
Vol.:(0123456789)

Formal Methods in System Design
https://doi.org/10.1007/s10703-023-00429-8

1 3

On monitoring linear temporal properties

Klaus Havelund1 · Doron Peled2

Received: 14 May 2022 / Accepted: 17 April 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Runtime verification facilitates monitoring the executions of a system against temporal
properties, commonly to detect violations. Not every temporal property is fully monitora-
ble however: in some cases, a positive or negative verdict on the monitored execution does
not depend on any finite prefix of it. We study the problem of monitoring properties written
in linear temporal logic. We provide a complete classification of the temporal properties
based on the ability to provide positive and/or negative verdicts in finite time.

Keywords Runtime verification · Monitorability · Property classification · Linear temporal
logic

1 Introduction

Model Checking [8, 12, 32] provides algorithms and methods for the exhaustive verifica-
tion of (models of) finite state systems against their formal specification. It has also been
extended to deal, to some limited extent, with infinite state systems, e.g., for a single stack
machine [7]. Runtime verification (RV) facilitates the direct monitoring of the execution
of a system, checking it against a formal specification. This can be useful for, e.g., test-
ing a system before it is deployed, to reduce potential errors, as well as monitoring the
system after its deployment in order to detect or avert failures. RV can be applied directly
to a monitored execution, possibly as it happens, and it is not limited to monitoring finite
state systems. On the other hand, a verdict, positive (whether the monitored property holds)
or negative (whether it fails to hold) needs to be given after inspecting a finite prefix of
the execution. While the complexity of RV is quite reasonable, in comparison with model
checking, sampling executions with RV techniques can only increase the belief of reliabil-
ity of the monitored system: it is not an exhaustive check, rather, one execution is checked
at a time, hence it does not provide the same level of guarantee as model checking.

 * Doron Peled
 doron.peled@gmail.com

 Klaus Havelund
 klaus.havelund@jpl.nasa.gov

1 Laboratory for Reliable Software, Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA 91109, USA

2 Department of Computer Science, Bar Ilan University, 5290002 Ramat Gan, Israel

http://orcid.org/0000-0002-7280-6578
http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-023-00429-8&domain=pdf

 Formal Methods in System Design

1 3

RV can be applied to improve the reliability of safety critical and mission critical
systems, including safety as well as security aspects, and can more generally be applied
for processing streaming information. Often, the stream of information is not a priori
limited to a specific length, and the monitored property is supposed to follow the execu-
tion for as long as it is running. It is essential to keep the incremental time complexity,
required to update the monitoring algorithm between successively observed events, as
small as possible, in order to be able to follow the speed of the monitored execution.

The RV specification properties, against which the system is monitored, are often
given in linear temporal logic (LTL) [27]. These properties are traditionally interpreted
over infinite execution sequences (the monitored system keeps emitting events). But for
runtime verification to be useful, it is necessary to be able to provide a verdict after
observing a finite prefix of an execution sequence, (also referred to as just a prefix). For
example, the property □p (for some atomic proposition p), which asserts that p always
holds throughout the execution, can be refuted by a runtime monitor, i.e., demonstrating
a negative verdict, if p does not hold in some observed event. At this point, no matter
which way the execution is extended, the property will not hold. However, no finite
prefix of an execution can guarantee a positive verdict that □p holds, since no matter
how long we have observed that p has been holding, it may still stop holding in some
future. In a similar way, the property ◊p cannot be refuted, since p may hold at any time
in the future; on the other hand, once p holds, we already establish that the property is
satisfied, independent on any continuation, and we can issue a positive verdict. For the
property (□p ∨◊q) we may not have a verdict at any finite time when monitoring the
execution where all the observed events satisfy both p and ¬q . On the other hand, we
may never “lose hope” to have such a verdict, as a later state satisfying q will result in
a positive verdict. For the property □◊p we can never provide a verdict in finite time:
for whatever happens, even if p holds an infinite number of times, we cannot guarantee
or refute that this property holds when observing any finite prefix of an execution. The
monitorability problem of a temporal property was studied in [5, 14, 31]. There, a prop-
erty is considered to be monitorable if after monitoring any finite prefix, we still have a
possibility to obtain a positive or a negative verdict in a finite number of steps.

We refine here the study of LTL monitorability by distinguishing cases where some
verdict is always possible, no verdict is ever possible, or some verdict is possible now,
but no verdict may be possible later, depending on the monitored prefix. We extend
Lamport’s safety and liveness classification of temporal properties with guarantee,
which is defined to be the dual of safety in [27], i.e., the negation of a safety property
is a guarantee property and vice versa, and morbidity, which we define as the dual of
liveness. To complete this classification to cover all possible temporal specifications, we
add another class, which we term quaestio. We study the relationship between this clas-
sification and monitorability. In particular, the safety class includes the properties whose
failure can be detected after a finite prefix, and the liveness properties are those where
one can never conclude a failure after a finite prefix.

We suggest some variants for runtime verification algorithms that take the refined
notions of monitorability into account before and during runtime verification. Equipped
with these algorithms, we can check what kind of verdicts one can expect a priori from
monitoring an execution against a given temporal specification, and can also update this
expectation during runtime when some verdicts are not possible anymore. In addition,
these algorithms can be used to decide whether a given specification is a safety, guaran-
tee, liveness, morbidity or quaestio property.

Formal Methods in System Design

1 3

1.1 Related work

 Alpern and Schneider [1] formalized Lamport’s definition of safety and liveness. Sistla
[34] showed a PSPACE algorithm for checking safety, and an EXPSPACE algorithm
for checking liveness. Checking liveness was shown to be in EXPSPACE-complete in
[23]. Drissi-Kaitouni and Jard [11], as well as Kupferman and Vardi [24] studied the
problem of monitoring LTL properties for an execution sequence. Pnueli and Zaks [31]
proposed constructing compositional testers for runtime verification. They also con-
sidered the issue of monitorability of a property, requiring that any finite prefix can
be extended in a finite manner such that a positive or negative verdict can be reported
in finite time. Finally, they provided a tester based algorithm for checking whether an
observed finite prefix can be extended in a finite way to obtain a positive or a nega-
tive verdict. Fernandez, Jard, Jéron and Viho supported checking for availability of
future verdicts for a given test objective in the TGV test case generator [15]. Bauer,
Leucker and Schallhart [5] defined prefixes that cannot be finitely extended to obtain a
verdict for a temporal specification as ugly prefixes; then they defined a property to be
monitorable if it has no ugly prefixes. They showed that safety and guarantee proper-
ties are monitorable, but there are some other monitorable properties that are not in
these classes. Diekert and Leucker [10] studied monitorability and its connection to
safety and liveness using topological characterizations. Falcone, Fernandez and Mou-
nier [13] considered the Manna-Pnueli hierarchy of properties and showed that some
of the classes of this hierarchy have both monitorable and non-monitorable properties.

1.2 Contribution

 We revisit the classification of properties according to safety, guarantee and liveness
after completing it to cover all the temporal properties. We add new classes of proper-
ties. The first one we call morbidity; it is the dual class to liveness, i.e., a negation of
a liveness property is a morbidity property and vice versa. To complete the space of
temporal properties, we add another class called quaestio.

We provide an alternative definition for these classes that is based on the possible
results one can obtain during runtime monitoring; this depends on whether one can
always/sometimes/never obtain a positive or a negative verdict based on a finite trace.
Then we study a refinement of runtime monitorability with respect to these classes and
their intersections.

We propose an assortment of algorithms for runtime verification, which extend the
classical LTL runtime verification algorithm. These variants allow us to decide a priori
what kind of verdicts are expected from a property, and also update the possibilities
as the monitored execution unfolds. Because of the close connection between the dis-
cussed classification and notions of monitorability, they can also be used to identify
the class of a given LTL specification.

This paper is an extended version of the preliminary paper version in [29]. We show
the relation of the classification presented here with the Manna-Pnueli hierarchy. We
provide more details about the classification, analysing how prefixes can be extended
to move between classes of the hierarchy.

 Formal Methods in System Design

1 3

1.3 Overview of paper

The paper is organized as follows. Section 2 provides some preliminary introductions to
selected concepts, including runtime verification, linear temporal logic and monitorability.
Section 3 presents our refinement of Lamport’s classification of temporal properties, asso-
ciated with the concept of monitorability. Section 4 introduces algorithms for determining
monitorability and classification of temporal properties. Section 5 concludes the paper.

2 Preliminaries

2.1 Runtime verification

Runtime verification (RV) [2, 18] very generally refers to the use of rigorous (formal) tech-
niques for processing execution traces emitted by a system being observed. In general, the
purpose of RV is to evaluate the state of the observed system. Since only single executions
(or collections thereof) are analyzed, RV scales well compared to more comprehensive for-
mal methods, but of course at the cost of coverage. In runtime verification one is not con-
cerned with how to obtain various executions, as in e.g. test case generation. This reflects
a focus of attention (research) rather than a judgment of utility – test case generation is of
critical importance.

An execution trace is generated by the observed executing system, typically by instru-
menting the system to generate events when important transitions take place. Instrumen-
tation can be manual by inserting logging statements in the code, or it can be automated
using instrumentation software, such as e.g. aspect-oriented programming frameworks. In
the extreme case, an event can represent a complete view of the internal state of the system.
Processing can take place on-line, as the system executes, or off-line, by processing log
files produced by the system. In the case of on-line processing, observations can be used to
control (shield) the monitored system [6].

Processing can take numerous forms. We focus here on specification-based runtime
verification, where an execution trace is checked against a property expressed in a formal
(usually temporal) logic. Expressed more formally, assume an observed system S, and
assume further that a finite execution of S up to a certain point is captured as an execu-
tion trace � = e1.e2. … .en , which is a sequence of observed events. Assume the type � of
events; then the RV problem can be formulated as constructing a program M ∶ �

∗
→ D ,

which when applied to the trace � , as in M(�) , returns some data value d ∈ D in a domain
D of interest. In specification-based RV, typically M is generated from a formal specifica-
tion, given e.g. as a temporal logic formula, a state machine, or a regular expression, and
d is a verdict in the Boolean domain (d ∈ �), or some extension of the Boolean domain as
discussed in [4], indicating whether the execution trace conforms to the specification.

However, RV should be perceived broadly, e.g. d can be a visualization of the execution
trace, a learned specification (specification mining), statistical information about the trace,
an action to perform on the running system S, etc. The problem can be even further gen-
eralized to computing a result from multiple traces, as e.g. done in specification learning
[20–22, 30] and statistical model checking [26], giving M the type M ∶ 2�

∗

→ D.
That execution trace is often unbounded in length, representing the fact that the

observed system “keeps running”, without a known termination point. Hence it is impor-
tant that the monitoring program is capable of producing verdicts based on (unbounded)

Formal Methods in System Design

1 3

finite prefixes of the execution trace observed so far. The remainder of the paper discusses
what kind of verdicts can be produced from finite prefixes given a specific property.

2.2 Linear temporal logic

The classical definition of linear temporal logic is based on future modal operators [27]
with the following syntax:

where p is a proposition from a finite set of propositions P, with U standing for until,
and ○ standing for next-time. One can also write false = ¬true , (� ∨ �) = ¬(¬� ∧ ¬�) ,
(� → �) = (¬� ∨ �) , ◊� = (true U �) (for eventually �) and □� = ¬◊¬� (for always �).

An event e is a subset of the propositions in P. These are the propositions that hold in
that event. A trace � = e0.e1.e2 … is an infinite sequence of events. We denote the event ei
in � by �(i) . LTL formulas are interpreted over an infinite sequence of events. LTL seman-
tics is defined as follows:

• 𝜎, i ⊧ true.
• 𝜎, i ⊧ p iff p ∈ �(i).
• 𝜎, i ⊧ ¬𝜑 iff not 𝜎, i ⊧ 𝜑.
• 𝜎, i ⊧ (𝜑 ∧ 𝜓) iff 𝜎, i ⊧ 𝜑 and 𝜎, i ⊧ 𝜓.
• 𝜎, i ⊧ ○𝜑 iff 𝜎, i + 1 ⊧ 𝜑.
• 𝜎, i ⊧ (𝜑U𝜓) iff for some j ≥ i , 𝜎, j ⊧ 𝜓 , and for each k such that i ≤ k < j , 𝜎, k ⊧ 𝜑.

Then 𝜎 ⊧ 𝜑 when 𝜎, 0 ⊧ 𝜑.

2.3 Past propositional temporal logic

We continue with a standard definition of past-time propositional linear time temporal
logic PLTL. Let P be a finite set of propositions. Then the syntax of PLTL is as follows:

where p ∈ P . We can use the following additional operators: false = ¬true ,
(� ∨ �) = ¬(¬� ∧ ¬�) , (� → �) = (¬� ∨ �) , P � = (trueS�) , H � = ¬P ¬�.

The operator ⊖ (for previous-time) is the past mirror of the ○ operator. Similarly, P (for
Previous) is the past mirror of ◊ , H (for history) is the past mirror of □ and S (for Since) is
the past mirror of U.

A trace � = e0.e1 … en is a finite sequence of events, consisting each of a subset of the
propositions P. We denote the length of the sequence of events � = e1.e2 … en as ∣�∣ = n.

Semantics. The semantics of a PLTL formula � with respect to a finite trace � is defined
as follows:

• 𝜎, i ⊧ true.
• 𝜎, i ⊧ p iff p ∈ �(i).
• 𝜎, i ⊧ (𝜑 ∧ 𝜓) iff 𝜎, i ⊧ 𝜑 and 𝜎, i ⊧ 𝜓.
• 𝜎, i ⊧ ¬𝜑 iff not 𝜎, i ⊧ 𝜑.
• 𝜎, i ⊧ ⊖𝜑 iff ∣𝜎∣ > 1 and 𝜎, i − 1 ⊧ 𝜑.

�∶∶=true ∣ p ∣ (� ∧ �) ∣ ¬� ∣ (� U �) ∣ ○ �

𝜑∶∶=true ∣ p ∣ (𝜑 ∧ 𝜑) ∣ ¬𝜑 ∣ (𝜑S𝜓) ∣ ⊖𝜑

 Formal Methods in System Design

1 3

• 𝜎, i ⊧ (𝜑S𝜓) iff for some j ≤ i , 𝜎, j ⊧ 𝜓 , and for each k such that j < k ≤ i , 𝜎, k ⊧ 𝜑.

Then, for a finite sequence � with length ∣�∣ = n , we define 𝜎 ⊧ 𝜑 iff 𝜎, n ⊧ 𝜑 . We define
four extensions of PLTL, which are prefixed with one or two future operators from {◊, □}
and may further contain only past operators. All extensions are interpreted over infinite
sequences:

• □LTL, which consists of PLTL formulas prefixed with the future □ operator.
• ◊LTL, which is, similarly, PLTL formulas prefixed by the ◊ operator.
• □◊LTL, which consists of past formulas prefixed with □◊.
• ◊□LTL, which consists of past formulas prefixed with ◊□.

Note the duality between the first two restricted versions of LTL, □LTL and ◊LTL: for
every formula � , ¬□� = ◊¬� . Thus, the negation of a □LTL property is a ◊LTL prop-
erty. Similarly, for every � , ¬□◊� = ◊□¬� , making the latter two restricted versions of
LTL also dual. Thus, the negation of a □◊LTL property is a ◊□LTL property.

2.4 Monitorability

Bauer, Leucker and Schallhart [5] define three categories of observed sequences of events
over 2P.

• A good prefix is one where all its extensions (with infinite sequences of elements from
2P) satisfy the monitored property �.

• A bad prefix is one where none of its infinite extensions satisfies �.
• An ugly prefix cannot be extended into a good or a bad prefix.

When identifying a good or a bad finite prefix, we can stop tracing the execution and can
announce that the monitored property is satisfied or failed, respectively. After an ugly pre-
fix, satisfaction or refutation of � depends on the entire infinite execution, and cannot be
determined in finite time.

Monitorability of a property � is defined in [5] as the lack of ugly prefixes for the prop-
erty � . This definition is consistent with an early definition in [31].

Ugly prefixes cannot occur in an execution satisfying a safety property [5]. To see this,
observe that an ugly prefix � cannot be extended into a good or bad prefix, hence it must
have both an infinite extension that satisfies the property, and, in particular, another one �
that does not satisfy it. But then there is no prefix of � that is bad, otherwise � would not be
ugly. But this contradicts the definition of a safety property.

Thus, every safety property is monitorable. Because guarantee properties are the nega-
tions of safety properties, one obtains using a symmetric argument that every guarantee
property is also monitorable.

3 Characterizing temporal properties according to monitorability

Safety and liveness temporal properties were defined informally on infinite execution
sequences by Lamport [25] as something bad cannot happen and something good will
happen. These informal definitions were later formalized by Alpern and Schneider [1].

Formal Methods in System Design

1 3

Guarantee properties where used in an orthogonal characterization by Manna and Pnueli
[27]; guarantee properties are the dual of safety properties, that is, the negation of a safety
property is a guarantee property and vice versa. We add to this picture morbidity proper-
ties, which is the dual class of liveness properties.

• safety: A property � is a safety property, if for every execution that does not satisfy
it, there is a finite prefix such that completing it in any possible way into an infinite
sequence would not satisfy �.

• guarantee (co-safety): A property � is a guarantee property, if for every execution sat-
isfying it, there is a finite prefix such that completing it in any possible way into an
infinite sequence satisfies �.

• liveness: A property � is a liveness property if every finite sequence of events can be
extended into an execution that satisfies �.

• morbidity (co-liveness): A property � is a morbidity property if every finite sequence of
events can be extended to an execution that violates �.

By definition, safety and guarantee properties, corresponding in LTL to the classes □LTL
and ◊LTL defined in 2.3, are dual. That is, the negation of a safety property is a guarantee
property, and vice versa. Similarly, liveness and morbidity are dual.

Online runtime verification of LTL properties inspects finite prefixes of the execution.
Hence, it may sometimes provide only a partial verdict on the satisfaction and violation of
the inspected property [4, 28]. This motivates providing three kinds of verdicts:

• refuted (or failed or negative) when the current prefix cannot be extended in any way
into an execution that satisfies the specification,

• established (or satisfied or positive) when any possible extension of the current prefix
satisfies the specification, and

• undecided when the current prefix can be extended to satisfy the specification but also
extended to satisfy its negation.

Tracing a safety property, there exists always a bad (hence, finitely traceable) prefix if it
fails to hold in an execution. Correspondingly, there exists always a good (hence, again,
finitely traceable) prefix when an execution satisfies a guarantee property.

Each temporal property is a conjunction of a liveness and a safety property, as shown by
Alpern and Lamport in [1]. Due to the duality between safety and guarantee (a negation of
a safety property is a guarantee property, and vice versa) and between liveness and morbid-
ity (a negation of a liveness property is a morbidity property and vice versa), we immedi-
ately obtain, through De-Morgan Laws that every temporal property is a disjunction of a
guarantee and a morbidity property.

Safety, guarantee, liveness and morbidity can be seen as characterizing finite monitora-
bility of temporal properties: if a safety property is violated, there will be a finite bad prefix
witnessing it; on the other hand, for a liveness property, one can never provide such a finite
negative evidence. We suggest the following alternative definitions of classes of temporal
properties. The adverbs always and never in the definitions of the classes below correspond
to for all the executions and for none of the executions, correspondingly.

• AFR (safety): Always Finitely Refutable: for each execution where the property
does not hold, refutation can be identified after a finite (bad) prefix, which cannot be
extended to an (infinite) execution that satisfies the property.

 Formal Methods in System Design

1 3

• AFS (guarantee): Always Finitely Satisfiable: For each execution where the prop-
erty is satisfied, satisfaction can be identified after a finite (good) prefix, where each
extension of it will satisfy the property.

• NFR (liveness): Never Finitely Refutable: For no execution, can a bad prefix be
identified after a finite prefix. That is, every finite prefix can be extended into an
(infinite) execution that satisfies the property.

• NFS (morbidity): Never Finitely Satisfiable: For no execution can a good prefix be
identified after a finite prefix. That is, every finite prefix can be extended into an
(infinite) execution that does not satisfy the property.

It is easy to see that the definitions of the classes AFR and safety are the same and so are
those for AFS and guarantee. We will show the correspondence between NFR and live-
ness. A liveness property � is defined to satisfy that any finite prefix can be extended to
an execution that satisfies � . The definition of the class NFR only mentions prefixes of
executions that do not satisfy � ; but for prefixes of executions that satisfy � this trivially
holds. The correspondence between NFS and morbidity is shown in a symmetric way.

The above four classes of properties, however, do not cover the entire set of possible
temporal properties, independent of the actual formalism that is used to express them.
The following two classes complete the classification.

• SFR: Sometimes Finitely Refutable: for some infinite executions that violate the
property, refutation can be identified after a finite (bad) prefix; for other infinite exe-
cutions violating the property, this is not the case.

• SFS: Sometimes Finitely Satisfiable: for some infinite executions that satisfy the
property, satisfaction can be identified after a finite (good) prefix; for other infinite
executions satisfying the property, this is not the case.

Let � be any property expressible in LTL. Then � represents the set of executions sat-
isfying it. It is clear by definition that � must be either in AFR, SFR or in NFR (since
this covers all possibilities). It also holds that � must be in either AFS, SFS or in NFS.
Every temporal property must belong then to a class XFR, where X stands for A, S or
N, and also to a class XFS, again with X is A, S or N. We call it the FR/FS classifica-
tion. The FR/FS classification refines the classification of properties as safety, guar-
antee, liveness and morbidity, in the sense of further dividing these into subclasses as
shown in Fig. 1. Specifically, it identifies the intersections between these classes. Below
we give examples for the nine combinations of XFR and XFS, appearing in clockwise
order according to Fig. 1.

• SFR ∩ NFS: (◊p ∧□q)
• AFR ∩ NFS: □p

• AFR ∩ SFS: (p ∨□q)
• AFR ∩ AFS: ○p

• SFR ∩ AFS: (p ∧◊q)
• NFR ∩ AFS: ◊p

• NFR ∩ SFS: (□p ∨◊q)
• NFR ∩ NFS: □◊p

• SFR ∩ SFS: ((p ∨□◊p) ∧○q)

These nine possibilities are pairwise disjoint.

Formal Methods in System Design

1 3

The set of all properties Prop is not covered by safety, guarantee, liveness and morbid-
ity. The missing properties are in SFR ∩ SFS. We call this latter class of properties Quaes-
tio (Latin for question).

3.1 The Manna and Pnueli characterization and monitorability

Manna and Pnueli [27] presented a different characterization of families of temporal prop-
erties, which is orthogonal to Lamport’s safety/liveness characterization, and its extension
presented in this section. They showed a correspondence between the LTL safety and the
logic □LTL, and between the LTL guarantee properties as ◊LTL. They presented a hier-
archy of families of properties that can express any LTL property as shown in Fig. 2. They
also showed a corresponding topological characterization.

The safety properties are identified by Manna and Pnueli with the □LTL properties, that
is, each (future) LTL property can be written equivalently in □LTL. Similarly, guarantee
properties can be written as ◊LTL properties. It is easy to see that guarantee properties are
the complements of safety properties. These two classes are the same as the classes with
the same names presented earlier in this section. The obligation class consists of Boolean
combinations of safety (and, consequently, guarantee properties). Further up the hierarchy
are response properties, identified by Manna and Pnueli with the syntactic class of proper-
ties □◊LTL, and persistence with ◊□LTL. These two classes of properties are also nega-
tions of each other. Finally, obligation properties are Boolean combinations of response
(and, consequently, also persistence properties). As we move up the hierarchy (with the
arrows in Fig. 2) the upper classes include the lower classes.

Bauer, Leucker and Schallhart [5] showed that safety and guarantee properties are monit-
orable. Falcone, Fernandez and Mounier [13] showed that obligation properties are monitor-
able. This was done by stating1 that monitorability is closed under the Boolean operators.

Fig. 1 Classification of proper-
ties: safety, guarantee, liveness,
morbidity and quaestio

1 This was done without a proof, hence, for completeness we detail the proof here.

 Formal Methods in System Design

1 3

Lemma 1 Monitorability is closed under the Boolean operators.

Proof First, observe that monitorability is closed under negation, since by negating a prop-
erty good and bad prefixes are switched with each other and other prefixes remain unde-
cided w.r.t. the monitored property. Now, consider the conjunction (� ∧ �) of two monitor-
able properties � and � . Any bad prefix of either � or � is a bad for the conjunction. Now,
assume a prefix that does not have a bad extension for either � or � . Then it must have a
good prefix for each one of them. Since a good prefix can only be extended to a good pre-
fix, the longer of the prefixes is good for the conjunction. The argument for the disjunction
of properties is symmetric. ◻

In [13] examples of a non-monitorable response property (written in plain LTL
as □(r → ◊q)) and of a monitorable response property (written in plain LTL as
□((r → ◊q) ∧ ¬(r ∧○r)) are given.

3.2 Refining monitorability

Before any verdict, positive or negative, on the satisfiability of a temporal formula � is
given, the current inspected execution prefix can be extended to satisfy or falsify the prop-
erty. There are four possibilities into which we can extend a finite sequence:

Fig. 2 Classification of proper-
ties according to classes of
properties

Formal Methods in System Design

1 3

• fin sat: a good prefix, i.e., where all further extensions satisfy the property.
• inf sat: an infinite extension satisfying the property, where none of its prefixes is a

good prefix.
• fin ref: a bad prefix, i.e., where all further extensions do not satisfy the property.
• inf ref: an infinite extension that does not satisfy the property, where none of its pre-

fixes is a bad prefix.

The definitions of the classes NFS, SFS, AFS, NFR, SFR and AFR directly dictates which
combination of the above four possibilities are initially available for the different cases.
For example, for the class NFR, executions that do not satisfy the property can only be of
type inf ref sequences, since no execution can be finitely refutable. For the class SFS, we
have both executions that can be finitely satisfiable, and executions that satisfy the prop-
erty that do not have good prefixes. The class NFR∩SFS contains executions of types inf
ref, inf sat and fin sat. As the monitoring of an execution progresses, the possibilities to a
achieve a positive or a negative verdict may diminish, and similarly the possibility to have
an infinite extension that satisfies or falsifies the property. This is indicated in Fig. 3 using
the arrows. For each one of the nine intersections between classes of properties (NFR,
SFR and AFR intersection with NFS, SFS and AFS), we indicate which one of the pos-
sibilities using arrows between areas that correspond to different classes of properties. A
prefix extended by a single event may sometimes progress according to a pair of consecu-
tive arrows at once.

Now, when the only possibilities that remain are by refutation or satisfaction by an
infinite sequence, the current sequence is necessarily ugly. This makes the properties
in NFS ∩ NFR non-monitorable. However, some properties in the classes NFS ∩ SFR ,
SFS ∩ NFR and SFS ∩ SFR are also non-monitorable, since after some prefix, refutation
or satisfaction depends on the entire infinite execution. This is demonstrated in the fol-
lowing table.

Fig. 3 Classification of proper-
ties according to classes of prop-
erties: arrows represent how a
prefix can evolve from one class
to another when extended

 Formal Methods in System Design

1 3

Class Monitorable example Non-monitorable example

SFR ∩ SFS ((◊r ∨□◊p) ∧○q) ((p ∨□◊p) ∧○q)

SFR ∩ NFS (◊p ∧□q) (□◊p ∧○q)

NFR ∩ SFS (□p ∨◊q) ((¬p U◊(p ∧○¬p)) ∨□◊p)

Consider for example the property ((p ∨□◊p) ∧○q) , which is in SFR ∩ SFS. If p
holds in the first event, then there are the following extensions: a good one, where q
holds in the second event, and a bad one if it does not hold. On the other hand, if p does
not hold in the first event, then there is a possibility of extending the situation into a bad
prefix, if q does not hold in the second event. Otherwise, we obtain an ugly prefix, since
no good or bad extension is possible anymore.

We propose that RV can still be applied for non-monitorable properties if at least
initially some verdicts can be made. We refine the definition of monitorability into the
following categories as follows. Correspondingly, in Fig. 4, the dark areas correspond to
the non-monitorable properties.

• A property is monitorable if it cannot have an ugly prefix. This corresponds to the
definition of monitorability in [5, 31]. Safety and guarantee properties are univer-
sally monitorable. But as demonstrated above, some of the properties in SFR ∩ SFS,
SFR ∩ NFS and NFR ∩ SFS are also monitorable. Checking monitorability can be
done using Algorithm 3 in Sect. 4.3.

• A property has zero monitoring information if there is no information that can be
obtained by monitoring it any finite amount of time. The properties in the intersection
of liveness and morbidity are those that have zero monitoring information. Checking
that a property has zero monitoring information can be done by applying algorithm 3
(or Algorithm 4 for checking that the property is both in NFR and in NFS).

• A property is weakly monitorable if there exist ugly prefixes, but not all the finite pre-
fixes are ugly. In this case, there is still information that we can obtain by monitoring
it, but at times, we may observe an ugly prefix, from which no interesting information

Fig. 4 Classification of proper-
ties according to monitorability:
filled space correspond to non-
monitorable properties

Formal Methods in System Design

1 3

can be concluded in finite amount of time. Algorithm 3 in Sect. 4 can be used to check
that a property is non-monitorable, yet also not in zero monitoring information. In this
case, instead of using Algorithm 1 for performing the runtime verification, one can use
Algorithm 2 to also check whether some verdict is still possible for the current prefix,
abandoning the runtime verification when this is not the case. The semi-filled areas in
Fig. 4 represent the weakly monitorable properties.

Consider the property (p ∨ (¬q U (p ∧□◊r))) . This property is in SFS ∩ SFR, i.e.,
quaestio. It is non-monitorable, as demonstrated by the ugly prefix {}.{p} (i.e., all the prop-
ositions are false in the first event, and only p is true in the second event), after which no
verdict can be given. We consider it to be weakly monitorable. A priori, we can expect both
a positive or a negative verdict: if p holds in the first event, then a positive verdict is given;
if q holds before p, then a negative verdict is given.

4 Runtime verification algorithms for monitorability

We present four algorithms related to monitorability of LTL propositions.

1. A description of the classical algorithm for runtime monitoring of LTL (or Büchi autom-
ata) properties [24].

2. An algorithm for check during runtime what kind of verdicts can still be produced given
the current prefix.

3. An algorithm for checking whether the property is monitorable.
4. An algorithm for checking the class of a given temporal property under the characteriza-

tion given in this paper.

4.1 Algorithm 1: Monitoring sequences using automata

Kupferman and Vardi [24] presented an algorithm for monitoring execution sequences
while providing a success (positive) or fail (negative) verdict of the checked property,
whenever a good or a bad prefix has already occurred, respectively.

For detecting good prefixes, we do the following:

1. Construct a Büchi automaton A¬� for ¬� , e.g., using the translation in [17]. This automa-
ton is not necessarily deterministic [36].

2. Using DFS, find the states of A¬� , from which one cannot reach a cycle that contains
an accepting state. This can be done by first removing, using Depth First Search (DFS)
the states that are unreachable from the initial states. Then, from each of the remaining
accepting states s, check using DFS whether a cycle through s is possible.

3. Checking for a positive (good) verdict for � , one maintains for each monitored prefix
the set of states that the automaton A¬� will reach after observing that input as follows:

• One starts with the set of initial states of the automaton A¬�.
• Given the current set of successors S and a newly occurring event e ∈ 2P that

extends the monitored prefix, the next set of successors S′ is set to the succes-
sors of the states in S according to the transition relation Δ of A¬� . That is,
S� = {s� ∣ s ∈ S ∧ (s, e, s�) ∈ Δ}.

 Formal Methods in System Design

1 3

• Reaching the empty set of states, the monitored sequence is good, and the property
must hold since the current prefix cannot be completed into an infinite execution
satisfying ¬�.

This is basically a subset construction and indeed we can construct a deterministic automa-
ton B� as follows.

• The initial state consists of the set initial states of A¬� that were not removed.
• The accepting state is the empty set of states.
• The transition relation is as described above.

Translating the formula ¬� into a Büchi automaton can result in an automaton A¬� of size
O(2∣�∣) . The size of the automaton B� is O(22

∣�∣

) , resulting in a double exponential explo-
sion from the size of the LTL property � . But in fact, we do not need to construct the entire
automaton B� a priori, and can avoid the double exponential explosion by calculating its
current state (which is a subset of the states of A¬�) on-the-fly, and update it with each
incoming event. A positive verdict is given when we reach the empty state. The size of a
state of B� is exponential in the size of � , thus, this is also the incremental complexity for
processing each monitored event. A single exponential explosion is also a lower bound
[24], as shown below.

Checking for a negative (bad) verdict for � is done using a symmetric construction,
first translating � into a Büchi automaton A� and then the deterministic automaton B¬� (or
calculating its states on-the-fly) using a subset construction symmetric to the above. Note
that A¬� is used to construct B� and A� is used to construct B¬� . Runtime verification of �
uses both automata for the monitored input, reporting a negative verdict if B¬� reaches an
accepting state, a positive verdict if B� reaches an accepting state, and an undecided verdict
otherwise. The algorithm guarantees to report a positive or negative verdict on the minimal
good or bad prefix that is observed.

4.2 A lower bound example for LTL monitoring

To complete the picture of the monitorability for LTL, we present the following example,
used by Kupferman and Vardi [24], to show that an automaton that is used to monitor an
LTL specification may result in a number of states that is doubly exponential in the size of
the temporal specification. Even if the states of the automaton are constructed when needed
(i.e., on-the-fly) rather than in constructing the entire automaton in advance, then each state
requires memory that can grow exponentially with the size of the property (essentially, a
set of sets of subformulas).

The formula � below has length quadratic in n. It monitors a sequence of the symbols 0 ,
1 , # and # . Adjacent blocks of 0 s and 1 s are of some length n and are separated by # , except
for the last block, which is separated from the previous one by # . This last block needs to
be identical with some block that appeared before. We denote by ○i a sequence of i occur-
rences of ○ in an LTL formula.

((

∧□((# ∨ $) → (∧1≤i≤n(○
i(0 ∨ 1))) ∧○n+1(# ∨ $)) ∧ (◊$ ∧○□¬$)

)

∧◊(# ∧ ∧1≤i≤n((○
i
0 ∧□($ → ○i

0)) ∨ (○i
1 ∧□($ → ○i

1))))
)

Formal Methods in System Design

1 3

With blocks of size n, one can encode 2n different sequences. After seeing the first #
symbol, we have seen a subset of these many possibly sequences. Thus, we must
remember the subset of sequences we have seen before inspecting the last block that
appears after the # . Encoding a single set of such sequences requires space of O(2n)
(each possible sequence may appear or not appear). With less information than 2n , there
will be two prefixes with different sets of occurring numbers, which will have the same
memory representation; this means that runtime verification will not be able to check
the execution correctly.

The number of possibilities of sequences is O(22
n

) , and an automaton that represents
the required property is hence doubly exponential in the size of n. We do not need to con-
struct such an automaton in advance, and can calculate the subsets while monitoring the
sequence, hence we need memory and time of O(2n).

4.3 Algorithm 2: Checking availability of future verdicts

We alter the above runtime verification algorithm to check whether positive or negative
verdicts can still be obtained after the current monitored prefix at runtime.

We first present an algorithm that will identify when a good state cannot be reached
anymore during monitoring.

1. Construct the automaton B� as in the previous algorithm.
2. Apply Depth First Search (DFS) from the accepting states backwards (contrary to the

direction of the transitions), to check for states from which accepting states can be
reached. Let S be the states from which one cannot reach an accepting state.

3. Replace the states in S with a single state ⊥ with a self loop, obtaining the automaton
C�.

4. Follow the states of C� while monitoring an execution: Start with its initial state and
progress from a state to a state according to the input events from the monitored execu-
tion. ⊥ is reached exactly when there cannot be a good prefix anymore, i.e., a positive
(“accept”) verdict cannot be issued anymore for �.

A symmetric algorithm checks when a bad state cannot be reached anymore. We perform
depth first search on B¬� to find all the states in which the accepting state is not reachable,
then replace them by a single state ⊤ with a self loop, obtaining C¬� . Reaching ⊤ after mon-
itoring a prefix means that we will not be able again to have a bad prefix, hence a negative
(“failed”) verdict cannot be issued anymore for �.

We can perform runtime verification while updating synchronously the state of both
automata, C� and C¬� on-the-fly, upon each input event to check whether any (positive or
negative) verdict can still be reached.

The automata constructed in this algorithm, C� , and C¬� , can have a number of states
that is doubly exponential in the size of � . Alternatively, one can avoid the a priori con-
struction of these automata [31] using a binary search on their state space. However, this
makes then the incremental calculation between successive monitored events become dou-
bly exponential in time in the size of � . For RV to be able to work online, the incremen-
tal complexity is critical and this is hardly reasonable. Hence, a pre-calculation of these

 Formal Methods in System Design

1 3

two automata, before the monitoring starts, which leaves the incremental time complexity
exponential in � , as in Algorithm 1, is preferable.

4.4 Algorithm 3: Checking monitorability

A small variant on the construction of C� and C¬� allows checking if a property is monitor-
able. The algorithm is simple: construct the product C� × C¬� and check whether the state
(⊥ , ⊤) is reachable. If so, the property is non-monitorable, since there is a prefix that will
transfer the product automaton to this state and thus it is ugly. It is not sufficient to check
separately that C� can reach ⊤ and that C¬� can reach ⊥.

In the property (□¬(p ∧ r) ∧ ((¬pU(r ∧◊q)) ∨ (¬rU(p ∧□q)))) : both ⊥ and ⊤ can be
reached, separately, depending on which of the predicates r or p happens first. But in either
case, there is still a possibility for a good or a bad extension, hence it is a monitorable
property. Specifically, if r holds in the monitored execution before p, then only a good
prefix can happen, and if p happens before r, only a bad prefix can happen (if p and r holds
simultaneously, a bad prefix is reported).

If the automaton C� × C¬� consists of only a single state (⊥, ⊤) , then there is no infor-
mation whatsoever that we can obtain from monitoring the property.

The above algorithm is simple enough to construct, however its complexity is doubly
exponential in the size of the given LTL property. This may not be a problem, as the algo-
rithm is performed off-line and the LTL specifications are often quite short.

Theorem 1 Deciding monitorability is in EXPSPACE-complete.

Proof The upper bound is achieved by a binary search version of this algorithm2. For the
lower bound we show a reduction from checking if a property is (not) a liveness property, a
problem known to be in EXPSPACE-complete [23, 34].

First, let us establish that if � is satisfiable, then ◊� is monitorable (i.e., every finite
sequence can be extended into a good or bad sequence) iff � has a good prefix. To see this,
observe that if � has a good prefix � , then any finite sequence � can be extended to a good
prefix �� of ◊� , hence ◊� is monitorable. Lets consider now the other direction. Since �
is assumed to be satisfiable, ◊� cannot have a bad prefix, since we can extend any finite
sequence by a sequence satisfying � in order to satisfy ◊� . Thus, if ◊� is monitorable,
then this is due to the existence of good prefixes. Clearly a good prefix of ◊� has a suffix
that is a good sequence of �.

By definition, � has a good prefix iff � is not in the morbidity class of properties. Then
from the previous paragraph, if � is satisfiable, then ◊� is monitorable iff � is not morbid-
ity. We also know that � is morbidity iff ¬� is not liveness. So, if � is satisfiable, then ◊�
is monitorable iff ¬� is not liveness. Let � = ¬� . Then, we have established that if ¬� is
satisfiable (� is not a tautology), then ◊¬� is monitorable iff � is not liveness.

2 To show that a property is not monitorable, one needs to guess a state of B� × B¬� and check that (1) it is
reachable, and (2) one cannot reach from it an empty component, both for B� and for B¬� . (There is no need
to construct C� or C¬�.)

Formal Methods in System Design

1 3

We hence can check if � is liveness as follows: first check if it is a tautology. This can
be done in PSPACE (see [35]). If so, it is liveness. Otherwise, check if ◊¬� is not monitor-
able. This establishes a reduction from a subset of the monitorability problem to liveness.
Thus, monitorability cannot be easier than EXPSPACE. ◻

4.5 Algorithm 4: Identifying the class of a property

We can identify the classes of properties AFS (guarantee), SFS, NFS (morbidity), AFR
(safety), SFR and NFR (liveness) for any given temporal property. Thus, we can also iden-
tify if a property is in an intersection of two of these classes.

For the classes AFS, SFS and NFS, we reverse acceptance in C� , i.e., all states are
accepting except for the empty state, obtaining Ĉ� . We take now the product Ĉ� ×A�
and check its emptiness. We can apply a procedure that performs model checking with
the property � and the state space of Ĉ� , see [9]. The language (accepted sequences) of
Ĉ� ×A� consists exactly of the executions that satisfy the property � and do not have a
good prefix. For such executions it is never sufficient to observe a finite prefix in order to
decide that the property is satisfied. We apply a similar construction for AFR, SFR, NFR,
removing the accepting state from C¬� to obtain D¬� , and taking the product Ĉ¬� ×A¬�.

We then have the following conditions for identifying the different classes:

• AFR (safety): Ĉ¬� ×A¬� = � . Because in this case, executions satisfying ¬� , i.e., not
satisfying � , cannot avoid having a bad prefix.

• NFR (liveness): The automaton C¬� consists of a single state ⊤ . Because the automaton
C¬� consists of a single state ⊤ exactly when we will never observe a bad prefix.

• SFR: Ĉ¬� ×A¬� ≠ � and C¬� does not consist of a single state ⊤ . Because in this case,
there is an execution that avoids having any bad prefix, but there are still prefixes that
are bad.

• AFS (guarantee): Ĉ� ×A� = � . Because in this case, executions satisfying � cannot
avoid having a good prefix.

• NFS (morbidity): The automaton C� consists of a single state ⊥ . Because the automaton
C� consists of a single state ⊥ exactly when we can never observe a good prefix.

• SFS: Ĉ� ×A� ≠ � and C� does not consist of a single state ⊥ . Because in this case,
there is an execution that avoids having any good prefixes, but there are still prefixes
that are good.

For a more efficient algorithm for checking if an LTL formula is a safety (AFR) see
[34]. There, an algorithm, based on a binary search on the construction of A� and A¬�
is presented. That algorithm is polynomial space in the size of the property � . Hence the
problem of checking safety is in PSPACE. A lower bound, showing that the problem is
in PSPACE-complete is also given in [34]: one can check whether � is valid (a problem
known to be in PSPACE-complete) exactly when � ∨◊p is a safety property, where p is a
proposition that does not appear in � . Thus, the same result applies to checking if an LTL
formula is a guarantee property.

Checking liveness (NFR) was shown to be in EXPSPACE-complete in [23]. Thus,
checking that a property is in SFR is also in EXPSPACE-complete, since SFR comple-
ments AFR ∪ NFR, hence is equivalent to checking that the property is neither safety, nor
liveness. For the same reasons, these complexity results also apply to the dual classes: by

 Formal Methods in System Design

1 3

checking the negation of the given property, we have that guarantee (AFS) is in PSPACE-
complete, and that morbidity (NFS) and SFS are in EXPSPACE-complete. This agrees
with the complexity of the binary search based algorithms given above.

4.6 Monitoring safety and guarantee properties

Manna and Pnueli [27] identified the LTL safety properties with □LTL and the guaran-
tee properties with ◊LTL. Runtime verification of temporal specifications in many cases
concentrates on the past portion of the logic, and specifically on □LTL. Past time specifi-
cations have the important characteristics that one can distinguish when they are violated
after observing a finite prefix of an execution. For an extended discussion of this issue of
monitorability, see e.g., [4, 14].

The RV algorithm for □LTL, presented in [19], is based on the observation that the
semantics of the past time formulas ⊖𝜑 and (�S�) in the current state i is defined in terms
of the semantics of its subformula(s) in the previous state i − 1 . To demonstrate this, we
rewrite the semantic definition of the S operator to a form that is more applicable for runt-
ime verification.

• (𝜎, i) ⊧ (𝜑S𝜓) if (𝜎, i) ⊧ 𝜓 or: i > 1 and (𝜎, i) ⊧ 𝜑 and (𝜎, i − 1) ⊧ (𝜑S𝜓).

The semantic definition is recursive in both the length of the prefix and the structure of the
property. Thus, subformulas are evaluated based on smaller subformulas, and the evalua-
tion of subformulas in the previous state. The algorithm shown below uses two vectors of
values indexed by subformulas: ��� , which summarizes the truth values of the subformulas
for the execution prefix that ends just before the current state, and ��� , for the execution
prefix that ends with the current state. The order of calculating ��� for subformulas is bot-
tom up, according to the syntax tree.

1. Initially, for each subformula � of � , ���(�) ∶= false.
2. Observe a new event (as a set of propositions) s as input.
3. Let ��� ∶= ���.
4. Make the following updates for each subformula. If � is a subformula of � then ���(�)

is updated before ���(�).

• ���(true) ∶= true.
• ���((� ∧ �)) ∶= ���(�) and ���(�).
• ���(¬�) ∶= not ���(�).
• ���((�S�)) ∶= ���(�) or (���(�) and ���((�S�))).
• ���(⊖ 𝜑) ∶= ���(𝜑).

5. If ���(�) = false then report a violation, otherwise goto step 2.

Besides its simplicity, compared with the LTL monitoring algorithm in Sect. 4.1, the □
LTL algorithm also has a linear complexity in the size of the specification. However, the
fact that the algorithm is linear needs to be taken with a grain of salt. For consider the
property � expressed in LTL from Sect. 4.1; it was used to show that the memory and the
time complexity that is required for performing even a single step of runtime verification
for this problem is exponential in n while the specification is only quadratic in n. Now,
since (1) this must be the complexity irrespective of the way the property � is written, and

Formal Methods in System Design

1 3

(2) the monitoring algorithm is linear in the size of the □LTL specification, we can deduce
that the □LTL specification itself, unlike � , must be exponential in the size of n.

Now, monitoring a □LTL property □� can be done using the above algorithm. Moni-
toring ◊LTL can be performed similarly, only that a positive verdict is annouced once �
holds for the first time.

5 Conclusion

Temporal specification is often focused on infinite execution sequences. This abstracts the
idea that the correctness requirements for a system should not depend on its bounded exe-
cution. Although model checking is capable of checking such properties for finite state sys-
tems, one can never exhaustively test an infinite execution. Runtime verification offers an
alternative approach to model checking. It can be applied directly to the system itself, and
it can help with testing the system when its state space size is prohibitively high, or moni-
tor the system in deployment. On the other hand, runtime verification is limited to observ-
ing at any point only a finite portion of the execution.

The notion of monitorability identifies the kinds of verdicts that one can obtain from
observing finite prefixes of an execution. Monitorability deals with the ability to obtain a
verdict, positive or negative, given a finite prefix of an execution. In particular, non-monit-
orability characterizes situations where it may not be worthy anymore to wait for a verdict.
However, we argued that the definition of monitorability needs to be refined, allowing to
monitor properties where a priori there are some useful verdicts that may be observed, even
if after observing some prefix of the execution these verdicts are not available anymore.

We studied here the connection between monitorability and Lamport’s classification of
properties as safety and liveness. To do that we needed to extend this classification using
the dual classes, guarantee and morbidity, and complete the picture with another class that
we termed quaestio.

We also provided algorithms for checking whether a property is monitorable or not,
whether it belongs to a certain monitorability class, and what kind of verdict (positive or
negative) we can expect after monitoring a certain prefix against a given property. This
is useful to decide whether one should apply runtime verification for a given tempo-
ral property given expected verdicts, and what kind of verdicts one can still obtain after
a given monitored prefix. It also allows to recognize when, during runtime verification,
there is no further interesting information that we can expect, consequently abandoning the
monitoring.

Acknowledgements The authors would like to thank Moran Omer for useful comments on the manuscript.
The research performed by Klaus Havelund was carried out at Jet Propulsion Laboratory, California Insti-
tute of Technology, under a contract with the National Aeronautics and Space Administration. The research
performed by Doron Peled was partially funded by Israeli Science Foundation grant 1464/18: “Efficient
Runtime Verification for Systems with Lots of Data and its Applications”.

References

 1. Alpern B, Schneider FB (1987) Recognizing safety and liveness. Distrib Comput 2(3):117–126
 2. Bartocci E, Falcone Y, Francalanza A, Leucker M, Reger G (2018) An introduction to runtime verifica-

tion. Lectures on runtime verification–introductory and advanced topics, LNCS, vol 10457. Springer,
Berlin, pp 1–23

 Formal Methods in System Design

1 3

 3. Basin DA, Jiménez CC, Klaedtke F, Zalinescu E (2014) Deciding safety and liveness in TPTL. Inf.
Process. Lett. 114(12):680–688

 4. Bauer A, Leucker M, Schallhart C (2007) The good, the bad, and the ugly, but how ugly is ugly?. In:
RV’07, LNCS, vol 4839. Springer, pp 126–138

 5. Bauer A, Leucker M, Schallhart C (2011) Runtime verification for LTL and TLTL. ACM Trans Softw
Eng Methodol 20(4):1–64

 6. Bloem R, Könighofer B, Könighofer R, Wang C (2015) Shield synthesis: runtime enforcement for
reactive systems. In: TACAS, pp 533–548

 7. Bouajjani A, Esparza J, Maler O (1997) Reachability analysis of pushdown automata: application to
model-checking. In: CONCUR, pp 135–150

 8. Clarke EM, Emerson EA (1981) Design and synthesis of synchronization skeletons using branching-
time temporal logic. In: Logic of programs, pp 52–71

 9. Clarke EM, Grumberg O, Peled D (2000) Model checking. MIT Press, Cambridge
 10. Diekert V, Leucker M (2014) Topology, monitorable properties and runtime verification. Theor Com-

put Sci 537:29–41
 11. Drissi-Kaitouni O, Jard C (1988) Compiling temporal logic specifications into observers. INRIA

Research Report RR-0881
 12. Emerson EA, Clarke EM (1980) Characterizing correctness properties of parallel programs using fix-

points. In: ICALP, pp 169–181
 13. Falcone Y, Fernandez J-C, Mounier L (2009) Runtime verification of safety/progress properties. In:

RV’09, LNCS, vol 5779. Springer, pp 40–59
 14. Falcone Y, Fernandez J-C, Mounier L (2012) What can you verify and enforce at runtime? STTT

14(3):349–382
 15. Fernandez J-C, Jard C, Jéron T, Viho C (1997) An experiment in automatic generation of test suites for

protocols with verification technology. Sci Comput Program 29(1–2):123–146
 16. Falcone Y, Havelund K, Reger G (2013) A tutorial on runtime verification. Summer school Marktober-

dorf 2012-Engineering dependable software systems. IOS Press, Amsterdam, pp 141–175
 17. Gerth R, Peled DA, Vardi MY, Wolper P (1995) Simple on-the-fly automatic verification of linear tem-

poral logic. In: PSTV, pp 3–18
 18. Havelund K, Reger G, Thoma D, Zălinescu E (2018) Monitoring events that carry data, lectures on

runtime verification—introductory and advanced topics, LNCS, vol 10457. Springer, Berlin, pp
61–102

 19. Havelund K, Rosu G (2002) Synthesizing monitors for safety properties. IN: TACAS’02, LNCS, vol
2280. Springer, pp 342–356

 20. Isberner M, Howar F, Steffen B (2014) The TTT algorithm: a redundancy-free approach to active
automata learning. In: RV’14, LNCS, vol 8734. Springer, pp 307–322

 21. Isberner M, Howar F, Steffen B (2014) Learning register automata: from languages to program struc-
tures. Mach Learn 96:65–98

 22. Isberner M, Howar F, Steffen B (2015) The open-source LearnLib. In: CAV’15, LNCS, vol 9206.
Springer, pp 487–495

 23. Kupferman O, Vardi G (2018) On relative and probabilistic finite counterability. Formal Methods Syst
Des 52(2):117–146

 24. Kupferman O, Vardi MY (2001) Model checking of safety properties. Formal Methods Syst Des
19(3):291–314

 25. Lamport L (1977) Proving the correctness of multiprocess programs. IEEE Trans Softw Eng
3(2):125–143

 26. Larsen KG, Legay A (2016) Statistical model checking: past, present, and future. In: ISoLA’16, LNCS,
vol 9953. Springer, pp 3–15

 27. Manna Z, Pnueli A (1992) The temporal logic of reactive and concurrent systems-specification.
Springer, Berlin

 28. Meredith PO, Jin D, Griffith D, Chen F, Rosu G (2011) An overview of the MOP runtime verification
framework. STTT 14:249–289

 29. Peled D, Havelund K (2018) Refining the safety-liveness classification of temporal properties accord-
ing to monitorability. Models, mindsets, meta. Springer, Cham, pp 218–234

 30. Peled DA, Vardi MY, Yannakakis M (1999) Black box checking, FORTE/PSTV’99.In: IFIP confer-
ence proceedings, vol 156. Kluwer, pp 225–240

 31. Pnueli A, Zaks A (2006) PSL model checking and run-time verification via testers. In: FM’06, LNCS,
vol 4085. Springer, pp 573–586

 32. Queille J-P, Sifakis J (1981) Iterative methods for the analysis of Petri nets. In: Selected papers from
the first and the second European workshop on application and theory of Petri nets, pp 161–167

Formal Methods in System Design

1 3

 33. Safra S (1988) On the complexity of omega-automata. In: FOCS, pp 319–327
 34. Sistla AP (1994) Safety, liveness and fairness in temporal logic. Formal Asp Comput 6(5):495–512
 35. Sistla AP, Clarke EM (1982) The complexity of propositional linear temporal logics. In: STOC, pp

159–168
 36. Thomas W (1990) Automata on infinite objects, handbook of theoretical computer science, volume B.

Formal Models and Semantics. Elsevier, Amsterdam, pp 133–192
 37. Vardi MY, Wolper P (1986) Automata-theoretic techniques for modal logics of programs. J Comput

Syst Sci 32(2):183–221

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

	On monitoring linear temporal properties
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Contribution
	1.3 Overview of paper

	2 Preliminaries
	2.1 Runtime verification
	2.2 Linear temporal logic
	2.3 Past propositional temporal logic
	2.4 Monitorability

	3 Characterizing temporal properties according to monitorability
	3.1 The Manna and Pnueli characterization and monitorability
	3.2 Refining monitorability

	4 Runtime verification algorithms for monitorability
	4.1 Algorithm 1: Monitoring sequences using automata
	4.2 A lower bound example for LTL monitoring
	4.3 Algorithm 2: Checking availability of future verdicts
	4.4 Algorithm 3: Checking monitorability
	4.5 Algorithm 4: Identifying the class of a property
	4.6 Monitoring safety and guarantee properties

	5 Conclusion
	Acknowledgements
	References

