
Where Specification and Programming Meet

Extended Abstract

Klaus Havelund?

Jet Propulsion Laboratory, California Institute of Technology, USA

Abstract. We argue that a modern programming language such as
Scala has achieved a level of succinctness, which makes it suitable for
program/systems specification, hence able to take the role that early very
elegant specification languages, way ahead of their time, served. We illus-
trate this by comparing the Vdm++ specification language with Scala.
We furthermore illustrate Scala’s potential as a specification language
by augmenting it with a combination of parameterized state machines
and temporal logic, defined as a library, thereby forming a very expressive
and convenient runtime verification framework.

1 VDM and its Derivatives

Formal methods generally refer to “mathematically-based techniques for the
specification, development and verification of software and hardware systems”
[18]. The field covers such topics as specification logics, syntax and semantics,
proof systems, industrial strength specification languages, theorem proving, and
model checking. Amongst one of the earlier contributions was Vdm (Vienna
Development Method) [9, 10, 22, 23, 30] and its associated specification language
Meta-IV [9]. Meta-IV is a so-called wide spectrum specification language, in-
cluding as a subset an executable language comparable to the combination of
an imperative programming language and a functional programming language,
with data types and pattern matching, and with built-in collections such as finite
sets, lists and maps. In addition Meta-IV early on offered design-by-contract
concepts, such as pre/post conditions and invariants, later found in the Eiffel
programming language [15]; predicate subtypes (for example natural numbers as
a subset of integers), and general first order predicate logic in the form of uni-
versal and existential quantification over infinite as well as finite sets - permitted
as Boolean expressions. Indeed a very impressive and forward looking language.

A Vdm language standard was subsequently produced in the form of Vdm-
SL (VDM Specification Language), which combined the so-called “British style”

? Part of the research described in this publication was carried out at Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration. Copyright 2012 California Institute of Tech-
nology. Government sponsorship acknowledged.



(which focused on using only pre/post conditions to specify functions and op-
erations) and the “Danish style” (which embraced the executable programming
language like subset). Two more derivations were later created in Raise [19] and
Vdm++ [17]. Raise took its starting point in Vdm, but followed an algebraic
view, where a module consists of a signature and a set of axioms over the names
introduced in the signature, including names denoting constants, functions, oper-
ations with side-effects, and processes. Derived forms were introduced reflecting
the classical Vdm definitional style. Vdm++ took a less drastic approach, “just”
adding object oriented constructs (classes and objects) as well as concurrency
to the more classical Vdm notation. In this sense Vdm++ is interesting since
of these systems, it gets the closest to a modern programming language due to
its integration of object oriented features. Our comparison is therefore between
Vdm++ and Scala.

2 Scala as a Modeling Language

The general experience gained by working with Vdm is that of abstraction,
elegance and convenient notation. So why are we not all using Vdm? A charac-
teristic of Vdm, and most formal methods, is that specification fundamentally
is considered different from programming, in spite (in this case) of the great
overlap with respect to language constructs. For example, Meta-IV contains as
a subset an executable kernel, which is isomorphic to a full blown programming
language. In spite of this overlap, the typical use of Vdm is to write a specifica-
tion, and then subsequently either (re)program the system manually (observing
the specification), or translate the specification into a program using a special
compiler. Many users are uncomfortable with such a translation.

However, a modern programming language such as Scala [27] offers language
constructs, which makes it a healthy alternative for writing abstract high-level
models. Scala offers a uniform combination of object-oriented and functional
programming. Furthermore, it supports definition of internal DSLs (Domain
Specific Languages) through a set of innovative language constructs. Scala
programs are usually very succinct compared for example to Java programs,
and have the script-like flavor that Python [26] programs have, but with the
static typing that Java offers, and compiling to the JVM. Sets, lists and maps
are part of the Scala library, as is the case in Java. However, with better nota-
tion for manipulating these data structures. We discuss the relationship between
Vdm++ and Scala, illustrating differences and similarities on a number of ex-
amples as well as on a construct-by-construct basis. We summarize some of those
library additions that would be needed in order to write Vdm++ like models.
Some of these have been suggested elsewhere, for example design by contract for
Scala [25]. We also discuss possible modifications to Scala, inspired by Vdm.



3 Runtime Verification

The field of Runtime Verification (RV) has seen an impressive growth over the
last decade [24, 13, 29, 14, 28, 11, 1, 16], including our own work [21, 20, 2, 12, 7,
6, 8, 3]. RV generally is concerned with processing program/system executions
with the purpose of testing, understanding, and/or influencing their behavior.
An important RV task consists of checking such executions against formal speci-
fications. Various behavior oriented specification notations have been studied for
this purpose. These include state machines, temporal logics, regular expressions,
grammar systems and rule-based systems. These logics have the advantage of
making certain properties easy to express in a succinct manner. More recently
focus has been on augmenting such logics with data parameterization, in or-
der to handle for example first order temporal logic. However, properties to be
checked are occasionally more complicated than can be handled with any one
of these systems in a convenient manner. In the extreme case, one may need
to “dive” and program an observer using traditional programming techniques.
In some cases the specification needed is a reference implementation: a simple
abstract, functionally correct, but perhaps inefficient, program. Scala’s quality
as a specification language makes it ideal for this purpose, especially when aug-
mented with forms of temporal logic suitable for the simple cases. We illustrate
this idea with the Scala DSL named TraceContract [4, 5] for writing pa-
rameterized state machines, which allows anonymous states, thereby allowing a
combination of state machines, temporal logic and code.

References

1. C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhoták,
O. de Moor, D. Sereni, G. Sittamplan, and J. Tibble. Adding trace matching with
free variables to AspectJ. In OOPSLA’05. ACM Press, 2005.

2. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verifi-
cation. In VMCAI, volume 2937 of LNCS, pages 44–57. Springer, 2004.

3. H. Barringer, A. Groce, K. Havelund, and M. Smith. Formal analysis of log files.
Journal of Aerospace Computing, Information, and Communication, 7(11):365–
390, 2010.

4. H. Barringer and K. Havelund. TraceContract: A Scala DSL for trace analysis.
In 17th International Symposium on Formal Methods (FM’11), Limerick, Ireland,
June 20-24, 2011. Proceedings, volume 6664 of LNCS, pages 57–72. Springer, 2011.

5. H. Barringer, K. Havelund, E. Kurklu, and R. Morris. Checking flight rules with
TraceContract: Application of a Scala DSL for trace analysis. In Scala Days 2011,
Stanford University, California, 2011.

6. H. Barringer, K. Havelund, D. Rydeheard, and A. Groce. Rule systems for run-
time verification: A short tutorial. In Proc. of the 9th Int. Workshop on Runtime
Verification (RV’09), volume 5779 of LNCS, pages 1–24. Springer, 2009.

7. H. Barringer, D. E. Rydeheard, and K. Havelund. Rule systems for run-time
monitoring: From Eagle to RuleR. In Proc. of the 7th Int. Workshop on Runtime
Verification (RV’07), volume 4839 of LNCS, pages 111–125. Springer, 2007.



8. H. Barringer, D. E. Rydeheard, and K. Havelund. Rule systems for run-time
monitoring: from Eagle to RuleR. J. Log. Comput., 20(3):675–706, 2010.

9. D. Bjørner and C. B. Jones, editors. The Vienna Development Method: The Meta-
Language, volume 61 of LNCS. Springer, 1978.

10. D. Bjørner and C. B. Jones. Formal Specification and Software Development.
Prentice Hall International, 1982. ISBN 0-13-880733-7.

11. F. Chen and G. Roşu. Parametric trace slicing and monitoring. In Proceedings of
the 15th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’09), volume 5505 of LNCS, pages 246–261, 2009.

12. M. D’Amorim and K. Havelund. Event-based runtime verification of Java pro-
grams. In Workshop on Dynamic Program Analysis (WODA’05), volume 30(4) of
ACM Sigsoft Software Engineering Notes, pages 1–7, 2005.

13. D. Drusinsky. The temporal rover and the ATG rover. In SPIN Model Checking
and Software Verification, volume 1885 of LNCS, pages 323–330. Springer, 2000.

14. D. Drusinsky. Modeling and Verification using UML Statecharts. Elsevier, 2006.
ISBN-13: 978-0-7506-7949-7, 400 pages.

15. Eiffel. http://www.eiffel.com.
16. Y. Falcone, J.-C. Fernandez, and L. Mounier. Runtime verification of safety-

progress properties. In Proc. of the 9th Int. Workshop on Runtime Verification
(RV’09), volume 5779 of LNCS, pages 40–59. Springer, 2009.

17. J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef. Validated
Designs For Object-oriented Systems. Springer-Verlag TELOS, Santa Clara, CA,
USA, 2005.

18. Formal Methods Wikipedia. http://en.wikipedia.org/wiki/Formal methods.
19. C. George, P. Haff, K. Havelund, A. Haxthausen, R. Milne, C. B. Nielsen, S. Prehn,

and K. R. Wagner. The RAISE Specification Language. The BCS Practitioner
Series, Prentice-Hall, Hemel Hampstead, England, 1992.

20. K. Havelund and G. Roşu. Efficient monitoring of safety properties. Software Tools
for Technology Transfer, 6(2):158–173, 2004.

21. K. Havelund and G. Rosu. Monitoring programs using rewriting. In 16th ASE
conference, San Diego, CA, USA, pages 135–143, 2001.

22. C. B. Jones. Systematic Software Development using VDM. Prentice Hall, 1990.
ISBN 0-13-880733-7.

23. C. B. Jones and R. C. Shaw, editors. Case Studies in Systematic Software Devel-
opment. Prentice Hall International, 1990. ISBN 0-13-880733-7.

24. I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime assurance
based on formal specifications. In PDPTA, pages 279–287. CSREA Press, 1999.

25. M. Odersky. Contracts for Scala. In Runtime Verification - First Int. Conference,
RV’10, St. Julians, Malta, November 1-4, 2010. Proceedings, volume 6418 of LNCS,
pages 51–57. Springer, 2010.

26. Python. http://www.python.org.
27. Scala. http://www.scala-lang.org.
28. V. Stolz and E. Bodden. Temporal assertions using AspectJ. In Proc. of the 5th

Int. Workshop on Runtime Verification (RV’05), volume 144(4) of ENTCS, pages
109–124. Elsevier, 2006.

29. V. Stolz and F. Huch. Runtime verification of concurrent Haskell programs. In
Proc. of the 4th Int. Workshop on Runtime Verification (RV’04), volume 113 of
ENTCS, pages 201–216. Elsevier, 2005.

30. VDM. http://en.wikipedia.org/wiki/Vienna Development Method.


