulation. Such concepts exist in a lot of programming
languages. However since most of the programming languages we are using today
are inherently sequential, an independent deployment and execution model often is
not directly achieved.

4.3.2 Variability

A key to efficient software evolution is the identification of components that can be
used and reused at several places in a program. This requires a sufficient amount of
variability. If such variability cannot be achieved then code cannot be reused at
many places and as a result we have to form clones, meaning similar pieces of code
with just small differences, such that they can be used at the individual places.
Another issue for variability is the usage of different variations of software in the
context of software families. Variability is an important concept, which is not very
much supported explicitly by nowadays programming languages.

4.4 Support for high-level programming

The specification, design, and implementation notation has to be sufficiently
abstract. Many formalisms used and suggested for that including a lot of the



programming languages force the programmers to write too many details enforcing
a particular style, which is related to a way to describe algorithms. Therefore the
resulting programs get very long and more difficult to understand. The key question
is how to provide programming concepts that are expressive, understandable, and
do not enforce the explicit formulation of a lot of details due to a particular
algorithmic style.

4.4.1 Merging object-oriented and functional programming

The elegance and the implicitly of functional programs have been praised many
times. Nevertheless they never had an absolute breakthrough. In contrast, object
oriented programming languages, which in particular address encapsulation and
reuse were very successful. They provide entities of implementation called classes,
which at the same time are able to present concepts in the application domain and
units of execution. However, for all nowadays object oriented programming
languages there are a number of properties, which do not allow using them in the
required universal modelling style. One reason for that is that object oriented
programming languages are inherently sequential due to their remote procedure
call concept. All attempts to provide parallel execution models such as threads make
things ugly and very complex. Therefore a good idea would be to use many of the
good ideas in object oriented and functional programming and bringing them
together in powerful generalizations. A language such as Scala has made this
attempt, and even early versions of LISP had this (CLOS). Functional programming
means for example functions as values (lambda abstractions) and pattern matching,
and of course reliance on recursion. Functional programming is by some considered
the best approach to use multi-core systems due to no shared state updates.

4.4.2 Built-in collections

Perhaps specialized notation for these as in Fortress (very similar to VDM), or as
libraries. Easy ways of iterating through collections - to avoid indexing problems for
example. Support for parallel computation over such.

4.4.3 Domain-specific data modeling

A key to programming is to capture the relevant concept of the application domain
and to present them in the specification design and implementation notation. This is
exactly where UML and also SysML are quite successful. They provide a number of
concepts which originally were created in the area of programming and good
enough to allow presenting quite a number of application domain issues. A typical
examples are class style diagrams, which at a level of programming are describing
more or less architectures in terms of classes and how they are connected, but can



also be used as possibilities to describe data models and finally ontologies as we find
them under the heading of meta models. In any case it is important to support
powerful modelling approaches in the specification, design and implementation
notation.

4.4.4 Typing and physical dimensions

We believe a language should be largely statically typed. It can potentially allow for
going type-less in clearly defined regions, in case such makes modeling and
programming easier. Scripting languages are popular, in part because they are type-
less. It would be interesting to see if one could allow both approaches to be used
within the same language. Otherwise decades of experience in strong type systems
should of course be harvested, including more recent topics such as dependent
types, session types, and units.

4.5 Support for low-level programming

Embedded programing these days often means: no dynamic memory allocation after
initialization, no garbage collection, some knowledge of memory layout, even to the
point where computation with addresses is used to improve speed. This again
means use of low level programming languages such as C. C, however, allows for
memory errors and makes programmers less effective as they would otherwise be
were they allowed to program in higher-level languages. We need to satisfy the
needs encountered by typical C programmers, including offering comparable speed
and memory control. This includes support for hardware control.

4.6 Concurrency

Concurrency is an essential part of modern programming, especially considering the
emergence of multi-core computers. However, concurrency is important at the
modeling level as well, where it can serve as a natural way to describe interacting
agents. Important concepts include agent systems, message passing based
communication, parallel data structures (programming concurrent without
knowing it), and distributed programming.

4.7 Execution model

The programming notation has to allow to control execution aspects. Often in
today’s practice, extensions are introduced that allow controlling execution
platforms. This is important in order to provide programs that are efficient. On the
other hand, it is very dangerous since it mixes up domain specific concepts, data
modelling, and algorithms on one hand, and issues of specific execution concepts of



the execution platform. Such a mix also makes it very difficult to port and migrate
software. A promising approach could be that the specification, design, and
implementation notation provides possibilities to target a specific execution
platform by separate profiles that are in addition to the description of the domain
specific concepts in the algorithms. This idea could be applied for time, concurrency,
deployment and distribution.

4.8 Analysis

A key concept in a combined modeling and programming environment is the
support for advanced analysis of models/programs, including, but also beyond,
what is normally supported in standard programming environments. This ranges
from basic built-in support for unit testing, over advanced testing capabilities,
including test input generation and monitoring, to concepts such as static analysis,
model checking, theorem proving and symbolic execution. A core requirement,
however, must be the practicality of these solutions. The main emphasis should be
put on automation. The average user should be able to benefit from automated
verification, without having to do manual proofs. However, support for manual
theorem proving should also be possible, for example for core critical algorithms.
Integration of static and dynamic analysis will be desirable: verify what is practically
feasible, and test (monitor) the remaining proof obligations.

5 Conclusion

We have in this document outlined some views on the potential in combining
modeling and programming, supported by analysis capabilities such as static
analysis, model checking, theorem proving, monitoring, and testing. We believe that
the time is right for the formal methods/modeling and programming language
communities to join forces. To some extent this is already happening in the small.
However, we believe that we are standing in front of a major wave of research
creating a united foundation for modeling, programming and verification. A cynical
argument is that this is all obvious, which may be true.

6 References

6.1 Modeling

* CIP: http://en.wikipedia.org/wiki/Wide-spectrum_language
* Coq: https://coq.inria.fr
* JML: http://www.eecs.ucf.edu/~leavens/JML//index.shtml



Mathematica: http://www.wolfram.com/mathematica

Modelica: https://www.modelica.org

OB]J: http://c2.com/cgi/wiki?ObjLanguage

PVS: http://pvs.csl.sri.com

RAISE: http://spd-web.terma.com/Projects/RAISE

SysML: http://www.omgsysml.org

TLA: http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html
UML: http://www.uml.org

VDM: http://en.wikipedia.org/wiki/Vienna_Development_Method

Z: http://en.wikipedia.org/wiki/Z_notation

6.2 Programming

Agda: http://wiki.portal.chalmers.se/agda/pmwiki.php

C: http://en.wikipedia.org/wiki/C_(programming_language)
C#: https://msdn.microsoft.com/en-us/library/67ef8sbd.aspx
D: http://dlang.org

Dafny: http://research.microsoft.com/en-us/projects/dafny
Eiffel: https://www.eiffel.com

F#: http://fsharp.org

Fortress: java.net/projects/projectfortress/pages/Home

Go: https://golang.org

Haskell: https://www.haskell.org

Java: https://www.oracle.com/java/index.html

JavaScript: http://www.w3schools.com/js/

LISP (CLOS): http://www.cs.cmu.edu/Groups/Al/html/cltl/cltl2.html
Ocaml: http://caml.inria.fr/ocaml

Python: https://www.python.org

Ruby: https://www.ruby-lang.org/en

RUST: http://www.rust-lang.org

Scala: http://www.scala-lang.org

SPARK: http://libre.adacore.com/tools/spark-gpl-edition
Spec#: http://research.microsoft.com/en-us/projects/specsharp
Swift: https://developer.apple.com/swift




