
Visualization of Concurrent Program Executions

Cyrille Artho
Research Center for Information Security (RCIS), AIST, Tokyo, Japan

Klaus Havelund
NASA Jet Propulsion Laboratory/Columbus Technologies, Pasadena, USA

Shinichi Honiden
National Institute of Informatics, Honiden Laboratory, Tokyo, Japan

Abstract

Various program analysis techniques are efficient at
discovering failures and properties. However, it is of-
ten difficult to evaluate results, such as program traces.
This calls for abstraction and visualization tools. We
propose an approach based on UML sequence dia-
grams, addressing shortcomings of such diagrams for
concurrency. The resulting visualization is expressive
and provides all the necessary information at a glance.

1. Introduction

Certain program analysis techniques work directly
on the executable program. For instance,run-time ver-
ification monitors executions of (possibly concurrent)
programs [6, 8, 19].Software model checkingalso an-
alyzes executions of concurrent systems, producing an
error trace when a failure is found [2, 3, 22]. Tool ca-
pabilities have advanced, but their outputs still consist
of overly concise reports, or very long program traces.
Hence, understanding the nature of failures and prop-
erties remains difficult. Program traces are a widely
used way to show how a program behaves up to a given
point, but may grow very large.Abstractionscan sim-
plify program traces; indeed, a typical trace shown to
the end user contains mostly method calls and thus
constitutes a useful abstraction. For sequential pro-
grams, a program trace or even a stack trace (a subset
of the entire program trace) contains enough informa-
tion for a concise and useful summary.

However, large or concurrent traces are hard to read.
In a concurrent program, context switches interrupt

threads. A program trace shows only a thread ID prior
to each step and thus does not indicate context switches
visually. Furthermore, it is not clear whether a context
switch is necessary to reproduce a failure, or whether it
just happened to be part of the schedule executed that
lead to a failure. In order words, the happens-before
relation between events [13] is not shown, even if it
may be available from data gathered at run-time [6].

Program trace visualization addresses the problem
of understanding dynamic program behavior. Two ap-
proaches exist:still visualization,whereall events are
visualized in one view, andanimations. Still visualiza-
tion includes UML sequence diagrams [18] and plots
of event sequences, such as in [17] or a large number of
similar tools. Animations use either a two-dimensional
view of each state [3, 4], or a three-dimensional ani-
mation [16]. In animations, the order in which events
occur is intuitively visible; however, an animation also
imposes a total order on concurrent events where only
a partial order may exist.

There seems to be a relationship between still visu-
alization and automated gathering of requirements [5,
7, 23], where a requirements specification of a program
is extracted from one or more program runs. As an ex-
ample, a state machine extracted from several runs can
be regarded as a still visualization of the program’s be-
havior as well as a specification of its behavior during
those runs. Extraction of such specifications from runs
can serve as oracles for later runs, for example for use
in regression testing, or simply as a means of program
understanding. Other forms of less visual specifica-
tions can be extracted, such as for example temporal
logic specifications [23]. Such specifications also have
natural visualizations, for example as time lines [20].



This paper is organized as follows: Section 2 de-
scribes our visualization. Design choices are explained
in Section 3, implementation issues in Section 4. Sec-
tion 5 concludes and outlines challenges ahead.

2. Our visualization approach

In still visualization, even complex event chains can
be visualized “at a glance”. We chose an approach
based on UML sequence diagrams [18] because UML
diagrams are fairly widely accepted in industry and
supported by tools. UML sequence diagrams capture
sequences of method calls, but cannot deal with con-
currency. We have therefore extended UML sequence
diagrams in several ways to include the missing fea-
tures required to visualize concurrent events.

2.1. Limitations of UML sequence diagrams

Sequence diagrams are designed to show sequences
of method calls. This task is closely related to display-
ing a program trace. UML sequence diagrams have
been studied extensively and defined precisely [11,
14]. Our work expands on existing sequence diagrams
and gives them a meaning in concurrent scenarios.

Our initial approach is based on previous extensions
of UML sequence diagrams for clarifying the current
execution context [14]. Previous work [14] has not ad-
dressed concurrency. In particular, UML sequence di-
agrams cannot illustrate the following:

• Visualization of a thread as an executable task.

• “Invisible” task switches induced by the thread
scheduler.

• Activations and suspensions of threads. In most
modern programming languages that follow a
POSIX thread model [9, 15, 21], a thread is inac-
tive when created. Once a special method (such
as start) is called, it becomes active, but can
be suspended, through actions that wait on events
(such as termination of another thread, or notifi-
cation of a change of a shared conditional).

• Time-based suspension. A thread can “sleep” for
a certain time, allowing other threads to run. The
same effect can be induced by the thread sched-
uler through a context switch. Its occurrence is
therefore somewhat arbitrary, and cannot be used
for reliable synchronization of events. We have
therefore chosen not to visualize this artifact.

• The happens-before relation[13]. This relation
indicates that certain events must happen strictly
before another event occurs. For instance, any
events leading to the creation and activation of
another thread must happen before actions of
the child thread take place. This is obvious as
the child thread did not exist during such previ-
ous actions. However, when a large number of
such events occurs, understanding of the happens-
before relation is often non-trivial, and should
therefore be included in a visualization.1

• Locking. Many programming languages use
locks for mutual exclusion [9, 15, 21]. The pres-
ence of locking actions may delay a thread until a
certain lock is available. This is partially reflected
by the happens-before relation. For conciseness,
we have not added another mechanism to visual-
ize locking and lock sets.

The happens-before relation states, informally, that
based on observed events, certain reorderings of events
are possible. Given events would still occur with
an equivalent global program state after each event,
and the overall outcome of the program would not be
changed. More formally, if events are reordered within
the happens-before relation, an observer that evaluates
global program states always sees the same sequence
of global program states, even though invisible inter-
nal actions can be ordered in different ways [13]. This
resulting property is calledsequential consistency.

2.2. Our UML extensions

Our visualization addresses the concerns described
above. It is based on the Java programming language,
but readily applicable to other programming languages
using the same thread model [9, 15, 21]. Our visual-
ization distinguishes between the two roles of a Java
thread as an executable task and a data structure [9].
The thread data structure holds information such as
thread name and ID, and can be extended with other
data. A thread as ataskconstitutes a light-weight pro-
cess that shares the global heap with other threads.
This article refers the following methods of the Java
API to denote crucial operations on threads and locks:

• methodstart causes a thread to begin execution;

1Until recently, with common run-time verification algorithms,
the knowledge of this relation was often incomplete. A recent algo-
rithm computes this relation precisely without much overhead [6].



• join suspends the current thread until the target
thread has terminated;

• wait suspends the current thread until another
thread issuesnotify or notifyAll.2

Threads as a data structure are visualized like other ob-
ject instances in UML sequence diagrams. Our first
extension is the visualization of role of a thread as an
executable task by a hexagon. A dashed arrow point-
ing to the left symbolizes the thread scheduler running
a thread (task). As in UML sequence diagrams, solid
arrows depict a method call or return, and solid squares
show a method being executed.

Figure 1 includes these basic elements. It shows the
illustration ofcontext switchesbetween threads. At the
beginning of the scenario, themain thread is sched-
uled. This thread creates a new instance ofPort. Dur-
ing the call to the constructor, the scheduler switches
to another thread,Worker. The interruption of themain
thread is shown by a gap in the time line of the call
from Serverto Port. ThreadWorkerexecutes for a cer-
tain amount of time without making any method call,
after which themainthread is scheduled again, and the
method call toPort completes.

Dotted lines show event dependencies according to
the happens-before relation [13]. If there is a dotted
line from a pointp to a hexagont, then any events fol-
lowing an activation of threadt could have started right
after p. Figure 2 shows the happens-before relation
based on a slightly more complex example, where a
worker thread isstartedby themainthread. At the be-
ginning of the program, themain thread is scheduled,
as depicted by a hexagon. A dashed arrow points to
the beginning of the sequence of actions of that thread,
symbolizing scheduling of actions of this thread. Cre-
ation of threadWorker involves initialization of the
data structure and is no different from initializing a
normal object. The thread is started by a library call,
which interfaces with the operating system. Any ac-
tions of threadWorkercan occur at any time after this
point, symbolized by the dotted line. In other words,
actions of threadWorkercould be moved up to the top
of the horseshoe-shaped dotted line.

The start of a thread is shown by a corresponding
action in the thread scheduler, using an dashed arrow
pointing from a hexagon to the left. Likewise, thread
suspensionis depicted by such a dashed arrow point-
ing to the right, from the lower part of the black box

2This simplified definition holds if one thread is waiting on a
shared lock. For the complete definition that covers multiple waiting
threads, refer to the language specification [9].

main

Worker

main

create

Server WorkerPort

Figure 1. Thread switches.

main

run

start

create
main

Worker

WorkerServer

Figure 2. Thread creation and start.

denoting a method call, to the thread being suspended.
In Figure 3, themain thread runs and callswait on
lock Port. The arrow originates from the end of the
method call rather than its middle because the current
thread still executes instructions up to its suspension.

Unlike thread suspension, threadterminationis not
shown. No further actions of that thread exist, so there
is no compelling need to decorate thread termination.
On the other hand, thread termination may influence
the behavior of other threads waiting on that event,
and thus contribute to the happens-before relation. Fig-
ure 4 shows an example involvingThread.join. As in
subsequent figures, some initial thread activations have
been omitted for brevity. Threadmainstarts a worker
thread and waits upon its termination usingjoin. This
suspendsmainuntil Workerterminates. Any events in
themainthread following thatjoin call can only hap-
pen after ThreadWorkerhas terminated, as illustrated
by the dotted line.

Thread notification is similar to re-activation of
a thread after suspension. In the previous exam-
ple involvingjoin and thread termination, one event
leads to thread suspension (join), while another event
(thread termination) allows the suspended thread to
continue. The same pattern exists forwait/notify,
the key difference being that continuation of the sus-
pended thread is achieved by a special call (notify)
rather than termination of another thread.

Figure 5 shows an example forwait/notify. As in
Figure 4, suspension of the waiting thread is shown by



wait
main

main

Server Port

Figure 3. Thread suspension using wait.

join

start

run

Server

main

Worker

main

Worker

Figure 4. Thread suspension using join.

a dashed arrow pointing to the right. Here threadmain
waits onPort, which is used as a lock and semaphore
according to standard Java semantics [9]. After sus-
pension, threadWorkeris scheduled, which notifies all
threads waiting onPort. Notification leads to activa-
tion of one of the suspended threads (main in the ex-
ample). Once notified, a thread is again ready to run,
as shown by the happens-before relation. Activation is
takes place inside native methodnotify.

Notification can target a single thread, orall threads
waiting on a lock, usingnotifyAll in Java. Whenever
several threads wait for the same lock, notification will
enable all of them to run. In this case, the happens-
before relation concerns multiple threads. Further-
more, it is often the case that only a single thread
will continue to execute, while all the other threads re-
check a shared condition and then go back to being
suspended by callingwait again.

Figure 6 depicts such a scenario. At the beginning
of the situation shown, threadsWorker 1andWorker 2
are waiting on lockPort. ThreadmaincallsnotifyAll
on that lock, whereuponWorker 1 is scheduled first.
That thread can complete an action on global data
(e. g., consuming a shared resource, such as a con-
nection from a client). After that, the scheduler runs
Worker 2. In the example, the shared resource has
been consumed byWorker 1, soWorker 2has to wait
again until another thread makes the resource in ques-
tion available again. Therefore,Worker 2subsequently
waits again after re-checking its condition. This allows
the scheduler to executeWorker 1again.

wait

main

Worker

main

notify

WorkerPortServer

Figure 5. Thread notification.

3. Design decisions

Our extension of UML sequence diagrams main-
tains a close and concise mapping [10]. We address all
commonly available concurrency artifacts [9, 15, 21],
using four new symbols. First, we distinctly express
the role of a thread as a task. Second, we make task
activations and context switches visible. The hexagon
as a task symbol is visually clear. Furthermore, it
allows attachment of arrows denoting thread context
switches, and lines representing the happens-before re-
lation. Locks are not directly visualized, but can be
shown by secondary notations, such as annotations.

Third, thread suspension is different from a nor-
mal context switch (where a thread can continue to run
again later). We chose to represent this with a sym-
bol that is the reverse of thread activation by a context
switch. We believe that this is consistent.

Finally, the happens-before relation [13] explains
possible event orderings. It is visualized by dotted
lines. Events are not totally ordered [13]. Thus, more
constraining visualizations, such as shaded regions,
fail for more complex scenarios.

We chose to illustrate calls towait andnotify like
any other method calls, by a solid black box. This does
not only provide consistency, but also allows for a bet-
ter illustration of the side effects of these methods.

The precise timing of thread activations cannot be
determined, as it occurs inside library calls. Hence, the
line visualizing the happens-before relation is placed
in the middle of such method calls. Thread suspension
via join is different, as the thread in question actually
has to terminate before said call returns. Therefore, the
line of the happens-before relation must be attached to
the bottom of the box, representing completed method
execution, which implies thread termination.

Method calls towait do not affect the happens-
before relation. This is becausewait has no direct ef-
fect on other threads, so any events of other threads are
not correlated to when the current thread is suspended.



wait

notifyAll

Worker 1

Worker 2

Worker 2

Worker 1

Worker 1 Worker 2Server Port

Figure 6. Thread notification.

checker

Error

Analyzer

Instrumenter

Program Program

program
modified

MC

Events

RV

Visualizer

RV tool

trace

Model

Figure 7. Event extraction / visualization.

We chose not to visualize locking and lock sets di-
rectly. Inclusion of lock sets may be done by annota-
tions, but will decrease conciseness of the graph. Like-
wise, atomicity of actions, which depends on lock-
ing, is not shown. While correct lock usage corre-
sponds to a “hard mental operation” [10], our visual-
ization captures the key problems in concurrency on a
slightly higher level of abstraction, improving scalabil-
ity. Given proper abstraction, our visualization scales
to large program traces, as shown in an initial case
study. Due to space constraints, this case study is pre-
sented in an extended version of this paper [1].

4. Implementation architecture

Events can be contained in an error trace of a model
checker, or be generated at run-time. Figure 7 shows
how events are extracted in both cases. In model
checking (MC), the resulting error trace is visualized.

In run-time verification (RV), event generation is em-
bedded into the program being analyzed. This can be
done with automated code instrumentation, e. g. using
aspect-oriented programming [12]. The modified pro-
gram will, in addition to its normal functionality, emit
events to our visualizer. In RV, the visualizer can oper-
ate on-line, using live events, or off-line, after termina-
tion of the program.

Error traces from model checkers are only exam-
ined off-line. A parser can be built for a particular in-
put format, either reading error traces from a model
checker, or reading logged RV execution traces. The
result of the parse can then be visualized with the same
package, independently of the application domain.

5. Conclusions and future work

Understanding a concurrent program trace is diffi-
cult. Still visualization builds on trace abstraction and
shows the essence of a trace. Concurrency extensions
to UML sequence diagrams illustrate complex opera-
tions clearly. Visualization may serve to reverse en-
gineer program behavior, or to analyze error traces,
which may originate from a model checker or a run-
time verification tool.

Future challenges include automated tool support,
which will also allow us to explore the scalability of
our visualization when used with different abstraction
or exploration techniques. We will also consider vi-
sualization of timeouts and locks through means other
than annotations.

References

[1] C. Artho, K. Havelund, and S. Honiden. Visual-
ization of concurrent program traces. Technical



Report NII-2007-006E, National Institute of In-
formatics, Tokyo, Japan, 2007.

[2] C. Artho, V. Schuppan, A. Biere, P. Eugster,
M. Baur, and B. Zweimüller. JNuke: Efficient
Dynamic Analysis for Java. InProc. CAV 2004,
volume 3114 ofLNCS, pages 462–465, Boston,
USA, 2004. Springer.

[3] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu,
Robby, S. Laubach, and H. Zheng. Bandera:
Extracting finite-state models from Java source
code. InProc. ICSE 2000, pages 439–448, Lim-
erick, Ireland, 2000. ACM Press.

[4] L. Cousot and K. Havelund. Visualization of
Concurrent Java Program Executions. NASA
Ames Research Center, Internal project, 2001.

[5] C. Csallner and Y. Smaragdakis. DSD-Crasher:
A hybrid analysis tool for bug finding. InProc.
ISSTA 2006, pages 245–254, 2006.

[6] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks:
Efficiently computing the happens-before rela-
tion using locksets. InProc. RV 2006, volume
4262 of LNCS, pages 193–208, Seattle, USA,
2006. Springer.

[7] M. Ernst. Dynamically Discovering Likely Pro-
gram Invariants. PhD thesis, 2000.

[8] E. Farchi, Y. Nir, and S. Ur. Concurrent bug pat-
terns and how to test them. InProc. IPDPS 2003,
page 286, Nice, France, 2003. IEEE Computer
Society Press.

[9] J. Gosling, B. Joy, G. Steele, and G. Bracha.The
Java Language Specification, 3rd Ed.Addison-
Wesley, 2005.

[10] T. Green and M. Petre. Usability analysis of
visual programming environments: A ‘cognitive
dimensions’ framework.Journal of Visual Lan-
guages and Computing, 7(2):131–174, 1996.

[11] Ø. Haugen. From MSC-2000 to UML 2.0
- the future of sequence diagrams. InProc.
STL 2001, pages 38–51, London, UK, 2001.
Springer-Verlag.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. An overview of As-
pectJ.LNCS, 2072:327–355, 2001.

[13] L. Lamport. How to Make a Multiprocessor
that Correctly Executes Multiprocess Programs.
IEEE Transactions on Computers, 9:690–691,
1979.

[14] X. Li, Z. Liu, and J. He. A formal semantics of
UML sequence diagrams. InProc. ASWEC 2004,
Melbourne, Australia, 2004. IEEE Computer So-
ciety.

[15] Microsoft Corporation.Microsoft Visual C# .NET
Language Reference. Microsoft Press, Redmond,
USA, 2002.

[16] O. Radfelder and M. Gogolla. On better un-
derstanding UML diagrams through interactive
three-dimensional visualization and animation.
In Proc. AVI 2000, pages 292–295. ACM Press,
New York, 2000.

[17] J. Roberts and C. Zilles. TraceVis: an execu-
tion trace visualization tool. InProc. MoBS 2005,
Madison, USA, 2005.

[18] J. Rumbaugh, I. Jacobson, and G. Booch.The
Unified Modeling Language Reference Man-
ual. Addison-Wesley Object Technology Series,
1998.

[19] S. Savage, M. Burrows, G. Nelson, P. Sobal-
varro, and T. Anderson. Eraser: A dynamic data
race detector for multithreaded programs.ACM
Transactions on Computer Systems, 15(4):391–
411, 1997.

[20] M. Smith, G. Holzmann, and K. Etessami. Events
and Constraints: a Graphical Editor for Capturing
Logic Properties of Programs. InProc. RE 2001,
August 2001.

[21] B. Stroustrup. The C++ Programming Lan-
guage, Third Edition. Addison-Wesley Longman
Publishing Co., Inc., Boston, USA, 1997.

[22] W. Visser, K. Havelund, G. Brat, S. Park, and
F. Lerda. Model checking programs.Auto-
mated Software Engineering Journal, 10(2):203–
232, 2003.

[23] J. Yang. Automatically Inferring Temporal Prop-
erties. InDoctoral Symposium, ICSE 2005, St
Louis, USA., 2005.


