Formal Methods in System Design manuscript No.
(will be inserted by the editor)

INTERASPECT Aspect-Oriented Instrumentation with GCC

Justin Seyster - Ketan Dixit - Xiaowan Huang -
Radu Grosu - Klaus Havelund - Scott A. Smolka -
Scott D. Stoller - Erez Zadok

Received: date / Accepted: date

Abstract We present theNTERASPECTInstrumentation framework for GCC, a widely
used compiler infrastructure. The addition of plug-in sappn the latest release of GCC
makes it an attractive platform for runtime instrumentatias GCC plug-ins can directly
add instrumentation by transforming the compiler’s intedmate representation. Such trans-
formations, however, require expert knowledge of GCC imdbs. NTERASPECTaddresses
this situation by allowing instrumentation plug-ins to beveloped using the familiar vo-
cabulary of Aspect-Oriented Programming: pointcuts, jpgints, and advice functions.
Moreover, NTERASPECTUses specific information about each join point in a pointcut
possibly including results of static analysis, to suppatverful customized instrumenta-
tion. We describe theNTERASPECTAPI and present several examples that illustrate its
practical utility as a runtime-verification platform. Wesalintroduce a tracecut system that
uses NTERASPECTtO construct program monitors that are formally specifiedegmlar
expressions.

Keywords program instrumentation, aspect-oriented programmir@C@&monitoring,
tracecut

1 Introduction

GCC is a widely used compiler infrastructure that support&rety of input languages,
e.g., C, C++, Fortran, Java, and Ada, and over 30 differegetamachine architectures.
GCC translates each of its front-end languages into a layjguralependent intermediate
representation called GIMPLE, which then gets translaiedachine code for one of GCC’s
many target architectures. GCC is a large software systemmare than 100 developers
contributing over the years and a steering committee ctimgisf 13 experts who strive to
maintain its architectural integrity.

In earlier work [7], we extended GCC to suppeitig-ing allowing users to add their
own custom passes to GCC in a modular way without patchingeewmpiling the GCC

J. Seyster, K. Dixit, X. Huang, R. Grosu, S. A. Smolka, S. DII8t, E. Zadok
Department of Computer Science, Stony Brook University

K. Havelund
Jet Propulsion Laboratory, California Institute of Teclugy

2 Justin Seyster et al.

source code. Released in April 2010, GCC 4.5 [16] includeg-ph support that is largely
based on our design.

GCC's support for plug-ins presents an exciting opporjuiait the development of prac-
tical, widely-applicable program transformation tools¢luding program-instrumentation
tools for runtime verification. Because plug-ins operatihatevel of GIMPLE, a plug-in is
applicable to all of GCC's front-end languages. Transfdiomesystems that manipulate ma-
chine code may also work for multiple programming languageslow-level machine code
is harder to analyze and lacks the detailed type informdtiahis available in GIMPLE.

Implementing instrumentation tools as GCC plug-ins presidignificant benefits but
also presents a significant challenge: despite the facittigan intermediate representa-
tion, GIMPLE is in fact a low-level language, requiring theitimg of low-level GIMPLE
Abstract Syntax Tree (AST) traversal functions in orderémsform one GIMPLE expres-
sion into another. Therefore, as GCC is currently configuttegl writing of plug-ins is not
trivial but for those intimately familiar with GIMPLE’s pediarities.

To address this challenge, we developed theERA SPECTprogram-instrumentation
framework, which allows instrumentation plug-ins to be eleped using the familiar vo-
cabulary of Aspect-Oriented Programming (AORTERASPECTIs itself implemented us-
ing the GCC plug-in API for manipulating GIMPLE, but it hiddse complexity of this API
from its users, presenting instead an aspect-orientedrARlhich instrumentation is accom-
plished by definingpointcuts A pointcut denotes a set of program points, caj@@d points
where calls tadvice functiongan be inserted by a process calegaving

INTERASPECTS API allows users to customize the weaving process by cheficall-
back functionghat get invoked for each join point. Callback functions énaccess to spe-
cific information about each join point; the callbacks caa tigs to customize the inserted
instrumentation, and to leverage static-analysis regulttheir customization.

We also present theNlrERASPECT Tracecut extensioto generate program monitors
directly from formally specified tracecuts. A tracecut [3@atchessequences of pointcuts
specified as a regular expression. Given a tracecut speidfida, INTERASPECTTracecut
instruments a target program so that it communicates pmogreents and event parameters
directly to a monitoring engine fof. The tracecut extension adds the necessary monitoring
instrumentation exclusively with thesrERASPECTAPI presented here.

In summary, NTERA SPECTOffers the following novel combination of features:

— INTERASPECTbuilds on top of GCC, a widely used compiler infrastructure.

— INTERASPECTexposes an API that encourages and simplifies open-soullebara-
tion.

— INTERASPECTIs versatile enough to provide instrumentation for manyppaes, in-
cluding monitoring a tracecut specification.

— INTERASPECThas access to GCC internals, which allows one to exploicsaglysis
and meta-programming during the weaving process.

The full source of theNTERASPECTframework is available from theNirERA SPECTWeD-
site under the GPLv3 license [19].

To illustrate NTERASPECTSs practical utility, we have developed a number of program-
instrumentation plug-ins that usetERA SPECTfoOr custom instrumentation. These include
aheap visualizatiomplug-in designed for the analysis of JPL Mars Science Laboyaoft-
ware; aninteger range analysiplug-in that finds bugs by tracking the range of values for
each integer variable; andcade coveragelug-in that, given a pointcut and test suite, mea-
sures the percentage of join points in the pointcut that eeewded by the test suite.

INTERASPECT Aspect-Oriented Instrumentation with GCC 3

GIMPLE |iari [RTL | iassemply
i i| Passes|:

Front-end Middle-end Back-end
Plug-in Plug-in
Pass Pass

Fig. 1 A simplified view of the GCC compilation process.

NGimpLE| [GIMPLE
: Pass Pass

The rest of the article is structured as follows. Section®/joles an overview of GCC
and the NTERAsPECTframework. Section 3 introduces theTIERASPECTAPI. Section 4
presents the three case studies: heap visualizationemtagge analysis, and code cover-
age. Section 5 describes how we extendetElRA SPECTwith a tracecut system. Section 6
summarizes related work, and Section 7 concludes thearfigbreliminary version of this
article, which did not consider the tracecut extensioneapgd last year [29].

2 Overview of GCC and the INTERASPECT Architecture

Overview of GCC.As Figure 1 illustrates, GCC translates all of its front-dadguages
into the GIMPLE intermediate representation for analysid aeptimization. Each transfor-
mation on GIMPLE code is split into its owpass These passes, some of which may be
implemented aplug-ing make up GCC’sniddle-end Moreover, a plug-in pass may be-|
TERASPECTbased, enabling the plug-in to add instrumentation diyésto the GIMPLE
code. The final middle-end passes convert the optimizedrastciimented GIMPLE to the
Register Transfer Language (RTL), which theck-endranslates to assembly.

GIMPLE is a C-like three-addressA) code. Complex expressions (possibly with side
effects) are broken into simp$a statements by introducing new, temporary variables. Simi-
larly, complex control statements are broken into sin3pléconditional)goto s by introduc-
ing new labels. Type information is preserved for every apdrin each GIMPLE statement.

Figure 2 shows a C program and its corresponding GIMPLE catiéch preserves
source-level information such as data types and procedlie Although not shown in the
example, GIMPLE types also include pointers and structures

A disadvantage of working purely at the GIMPLE level is thaing language-specific
constructs are not visible in GIMPLE code. For example,gting a specific kind of loop
as a pointcut is not currently possible because all loopk tbe same in GIMPLE. N-
TERASPECTcan be extended with language-specific pointcuts, whoskemgntation could
hook into one of the language-specific front-end modulezatsof the middle-end.

INTERASPECTarchitecture. INTERASPECTWOrks by inserting a pass that first traverses
the GIMPLE code to identify program points that are join peim a specified pointcut.
For each such join point, it then calls a user-provided weawallback function, which
can insert calls to advice functions. Advice functions canabitten in any language that
will link with the target program, and they can access or riyotffie target program’s state,
including its global variables. Advice that needs to mamtdditional state can declare
static variables and global variables.

4 Justin Seyster et al.

int main() { 1. int main {
int a, b, c; 2. int a, b, ¢
a =5; 3. int T1, T2, T3, T4;
b = a + 10; 4. a =5
c = b + foo(a, b); => 5. b =a + 10;
if @>b + ¢ 6. T1 = foo(a, b);
c=b+t+t /a+ (b =* a) 7. c=b+ T1;
bar(a, b, c); 8. T2 = b + ¢
} 9. if (a <= T2) goto fi;
10. T3 =b/ a
11. T4 =b * a
12. c=T3 + T4
13. b=>b+ 1
14. fi
15. bar (a, b, c);
16. }
Fig. 2 Sample C program (left) and corresponding GIMPLE reprediemt (right)
| GCC ‘
Advice Functions | Middle-end
: Target Program
—1 Source Code Front-end Back-end
— Instrumented
— Binary

)

Events

Plug-in Matches
Tracecut 9 ——
Specification InterAspect || Tracecut Ued=ellie bl Igelalil)
—_ . Engine
Framework [|Extension

Compiles to

Compiled Tracecut

Fig. 3 Architecture of the N\TERA SPECTInstrumentation framework with its tracecut extensione Tlacecut
specification is a simple C program. The tracecut extensanslates events in the specification to pointcuts,
and the NTERA sPECTframework directly instruments the pointcuts using GCOMBLE API. The instru-
mented binary sends events to the tracecut monitoring engimd monitors signal matches by calling advice
functions, which are compiled alongside the target progians also possible to specify just pointcuts, in
which case the tracecut extension and monitoring enginaareecessary.

Unlike traditional AOP systems which implement a specialPAlanguage to define
pointcuts, NTERASPECTprovides a C API for this purpose. We believe that this apgroa
is well suited to open collaboration. ExtendingTERA SPECTwith new features, such as
new kinds of pointcuts, does not require agreement on negukege syntax or modification
to parser code. Most of the time, collaborators will onlychéeeadd new API functions.

The INTERASPECT Tracecut extension APl usesTERASPECTtO generate program
monitors from formally specified tracecuts. Tracecuts ima&quences of pointcuts, speci-
fied as regular expressions. The instrumentation compafehe extension, which is im-
plemented in C, benefits fronNTERASPECTS design as an API: it need only call API
functions to define and instrument the pointcuts that aresssry to monitor the tracecut.

INTERASPECT Aspect-Oriented Instrumentation with GCC 5

struct aop _pointcut *aop _match _function _entry(void);
Creates pointcut denoting every function entry point.
struct aop _pointcut *aop _match _function _exit(void);
Creates pointcut denoting every function return point.
struct aop _pointcut *aop_match _function _call(void);
Creates pointcut denoting every function call.
struct aop _pointcut ~ *aop_match _assignment _by _type(struct aop _type *type);
Creates pointcut denoting every assignment to a variahieeonory location that matches a type.

Fig. 4 Match functiondor creating pointcuts.

Figure 3 shows the architecture of a monitor implementet it ERASPECTTracecut.
The tracecut itself is defined in a short C program that caidN TERASPECTTracecut API
to specify tracecut properties. Linking the compitealcecut programwith INTERASPECT
and the tracecut extension produces a plug-in that insmtsrevents relevant to the trace-
cut. A target program compiled with this plug-in will sendeets and event parameters to
the tracecut monitoring engine, which then determines yf ssquence of events matches
the tracecut rule. The target program can include tradeantHing functions so that the
monitoring engine can report matches directly back to tlogm.

3 The INTERASPECTAPI

This section describes the functions in thha ERA SPECTAPI, most of which fall naturally
into one of two categories: (1) functions for creating artéfihg pointcuts, and (2) functions
for examining and instrumenting join points. Note that ssefr our framework can write
plug-ins solely with calls to these API functions; it is n@oessary to include any GCC
header files or manipulate any GCC data structures directly.

Creating and filtering pointcutsThe first step for adding instrumentation MmTMERASPECT
is to create a pointcut usingmnaatchfunction. Our current implementation supports the four
match functions given in Figure 4, allowing one to create faods of pointcuts.

Using a function entry or exit pointcut makes it possible ¢l anstrumentation that
runs with every execution of a function. These pointcutsvigl® a natural way to insert
instrumentation at the beginning and end of a function thg erze would with before-
execution and an after-returning advices in a traditio@PAanguage. A call pointcut can
instead target calls to a function. Call pointcuts can umsnt calls to library functions
without recompiling them. For example, in Section 4.1, & paintcut is used to intercept
all calls tomalloc .

The assignment pointcut is useful for monitoring changegrégram values. For ex-
ample, we use it in Section 4.1 to track pointer values sowatan construct the heap
graph. We plan to add several new pointcut types, includoigtputs for conditionals and
loops. These new pointcuts will make it possible to tracectiraplete path of execution as
a program runs, which is potentially useful for coveragelyasis, profiling, and symbolic
execution.

After creating a match function, a plug-in can refine it udittgr functions. Filter func-
tions add additional constraints to a pointcut, removing fints that do not satisfy those
constraints. For example, itis possible to filter a call pmihto include only calls that return
a specific type or only calls to a certain function. Figure Bxmarizes filter functions for
call pointcuts.

6 Justin Seyster et al.

void aop filter _call _pc_by_name(struct aop _pointcut *pc, const char * name);
Filter function calls with a given name.
void aop filter _call _pc_by_param _type(struct aop _pointcut *pc, int n,
struct aop -type *type);
Filter function calls that have an‘" parameter that matches a type.
void aop filter _call _pc_by_return _type(struct aop _pointcut *pc,
struct aop -type *type);
Filter function calls with a matching return type.

Fig. 5 Filter functionsfor refining function-call pointcuts.

void aop _join _on(struct aop _pointcut *pc, join _callback callback,
void *callback _param);
Callcallback on each join point in the pointcytc, passingcallback — _param each time.

Fig. 6 Join functionfor iterating over a pointcut.

const char *aop_capture _function _name(aop -joinpoint *jp);
Captures the name of the function called in the given joimpoi

struct aop .dynval *aop_capture _param(aop -joinpoint *jp, int n);
Captures the value of the*® parameter passed in the given function join point.

struct aop _dynval *aop-capture _return _value(aop _joinpoint *jp);
Captures the value returned by the function in a given callpoint.

Fig. 7 Capture functiongor function-call join points.

Instrumenting join pointsINTERASPECTplug-ins iterate over the join points of a point-
cut by providing an iterator callback to thein function, shown in Figure 6. For amn#
TERASPECTplug-in to instrument some or all of the join points in a poirt it should
join on the pointcut, providing an iterator callback thagents a call to aadvicefunction.
INTERASPECTthen invokes that callback for each join point.

Callback functions useapturefunctions to examine values associated with a join point.
For example, given an assignment join point, a callback gamée the name of the variable
being assigned. This type of information is available stdly, during the weaving process,
so the callback can read it directly with a capture functiee hop capture _hs _name.
Callbacks can also capture dynamic values, such as the ealtlee right-hand side of the
assignment, but dynamic values are not available at weianee thstead, when the callback
callsaop capture _assigned _value , it gets anaop.dynval , which serves as a weave-time
placeholder for the runtime value. The callback cannot eaaue from the placeholder, but
it can specify it as a parameter to an inserted advice fumctéhen the join point executes
(at runtime), the value assigned also gets passed to theedfdviction. Sections 4.1 and 4.2
give more examples of capturing values from assignmentgoints.

Capture functions are specific to the kinds of join pointsytbperate on. Figures 7
and 8 summarize the capture functions for function-cah jpoints and assignment join
points, respectively.

AOP systems like AspectJ [21] provide Boolean operators sisand andor to refine
pointcuts. TheMTERASPECTAPI could be extended with corresponding operators. Even in
their absence, a similar result can be achievediireRA speCTby including the appropriate
logic in the callback. For example, a plug-in can instruneetis tomalloc andcalls tofree
by joining on a pointcut with all function calls and using i _capture _function _name
facility to add advice calls only tanalloc andfree . Simple cases like this can further-
more be handled by using regular expressions to match amoames, which would be a
straightforward addition to the framework.

INTERASPECT Aspect-Oriented Instrumentation with GCC 7

const char *aop_capture _lhs _name(aop _joinpoint *jp);
Captures the name of a variable assigned to in a given assigrjain point, or returns NULL if the join point does
not assign to a named variable.
enum aop.-scope aop _capture _lhs _var _scope(aop -joinpoint *jp);
Captures the scope of a variable assigned to in a given assigrjoin point. Variables can have global, file-local,
and function-local scope. If the join point does not assiga variable, this function retur’fsSOPMEMOR®COPE
struct aop _dynval *aop._capture _hs _addr(aop -joinpoint *jp);
Captures the memory address assigned to in a given assigjuingpoint.
struct aop _dynval *aop._capture _assigned _value(aop -joinpoint *jp);
Captures the assigned value in a given assignment join.point

Fig. 8 Capture functiongor assignment join points.

void aop .insert _advice(struct aop _joinpoint *jp, const char *advice _func _name,
enum aop-insert _location location, ...);
Insert an advice call, before or after a join point (depegdin the value ofocation), passing any number of
parameters. A plug-in obtains a join point by iterating cagrointcut withaop _join _on.

Fig. 9 Insert functionfor instrumenting a join point with a call to an advice fumcti

After capturing, a callback can add an advice-function loefbre or after the join point
using theinsert function of Figure 9. Thewp_.insert _advice function takes any number
of parameters to be passed to the advice function at runiileding values captured from
the join point and values computed during instrumentatipithk plug-in itself.

Using a callback to iterate over individual join points makepossible to customize
instrumentation at each instrumentation site. A plug-in capture values about the join
point to decide which advice function to call, which paraengto pass to it, or even whether
to add advice at all. In Section 4.2, this feature is exptbiteuniquely index named variables
during compilation. Custom instrumentation code in Sec#d3 separately records each
instrumented join point in order to track coverage inforiomt

Function body duplicationINTERASPECT provides afunction body duplicatiorfacility
that makes it possible to toggle instrumentation at the tfandevel. Although inserting
advice at the GIMPLE level creates very efficient instrura@iah, users may still wish to
switch between instrumented and uninstrumented code @ibrferformance applications.
Duplication creates two or more copies of a function bodyi¢witan later be instrumented
differently) and redefines the function to call a specialieelfunction that runs at function
entry and decides which copy of the function body to execute.

When joining on a pointcut for a function with a duplicateddppthe caller specifies
which copy the join should apply to. By only adding instruraion to one copy of the
function body, the plug-in can create a function whose imséntation can be turned on
and off at runtime. Alternatively, a plug-in can create adiion that can toggle between
different kinds of instrumentation. Section 4.2 present&@ample of using function body
duplication to reduce overhead by sampling.

4 Applications

In this section, we present several example applicationth@fiNTERASPECTAPI. The
plug-ins we designed for these examples provide instruatientthat is tailored to specific
problems (memory visualization, integer range analysisleccoverage). Though custom-
made, the plug-ins themselves are simple to write, requimly a small amount of code.

8 Justin Seyster et al.
Ssort.c:46 struct node*

list struct node* next
OX7FFF1675ACD8 sort.c:50 0x1392030 [16] OX7FFF1675ACAQ
updates:3
updates:s | 0x1392050 [16]

.next struct node* B
sort.c:55 0x1392038 sort.c:50 0x1392010 [16] - -
updates:5, updates:3 (next)

« 0x1392058
~
sort.c:52 -

.next -
sort.c:45 0x1392018 \w
updates:5

*pn
0x7FFF1675ACBO

curr
0x7FFF1675ACA8

Fig. 10 Visualization of the heap during a bubble-sort operationadinked list. Boxes represent heap-
allocatedstruct s: linked list nodes in this example. Easlruct s labeled with is size, its address
in memory, and the addresses of its field. Withistauct , ovals represent fields that point to other heap
objects. Ovals that are notirsiruct ~ are global and stack variables. Each field and variable hestgoing
edge to thestruct that it points to, which is labeled with 1) the line numbertoé assignment that created
the edge and 2) the number of assignments to the sourceleatiabhave occurred so far. Fields and variables
that do not point to valid memory (such adleJLL pointer) have dashed borders.

4.1 Heap Visualization

The heap visualizer uses theTERASPECTAPI to expose memory events that can be used
to generate a graphical representation of the heap in real during program execution.
Allocated objects are represented by rectangular nod@stepeariables and fields by oval
nodes, and edges show where pointer variables and fields poin

In order to draw the graph, the heap visualizer needs toceptobject allocations and
deallocations and pointer assignments that change eddbe graph. Figure 10 shows a
prototype of the visualizer using Graphviz [4], an openrsewgraph layout tool, to draw
its output. The graph shows three nodes in a linked list duaibubble-sort operation. The
list variable is the list's head pointer, and ther andnext variables are used to traverse
the list during each pass of the sorting algorithm. (phevariable is used as temporary
storage for swap operations.)

The INTERASPECTcode for the heap visualizer instruments each allocatiali {c
malloc) with a call to theneap _allocation advice function, and it instruments each pointer
assignment with a call to thpointer _assign advice function. These advice functions
update the graph. Instrumentation of other allocation agalldcation functions, such as
calloc andfree , is handled similarly.

The INTERASPECTcode in Figure 11 instruments calls f@lloc . The API function
instrument _malloc _calls constructs a pointcut for all calls t@alloc and then calls
aopjoin _on to iterate over all the calls in the pointcut. Only a short mfinction (not
shown) is needed to set GCC to invakstrument _malloc _calls during compilation.

Theaop _match function _call function constructs an initial pointcut that includes ev-
ery function call. Theilter ~ functions narrows the pointcut to include only callsialloc .
First,aop filter _call _pc_by _namefilters out calls to functions that are not namealioc .
Then,aop filter _pc_by _param type andaopfilter _pc_by return _type filter out calls
to functions that do not match the standardioc prototype, which takes an unsigned inte-
ger as the first parameter and returns a pointer value. Ttagfiij step is necessary because
a program could define its own function with the namgioc but a different prototype.

For each join point in the pointcut (in this case, a calhialloc), aop_join _on calls
malloc _callback . The twocapture calls in the callback function returmp _dynval ob-

INTERASPECT Aspect-Oriented Instrumentation with GCC 9

static void instrument_malloc_calls(void)

/= Construct a pointcut that matches calls to: void * malloc(unsigned int). */

struct aop_pointcut *pc = aop_match_function_call();

aop_filter_call_pc_by_name(pc, "malloc");

aop_filter_call_pc_by_param_type(pc, 0, aop_t_all_uns igned());

aop_filter_call_pc_by_return_type(pc, aop_t_all_poin ter());

[+ Visit every statement in the pointcut. */

aop_join_on(pc, malloc_callback, NULL);

}

/* The malloc_callback() function executes once for each call to malloc() in the
target program. It instruments each call it sees with a call t o]
heap_allocation(). */

static void malloc_callback(struct aop_joinpoint *jp, void *arg)

struct aop_dynval * object_size;

struct aop_dynval * object_addr,;

/= Capture the size of the allocated object and the address it is
allocated to. */

object_size = aop_capture_param(jp, 0);

object_addr = aop_capture_return_value(jp);

/+ Add a call to the advice function, passing the size and addres s as
parameters. (AOP_TERM_ARG is necessary to terminate the i st of arguments
because of the way C varargs functions work.) */

aop_insert_advice(jp, "heap_allocation”, AOP_INSERT_A FTER,

AOP_DYNVAL(object_size), AOP_DYNVAL(object_addr),
AOP_TERM_ARG);
}

Fig. 11 Instrumenting all memory-allocation events.

jects for the call’s first parameter and return value: the efzhe allocated region and its ad-
dress, respectively. Recall from Section 3 thaa@n dynval serves as a placeholder during
compilation for a value that will not be known until runtimieinally, aop -insert _advice
adds the call to the advice function, passing the two captvakies. Note thaNTERASPECT
chooses types for these values based on how they were filidredilters used here restrict
object _size to be an unsigned integer andject _addr to be some kind of pointer, so
INTERASPECTassumes that the advice functiesap _allocation ~ has the prototype:

void heap_allocation(unsigned long long, void *);

To support this, N TERASPECTcode must generally filter runtime values by type in order to
capture and use them.
The INTERASPECTcode in Figure 12 tracks pointer assignments, such as

list_node->next = new_node;

Theaop-match _assignment _by _type function creates a pointcut that matches assignments,
which is additionally filtered by the type of assignment. Bus application, we are only
interested in assignments to pointer variables.

For each assignment join poinissignment _callback capturesaddress , the address
assigned to, anpbinter , the pointer value that was assigned. In the above exanthiese
would be the values dflist _node->next andnew_node, respectively. The visualizer uses
address to determine the source of a new graph edgemirder to determine its desti-
nation.

The function that capturesidress , aop _capture _hs _addr , does not require explicit
filtering to restrict the type of the captured value becausaddress always has a pointer

10 Justin Seyster et al.

static void instrument_pointer_assignments(void)

[+ Construct a pointcut that matches all assignments to a point er. */
struct aop_pointcut *pc = aop_match_assignment_by_type(aop_t_all_pointer());
| * Visit every statement in the pointcut. */

aop_join_on(pc, assignment_callback, NULL);

/' The assignment_callback function executes once for each po inter assignment.
It instruments each assignment it sees with a call to pointer _assign(). */

static void assignment_callback(struct aop_joinpoint *jp, void *arg)
{

struct aop_dynval *address;

struct aop_dynval * pointer;

/= Capture the address the pointer is assigned to, as well as the pointer

address itself. */

address = aop_capture_lhs_addr(jp);
pointer = aop_capture_assigned_value(jp);

aop_insert_advice(jp, "pointer_assign”, AOP_INSERT_AF TER,
AOP_DYNVAL(address), AOP_DYNVAL(pointer),
AOP_TERM_ARG);

Fig. 12 Instrumenting all pointer assignments.

type. The value captured kaop capture _assigned value and stored irpointer has a
void pointer type because we filtered the pointcut to inclolly pointer assignments. As a
result, NTERASPECTassumes that thginter _assign advice function has the prototype:

void pointer_assign(void *, void *);

4.2 Integer Range Analysis

Integer range analysis is a runtime tool for finding anonsalieprogram behavior by track-
ing the range of values for each integer variable [15]. A eaagalyzer can learn normal
ranges from training runs over known good inputs. Valuesfaiboutside of normal ranges
in future runs are reported as anomalies, which can indaategs. For example, an out-of-
range value for a variable used as an array index may causesgrl@unds violation.

Our integer range analyzer uses sampling to reduce runtiedhead. Missed updates
because of sampling can result in underestimating a vafg&akdnge, but this trade-off is
reasonable in many cases. Sampling can be done randomly wsithy a technique like
Software Monitoring with Controllable Overhead [17].

INTERASPECTprovides function body duplication as a means to add insgtniation
that can be toggled on and off. Duplicating a function splg$ody into two copies. Alis-
tributor blockat the beginning of the function decides which copy to runl RNERASPECT
plug-in can add advice to just one of the copies, so that tteilolitor chooses between en-
abling or disabling instrumentation.

Figure 13 shows how we us® TERASPECTtO instrument integer variable updates. The
call toaop _duplicate makes a copy of each function body. The first argument sps¢ifat
there should be two copies of the function body, and the skspacifies the name of a func-
tion that the distributor will call to decide which copy toemute. When the duplicated func-
tion runs, the distributor calld@istributor ~ _func , which must be a function that returns an
integer. The duplicated function bodies are indexed from,zend thedistributor func
return value determines which one the distributor trasstentrol to.

INTERASPECT Aspect-Oriented Instrumentation with GCC 11

static void instrument_integer_assignments(void)
struct aop_pointcut *pC;

/» Duplicate the function body so there are two copies. */
aop_duplicate(2, "distributor_func", AOP_TERM_ARG);

/+ Construct a pointcut that matches all assignments to an inte ger. */
pc = aop_match_assignment_by_type(aop_t_all_signed_in teger());
| * Visit every statement in the pointcut. */
aop_join_on_copy(pc, 1, assignment_callback, NULL);
}
/* The assignment_callback function executes once for each in teger assignment.
It instruments each assignment it sees with a call to int_ass ign(). */
static void assignment_callback(struct aop_joinpoint *jp, void *arg)
{

const char *variable_name;
int variable_index;

struct aop_dynval *value;
enum aop_scope Scope;

variable_name = aop_capture_lhs_name(jp);

if (variable_name != NULL) {
/* Choose an index number for this variable. */
scope = aop_capture_lhs_var_scope(jp);
variable_index = get_index_from_name(variable_name, sc ope);

aop_insert_advice(jp, "int_assign", AOP_INSERT_AFTER,
AOP_INT_CST(variable_index), AOP_DYNVAL(value),
AOP_TERM_ARG);

Fig. 13 Instrumenting integer variable updates.

Usingaop join _on_copy instead of the usualbp join _on iterates only over join points
in the specified copy of duplicate code. As a result, only @pyds instrumented; the other
copy remains unmodified.

The callback function itself is similar to the callbacks weed in Section 4.1. The main
difference is the call tget _index _from _name that converts the variable name to an integer
index. Theget _index _from _name function (not shown for brevity) also takes the variable’s
scope so that it can assign different indices to local véesim different functions. It would
be possible to directly pass the name itself (as a strindg)g@atlvice function, but the advice
function would then incur the cost of looking up the variableits name at runtime. This
optimization illustrates the benefits ai tERASPECTSs callback-based approach to custom
instrumentation.

The aop _capture _hs _name function returns a string instead of aop_dynval object
because variable names are known at compile time. It is sape® check for aULLreturn
value because not all assignments are to named variables.

To better understand InterAspect’s performance impachemehmarked this plug-in on
the compute-intensivezip2 compression utility using trivial advice functions. Thap2
package is a popular tool included in most Linux distribasiolt has 110 functions in about
8,000 lines of code. Our test plug-in, based on the code iar€ig3, duplicates each func-
tion body, adding an advice call to every integer assignnreine copy of the function
body. Depending on the test, the distributor either retQrilsmediately, choosing the unin-
strumented path, or returns 1 immediately, for the instmterpath. The integer assignment
advice function only increments a counter, allowing us t@suge the overhead from call-

12 Justin Seyster et al.

60

HTML file m—
Zero file m—
50 Random file T

40 .

Execution time (seconds)
= N w
o o o o
T T T
o [R—
1 1 1

(//7//7 //71‘ Sy, "2t Sy, C/ 4 //”G/-
RT Y g% %
ey, cr Scr Sey
fea Q)/‘.S‘Q (sneb (//7 ///7
b/@O/ /@09 @)

Fig. 14 Execution time forbzip2 instrumented, usingNTERASPECTOr CIL, to increment a counter at
every integer assignment. The programs for the threeERA SPECTconfigurations are instrumented with
the same plug-in, which duplicates function bodies andriasadvice at every integer assignment. In the
“enabled” and “inline” runs, the distributor always chosghe instrumented path; in the “disabled” run, it
always chooses the uninstrumented path. For the “inline; the advice function was marked as inline,
allowing GCC to inline it. We ran all performance tests 10esnand the 90% confidence interval had a half
width of less than 0.15 seconds for all measurements shown.

ing advice functions independently from actual monitoravgrhead. All in all, the plug-in
instrumented 957 assignment join points. We also companediNa ERASPECTplug-in to
a similar transformation written in CIL [24] that adds an &evcall to every integer assign-
ment but does not perform function body duplication.

Figure 14 shows our results fbrip2 with five different instrumentation configurations.
We benchmarked each of these configurations with threerelifteinput files: a 161MB
HTML file, a 161MB file containing random bytes, and a 1.6GB €itmtaining zeros. The
HTML file consists of a novel taken from the Project Gutenbeedp site and duplicated to
create a larger file.

With a distributor that maximizes overhead by always chuogshe instrumented func-
tion body (“InterAspect (Enabled)”), we measured 78.7%tima overhead in the worst
case: the zero file. Function body duplication by itself cibates relatively little to this
overhead; with a distributor that always chooses the uningnted path (“InterAspect (Dis-
abled)”), we measured only 3.00% overhead in the worst ¢hsd4dTML file.

High overhead is expected for the integer assignment pdibecausézip2 performs
integer assignments very frequently. To compress the HTM| tiip2 executed 5.34 bil-
lion join points, more than 249 million integer assignmepés second. The CIL integer
assignment transformation we tested (“CIL” in Figure 14yed 74.0% overhead when
compressing the zero file.

Much of the overhead in our test comes from the time it takemnter and exit advice
functions. When an advice function includes only a smallamof code, as in this example,
it makes sense to insert that code directly at each join poiatoid function call overhead.
GCC can automatically perform this transformation, beedusERASPECTS instrumen-
tation passes occur before GCC’s function inlining passrkivig the integer assignment

INTERASPECT Aspect-Oriented Instrumentation with GCC 13

advice function with GCC’always -inline attribute reduced overhead to just 25.0% in the
worst case: compressing the random file. We computed anlbirera for each configura-
tion by summing the average times for each of the three filesthéh computed an overall
overhead for each instrumented configuration. The overaditeead for the “InterAspect
(Inline)” configuration was 13.4%, the lowest of all the cgufiations we tested.

The only memory overhead from our range analysis tool comoes fuplicating every
function body, which roughly doubles the size of the texinsegt. The instrumentekip2
execution image was 69KB larger, as reported byt utility, an increase of 96%. Image
size is small, however, compared to the total 7.2MB of helgrations when compressing
the HTML file with or without instrumentation, as reported fgigrind.

We disabled GCC's function inlining for all configuratiortsgcause it interfered with
comparisons betweesxip2 configurations with function body duplication and configura
tions without it. When compiling without instrumentatioBCC inlined too aggresively,
actually hurting performance. But with function body dgplion, GCC was more reluc-
tant to inline functions that were now twice as large, makirgppear as if function body
duplicationimprovedperformance and unfairly masking some of the overhead ibench-
marks. Note that disabling function inlining did not pretv&CC from inlining the advice
function in the “InterAspect (Inline)” configuration, becse we marked the advice function
with thealways _inline attribute.

4.3 Code Coverage
A straightforward way to measure code coverage is to chogsgracut and measure the

percentage of its join points that are executed duringrtg@siNTERASPECTSs ability to iter-
ate over each join point makes it simple to label join poimtd #hen track them at runtime.

static void instrument_function_entry_exit(void)

{
struct aop_pointcut *entry_pc;
struct aop_pointcut * exit_pc;
/= Construct two pointcuts: one for function entry and one for f unction exit. */

entry_pc = aop_match_function_entry();
exit_pc = aop_match_function_exit();

aop_join_on(entry_pc, entry_exit_callback, NULL);
aop_join_on(exit_pc, entry_exit_callback, NULL);

}

|+ The entry_exit_callback function assigns an index to every join
point it sees and saves that index to disk. */

static void entry_exit_callback(struct aop_joinpoint *jp, void *arg)

{

int index, line_number;
const char *filename;

index = choose_unique_index();

filename = aop_capture_filename(jp);
line_number = aop_capture_lineno(jp);
save_index_to_disk(index, filename, line_number);

aop_insert_advice(jp, "mark_as_covered", AOP_INSERT_B EFORE,
AOP_INT_CST(index), AOP_TERM_ARG);

Fig. 15 Instrumenting function entry and exit for code coverage.

14 Justin Seyster et al.

The example in Figure 15 adds instrumentation to track e@gepf function entry and
exit points. To reduce runtime overhead, theose _unique _index function assigns an in-
teger index to each tracked join point, similar to the indgxof integer variables in Sec-
tion 4.2. Each index is saved along with its correspondingafilename and line number
by thesave _index _to _disk function. The runtime advice needs to output only the set of
covered index numbers; an offline tool uses that output topcenthe percentage of join
points covered or to list the filenames and line numbers oV join points. For brevity
we omit the actual implementations @foose _unique _index andsave _index _to _disk .

5 Tracecuts

In this section, we present the API for theTERASPECTTracecut extension, and discuss
the implementation of the associated tracecut monitorimgjre. We also present two il-
lustrative examples of the Tracecut extension: runtiméigation of file access and GCC
vectors. The architecture diagram in Figure 3 shows howetkiiension and its associated
monitoring engine fit into the overalNiTERASPECTarchitecture.

Our INTERASPECT Tracecut extension showcases the flexibility afTERASPECTS
API. Since one of our goals for this extension is to serve asr mpowerful example of how
to use NTERASPECT, its instrumentation component is built modularly &?TERASPECT
all of its access to GCC are through the publishetddRA sPECTInterface.

Whereas pointcut advice is triggered by individual evemmgg;ecut advice can be trig-
gered by sequences of events matching a pattern [32]. Acua@e our system is defined
by a set symbols, each representing a possibly parametetizéime event, and one or
more rules expressed as regular expressions over theselsyribr example, a tracecut
that matches a call texit or execve after a fork would specify symbols fderk |, exit
andexecve function calls and the rulerk (exit | execve), where juxtaposition denotes
sequencing, parentheses are used for grouping, and tieaVber |” separates alternatives.

Each symbol is translated to a function-call pointcut, wahig instrumented with ad-
vice that sends the symbol’s corresponding event to the toramg engine. The monitoring
engine signals a match whenever some suffix of the string efitsvmatches one of the
regular-expression rules.

Parameterization allows a tracecut to separately monitdtipie objects [2, 8]. For ex-
ample, the ruldclose fread , designed to catch an illegal read from a closed file, should
not match ariclose followed by anfread to a different file. When these events are param-
eterized by the file they operate on, the monitoring engierates a unique monitor instance
for each file.

A tracecut with multiple parameters can monitor propemiesets of objects. A classic
example monitors data sources that have multiple iteratsssciated with them. When a
data source is updated, its existing iterators becomeithaid any future access to them is
an error. Parameterizing events by both data source aradatesreates a monitor instance
for each pair of data source and iterator.

The monitoring engine is implemented as a runtime libragt itreates monitor in-
stances and forwards events to their matching monitorricsta Because rules are specified
as regular expressions, each monitor instance storesedrsthe equivalent finite-state ma-
chine. The user only has to link the monitoring library witle instrumented binary, and the
tracecut instrumentation calls directly into the library.

INTERASPECT Aspect-Oriented Instrumentation with GCC 15

struct tc _tracecut xtc _create _tracecut(void);
Create an empty tracecut.
enum tc _error tc _add_param(struct tc _tracecut xtc, const char *name,
const struct aop _type *type);
Add a named parameter to a tracecut.

Fig. 16 Function for initializing tracecuts.

enum tc _error tc _add_call _symbol(struct tc _tracecut *tc, const char *name,
const char *func _name,
enum aop-insert _location location);
Define a named event corresponding to calls to the functiamedsbyfunc _name.

enum tc _error tc _bind _to _call _param(struct tc _tracecut * ftc,
const char *param_name,
const char *symbol _name, int call _param _index);
Bind a function call parameter from an event to one of theeitats named parameters.
enum tc _error tc _bind _to _return _value(struct tc _tracecut *tC,

const char *param _name,
const char *symbol _name);
Bind the return value of an event to one of the tracecut’s mbpagameters.
enum tc _error tc _declare _call _symbol(struct tc _tracecut *tc, const char *name,
const char xdeclaration,
enum aop-insert _location location);
Define a named event along with all its parameter bindingls aie declaration string.

Fig. 17 Functions for specifying symbols.

5.1 Tracecut API

A tracecut is specified by a C program that calls tracecut ARttions. This design keeps
the tracecut extension simple, eliminating the need forsiarn parser but still allowing

concise definitions. A tracecut specification can define amgher of tracecuts, each with
its own parameters, events, and rules.

Defining ParametersThe functions in Figure 16 create a new tracecut and defingaits
rameters. Each parameter has a name and a type. The typessascbecause parameters
are used to capture runtime values.

Defining SymbolsThetc _add_call _symbol function adds a new symbol that corresponds
to an event at every call to a specified function. Thebind functions bind a tracecut
parameter to one of the function call's parameters or toetsrn value. Figure 17 shows
tc _add _call _symbol and thetc _bind functions.

The tracecut API uses the symbol and its bindings to definerdaqut. Figure 18 shows
an example symbol along with the TERASPECTAPI calls that Tracecut makes to create
the pointcut. In a later step, Tracecut makes calls neededpiure the bound return value
and pass it to an advice function.

As a convenience, the API also provides thedeclare _call _symbol function (also
in Figure 17), which can define a symbol and its parameteritmgsdwith one call using a
simple text declaration. The declaration is syntacticaliyilar to the C prototype for the
function that will trigger the symbol, but the function’srfoal parameters are replaced with
tracecut parameter names or with a question matkd indicate that a parameter should
remain unbound. The code in Figure 18(c) defines the samedyaslin Figure 18(a).

16 Justin Seyster et al.

struct tracecut *fc = tc _create _tracecut()
tc _add _param(tc, “"object", aop _all _pointer());
tc _.add_call _symbol(tc, "create", "create _object", AOP _INSERT.AFTER);

tc _bind _to _return _value(tc, "object", "create");
(a) Code to define a tracecut symbol.

pc = aop -match _function _call();

aop filter _call _pc_by_name(pc, “create _object");

aop filter _call _pc_by_return _type(pc, aop -all _pointer());
(b) The values that the tracecut API will pass torERA SPECTfunctions to create a
corresponding pointcut.

struct tracecut *fc = tc _create _tracecut()
tc _add _param(tc, “"object", aop _all _pointer());
tc _declare _call _symbol(tc, "create", "(object)create _object()",

AOPRINSERT.AFTER);
(c) A more compact way to define the event in Figure 18(a).

Fig. 18 An example of how the tracecut API translates a tracecut synmbo a pointcut. Because the
create symbol's return value is bound to tlbject param, the resulting pointcut is filtered to ensure
that its return value matches the typeobiject

enum tc _error tc _add _rule(struct tc tracecut tc, const char * specification);
Define a tracecut rule. The specification is a regular expmessing symbol names as its alphabet.

Fig. 19 Function for defining tracecut rule.

Defining Rules.After symbols and their parameter bindings are definedsrare expressed
as strings containing symbol names and standard regulaessipn operatorg:,), », +,
and|. The function for adding a rule to a tracecut is shown in FegL®.

5.2 Monitor Implementation

The monitoring engine maintains a list of monitor instarfoegach tracecut. Each instance
has a value for each tracecut parameter and a monitor stateurhented events pass the
values of their parameters to the monitoring engine, whiem tdetermines which monitor
instances to update. This monitor design is based on the vapegies are monitored in
Tracematches [2] and MOP [8].

When a symbol is fully parameterized—it has a binding forrgyearameter defined
in the tracecut specification—the monitoring engine upslateactly one instance. If no in-
stance exists with matching parameter values, one is cteate

For partially parameterized symbols, ligesh in Figure 23, the monitoring engine only
requires the specified parameters to match. As a resultisegernresponding to these sym-
bols can update multiple monitor instances. For examptesta event updates one monitor
for everyelement _pointer associated with the updated vector. As in the original MOP
implementation, partially parameterized symbols cannedite a new monitor instance [8].
(MOP has since defined semantics for partially parametkrizenitors [22].)

When any monitor instance reaches an accepting state, thiamiog engine reports
a match. The default match function prints the monitor patans tostderr . Developers
can implement their own tracecut advice by overriding thiadé match function. Function
overriding is possible in C using a linker feature callgelak linkage Placing a debugger
breakpoint at the match function makes it possible to exampegram state when a match
occurs.

INTERASPECT Aspect-Oriented Instrumentation with GCC 17

Monitoring instances get destroyed when they can no lonchraa accepting state. The
tracecut engine does not attempt to free instances parareetdy freed objects because it
is not always possible to learn when an object is freed in Chmwduse parameters are not
required to be pointers to heap-allocated objects.

A developer can ensure that stale monitor instances do reiewaemory by designing
the rule to discard them. The easiest way to do this is to defisygmbol for the function
that deallocates an object but not to include the symbol &eyevin the tracecut’s rule.
Deallocating the object then generates an event that makespaossible for the tracecut
rules to match.

Figure 20 is a pseudocode representation of the monitooigig described in this sec-
tion. Note that it uses a linear search to find monitors thatiie be updated. This approach
makes sense when the number of monitor instances remaitisisrmaghout execution, as
in the examples we discuss below. When the number of momisbamces is large, it would
be more efficient to maintain a hash table index for each plesparameterization. Updat-
ing these indexes would add a constant cost to creating a rewaninstance, but events
would no longer trigger an expensiggn) lookup.

receive_event(tracecut, monitors, event_name, param_na mes|[], param_values[],
num_params):
matching_monitors := {}

; Find monitor instances with parameters matching this even t.
for each monitor in monitors:

matches := true

for i in 1 to num_params:

; Check that all params in the event match params in the monito r instance.
if not monitor.get_param(param_names[i]) = param_values [i] then:

matches := false

break

if matches then:
matching_monitors.insert(monitor)

; Create a new monitor if necessary.

if is_empty(matching_monitors) and is_fully_parameteri zed(tracecut, num_params):
new_monitor := create_monitor(param_names, param_value s)
monitors.insert(new_monitor)
matching_monitors.insert(new_monitor)

; Update the finite-state machine for each matching monitor
for each monitor in matching_monitors:
monitor.update_state(event_name)

; Trigger advice on reaching an accepting state.
if is_in_accepting_state(monitor)
monitor.call_advice_function()

; Destroy any monitor that can no longer reach an accepting st ate.
if is_in_trap_state(monitor) then:

monitors.remove(monitor)

destroy(monitor)

is_fully_parameterized(tracecut, num_params)
if get_num_params(tracecut) = num_params then:
return true
else
return false

Fig. 20 Pseudocode implementation of theTERA SPECTTracecut monitoring logic.

18 Justin Seyster et al.

5.3 Verifying File Access

As a first example of the tracecut API, we consider the runtieriication of file access.
Like most resources in C, tiLE objects used for file I/O must be managed manually. Any
access to &ILE object after the file has been closed is a memory error whidugh dan-
gerous, might not manifest itself as incorrect behavioirdutesting. Designing a tracecut
to detect these errors is straightforward.

tc = tc_create_tracecut();

tc_add_param(tc, “file", aop_t_all_pointer());

tc_declare_call_symbol(tc, "open", "(file)fopen()", AO P_INSERT_AFTER);
tc_declare_call_symbol(tc, "read", "fread(?, ?, ?, file) ", AOP_INSERT_BEFORE);
tc_declare_call_symbol(tc, "read_char", "fgetc(file)" , AOP_INSERT_BEFORE);
tc_declare_call_symbol(tc, "close", "fclose(file)", AO P_INSERT_BEFORE);
tc_add_rule(tc, "open (read | read_char) * close (read | read_char)");

Fig. 21 A tracecut for catching accesses to closed files. For brawigytracecut only checks read operations.

The tracecut in Figure 21 defines symbols for feWwe operations: open, close, and
two kinds of reads. The rule matches any sequence of thedeotythat opens a file, closes
it, and then tries to read it.

The rule matches as soon as any read is performed on a ¢lngedbject, immediately
identifying the offending read. We tested this tracecutbeip2 (which we also use for
evaluation in Section 4.2); it caught an error we plantethouit reporting any false positives.

5.4 Verifying GCC Vectors

We designed a tracecut to monitor a property on a vector datetgre used within GCC
to store an ordered list of GIMPLE statements. The list isestan a dynamically resized
array. The vector API provides an iterator function to iteraver the GIMPLE statements
in a vector. Figure 22 shows how the iterator function is ug¢@ach execution of the loop,
theelement variable points to the next statement in the vector.

int i;
gimple element;

|+ lterate over each element in a vector of GIMPLE statements. */
for (i = 0; VEC_gimple_base_iterate(vectorl, i, &element) ;i) {
/= If condition holds, copy this element into vector2. */
if (condition(element))
VEC_gimple_base_quick_push(vector2, element);

Fig. 22 The standard pattern for iterating over the elements in a @&@@r of GIMPLE statements. This ex-
ample copies elements matching some condition fvectorl tovector2 . If vectorl andvector2
happen to point to the same vector, this code may modify tetov while iterating over its elements.

INTERASPECT Aspect-Oriented Instrumentation with GCC 19

tc = tc_create_tracecut();

tc_add_param(tc, "vector”, aop_t_all_pointer ());
tc_add_param(tc, "element_pointer”, aop_t_all_pointer 0);

tc_declare_call_symbol(tc, "iterate”,
"VEC_gimple_base_iterate(vector, ?, element_pointer)"
AOP_INSERT_BEFORE);

tc_declare_call_symbol(tc, "push”, "VEC_gimple_base_q uick_push(vector, ?)",
AOP_INSERT_BEFORE);

tc_add_rule(tc, “iterate push iterate");

Fig. 23 A tracecut to monitor vectors of GIMPLE objects in GCC.

A common tracecut property for data structures with itesabtiecks that the data struc-
ture is not modified while it is being iterated, as can occuUfigure 22. Figure 23 specifies
a tracecut that detects violations of this property.

The tracecut monitors two important vector operationsMb@gimple _base _iterate
function, which is used in the guard of a for loop to advancth&onext element in the list,
and thevECgimple _base _quick _push function, which inserts a new element at the end of
a vector. With the symbols defined, the rule itself is simfpeate push iterate . Any
push in between twdterate operations indicates that the vector was updated within the
iterator loop.

Parameterizing thigerate symbol on both the vector and teement _pointer used
to iterate makes it possible to distinguish different iterdoops over the same vector.
This distinction is necessary so that a program that finigkesting over a vector, updates
that vector, and then iterates over it again does not triggeatch. Though, the tracecut
monitor will observe events for the symbatsrate push iterate , the first and last
iterate events (which are from different loops) will normally havifetent values for
theirelement _pointer parameter.

When monitoring this same property in Java, usuallytarator objectserves the pur-
pose of parameterizing an iterator loop. In Figure 22 elbment variable is analogous to
an iterator, as it provides access to the current list elémtsgach iteration of the loop. The
element _pointer identifies the iterator-like variable by its address.

Keeping specifications simple is especially important ing€duse the language does
not provide any standard data structures. A tracecut writieone program’s vector type is
not likely to be useful for monitoring any other program.

We applied the tracecut in Figure 23 to GCC itself, verifythgt, in our tests, GCC
did not update any vectors while they were being iterate@. fféicecut did match a call to
VECgimple _base -quick -push that we deliberately placed in an iterator loop.

Because monitored events in OWTIERASPECT Tracecut examples execute less fre-
quently than the integer assignment join points in our ietegnge analysis example (Sec-
tion 4.2), we found overhead to be less of an issue. We mehsuerhead for both the file
access tracecut we tested in Section 5.3 and the tracedus isetction to be less than 1%.

5.5 Verifying lighttpd Connections

We also usedNTERASPECT Tracecut to check a property of connections in the lighttpd
(pronouncedlighty) HTTP server [20]. Lighttpd creates many connections,vatlg us

20 Justin Seyster et al.

to evaluate the performance ofitERASPECTTracecut with many monitors. The lighttpd
server maintains eénnection object for each open connection from a client. Eemtmection
object stores a TCP network socket and all state informdtiothe client's HTTP session.

tc = tc_create_tracecut();

tc_add_param(tc, "connection”, aop_t_all_pointer());

tc_declare_call_symbol(tc, "init", "(connection)conne ctions_get_new_connection()",
AOP_INSERT_AFTER);

tc_declare_call_symbol(tc, "state", "connection_state _machine(?, connection)",
AOP_INSERT_BEFORE);

tc_declare_call_symbol(tc, "close", "connection_close (?, connection)",

AOP_INSERT_BEFORE);

tc_add_rule(tc, "init state * close state");

Fig. 24 A tracecut for catching accesses to connections after they been closed by the server.

The property we checked, shown in Figure 24, is that the sdoes not try to update the
state of a connection after the connection has been cldsieds tsimilar to the file property
presented in Section 5.3. Aftesnnection _close is called on aonnection object, any
updates to that object vimnnection _state _machine will trigger a match, unless a call to
connections _get _new_connection re-initializes the object first.

We found that lighttpd sometimes closes connections whég &re on its list ofonnection
objects that are pending a state update. The service rdutitt@s list then updates the state
of the closed connection, but this usage does not cause @n Bsravoid error reports for
this correct usage, we overrode the tracecut match funtdiggnore matches on objects in
the pending connection list. The custom match functioh refjorts other state updates on
closed connections. These state updates would likelyamelian error. Our test runs did not
find any such updates in the version of lighttpd we tested.

To test performance, we stressed lighttpd withtige _load tool, which loads an HTTP
server with a large number of parallel requests and measespsnse times [26]. The ver-
sion we used includes a patch from the lighttpd authors [2€&port errors more accurately
and additional modifications to report standard deviatmi®sponse time samples, which
we needed to make conclusions about statistical signifecaMe configuredittp _oad to
open HTTP requests in groups of 100 at a time, the most thiattpid could handle on
our test hardware without dropping connections. With thist workload, NTERASPECT
Tracecut had to maintain at least 100 monitor instancesigfnout the course of the test.

Monitoring did not cause a statistically significant ingean response time, because
lighttpd's operation is largely 1/0-bound. The averagepmse time was 21.9ms for the
two million requests in the unmonitored and monitored rivienitoring did increase the
server’s CPU load. Running lighttpd with the connectiorécut raised CPU utilization by
the lighttpd process from 36.4% to 39.7%.

5.6 Verifying Hash Table Entries

We designed a simple hash table benchmark in order to beitamtify INTERASPECT
Tracecut'’s scalability, as well as to provide another edarnpa useful data structure prop-
erty. The benchmark performs 10M operations, either ramgamserting an element into

INTERASPECT Aspect-Oriented Instrumentation with GCC 21

one of the hash tables or, with much lower probability, rangomodifying the key of an
element in one of the hash tables.

Modifying an element simulates an error. Altering the elatisekey can change its
hash value, leaving the element in the wrong bucket andtinglahe hash table’s invariant.
Figure 25 shows a tracecut designed to catch this error bghimat any call tanodify _obj
that immediately followsnsert _obj . Thehtab _empty function removes all elements from
a table, and the tracecut expression is designed so thdtta aalb _empty after inserting
an object withinsert _obj prevents a match for a subsequent calhtalify _obj (thereby
destroying the object’s monitor instance). Though it wasnezessary for this example, it
would also be straightforward to include a symbol for a fiorcthat removes an individual
object from a hash table.

tc = tc_create_tracecut();

tc_add_param(tc, "table", aop_t_struct_ptr("htab"));
tc_add_param(tc, "obj", aop_t_struct_ptr("obj"));

tc_declare_call_symbol(tc, "insert", "insert_obj(tabl e, obj)", AOP_INSERT_BEFORE);
tc_declare_call_symbol(tc, "modify”, "modify_obj(obj) ", AOP_INSERT_BEFORE);
tc_declare_call_symbol(tc, "empty"”, "htab_empty(table)", AOP_INSERT_BEFORE);

tc_add_rule(tc, "insert modify");

Fig. 25 A tracecut for catching modifications to objects in hasheabl

We designed the hash table benchmark so that the traceciutonmanframework would
have to store a large number of monitor instances. The besaéhmaintains 10 hash tables,
which each have a maximum size. Whenever a table exceedsxismm, the benchmark
removes all its elements with theab _empty function. We varied the maximum table size
from 50 to 250 in increments of 25 to show how performanceescak the number of
monitored objects increases.

Because the list of monitor instances is much larger thairother benchmarks and
because the hash table benchmark executes monitorediopsrat a tight loop, we ex-
pected the performance cost of monitoring to be high. Withrttaximum size set to 250,
we measured 113 overhead and found that eachTERASPECTTracecut had to search a
list of 1,244 monitor instances on average for each everititored. Figure 26 shows these
results, overhead and average number of monitor instafaresach of the maximum table
sizes we tested.

In a profiled run of the benchmark, we found that the tracebualy spent more than
98% of its time in monitor instance lookup routines. The ¢rém Figure 26 of overhead
increasing linearly with the number of monitor instancesdasistent with our conclusion
that these lookup routines dominate monitoring overheatmAntioned in Section 5.2y
TERASPECTTracecut's overhead for target programs that involve eelawgmber of moni-
tor instances can be greatly reduced by using an index éelgsh table), instead of linear
search, to find monitor instances that need to be updated.nibie efficient approach is
used in the MOP system [8], discussed in Section 6.

22 Justin Seyster et al.

120x T T T T T T T T T T

100x - 4. —

80x | -

60x - 7 —

Overhead

40X B

20x B

| | | | | | | | | |
200 300 400 500 600 700 800 900 1000 1100 1200 1300
Average number of monitor instances

Fig. 26 Monitoring overhead for the hash table benchmark with niiffierént values for the maximum
table size. We calculate the number of monitor instancesyston thez-axis, as the average number of
instances that exist when a tracecut event is monitored. iksour bzip2 benchmark in Section 4.2, we
obtained performance numbers by comparing the averagetexe¢ime of the benchmark with and without
monitoring, using ten runs for each.

6 Related Work

INTERASPECTIs a framework for the aspect-oriented instrumentationro§mming lan-
guages supported by GCC. Whereas the current focus has be&grifee framework should
be applicable to any GCC-supported languagerERASPECThas been extended in this
paper with the Tracecut plug-in for the runtime monitoringregular expressions.Nk
TERASPECTTracecut illustrates howNITERA sPECTallows for such an extension. In what
follows, we discuss related work in terms of instrumentafiameworks and tracecut facil-
ities.

Concerning instrumentation frameworks, there is a greaetyaof them for popular
programming languages, including aspect-oriented progriag environments, reflection
systems, and compiler frameworks. Instrumentation fraonksvcan be classified along four
dimensions:

[N

. Target languagethe language being instrumented (e.g. C, C++, and Java).

2. Instruction languagethe language used to express instrumentation instrigctibne
instrumentation language can be a Domain-Specific Lang{i2§k) or an API.

3. Target view the type of view offered by the instrumentation framewofktee target
language: source-code view, bytecode view, abstract syete.

4. Infrastructure the prevalence of the compiler framework that the instntiaigion frame-

work is based on.

INTERASPECT Aspect-Oriented Instrumentation with GCC 23

Target language -
C . C++ .
. Java .

Fig. 27 A breakdown of the frameworks discussed in this section byfitist three of our four classification
dimensionstarget languageinstruction languageandtarget view Not included in this hierarchy are CIL
and Valgrind, which both provide general-purpose framé&wdhat are not aspect oriented.

We argue thatNTERA sPECTOffers a unique combination of these dimensions with the
target language being C (and other languages supported B),@t instrumentation lan-
guage being an API, the target view being source code, antyfoeing based on the well-
adopted GCC infrastructure. It is this combination of feasuthat makesSNTERASPECT
unique. Being based on GCC means thatdRA SPECThas a greater chance of adoption by
the GCC user community and of long-term survival, becads®) instrumentation frame-
work is part of a compiler you are already using, the baroeusage of that instrumentation
framework is significantly diminished. Being API-based methat it is flexible and permits
open-source collaboration. Furthermore, the focus on Cushnmeeded since the focus of
existing instrumentation frameworks has been primarilyJava. Figure 27 shows all of the
aspect-oriented frameworks that we comparedRASPECTtO in this section and organizes
them according the dimensions introduced above.

In addition to filling a new role in the spectrum of instrumegitn frameworks, Ni-
TERASPECTOffers two novel features to the field of aspect-orientedym@mming. First,
INTERASPECTsupports the notion of callback functions, which can be iedpdluring in-
strumentation. Such functions can perform customizedungtntation at each join point, a
capability other AOP approaches lack. Second, functiory lalgblication makes it possible
to efficiently toggle instrumentation on and off at runtinte@switch between two different
instrumentation profiles.

Aspect-oriented programming was first popularized for JattaAspect] [13,21]. There,
weaving takes place at the bytecode level. The user is prdwidth a source-code view and
writes instrumentation instructions in a specialized DSporting pointcut definitions and
advice definitions. The AspectBench Compiler (abc) [5] isaerrecent extensible research
version of AspectJ that makes it possible to add new langueagstructs [6]. Similarly to
INTERASPECT, it manipulates aA intermediate representation (Jimple) specialized to.Java

Other frameworks for Java, including Javaassist [10] an@®R[25], offer, in a man-
ner similar to NTERASPECT, an API for instrumenting and modifying code, and hence do
not require the use of a special language. Javaassist isalitdeary for editing bytecode.
A source-level API can be used to edit class files without Kedge of the bytecode for-
mat. PROSE has similar goals. The BCEL [3] tool provides amhfaPmanipulating Java
bytecode.

24 Justin Seyster et al.

AOP for other languages such as C and C++ has had a sloweeuptsfrectC [11] was
one of the first AOP systems for C, based on the language cetswof Aspectd. ACC [23]
is a more recent AOP system for C, also based on the languagéects of AspectJ. Both
systems offer specialized DSLs for writing pointcuts andes just like AspectJ, providing
the user with a source-code view of the code to be instrurdeifiteey transform source code
and offer their own internal compiler framework for parsidgThese are closed systems in
the sense that one cannot augment them with new pointcutcessithe internal structure
of a C program in order to perform static analysis.

The XWeaver system [28], with its language AspectX, reprssa program in XML,
making it independent of the programming language. It supplaiva and C++. The choice
of an XML-based representation of the base code has the &dpaof partially decou-
pling the aspect weaver and the aspect language from thadgegf the base code. As-
picere [27] is an aspect language for C based on LLVM bytecliggointcut language is
inspired by logic programming. Adding new pointcuts amaunotdefining new logic predi-
cates. Arachne [12,14] is a dynamic aspect language fort@iges assembler manipulation
techniques to instrument a running system without pausing i

AspectC++ [30] is targeted towards C++. It can handle C toeserient, but this does
not seem to be a high priority for its developers. For exaiplenly handles ANSI C and
not other dialects. AspectC++ operates at the source-aa &nd generates C++ code,
which can be problematic in contexts where only C code is firdy such as in certain
embedded applications. OpenC++ [9] is a front-end libraryd++ that developers can use
to implement various kinds of translations in order to defiee syntax and object behavior.
In this sense, it attempts to provide an open compiler fraonkewAn OpenC++ user writes
a meta-program, in the form of a small number of C++ classésciwis then compiled
by the OpenC++ compiler and (dynamically or staticallykéd to the compiler itself as a
compiler plug-in.

CIL [24] (C Intermediate Language) is an OCaml [18] API foritmg source-code
transformations of its owBA code representation of C programs. CIL requires a user to be
familiar with the OCaml programming language. Valgrind][@brks directly with executa-
bles and consequently targets multiple programming lagesia

With respect to theNTERA SPECTTracecut plug-in, the field of runtime verification has
offered many such systems, and we do not claim that our plug+performs the better of
these. Rather, the plug-in is an illustration ofTERASPECT, demonstrating how such an
extension can be defined. Using therERASPECTAPI for our tracecut monitoring facility
greatly simplified its design, which we believe makes a casdlfe extensibility of the
INTERASPECTAPI.

The INTERASPECTTracecut is informed by several tracecut systems for Jaehyd-
ing Declarative Event Patterns [32], which introduced #renttracecut Tracematches [2],
and MOP [8], the last two supporting monitoring of regulapessions. Our handling of
monitor parameterization is based on the implementatiofisacematches and MOP, most
specifically MOP. More concretely, iNMFERASPECTTracecut, an index is created from pa-
rameters of events to propositional state machines raguitbom translation of the regular
expressions. Each monitor has a set of parameters, and\eadtsends a value for each of
those parameters. When none of the values are empty, weatahe¢hevent is “fully param-
eterized” and look up the (at most) one monitor instancetihatmatching values for all the
parameters. If no monitor instance is found, we create a mesv Bor a partially parame-
terized event (some values are empty), we look for all monitstances whose parameter
values match all the non-empty parameters of the eventettthre no such instances, the
event is ignored. This basically means that the first evergtroarry all the parameters to

INTERASPECT Aspect-Oriented Instrumentation with GCC 25

create a new monitor instance. This is how initial versiohMI®@P worked. Subsequently,
MOP has been modified so that this restriction is no longeessary [22].

As discussed in Section 5, for a given event, an index is eddfabm the event’s param-
eters and used to locate the monitor instances to updateibgaa kearch, which identifies
those instances whose parameters contain the index aset.siibslso previously stated,
this approach is not efficient when the number of instancegisAn efficient solution for
managing a large number of monitor instances would be tdrgtily viewed) maintain a
map from indexes to monitor instances. This is in fact ther@ggh taken in the MOP sys-
tem, in which each index is mapped to a monitor state. In MORma monitor receives an
event, it combines the events parameters with the formanpeter names associated with
that event to construct the index (itself a map from paramedenes to concrete values),
looks up the appropriate propositional monitor state fatt tiinding, and then applies the
propositional event in that monitor state to obtain a newestdore specifically, a monitor
state is updated if it is mapped to by an index that includesrttiex produced by the event.
The complete algorithm for MOP is more sophisticated thahdescribed here. Note, how-
ever, that the tracecut solution is not an attempt to impoovexisting monitoring solutions,
but rather to illustrate how such a solution can easily b buitop of InterAspcect.

Another difference betweemfrERASPECTTracecut and MOP is in their approaches to
destroying monitor instances. MOP destroys an instancen e garbage collector reaps
the objects assigned to the instance’s parameters. BeCaumsmrams are not garbage col-
lected and becauseTERASPECTTracecut can use parameters that are not allocated objects
(such as integer file handles), instancesNmERA SPECTTracecut are destroyed when they
can no longer reach an accepting state.

For C, Arachne and Aspicere provide tracecut-style momigorArachne can moni-
tor pointcutsequencesvhich have similar semantics toawtERASPECT Tracecut’s regu-
lar expressions [12]. The cHALO extension to Aspicere adeslipates for defining se-
qguences [1]. These predicates are designed to give develogier control over the amount
of memory used to track monitor instances.

7 Conclusions

We have presentedirERASPECT, a framework for developing powerful instrumentation
plug-ins for the GCC suite of production compilersiTERASPECTFbased plug-ins instru-
ment programs compiled with GCC by modifying GCC's interiia¢el language, GIMPLE.
The INTERASPECTAPI simplifies this process by offering an AOP-based intafePlug-
in developers can easily specify pointcuts to target spepifbgram join points and then
add customized instrumentation at those join points. Weepred several example plug-ins
that demonstrate the framework’s ability to customize irnatinstrumentation for specific
applications. Finally, we developed a more full-featurgglecation of our API: the \-
TERASPECTTracecut extension, which monitors formally defined ruetipnoperties. The
API and the tracecut extension are available under an oparmes license [19].

As future work, we plan to add pointcuts for all control flonnstructs, thereby allowing
instrumentation to trace a program run’s exact path of di@tWe also plan to investigate
API support for pointcuts that depend on dynamic informat®uch as AspectJsflow .
Dynamic pointcuts can already be implemented NTERASPECTwith advice functions
that maintain and use appropriate state, or even with traeelvice, but API support would
eliminate the need to write such advice functions.

26

Justin Seyster et al.

AcknowledgementsiVe thank the anonymous reviewers for their valuable comsnétart
of the research described herein was carried out at the detiBion Laboratory (JP), Cal-
ifornia Institute of Technology, under a contract with thatidnal Aeronautics and Space
Administration. Research described here was supportedriroy AFOSR Grant FA9550-
09-1-0481, NSF Grants CCF-0926190, CCF-0613913, CNSZ3gland CNS-0509230,
and ONR Grants N00014-07-1-0928 and N00014-09-1-0651.

References

1.

o b w

10.

11.

12.

13.
14.
15.
16.

17.

ADAMS, B., HERZEEL, C.,AND GYBELS, K. cHALO, stateful aspects in C. IACP4IS '08: Proceed-
ings of the 2008 AOSD workshop on Aspects, components, #edysdor infrastructure softwar@New
York, NY, USA, 2008), ACM, pp. 1-6.

. ALLAN, C., AVGUSTINOV, P., CHRISTENSEN A. S., HENDREN, L., KuzINS, S., LHOTAK, O.,

DE MOOR, O., ERENI, D., STTAMPLAN, G., AND TIBBLE, J. Adding trace matching with free
variables to AspectJ. IRroceedings of the 20th Annual ACM SIGPLAN Conference oad®kjriented
Programming, Systems, Languages and Applications (OORS).&005), ACM Press.

. BCEL. http://jakarta.apache.org/bcel .
. AT&T RESEARCHLABS. Graphviz, 2009www.graphviz.org
. AVGUSTINOV, P., CHRISTENSEN A. S., HENDREN, L., KuzINS, S., LHOTAK, J., LHOTAK, O.,

DE MOOR, O., SERENI, D., STTAMPALAM , G., AND TIBBLE, J. abc: An extensible AspectJ com-
piler. In Proceedings of the Fourth International Conference on Asfiented Software Development
(2005), ACM Press.

. BODDEN, E.,AND HAVELUND, K. Racer: Effective race detection using AspectJ Ptoceedings of

the ACM/SIGSOFT International Symposium on Softwarengestind Analysis (ISSTA2008), ACM,
pp. 155-165.

. CALLANAN, S., DEAN, D. J.,AND ZADOK, E. Extending GCC with modular GIMPLE optimizations.

In Proceedings of the 2007 GCC Developers’ Sun{@itawa, Canada, July 2007), pp. 31-37.

. CHEN, F., AND Rogsu, G. MOP: An efficient and generic runtime verification franoekv In Pro-

ceedings of the 22nd Annual ACM SIGPLAN Conference on Gbjeenhted Programming, Systems,
Languages and Applications (OOPSLA'@Zp07).

. CHIBA, S. A metaobject protocol for C++. IRroceedings of the ACM Conference on Object-Oriented

Programming Systems, Languages, and Applicat{@ttober 1995), pp. 285-299.

CHIBA, S. Load-time structural reflection in Java. Rroceedings of the 14th European Conference on
Object-Oriented Programming, LNG3000), vol. 1850, Springer Verlag, pp. 313-336.

CoADY, Y., KICZALES, G., FEELEY, M., AND SMOLYN, G. Using AspectC to improve the modularity
of path-specific customization in operating system code.Prioceedings of the 9th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FXSB)L), pp. 88—98.

DOUENCE, R., FRITZ, T., LORIANT, N., MENAUD, J.-M., S GURA-DEVILLECHAISE, M., AND
SUDHOLT, M. An expressive aspect language for system applicatidtis Avachne. InProceedings
of the 4th International Conference on Aspect-Orientedv@&se Development (AOSH2005), ACM
Press.

ECLIPSEFOUNDATION, T. AspectJwww.eclipse.org/aspect]

Arachne www.emn.fr/x-info/arachne

Fel, L., AND MIDKIFF, S. P. Artemis: Practical runtime monitoring of applicagofor errors. Tech.
Rep. TR-ECE-05-02, Electrical and Computer Engineeringd®e University, 2005. docs.lib.
purdue.edu/ecetr/4/

GCC 4.5 release series changes, new features, and fixgp://gcc.gnu.org/gcc-4.5/
changes.html

HUANG, X., SEYSTER J., CALLANAN, S., DIXIT, K., GROSU, R., SMOLKA, S. A., STOLLER, S. D.,
AND ZADOK, E. Software monitoring with controllable overhealhternational Journal on Software
Tools for Technology Transfer (STTT), B42012), 327-347.

. Objective Camlhttp://caml.inria.fr/index.en.html

. InterAspectwww.fsl.cs.stonybrook.edu/interaspect

. AN KNESCHKE Lighttpd, 2009.www.lighttpd.net/

. KiczALEs, G., HILSDALE, E., HUGUNIN, J., KERSTEN M., PALM, J.,AND GRISWOLD, W. G. An

overview of AspectJ. liProceedings of the 15th European Conference on Objectr@ikeProgramming
(2001), LNCS, Vol. 2072, pp. 327-355.

INTERASPECT Aspect-Oriented Instrumentation with GCC 27

22.

23.
24.

25.

26.
27.
28.

29.

30.

31.
32.

MEREDITH, P. O., JN, D., GRIFFITH, D., CHEN, F.,AND RogU, G. An overview of the MOP runtime
verification framework.International Journal on Software Techniques for Techggldransfer(2011).

to appear.

ACC. http://research.msrg.utoronto.ca/ACC

NECULA, G. C., MCPEAK, S., RaHUL, S. P. AND WEIMER W. CIL: Intermediate language and tools
for analysis and transformatlon of C programs thceedlngs of the 11th International Conference on
Compiler Constructior{2002), Springer-Verlag, pp. 213-228.

NICOARA, A., ALONSO, G.,AND RoscOE T. Controlled, systematic, and efficient code replacement
for running Java programs. roceedings of the ACM EuroSys Confere(@asgow, Scotland, UK,
April 2008).

POSKANZER, J. httpload, 2006 .http://www.acme.com/software/http_load/

Aspicere http://sailhome.cs.queensu.ca/ ~bram/aspicere .

ROHLIK, O., BSETTI, A., CECHTICKY, V., AND BIRRER, |. Implementing adaptability in embedded
software through aspect oriented programmili=E Mechatronics & Robotic€004), 85-90.
SEYSTER J., DIXIT, K., HUANG, X., GROSU, R., HAVELUND, K., SMOLKA, S. A., STOLLER, S. D.,
AND ZADOK, E. Aspect-oriented instrumentation with GCC.Rroc. of the 1st International Confer-
ence on Runtime Verification (RV 2018Bjovember 2010), Lecture Notes in Computer Science, Sering
PINCZYK, O.,AND LOHMANN, D. The design and implementation of AspectCKnow.-Based Syst.
20, 7 (2007), 636-651.

Valgrind. http://valgrind.org

WALKER, R.,AND VIGGERS K. Implementlng protocols via declarative event pattein®\CM Sigsoft
12th Internatlonal Symposium on Foundations of Softwargitgering (FSE-12§2004), R. Taylor and
M. Dwyer, Eds., ACM Press, pp. 159-169.

