
What does AI have to do with RV?
Extended Abstract

Klaus Havelund?

Jet Propulsion Laboratory
California Institute of Technology

California, USA

Runtime Verification (RV) consists of monitoring the behavior of a system,
either on-the-fly as it executes, or post-mortem after its execution for example by
analyzing log files. Within the last decade several systems have been developed
to address this issue. These systems usually implement specification languages
which are based on formalisms such as state machines [11, 14, 8, 12, 5], regular
expressions [1, 8], temporal logic [16, 10, 15, 3, 19, 9, 18, 8, 5], or grammars [8].

Some systems are based on some form of rewriting. In the Java PathExplorer
(Jpax) system [15] a property is represented as an LTL [17] term. The semantics
of LTL is in turn specified by a set of rewrite rules of the form lhs ⇒ rhs, for
example, it contains a rewrite rule reflecting the semantics of the until operator
(p until q): p U q = q ∨ (p ∧©(p U q)). Each new event causes the current LTL
term to be rewritten into a new term representing the formula that holds in the
next step. For example, a formula on the form “always, an a implies eventually
b”: �(a → ♦b), on an event a is rewritten into ♦b ∧ �(a → ♦b). Properties
in Jpax are propositional in the sense that formulas cannot refer to events that
carry data. The TraceContract Scala API lifts this principle to the Scala
programming language, while also handling data parameterization as well as
state machines. Other systems based on this form of LTL-rewriting include [10,
3, 19, 18].

The Ruler system [6, 7], and its state machine oriented derivative LogScope
[4], implement rule-based systems. The state of such a system at any point in
time is a set of facts, for example {open(file1), closed(file2)}. An incoming
event is a new fact that is added to this set. A Ruler specification is in princi-
ple a set of rules of the form: lhs⇒ rhs, where the left hand side (lhs) is a set
of conditions on the current monitoring state (set of facts), and the right hand
side rhs is a set of actions to be taken in case the conditions are satisfied, for
example adding or deleting facts. Ruler’s inspiration comes from imperative
(executable) temporal logics, as for example found in MetateM [2]. The key
problem in evaluating a set of rules given a set of facts is to perform efficient
matching of facts against conditions in rules. It is not difficult to imagine, that
in the case where many facts are stored this matching process can be costly if
not performed in a smart manner.

? Part of the work described in this publication was carried out at Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.



The field of Artificial Intelligence (AI) has itself studied a problem very sim-
ilar to the runtime verification problem, namely rule-based production systems,
used for example to represent knowledge systems. In such systems a specification
is likewise a set of rules lhs ⇒ rhs, with a similar interpretation as in Ruler.
The classic AI approach to efficient matching is the Rete algorithm [13]. This
algorithm maintains a network of facts, avoiding to re-evaluate all conditions
in each rule’s left hand side each time the fact database changes. We have im-
plemented the rather sophisticated Rete algorithm in the Scala programming
language and are exploring its utility for the RV problem. We address its func-
tionality (is it a solution for implementing runtime monitors) and its efficiency
(how does it compare with state-of-the-art RV systems). Dynamic program vi-
sualization is used to demonstrate the algorithm and the modifications needed
for it to apply to the RV problem.

References

1. C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhoták,
O. de Moor, D. Sereni, G. Sittamplan, and J. Tibble. Adding trace matching with
free variables to AspectJ. In OOPSLA’05. ACM Press, 2005.

2. H. Barringer, M. Fisher, D. M. Gabbay, G. Gough, and R. Owens. MetateM: An
introduction. Formal Asp. Comput., 7(5):533–549, 1995.

3. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verifi-
cation. In VMCAI, volume 2937 of LNCS, pages 44–57. Springer, 2004.

4. H. Barringer, A. Groce, K. Havelund, and M. Smith. Formal analysis of log files.
Journal of Aerospace Computing, Information, and Communication, 7(11):365–
390, 2010.

5. H. Barringer and K. Havelund. TraceContract: A Scala DSL for trace analysis.
In 17th International Symposium on Formal Methods (FM’11), Limerick, Ireland,
June 20-24, 2011. Proceedings, volume 6664 of LNCS, pages 57–72. Springer, 2011.

6. H. Barringer, D. Rydeheard, and K. Havelund. Rule systems for run-time mon-
itoring: from Eagle to RuleR. In Proc. of the 7th Int. Workshop on Runtime
Verification (RV’07), volume 4839 of LNCS, pages 111–125, Vancouver, Canada,
2007. Springer.

7. H. Barringer, D. E. Rydeheard, and K. Havelund. Rule systems for run-time
monitoring: from Eagle to RuleR. J. Log. Comput., 20(3):675–706, 2010.

8. F. Chen and G. Roşu. Parametric trace slicing and monitoring. In Proceedings of
the 15th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’09), volume 5505 of LNCS, pages 246–261, 2009.

9. M. D’Amorim and K. Havelund. Event-based runtime verification of Java pro-
grams. In Workshop on Dynamic Program Analysis (WODA’05), volume 30(4) of
ACM Sigsoft Software Engineering Notes, pages 1–7, 2005.

10. D. Drusinsky. The temporal rover and the ATG rover. In SPIN Model Checking
and Software Verification, volume 1885 of LNCS, pages 323–330. Springer, 2000.

11. D. Drusinsky. Modeling and Verification using UML Statecharts. Elsevier, 2006.
ISBN-13: 978-0-7506-7949-7, 400 pages.

12. Y. Falcone, J.-C. Fernandez, and L. Mounier. Runtime verification of safety-
progress properties. In Proc. of the 9th Int. Workshop on Runtime Verification
(RV’09), volume 5779 of LNCS, pages 40–59. Springer, 2009.



13. C. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence, 19:17–37, 1982.

14. K. Havelund. Runtime verification of C programs. In Proc. of the 1st TestCom/-
FATES conference, volume 5047 of LNCS, Tokyo, Japan, 2008. Springer.

15. K. Havelund and G. Rosu. Monitoring programs using rewriting. In 16th ASE
conference, San Diego, CA, USA, pages 135–143, 2001.

16. I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime assurance
based on formal specifications. In PDPTA, pages 279–287. CSREA Press, 1999.

17. A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foun-
dations of Computer Science, pages 46–57. IEEE Computer Society, 1977.

18. V. Stolz and E. Bodden. Temporal assertions using AspectJ. In Proc. of the 5th
Int. Workshop on Runtime Verification (RV’05), volume 144(4) of ENTCS, pages
109–124. Elsevier, 2006.

19. V. Stolz and F. Huch. Runtime verification of concurrent Haskell programs. In
Proc. of the 4th Int. Workshop on Runtime Verification (RV’04), volume 113 of
ENTCS, pages 201–216. Elsevier, 2005.


