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Abstract. Runtime Verification (RV) expedites the analyses of execution traces
for detecting system errors and for statistical and quality analysis. Having started
modestly, with checking temporal properties that are based on propositional
(yes/no) values, the current practice of RV often involves properties that are
parameterized by the data observed in the input trace. The specifications are
based on various formalisms, such as automata, temporal logics, rule systems
and stream processing. Checking execution traces that are data intensive against
a specification that requires strong dependencies between the data poses a non-
trivial challenge; in particular if runtime verification has to be performed online,
where many events that carry data appear within small time proximities. Towards
achieving this goal, we recently suggested to represent relations over the observed
data values as BDDs, where data elements are enumerated and then converted into
bit vectors. We extend here the capabilities of BDD-based RV with the ability to
express timing constraints, where the monitored events include clock values. We
show how to efficiently operate on BDDs that represent both relations on (enu-
merations of) values and time dependencies. We demonstrate our algorithm with
an efficient implementation and provide experimental results.

1 Introduction

Runtime verification provides techniques for monitoring system executions, online and
offline, against a formal specification. The monitored system is instrumented to report
to the monitor on the occurrence of relevant events that may also include related data
values. The monitor observes the input events and keeps some internal summary of
the prefix of the execution observed so far, which allows computing whether an evi-
dence for a violation of the specification is already available. RV can complement the
use of testing and verification techniques during the system development, e.g. by per-
forming offline log file analysis. It can also be used online as part of protecting a sys-
tem against an unwanted situation and averting it [26]. This is particularly important in
safety-critical systems such as aerospace systems, transportation systems, power plants,
and medicine.
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One main challenge in applying RV is to increase the scope of the properties that can
be monitored. The goal is to provide algorithms for monitoring richer, and yet succinct
specification formalism while ensuring that the algorithms are efficient enough to catch
up with the speed of information arrival; especially if we want to apply them online. We
recently suggested to use BDDs [11, 12] to represent relations between data elements
that appear during the execution. We extend this approach and present here a BDD-
based algorithm for full first-order linear temporal logic with time constraints. Consider
the following property (the syntax and semantics will be described later).

(close→ Popen) (1)

It expresses that when close happens, open must have already happened (P stands for
previously). To monitor this property, it is enough to remember if open was reported
to the monitor so that it can be checked when close is reported. The classical algo-
rithm [23] keeps two sets of Boolean variables, pre and now, in the summary, for
the previous and the current value of each subformula, respectively. These variables
are updated every time a new event is reported. For example, for the property Popen
(open has happened in the past), we keep pre(Popen) and now(Popen) and update
now(Popen) := now(open)∨pre(Popen), where now(open) is true if open holds in the
most recent event. An example of a first-order temporal specification is as follows.

∀ f (close( f )→ Popen( f )) (2)

It asserts that every file that is closed was opened before. Here, we need to keep in the
summary a set of all the opened files so that we can compare them to the closing of files.
In general, the summary in this case extends the one used for the propositional case by
keeping for each subformula the set of assignments, essentially a relation between the
values assigned to the free variables that satisfy it: pre for the prefix without the last
event, and now for the current prefix. These sets can be updated using database oper-
ations between relations, corresponding to the Boolean operations in the propositional
case.

An extension of the logic, in another dimension, allows the properties to refer to the
progress of time. The reported events appear with some integer timing value. We do not
assume that the system reports to the monitoring program in each time unit or that only
a single event occurs within a time unit. We also leave open the unit of measurement
for time values (seconds, minutes, etc.). An example of such a specification is

∀ f (closed( f )→ P≤20 open( f )) (3)

which asserts that every file f that is closed was opened not longer than 20 time units
before.

An RV algorithm for first-order LTL was presented in [7], and implemented in the
MonPoly tool based on two alternative approaches: one allows unrestricted negation and
in which the relations are represented as regular sets and, subsequently, automata [25];
another one with restricted negation and in which relations are represented explicitly
and are subjected to database operators (e.g., join). In [7], an RV algorithm for first-
order past temporal logic with time constraints was presented. In [19], an algorithm
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that performs RV on first-order logic using BDDs was suggested and a related tool was
constructed. BDDs are directed acyclic graphs that can often achieve a very compact
representation of Boolean functions. In this context, a BDD represents the relationship
between values of free variables that satisfy a given subformula in the summary. In that
work, instead of representing the data values themselves, enumerations of these values
were used. This allows a relatively short representation of big data values and using
BDDs over a relatively small number of bits. It helps obtaining a good compactness for
the BDDs due to common patterns in adjacent enumerations. The algorithm for the first-
order logic is simple and quite similar to the propositional algorithm. Using a special
reserved value to represent all the values that were not seen before allows the algorithm
to easily deal with unconstrained negation.

In this work, we build upon this latter BDD-based construction and extend it to
include in the temporal logic also timing constraints. This includes adapting the RV al-
gorithm to reflect the timing constraints and extending the BDD representation to rep-
resent timing information as well as data values. We do this while keeping the summary
compact and easy to update using BDD operations. We show how to perform updates on
relations over both (enumerations of) data values and timing values, including Boolean
and simple arithmetical operations. This is quite a nontrivial use of BDDs, applied to
the context of runtime verification. Albeit the mixed use of the BDD representation and
the addition of timing constraints, we manage to keep the basic algorithm similar to
the propositional one. We follow the theory with an implementation that extends that
of [19] and present experimental results.
Related Work. RV over propositional logic with timing constraints appears in [10, 33].
In [16], an RV algorithm for propositional LTL that returns optimal (minimal or max-
imal) values that make the specification correct with respect to the observed trace was
presented. Other work on data-centric runtime verification include the systems based on
trace slicing, where data values are mapped to copies of propositional automata [1, 29,
31], formula rewriting [5, 17], and rule-based monitoring [4, 6, 18], tree-automata [3]
and SMT solving [13]. Applying arithmetic operations to sets of values, represented
using BDD appeared in [14].

2 Propositional Past LTL with Timing

RV is often restricted to monitoring executions against specification properties that con-
tain only the past modalities [27], where it is implicitly assumed that the specification
needs to hold for all the prefixes of the execution1. These properties correspond to tem-
poral safety properties [2], where a failure can always be detected on a finite prefix as
soon as it occurs [10]. Expressing safety properties in this form allows an efficient run-
time verification algorithm that is only polynomial in the size of the specification [23].
The syntax of propositional past timed linear temporal logic is as follows:

ϕ ::= true | p |(ϕ∧ϕ) |¬ϕ |(ϕSϕ) |(ϕS≤δϕ) |(ϕZ≤δϕ) |(ϕS>δϕ) | 	ϕ

1 This is equivalent to saying that the specification is of the form 2ϕ, where ϕ contains only past
modalities; we omit here the implied 2, which is a future modality.
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where p is a proposition from a finite set of propositions P, with S standing for since,
and 	 standing for previous-time. The formula (ϕSψ) has the standard interpretation
that ψ must be true in the past and ϕ must be true since then. The formula 	ϕ is true
in the current state if ϕ is true in the previous state. The formula (ϕS≤δψ) has the same
meaning as (ϕSψ), except that ψ must have occurred within δ time units. The formula
ϕZ≤δψ is similar to ϕS≤δψ, except that it requires ψ to be satisfied in the past; it is not
sufficient if ψ is satisfied in the current state. Finally, (ϕS>δψ) has the same meaning as
(ϕSψ), except that ψ must have occurred more than δ time units ago. One can also write
(ϕ∨ψ) instead of ¬(¬ϕ∧¬ψ), (ϕ→ ψ) instead of (¬ϕ∨ψ), P ϕ (previous ϕ) instead
of (true S ϕ) and Hϕ (history ϕ) instead of ¬P¬ϕ. We also define P≤δϕ = (trueS≤δϕ),
P>δϕ = (trueS>δϕ), H≤δϕ = ¬P≤δ¬ϕ, H>δϕ = ¬P>δ¬ϕ, (ϕR≤δψ) = ¬(¬ϕS≤δ¬ψ)
and (ϕR>δψ) = ¬(¬ϕS>δ¬ψ).

LTL formulas are interpreted over executions ξ = 〈P,L,τ〉, where

– P is a finite set of propositions,
– L : N 7→ 2P, where N are the positive integers,
– τ : N 7→ N is a monotonic function (representing clock values). We may, but do not

have to, assume that τ(1) = 0.

We will refer to ξ(i) = 〈i,L(i),τ(i)〉 as the ith event in ξ, which satisfies the propositions
L(i) and occurs at time τ(i). LTL semantics is defined as follows:

– ξ, i |= true.
– ξ, i |= p iff p ∈ L[i].
– ξ, i |= ¬ϕ iff not ξ, i |= ϕ.
– ξ, i |= (ϕ∧ψ) iff ξ, i |= ϕ and ξ, i |= ψ.
– ξ, i |= (ϕS ψ) iff for some 1 < j ≤ i, ξ, j |= ψ, and for all j < k ≤ i it holds that

ξ,k |= ϕ.
– ξ, i |=(ϕS≤δψ) iff there exists some 1≤ j≤ i, such that τ(i)−τ( j)≤ δ and ξ, j |=ψ,

and for all j < k ≤ i it holds that ξ,k |= ϕ.
– ξ, i |=(ϕZ≤δψ) iff there exists some 1≤ j < i, such that τ(i)−τ( j)≤ δ and ξ, j |=ψ,

and for all j < k ≤ i it holds that ξ,k |= ϕ.
– ξ, i |=(ϕS>δψ) iff there exists some 1≤ j < i, such that τ(i)−τ( j)> δ and ξ, j |=ψ,

and for all j < k ≤ i it holds that ξ,k |= ϕ.
– ξ, i |=	ϕ iff i > 1 and ξ, i−1 |= ϕ.

We say that an execution ξ satisfies a property ϕ iff for every i, it holds that ξ, i |=ϕ. Note
that this is a discrete time semantics. We also do not require that every time instance
must have a corresponding event. Thus, (ϕS ψ) means that ϕ holds for every reported
event since ψ held.

3 Runtime Verification for Propositional Past LTL

3.1 Algorithm for Propositional Past LTL without Time Constraints

The dynamic programming algorithm for propositional past LTL without timing con-
straints described in [23] is based on the observation that the semantics of the past time
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formulas 	ϕ and (ϕS ψ) in the current step i is defined in terms of the semantics in the
previous step i−1 of a subformula. The algorithm operates on a summary that includes
two vectors (arrays) of Boolean values indexed by subformulas: pre for the previous ob-
served prefix, which excludes the last seen event, and now for the current prefix, which
includes the last seen event. The algorithm is as follows.

1. Initially, for each subformula ϕ of the specification η, now(ϕ) := false.
2. Observe the next event2 〈i,L(i),τ(i)〉 as input.
3. Let pre := now.
4. Make the following updates for each subformula. If ϕ is a subformula of ψ then

now(ϕ) is updated before now(ψ).
– now(p) := (p ∈ L(i)).
– now(true) := true.
– now((ϕ∧ψ)) := now(ϕ)∧now(ψ).
– now(¬ϕ) := ¬now(ϕ).
– now((ϕSψ)) := now(ψ)∨ (now(ϕ)∧pre((ϕSψ))).
– now(	 ϕ) := pre(ϕ).

5. if now(η) = false then report “error”.
6. Goto step 2.

3.2 RV for Propositional Past LTL with Timing Constraints

We describe the additions to the algorithm in Section 3.1 for the subformulas that con-
tain timing constraints, i.e., (ϕS≤δψ), (ϕZ≤δψ) and (ϕS>δψ). For each of these sub-
formulas, we add to the summary two integer variables τpre and τnow, which represent
timers that measure the time since a point that is relevant for calculating their truth
value in the current state. These variables are initialized to −1 and their values will be
updated based on the time difference ∆ = τ(i)− τ(i−1) between the current event ξ(i)
and the previous one ξ(i−1).

The propositional algorithm for (ϕS≤δ ψ)

This subformula asserts that at position i in the trace, there is some earlier position
j, where τ(ei)− τ(e j) ≤ δ and where (ϕSψ) started to hold, until and including the
current event. The summary needs to remember not only that ψ has happened and ϕ

kept holding since, but also to update the time duration that has passed. There can be
multiple such positions j where ψ held, but we only need to refer to the last (most
recent) such position j, since it has the smallest value, hence also the time constraint
will be the latest to expire.

The summary has the integer time variables τnow(ϕS≤δψ) and τpre(ϕS≤δψ), which
can have the values [−1 . . .δ]. This value is the distance from the most recent point
where (ϕSψ) started to hold within an interval of δ time units. The values from [0 . . .δ]
correspond to pre/now(ϕS≤δψ) = true and −1 corresponds to pre/now(ϕS≤δψ) =
false. The update rule for τnow(ϕS≤δψ) and now(ϕS≤δψ) is as follows:

2 We ignore at this point the clock value component τ(i).
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if now(ψ) then τnow(ϕS≤δψ) := 0 [restart timer]
else if τpre(ϕS≤δψ) 6=−1 and now(ϕ) then [(ϕS≤δψ) continues to hold?]

if τpre(ϕS≤δψ)+∆ > δ then [distance too big?]
τnow(ϕS≤δψ) :=−1 [(ϕS≤δψ) does not hold]

else τnow(ϕS≤δψ) := τpre(ϕS≤δψ)+∆ [update distance]
else τnow(ϕS≤δψ) :=−1 ; [(ϕS≤δψ) does not hold]
now(ϕS≤δψ) := (τnow(ϕS≤δψ) 6=−1)

The propositional algorithm for (ϕZ≤δψ)

This subformula is similar to (ϕS≤δψ), but requires that ψ has happened in the past,
excluding the current time, and not more than δ time units in the past; if ψ holds now,
this is not sufficient for (ϕZ≤δψ) to hold. This modality is required to express properties
such as

∀ f open( f )→¬(trueZ≤20 open( f ))

which asserts that we have not witnessed two openings of the same file in proximity of
20 ticks or less. Note that the previous-time 	 operator does not help in expressing the
above property, since 	 refers to the previous event, which is not guaranteed to have
occurred exactly one clock tick earlier. The algorithm sets the timer to the distance from
the last event, if ϕ holds now, and ψ held in the previous event. Then it updates the timer
by adding ∆ as long as ϕ continues to hold and we are within the time distance δ.

if now(ϕ) then
if pre(ψ) and ∆≤ δ then τnow(ϕZ≤δψ) := ∆ [initiate timer]
else

if τpre(ϕZ≤δψ) 6=−1 and τpre(ϕZ≤δψ)+∆≤ δ then [distance still OK?]
τnow(ϕZ≤δψ) := τpre(ϕZ≤δψ)+∆ [update distance]

else τnow(ϕZ≤δψ) :=−1
else τnow(ϕZ≤δψ) :=−1 ;
now(ϕZ≤δψ) := (τnow(ϕZ≤δψ) 6=−1)

The propositional algorithm for (ϕS>δψ)

We update τnow(ϕS>δψ), which is the current time distance to where (ϕSψ) (the un-
timed version of the subformula) started to hold. We update it according to the earliest
(i.e., furthest in the past) occurrence where this held, since this is the larger distance,
hence the first to satisfy the timing constraint. If this occurrence becomes irrelevant
(since ϕ does not hold in the current prefix) then later observed occurrences become
irrelevant too. When this happens, we either zero the counter, in case that ψ currently
holds, or otherwide set it to−1 to signal that (ϕSψ) does not currently hold. We restrict
the counter to δ+1; any value that is bigger than that will result in the same conclusion,
and we want to keep that value small3. Now ϕS>δψ currently holds when the value of
this counter is bigger than δ.

3 In fact, when ∆ > δ, we use δ+1 instead.
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if now(ϕ)∧ τpre(ϕS>δψ)≥ 0 then
τnow(ϕS>δψ) := min(τpre(ϕS>δψ)+∆,δ+1)

else if now(ψ) then τnow(ϕS>δψ) := 0 [ restart counter ]
else τnow(ϕS>δψ) :=−1 ; [(ϕS>δψ) does not hold]
now(ϕS>δψ) := (τpre(ϕS>δψ)> δ)

4 First-Order Past LTL

First-order past LTL allows quantification over the values of variables that appear as
parameters in the specification. In the context of RV, these values can appear within the
monitored events. For example, close( f ) indicating that f is being closed. We saw in
the introduction Property (2), which asserts that a file cannot be closed unless it was
opened before. A more refined specification requires that a file can be closed only if it
was opened before, but also has not been closed since:

∀ f (close( f )−→	(¬close( f )S open( f ))) (4)

An assignment over a set of variables W maps each variable x ∈W to a value from its
associated domain. For example [x→ 5,y→ “abc”] is an assignment that maps x to 5
and y to “abc”. A predicate consists of a predicate name and a variable or a constant of
the same type4. E.g., if the predicate name p and the variable x are associated with the
domain of strings, then p(“gaga”), p(“lady”) and p(x) are predicates. The predicates G
with constant parameters are called ground predicates. A model, i.e., an execution (or a
trace), ξ is a pair 〈L,τ〉, where

1. L : N 7→ 2G, and
2. τ : N 7→ N is a monotonic function representing integer clock values.

An event in ξ is a triple ξ(i) = 〈i,L(i),τ(i)〉 for i≥ 1.

4.1 Syntax

As in the propositional case, we restrict ourselves to safety properties, hence introduce
only the past modalities.

ϕ ::= true | p(a) | p(x) | (ϕ∧ϕ) |¬ϕ | (ϕSϕ) | (ϕS≤δϕ) | (ϕZ≤δϕ) | (ϕS>δϕ) | 	ϕ | ∃x ϕ

We can also define ∀xϕ as ¬∃¬ϕ, and all the additional operators defined for the propo-
sitional case in Section 2.

4.2 Semantics

Let free(ϕ) be the set of free, i.e., unquantified, variables of subformula ϕ. Let γ [x 7→ a]
be an assignment that agrees with the assignment γ, except for the binding x 7→ a. Then
γ,ξ, i |= ϕ, where γ is an assignment that contains free(ϕ), and i ≥ 1, is defined as
follows:

4 For simplicity of the presentation, but without restricting the algorithms or the implementation,
we present here only unary predicates.
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– γ,ξ, i |= true.
– γ,ξ, i |= p(a) if p(a) ∈ L(i).
– γ[x 7→ a],ξ, i |= p(x) if p(a) ∈ L[i].
– γ,ξ, i |= (ϕ∧ψ) if γ,ξ, i |= ϕ and γ,ξ, i |= ψ.
– γ,ξ, i |= ¬ϕ if not γ,ξ, i |= ϕ.
– γ,ξ, i |= (ϕS ψ) if there exists some 1 < j ≤ i, such that γ,ξ, j |= ψ and and for all

j < k ≤ i it holds that γ,ξ,k |= ϕ.
– γ,ξ, i |= (ϕ S≤δ ψ) if there exists some 1 < j ≤ i, such that τ(i)− τ( j) ≤ δ and

γ,ξ, j |= ψ, and for all j < k ≤ i it holds that γ,ξ,k |= ϕ.
– γ,ξ, i |= (ϕZ≤δψ) iff there exists some 1 ≤ j < i, such that τ(i)− τ( j) ≤ δ and

γ,ξ, j |= ψ, and for all j < k ≤ i it holds that γ,ξ,k |= ϕ.
– γ,ξ, i |= (ϕS>δψ) iff there exists some 1 ≤ j ≤ i, such that τ(i)− τ( j) > δ and

γ,ξ, j |= ψ, and for all j < k ≤ i it holds that γ,ξ,k |= ϕ.
– γ,ξ, i |=	ϕ if i > 1 and γ,ξ, i−1 |= ϕ.
– γ,ξ, i |= ∃x ϕ if there exists a ∈ domain(x) such that γ[x 7→ a],ξ, i |= ϕ.

We write ξ |= ϕ for a formula ϕ without free variables when ε,ξ, i |= ϕ for each i, where
ε is the empty assignment.

5 RV for First-Order Past LTL using BDDs

We describe an algorithm for monitoring first-order past LTL properties with time con-
straints. The untimed version and an implementation of it was presented in [19].

5.1 RV for First-order Past LTL without Time Constraints using BDDs

For the purpose of self containment, we first present the RV algorithm for the first-order
past LTL without timing constraints, as presented in [19]. Then, in the next section we
will show how to expand this into the logic with time constraints.

Using BDDs to represent relations

Our algorithm is based on representing relations between data elements (and, as we
discuss later, timers, which are small integers) using Ordered Binary Decision Diagrams
(OBDD, although we write simply BDD) [11]. A BDD is a compact representation for
a Boolean valued function as a directed acyclic graph (DAG), see, e.g., Figures 1 and 2.

A BDD is obtained from a tree that represents a Boolean formula with some Boolean
variables x1 . . .xk by gluing together isomorphic subtrees. Each non-leaf node is labeled
with one of the Boolean variables. A non-leaf node xi is the source of two arrows leading
to other nodes. A dotted-line arrow represents that xi has the Boolean value false (i.e.,
0), while a thick-line arrow represents that it has the value true (i.e., 1). The nodes in the
DAG have the same order along all paths from the root (hence the letter ‘O’ in OBDD).
However, some of the nodes may be absent along some paths, when the result of the
Boolean function does not depend on the value of the corresponding Boolean variable.
Each path leads to a leaf node that is marked by either true or false, corresponding to
the Boolean value returned by the function for the Boolean values on the path.
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A Boolean function, and consequently a BDD, can represent a set of integer values
as follows. Each integer value is, in turn, represented using a bit vector: a vector of bits
x1 . . .xk represents the integer value x1×1+ x2×2+ . . .xk×2k, where the bit value of
xi is 1 for true and 0 for false and where x1 is the least significant bit, and xk is the most
significant. For example, the integer 6 can be represented as the bit vector 110 (the most
significant bit appears to the left) using the bits x1 = 0, x2 = 1 and x3 = 1. To represent
a set of integers, the BDD returns true for any combination of bits that represent an
integer in the set. For example, to represent the set {4,6}, we first convert 4 and 6
into the bit vectors 100 and 110, respectively. The Boolean function over x1,x2,x3 is
(¬x1∧ x3), which returns true exactly for these two bit vector combinations.

This can be extended to represent relations, or, equivalently, a set of tuples over
integers. The Boolean variables are partitioned into n bitstrings x1 = x1

1, . . . ,x
1
k1

, xn =

xn
1, . . . ,x

n
kn

, each representing an integer number, forming the bit string5:

x1
1, . . . ,x

1
k1
, . . . ,xn

1, . . . ,x
n
kn
.

Using BDDs over enumerations of values

The summary for the first-order RV algorithm without timing constraints consists of
BDDs pre(ϕ) and now(ϕ) for all subformulas of the monitored property. In the propo-
sitional case, these summary elements have Boolean values. For the first-order case,
each summary element for a subformula ϕ is conceptually a relation between values of
the free variables in ϕ. However, instead of representing these values directly, accord-
ing to their different domains (e.g., integers, strings), these relations are represented as
BDDs over the enumerations of values, and not directly over the values themselves.

During RV, when a value (associated with a variable in the specification) appears
for the first time in an observed event, we assign to it a new enumeration. Values can
be assigned consecutive enumeration values; however, a refined algorithm can reuse
enumerations that were used for values that can no longer affect the verdict of the RV
process, see [21]. We use a hash table to point from the value to its enumeration so
that in subsequent appearances of this value the same enumeration will be used. For
example, if the runtime verifier sees the input events open(a), open(b), open(c), it may
encode them as the bit vectors 000, 001 and 010, respectively.

The described results in several advantages:

1. It allows a shorter representation of very big values in the BDDs; the values are
compacted into a smaller number of bits. Furthermore, if a big data value occurs
multiple times, we avoid representing that big value multiple times in the BDDs.

2. It contributes to the compactness of the BDDs because enumerations of values that
are not far apart often share large bit patterns.

3. The first-order RV algorithm is simple and very similar to the propositional algo-
rithm; the Boolean operators over summary elements: conjunction, disjunction and
negation, are replaced by the same operators over BDDs. This also simplifies the
implementation.

5 In the implementation the same number of bits are used for all variables: k1 = k2 = . . .= kn.
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4. Given an efficient BDD package, the implementation can be very efficient. On can
also migrate between BDD packages.

5. Full use of negation also follows easily.

Example 1 - BDDs without time

As an example consider the following formula concerning the correctness of command
execution. It states that for all commands m, if the command succeeds execution, then
there must have been a dispatch of that command in the past with some priority p, and
no failure since the dispatch:

∀m(suc(m)→∃p(¬fail(m) S dis(m, p))) (5)

Let us apply this property to the first two events of the following trace, where each
event includes a single ground predicate. It consists of the dispatch of two commands,
sending of telemetry data and success of the two commands:

〈dis(stop,1),dis(off ,2), tel(speed,2),suc(stop),suc(off )〉 (6)

We shall now focus on the current assignments to the free variables m and p satisfying
the subformula ϕ = ¬fail(m) S dis(m, p), represented as a BDD. After the first event
dis(stop,1) this BDD corresponds to the assignment [m 7→ stop, p 7→ 1]. The algorithm
(to be shown below) will for each variable enumerate the data observed in events, in this
case6, assume that stop gets enumerated as 6 (binary 110) and 1 also gets enumerated as
6 (binary 110) (note that values for different variables get enumerated individually, and
therefore can be mapped to the same enumerations). This mapping is recorded in the
hash map for each variable from values to enumerations. Say we represent the enumera-
tion for the value of each of the variables m and p using three bits: m1m2m3 and p1 p2 p3,
with m1 and p1 being the least significant bits. The assignment [m 7→ stop, p 7→ 1] will
then be represented by a BDD which accepts the bit vector m1m2m3 p1 p2 p3 = 011011.
This BDD is shown in Figure 1a. The BDD has 6 nodes, named 0, . . . ,5. The nodes 0,
1 and 2 represent m1m2m3, and the nodes 3, 4 and 5 represent p1 p2 p3. Following the
arrows from node 0 on the top to the leaf node 1 (true) at the bottom, we indeed see the
binary pattern 011011 (dotted-line arrows = 0 and thick-line arrows = 1).

Consider now the second event dis(off ,2). Here off gets enumerated as 5 (binary
101), just as 2 gets enumerated as 5 (binary 101) - again, variables get enumerated
individually. The BDD in Figure 1b represents the set of assignments: {[m 7→ stop, p 7→
1], [m 7→ off , p 7→ 2]}. The BDD is the union of the BDD in Figure 1a and a BDD
representing the path 101101.

The BDD-based algorithm for first-order past LTL

We use a hash table to map values to their enumerations. When a ground predicate p(a)
occurs in the execution matching with p(x) in the monitored property, the procedure

6 The example BDDs are generated by our tool.
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(a) BDD after first event.
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(b) BDD after second event.

Fig. 1: The BDDs for the formula (¬fail(m) S dis(m, p)) after the first event and after
the second event.

lookup(x,a) is used to return the enumeration of a: it checks if a is already hashed. If
not, i.e., this is a’s first occurrence, then it will be hashed and assigned a new enumera-
tion that will be returned by lookup. Otherwise, lookup returns the value hashed under
a, which is the enumeration that a received before. A better compactness is achieved
where each value is hashed separately for each variable x that matches it in the specifi-
cation formula, hence lookup(x,a) is not necessarily the same as lookup(y,a).

We can use a counter for each variable x, counting the number of different values
appearing so far for x. When a new value appears, this counter is incremented and the
value is converted to a Boolean representation (a bit vector). Note, however, that any
enumeration scheme is possible, as shown in Example 1 above.

The function build(x,A) returns a BDD that represents the set of assignments where
x is mapped to (the enumeration of) v for v ∈ A. This BDD is independent of the val-
ues assigned to any variable other than x, i.e., they can have any value. For example,
assume that we use three Boolean variables (bits) x1, x2 and x3 for representing enu-
merations over x (with x1 being the least significant bit), and assume that A = {a,b},
lookup(x,a) = 001, and lookup(x,b) = 011. Then build(x,A) is a BDD representation
of the Boolean function x1∧¬x3.

Intersection and union of sets of assignments are translated simply to conjunction
and disjunction of their BDD representation, respectively, and complementation be-
comes BDD negation. We will denote the Boolean BDD operators for conjunction,
disjunction and negation as

∧
,
∨

and ¬ (confusion should be avoided with the corre-
sponding operations applying on propositions). To implement the existential (universal,
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respectively) operators, we use the BDD existential (universal, respectively) operators
over the Boolean variables that represent (the enumerations of) the values of x. Thus,
if Bϕ is the BDD representing the assignments satisfying ϕ in the current state of the
monitor, then ∃x1, . . . ,xk(Bϕ) is the BDD that is obtained by applying the BDD exis-
tential quantification repeatedly on the BDD variables x1 . . . ,xk. Finally, BDD(⊥) and
BDD(>) are the BDDs that return uniformally false or true, respectively.

The dynamic programming algorithm, shown below, works similarly to the algo-
rithm for the propositional case shown in Section 3. That is, it operates on two vectors
(arrays) of values indexed by subformulas: pre for the state before the last event, and
now for the current state after the last event. However, while in the propositional case
the vectors contain Boolean values, in the first-order case they contain BDDs.

1. Initially, for each subformula ϕ of the specification η, now(ϕ) := BDD(⊥).
2. Observe a new event (as a set of ground predicates) s as input.
3. Let pre := now.
4. Make the following updates for each subformula. If ϕ is a subformula of ψ then

now(ϕ) is updated before now(ψ).
– now(true) := BDD(>).
– now(p(a)) := if p(a) ∈ s then BDD(>) else BDD(⊥).
– now(p(x)) := build(x,A) where A = {a | p(a) ∈ s}.
– now((ϕ∧ψ)) := now(ϕ)

∧
now(ψ).

– now(¬ϕ) := ¬now(ϕ).
– now((ϕ S ψ)) := now(ψ)

∨
(now(ϕ)

∧
pre((ϕSψ))).

– now(	 ϕ) := pre(ϕ).
– now(∃x ϕ) := ∃x1, . . . ,xk now(ϕ).

5. if now(η) = BDD(⊥) then report “error”.
6. Goto step 2.

An important component of the algorithm is that, at any point during monitoring, enu-
merations that are not used in the pre and now BDDs represent all values that have not
been seen so far in the input events. We specifically reserve one enumeration, with bit
vector value of 11 . . .11 (i.e., all ones), to represent all values not seen yet. This trick al-
lows us to use a finite representation and quantify existentially and universally over all
values in infinite domains while allowing unrestricted use of negation in the temporal
specification.

5.2 The BDD-based Algorithm for First-Order Past LTL with Time Constraints

We describe now changes to the algorithm in Section 5.1 for handling the subformulas
with the timing constraints (ϕS≤δψ), (ϕZ≤δψ) and (ϕS>δψ).

BDDs representing relations over data and time

Analogously to the propositional case, in the first-order case we need to add to the
summary, for subformulas with timing constraints, in addition to the BDDs for pre(ϕ)
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and now(ϕ), also BDDs of the time τpre(ϕ) and τnow(ϕ). These BDDs contain the
relevant time that has passed that is needed in order to check the timing constraint.

Each assignment or tuple in such a BDD is over some number of data data variables
x1 . . .xn and, in adddition, a timing variable t, forming the BDD bits:

x1
1, . . . ,x

1
k , . . . ,x

n
1, . . . ,x

n
k , t1, . . . , tm

These integer values are, either,

1. enumerations of data values, for each xi, as explained above, or
2. the time t that has passed since the event that causes the tuple of data values to be

included.

In order to keep the representation finite and small, 2δ+1 is used as the limit on t. That
is, after we update t, we compare it against δ. When t goes beyond δ we can store just
δ+1 since we just need to know that it passed δ. During computation, when we observe
a ∆ that is bigger than δ, we cut it down to δ+1 for the same reason, before we add to
t. Finally, since adding ∆ = δ+ 1 to a t ≤ δ gives max 2δ+ 1, then this is the biggest
number we need to store in a BDD. Consequently, the number of bits needed to store
time is log2(2δ+1).

Example 2 - BDDs with time

We add a timing constraint to the formula (5) in Example 1, stating that when a com-
mand succeeds it must have been dispatched in the past within 3 time units:

∀m(suc(m)→∃p(¬fail(m) S≤3 dis(m, p))) (7)

Let us apply this property to the first two events of the following trace, which is the
trace (6) from Example 1, augmented with clock values following @-signs. We keep
the time constraint and clock values small and consecutive, to keep the BDD small for
presentation purposes:

〈dis(stop,1)@1,dis(off ,2)@2, tel(speed,2)@3,suc(stop)@4,suc(off )@5〉 (8)

The BDD for the subformula ϕ =¬fail(m) S≤3 dis(m, p) at the third event tel(speed,2),
shown in Figure 2, reflects that two (010 in binary) time units have passed since
dis(stop,1) occurred, and one time unit (001 in binary) has passed since dis(off ,2)
has occurred. The BDD is effectively an augmentation of the BDD in Figure 1b, with
the additional three nodes 6, 7, and 8, representing respectively the bits t1, t2, and t3 for
the timer value, with t1 (node 6) being the least significant bit.

BDD update operators on relations over data and time constraints

When a new event occurs, depending on the type of the subformula with timing con-
straint, we need to update the timers in τnow that count the time that has passed since
a tuple of values has entered. Subsequently, τpre will be updated when the next event
will occur. The difference between the clock value of the current event and the clock

13



0 1

0

1 1

2 2

3

4

5

6

7

8

3

4

5

6

7

Fig. 2: The BDD for the formula (¬fail(m) S≤3 dis(m, p)) at the third event.

value of the previous one is ∆, and the timer is incremented, as explained above. by
min(∆,δ+1). We also need to be able to check whether after adding ∆, the value of the
time difference exceeds the time constraint δ.

Abstractly, given a relation R over data elements and time values, we need to con-
struct two relations7:

– R+∆ = {(x1, . . . ,xn, t +∆)|(x1, . . . ,xn, t) ∈ R}. This can be done by
1. Constructing a relation T = {(t, t ′) | t ≥ 0∧ t ′ = t +∆}.
2. Taking the join of R and T . The join is basically the tuples that agree on the

values of their common variables.
3. Projecting out the (old) t values, and then renaming the (new) t ′ values as t.

– R > δ = {(x1, . . . ,xn, t) ∈ R | t > δ}. This can by done by
1. Constructing Tδ = {t | t > δ}.
2. Taking the join between R and Tδ.

We show now how to translate these set operators into BDDs. For R+∆, we construct
a Boolean formula addconst(t, t ′,∆) that expresses relation T between the Boolean
variables of t and t ′. For R > δ, we construct a Boolean formula gtconst(t,δ) that corre-
sponds to Tδ. These formulas are translated to BDDs. Then, taking the join of two BDDs
is done by first completing the two BDDs to be over the same bits; since the BDDs are

7 Recall that all values are restricted to 2δ+1 and if ∆ > δ, then δ+1 is used instead of ∆.
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independent of the missing bits, this is trivial, keeping the same BDD structure. Then
the intersection between these BDDs is obtained via the BDD conjunction (

∧
) operator.

The Boolean formula addconst. The Boolean formula addconst(t, t ′,∆) is satisfied by
a pair of integer values t and t ′, represented as the bit vectors t1 . . . tm and t ′1, . . . , t

′
m,

respectively, when t ′ = t +∆. The integer constant ∆ is represented using the bit vector
∆1 . . .∆m. The formula uses the additional bits r1, . . . ,rm, where ri is the carry-over
from the ith bits, according to Binary addition. This allows presenting the formula in
an intuitive way, following standard binary addition and in obtaining a formula that
is linear in the number of bits. When translating the formula to a BDD, existential
quantification is applied to remove the Boolean variables r1, . . . ,rm.

addconst(t, t ′,∆) = ∧1≤i≤m (t ′i ↔ (ti⊕∆i⊕ ri))
where r1 = false,

for 1≤ i < m: ri+1 = ((ri∧ (ti∨∆i))∨ (¬ri∧ ti∧∆i)))

The formula gtconst. The formula gtconst(t,δ) is true when t is bigger than δ. Both
t and δ are integers represented as bit vectors t1 . . . tm and δ1 . . .δm, respectively. This
holds when there is an index 1 ≤ i ≤ m such that ti = 1 (true) and δi = 0 (false), and
where for m≥ j > i, t j = δ j. When translating the formula to a BDD, existential quan-
tification is applied to the Boolean variables r0, . . . ,rm, which are used to propagate the
check from the least to the most significant bit.

gtconst(t,δ) = rm
where r0 = false,

for 1≤ i≤ m: ri = ((ti∧¬δi)∨ ((ti↔ δi)∧ ri−1))

We describe now the additions required in Step 4 of the algorithm presented in Sec-
tion 5.1.

The first-order algorithm for (ϕ S≤δ ψ)

The BDDs pre/now(ϕS≤δψ) generalize the Boolean summaries for the propositional
past LTL, by representing enumerations of the values of the free variables that satisfy
this subformula, e.g., with the bits x1

1, . . . ,x
n
k . The BDDs τpre/τnow(ϕS≤δψ) relate the

values of the free variables that satisfy this subformula with the timer values that keep
the time elapsed since the point where the values of the free variables were observed.

Generalizing from the propositional case, we need to compare and update timing
values per each assignment to the free variables of a subformula (ϕS≤δψ). As an ex-
ample, the assignments (tuples) {[x 7→ me, y 7→ 72, t 7→ 6], ]x 7→ you, y 7→ 62, t 7→ 9]}
for the subformula (ϕS≤δψ), where t is assigned to the time units that has elapsed. We
represent that using BDDs, where the values for x and y follow the previous conven-
tions, with the bits x1 . . .xk and y1 . . .yk encoding the enumerations for the values for
x and y, respectively, and the bits t1, . . . , tm that represent the time passed since their
introduction.

We will also use the following BDD constructions: rename(B, x, y) renames the
bits x1 . . .xk in the BDD B as y1 . . .yk and BDD0(x) is a BDD where all the xi bits are a
constant 0, representing the Boolean expression ¬x1∧ . . .∧¬xk.
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The update of the BDD τnow(ϕS≤δψ) is similar to the updates of the if statements in
the propositional case, applied to all the values of the free variables of this subformula
and uses the BDD constructed from the formula gtconst. While in the propositional case
we kept the values [−1,0, . . . ,δ], with−1 representing false, here we need only keep the
assignments for the free variables of the subformula that correspond to [0 . . .δ]. Tuples
of variable values that do not satisfy the time constraint are simply not represented by
the BDD. This simplifies the formalization.

τnow(ϕS≤δψ) := (now(ψ)
∧

BDD0(t))
∨
(¬now(ψ)

∧
now(ϕ)

∧
rename(∃t1 . . . tm (addconst(t, t ′,∆)

∧
¬gtconst(t ′,δ)

∧
τpre(ϕS≤δψ)), t ′, t)) ;

now(ϕS≤δψ) := ∃t1 . . . tm τnow(ϕS≤δψ)

That is, either ψ holds now and we reset the timer t to 0, or ψ does not hold now but
ϕ does, and the previous t value is determined by τpre(ϕS≤δψ)), to which we add ∆,
giving t ′, which must not be greater than δ. Then t is removed by quantifying over it,
and t ′ renamed to t (t ′ becomes the new t). The BDD for now(ϕS≤δψ) is obtained from
τnow(ϕS≤δψ) by projecting out the timer value.

Note that the Boolean operators
∧

and
∨

on BDDs represent join and cojoin, respec-
tively. This means that before the operator is applied, its two parameters are extended
to have the same BDD variable bits (where the missing bits are assigned to all possible
combinations).

The first-order algorithm for (ϕ Z≤δ ψ)

The update of the BDD now(ϕZ≤δψ) is, conceptually, similar case-wise to the updates
of the if statements of the propositional case, applied to all the values of the free vari-
ables of this formula.

τnow(ϕZ≤δψ) :=
now(ϕ)

∧
((pre(ψ)∧∆≤ δ∧EQUAL(t,∆))∨
(¬pre(ψ)

∧
rename(∃t1 . . . tm (addconst(t, t ′,∆)

∧
¬gtconst(t ′,δ)

∧
τpre(ϕZ≤δψ)), t ′, t)));

now(ϕZ≤δψ) := ∃t1 . . . tm τnow(ϕZ≤δψ)

Where EQUAL(t,c) = ∃z1 . . .zm (BDD0(z)
∧

addconst(z, t,c)), expressing that t is
equal to c by adding z = 0 to c to obtain t. The formula says that ϕ must hold now
and one of two cases must hold. In the first case, ψ holds in the previous state, ∆ ≤ δ,
and t is initialized to ∆. In the second case, ψ does not hold in the previous state, and
(using the same procedure as for the previous subformula) the previous t value is deter-
mined by τpre(ϕZ≤δψ), to which we add ∆, giving t ′, which must not be greater than
δ. Then t is removed by quantifying over it, and t ′ renamed to t (t ′ becomes the new t).
Note that ∆ ≤ δ is a Boolean condition, and, depending on its value, can be translated
into the BDD representing the constants true or false.
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The first-order algorithm for (ϕS>δψ)

Monitoring the subformula (ϕS>δψ) is, conceptually, similar case-wise to the proposi-
tional case.

τnow(ϕS>δψ) :=
(now(ψ)

∧
(¬pre(ϕS>δψ)

∨
¬now(ϕ))

∧
BDD0(t))

∨
(now(ϕ)

∧
rename(previous, t ′, t))

where previous = ∃t1 . . . tm (τpre(ϕS>δψ)
∧
((¬gtconst(t,δ)

∧
addconst(t, t ′, ∆))

∨
(gtconst(t, δ)

∧
EQUAL(t ′,δ+1))));

now(ϕS>δψ) := ∃t1 . . . tm (τnow(ϕS>δψ)
∧

gtconst(t,δ))

When ψ currently holds and either ϕS>δψ did not hold in the previous state or ϕ does
not hold now, we reset the timer t to 0. When ϕ holds we compute t ′ using the where-
clause as follows and then rename it to t: t takes its value from τpre(ϕS>δψ), which
is calculated based on the previous step. This means that (ϕS>δψ) held in the previous
step. If t was then not greater than δ, we add ∆ to t to obtain t ′. Otherwise (t was already
greater than δ), we set t ′ to δ+1 to reduce the size of the time values we have to store.

6 Implementation and Evaluation

6.1 Implementation

The DEJAVU tool, previously presented in [19] for the untimed case, was extended to
capture the extension of the first-order LTL logic with time. The DEJAVU tool assumes
that each state contains one8 ground predicate, called an event. The tool, programmed
in Scala, reads a specification containing one or more properties, and generates a Scala
program, which can be applied to a log file containing events9 in CSV (Comma Sepa-
rated Value) format. The generated monitor program produces a verdict (true or false)
for each event in the log, although only failures are reported to the user. It uses the
JavaBDD package [24] for generating and operating BDDs. As an example, consider
the property (7) from Example 2. The generated monitor uses an enumeration of the
subformulas of the original formula in order to evaluate the subformulas bottom up for
each new event. Figure 3 (right) shows the decomposition of the formula into subfor-
mulas (an Abstract Syntax Tree - AST), indexed by numbers from 0 to 8, satisfying the
invariant that if a formula ϕ1 is a subformula of a formula ϕ2 then ϕ1’s index is bigger
than ϕ2’s index. The evaluation function of the generated monitor (∼ 900 LOC in total),
which is applied for each event, is shown in Figure 3 (left). In each step the evaluate
function re-computes the now array from highest to lowest index, and returns true (ok)
iff now(0) is not BDD(⊥).

8 This restriction from the theory and algorithm presented above is made because our experience
shows that this is by far the most common case.

9 The tool can also be applied for online monitoring with some small adjustments.
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def evaluate (): Boolean = {
now(8) = build("dis")(V("m"),V("p"))
now(7) = build("fail")(V("m"))
now(6) = now(7).not()
now(5) = (now(8).and(zeroTime)).or(

now(6).and(pre(5))
.and(DeltaBDD).and(deltaBDD)
.and(addConst(t,tp,D,c))
.and(gtConst(tp,d).not ())
. exist (var d).exist (var D)
. exist (var c).exist (var t)
.replace(tp to t map)

)
now(4) = now(5).exist(var t)
now(3) = now(4).exist(var p)
now(2) = build("suc")(V("m"))
now(1) = now(2).not().or(now(3))
now(0) = now(1).forAll (var m)
val error = now(0).isZero
tmp = now; now = pre; pre = tmp
! error

}

0 : Forall m . suc(m) -> Exists p . ExistsTime . !fail(m) S[<=3] dis(m,p)

1 : suc(m) -> Exists p . ExistsTime . !fail(m) S[<=3] dis(m,p)

2 : suc(m) 3 : Exists p . ExistsTime . !fail(m) S[<=3] dis(m,p)

4 : ExistsTime . !fail(m) S[<=3] dis(m,p)

5 : !fail(m) S[<=3] dis(m,p)

6 : !fail(m) 8 : dis(m,p)

7 : fail(m)

Fig. 3: Monitor (left) and AST (right) for the property.

6.2 Evaluation

We have performed an evaluation of DEJAVU by verifying variants of the properties
shown in Figure 4 on a set of traces of varying length and structure. Each property is
verified with, and without, time constraints. The command property is the previously
discussed property (7) in Example 2. The access property is similar to a property eval-
uated in [19]. It states that if a file f is accessed by a user u, then the user should have
logged in within 50 time units and not yet logged out, and the file should have been
opened within 50 time units and not yet closed. The next properties concern operations
of the Mars rover Curiosity [28]. The boots property concerns booting of instruments
(passed as event parameters). A boot is initiated by a boot-start and terminated by a
boot-end. The property states that for any instrument, we do not want to see a double
boot (a boot followed by a boot), where the boots last longer than 20 seconds, and where
the distance between the boots is less than 5 seconds. Finally, the mobraces and arm-
races properties follow the same pattern but for two different constants. The mobraces
property states that during the execution of the command MOB PRM (a dispatch of the
command followed by the success of the command), which reports mobility parame-
ters to ground; there should be no error in radio transmission of telemetry to ground.
In addition the command must succeed in no more than 5 seconds. The armraces prop-
erty states the same for the ARM PRM command that transmits robotic arm parameters
to ground. These two last properties in fact reflect a known (benign) race condition in
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the software of the Curiosity rover, caused when a thread servicing the radio is starved
and generates the warning tr err which indicates missing telemetry. This happens be-
cause the thread is preempted by higher priority threads that are processing one of two
commands MOB PRM and ARM PRM.

prop commands : Forall m . suc(m)→ Exists p . ! fail (m) S[<=50] dis(m,p)

prop access : Forall u . Forall f .
access (u, f ) → ((! logout (u) S[<=50] login(u)) & (! close ( f ) S[<=50] open(f)) )

prop boots : ! Exists i . (boot e(i) & !P[<=20] boot s(i) &
@ (!boot e(i) S (boot s(i ) & (!boot e(i) S[<=5] (boot e(i) &
!P[<=20] boot s(i) & @ (!boot e(i) S boot s(i ) ) ) ) ) ) )

prop mobraces : suc("MOB_PRM")→ (P[<=5] dis("MOB_PRM") &
@ (!( suc("MOB_PRM") | Exists msg . tr err (msg)) S dis ("MOB_PRM")))

prop armraces : suc("ARM_PRM")→ (P[<=5] dis("ARM_PRM") &
@ (!( suc("ARM_PRM") | Exists msg . tr err (msg)) S dis ("ARM_PRM")))

Fig. 4: Evaluation properties.

Table 1 shows the results of the evaluation, performed on a Mac Pro laptop, running
the Mac OS X 10.14.6 operating system, with a 2.9 GHz Intel Core i9 processor and 32
GB of memory. Each property is evaluated on one or more traces, numbered 1-15. Six
of these traces are taken from [19] (traces nr. 1, 2, 3 and 7, 8, 9), and which are very data
heavy, requiring lots of data to be stored by the monitor. The remaining traces require
storing less information (and perhaps are more realistic). Traces 1-13 were generated for
the experiment and are artificial, stress testing DEJAVU. Traces 14 and 15 are real logs
of events reported by the Mars Curiosity rover, transmitted to JPL’s ground operations
(trace 14 is a prefix of the longer trace 15). For each trace is shown length in number
of events, depth in terms of how many data values must be stored by the monitor, and
whether it was verified without time constraints (no constr.) or with time constraints.
A depth for the ACCESS property of e.g. 5,000 can mean that there at some point has
been 5,000 users that have logged in and not yet logged out. Events in the logs 1-12
have consecutive clock values 1, 2, 3, . . .. Resulting trace analysis times are provided
in minutes and seconds. In addition the factor of slowdown is shown for verifying with
time constraints compared to verification without time constraints (execution time with
constraints divided by execution time without constraints).

The interpretation of the results is as follows. By observing the factor numbers in the
rightmost column, it is clear that there is a cost to monitoring timed properties compared
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Property Trace nr. Trace length Depth Time constraint Time Factor

COMMANDS
1 11,004 8,000 no constr. 1.0s

50 1.8s 1.8
2 110,004 80,000 no constr. 1.7s

50 13.2s 7.8
3 1,100,004 800,000 no constr. 9.3s

50 2m5.8s 13.5
4 10,050 25 no constr. 0.7s

50 1.0s 1.4
5 100.050 25 no constr. 1.1s

50 1.8 1.6
6 1,000,050 25 no constr. 2.6s

50 5.9s 2.3

ACCESS
7 11,006 5000 no constr. 0.9s

50 3.7s 4.1
8 110,006 50,000 no constr. 2.2s

50 16.7s 7.6
9 1,100,006 500,000 no constr. 15.2s

50 3m53.9s 15.4
10 10.100 25 no constr. 0.8s

50 1.7s 2.1
11 100,100 25 no constr. 1.1s

50 8.4s 7.6
12 1,000,100 25 no constr. 2.6s

50 1m15.9s 29.2

BOOTS
13 10,012 low no constr. 0.2s

2 0.4s 2.0
20 0.8s 4.0
50 5.1s 25.5
60 7.2s 36.0

MOB + ARM RACES
14 50,000 low no constr. 0.3s

10 0.7s 2.3
60 1.0s 3.3

15 96,795 low no constr. 0.5s
10 1.0s 2.0
60 1.6s 3.2

Table 1: Evaluation data. The factors (rightmost column) show how much slower veri-
fication of formulas with time constraints are compared to the untimed version of those
formulas.

to monitoring properties without time constraints. This holds for all traces. Furthermore,
the larger the time constraints, the more calculations the monitor has to perform on bit
strings representing time values. The performance of DEJAVU is acceptable for time
constraints that require no more than 7 bits of storage. We observed, however, that
going beyond 7 bits causes the monitor execution to become considerably slower. This
corresponds to time constraints beyond 63.5 (note that for a time constraint of δ one
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needs log2(2δ+1) bits, see page 13). The reason for this is not understood at the time
of writing, and remains to be explored.

7 Conclusions

We extended the theory and implementation of runtime verification for first-order past
(i.e., safety) temporal logic from [19] to include timing constraints. The untimed al-
gorithm was based on representing relations over data values using BDDs. The use of
BDDs over enumerations of the data values as integers, and subsequently, bit vectors,
allowed an efficient representation that was shown, through an implementation and ex-
periments, to allow the monitoring of large execution traces.

This was extended here to allow timing constraints, as in (ϕS≤δϕ), (ϕZ≤δϕ) and
(ϕS>δϕ), with each event in the input trace including an integer clock value. The addi-
tion of timing constraints was done by extending the BDDs to represent relations over
both enumeration of data and timer values. This required the use of nontrivial operations
over BDDs that allow updating relations while performing arithmetic operations on the
timer values. We extended the tool DEJAVU, and reported on some of the experimental
results performed with time constraints.
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