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Abstract. PyContract is a Python library for trace analysis, also
characterized as an internal DSL (Domain-Specific Language). It com-
bines flavors of state machines and rule-based programming, supporting
states that can carry data, thus allowing for monitoring of events that
carry data. The fact that it is a Python library offers full expressiveness,
and access to a vast amount of libraries, which becomes useful for realis-
tic situations. This is in this paper illustrated by its real life application
to data analysis of telemetry logs obtained during testing of NASA’s
Europa Clipper flight computer. The mission will place a spacecraft in
orbit around Jupiter in order to perform a detailed investigation of its
moon Europa. The analysis includes not only verifying functional cor-
rectness but also, and especially, performance analysis such as execution
times and rates of change. This includes generation of data in table for-
mat and visualization as graphs. The important message is that runtime
verification and data analysis are closely related topics, which can only
be addressed with highly expressive specification languages.

1 Introduction

Runtime Verification (RV) is normally seen as a discipline of verifying whether
a system/program execution is correct wrt. a given set of properties, yielding
a Boolean true/false flavored verdict1. It can with this view be seen as a light-
weight formal method, where the specification is formal, but where only single
executions are checked, in contrast to all executions, or even necessarily many
executions. Runtime verification is complementary to test case generation but
can be used for formulating test oracles, or it can be applied after deployment of
the system in the real world to verify that the system performs as desired during
operation. Properties are usually expressed in formal Domain-Specific Languages
(DSLs) of temporal nature, such as e.g. various forms of temporal logic, regular
expressions, state machines, grammars, rule-based systems, and stream process-
ing formalisms. Runtime verification can be applied online, monitoring a system
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1 Some RV theories operate with extensions of the Boolean domain with a small finite
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as it executes, or it can be applied offline, analysing a log produced by a previ-
ous run of a system. In this paper we shall study offline RV, combining classical
Boolean verdict RV with data analysis, where the focus is on producing data
from logs.

A classical distinction amongst DSLs is that of external versus internal DSLs
[17]. An external DSL is a “small language” with its own grammar and parser.
An internal DSL (sometimes referred to as an embedded DSL) is a library in
a general purpose programming language. Numerous external RV DSLs have
been developed over time, including [1,2,4,5,9,12,15,22,23,25]. Internal DSLs
are usually again grouped into deep and shallow [18]. In a deep internal DSL,
data structures in the host language are used to represent DSL constructs in
an explicit manner, e.g., as an AST (Abstract Syntax Tree), which can then
be processed by writing either an interpreter or a compiler for execution. Some
examples are [19,30]. A shallow internal DSL includes the constructs of the host
language as part of the DSL, using the host language’s native runtime system to
execute them. Examples of shallow internal DSLs in Scala include [3,20,21,24].

PyContract [10] is a very expressive internal shallow DSL for runtime ver-
ification. In this work we present its application to data analysis of telemetry
from NASA’s Europa Clipper mission [16] flight computer during real life testing
of its performance. We present sketches of five such monitors. The purpose is not
only to check functional correctness of temporal properties, but also to analyze
and visualize non-functional properties, such as performance wrt. time and data
volumes. The possible advantages of using PyContract for such data analysis
has been previously suggested in [11]. The mentioned advantages include the
fact that Python is already highly popular in the field of data analysis, and e.g.
used extensively within NASA’s Jet Propulsion Laboratory (JPL) for telemetry
analysis on ground, examining data coming from spacecraft and rovers. An inter-
nal DSL is “just” another library in a familiar language. It allows to use favorite
development tools (such as IDEs) and other libraries for the host language. It
is expressive, and implementation and maintenance of the DSL is easier. A dis-
advantage of shallow internal DSLs (when compared to external DSLs and deep
internal DSLs) is lack of analyzability. However, Python supports powerful meta-
programming features allowing a program to inspect its own AST. We use this
for visualizing specifications.

Although only briefly touched upon in the paper, our work includes a web-
based interface to the use of PyContract, programmed using the Dash visu-
alization library [13]. It provides a unified convenient framework for requesting
analyses to be performed as well as for visualizing and tabulating results.

The paper is organized as follows. Section 2 introduces the PyContract
library. Section 3 describes how it is applied to the five different data analysis
problems, each resulting in a PyContract monitor. Section 4 concludes the
paper.
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2 The PyContract Core Library

PyContract allows to specify first-order temporal properties over a trace of
events. A temporal property relates events occurring at different points in the
trace. The first-order capability allows to also relate the data occurring in events
across different points in the trace, turning the logic very expressive. The fact
that PyContract is a Python library furthermore augments the expressive-
ness, allowing to combine temporal properties and general purpose program-
ming, making it Turing complete. PyContract is inspired by rule-based pro-
gramming [4,21] in that the memory of a monitor is a set of facts, where a
fact in its basic form is a named data record. However, facts, like states in
state machines, can have transitions which, upon triggering, can generate other
facts, while removing the fact who’s transition is taken. In the following we shall
demonstrate how this looks like. PyContract is inspired by the Scala DSL
Daut [14,20] and is developed for Python 3.10 that supports pattern matching
[29]. PyContract is available under the Apache 2.0 open-source license at [28].

The general approach is to define a monitor as a sub-class of the Monitor
class, create an instance of it, and then feed it with events, as shown in Fig. 1.
Events can be fed, one by one, using the evaluate(event: object) method. In
the case of a finite sequence of observations, for example when examining a log
file, a call of the end() method tells the monitor that the sequence has ended.
Note that end() may not be called when monitoring is online, but if it is called,
any outstanding obligations that have not been satisfied (expected events that
did not occur) will be reported as errors. Events can be provided by the user in
different ways. If examining a log file for example, they can be read from any
file format such as e.g. CSV, JSON, XSML, etc. This would in the example in
Fig. 1 take place in line 7, where we instead of providing the trace explicitly, as
done here, would read it from a file.

Fig. 1. General approach for defining and using a PyContract monitor.

As an example we will define a monitor for verifying command execution
on board the spacecraft. The example yields a Boolean verdict, in the tradition
of classical RV. Commands are submitted to the spacecraft, and on board dis-
patched, followed hopefully by a completion. Commands have a name and each
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command dispatch has in addition a number. Events can in PyContract be
any data object. We shall in this paper focus on events represented as dictio-
naries: mapping from fields to values. E.g. the dispatch of a command may be
represented by the event:

{“name” : “dispatch”, “cmd” : “TURN”, “nr” : 3, ”time” : 382649}
We shall verify the following property:

Commands: The dispatch of a command, with a number, must be followed
by a completion within 3 seconds, and no failure of that command dispatch
must be observed in between. In addition, a dispatch number can only be
completed once (no double execution).

Note that the “within 3 s” constraint can have two interpretations: either that
a failure is reported exactly after 3 s without having seen a completion, or that
a failure is reported when observing an event occurring after 3 s without hav-
ing seen a completion within 3 s. The former interpretation requires an internal
clock in the monitor, whereas the latter interpretation can rely on the time
stamps carried by events. We adopt the latter interpretation, which is suitable
for log analysis. For online runtime verification, however, the former interpreta-
tion would be more appropriate.

The property is implemented as the monitor in Fig. 2. First we import the
PyContract module (line 1). The monitor is defined as a class extending the
Monitor class (line 3). The body of the monitor defines a transition function
(lines 4–7), and two states: DoComplete (lines 10–20) and Executed (lines 23–
29). The outer transition function (lines 4–7) processes all events submitted
to the monitor. It takes an event as argument and matches it against possible
patterns, using the pattern matching features provided in Python from version
3.10 [29]. In this case just one pattern matches if the name of the command is
"dispatch". If so it binds the command id, number, and time to the variables c,
n, and t respectively, and returns a new state: DoComplete with these bindings
as arguments. This state is now added to the memory of the monitor. The actual
type of the transition function is:

def transition(self , event: Event) ->
Optional[State | List[State ]]

where Event is the type of events (dictionaries in this case). It returns either
None (corresponding to no match), a state, or a list of states. We leave out the
types in the remaining transition function definitions.

The DoComplete state extends HotState, meaning that it must eventually
be removed, otherwise an error is reported when the end() method is called at
the end of the trace. It will e.g. be removed when the command it monitors
completes. The state is parameterized with a command id, a dispatch number,
and the time of dispatch. The body defines a transition function applicable when
the state is active, which offers three options for processing an incoming event (if
none match the state remains in the monitor memory). The first case matches
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if the command (with the same id and number) fails2. In this case an error is
reported. The second case matches if any event is observed with a time stamp
more than 3 s from the dispatch time. This also results in an error being reported.
The third case matches if the command completes, in which case an Executed
state, parameterized with the dispatch number, is returned, and recorded in the
monitor memory (while the DoComplete state is removed). The Executed state
itself is just a State, meaning that it is ok to terminate in this state. It monitors
that the dispatch number does not complete again.

We mentioned above that the outermost transition function (lines 4–7) is
applied to all events submitted to the monitor. Behind the scenes it is trans-
lated to an initial so-called AlwaysState, as shown in Fig. 3 (lines 2–7). An
AlwaysState state is always active. The former style is, however, more conve-
nient to write.

PyContract offers other features, such as allowing to return a list of states
from a transition, next-states (failing if no transition cases match an event),
querying the fact memory (used for expressing past time properties), grouping
of monitors, and user-defined indexing (slicing) to optimize monitoring, similar
to what is supported in RV systems such as MOP [25] and QEA [30]. In addition
one can of course add any Python code to be executed in transition actions,
and use general Python expressions as transition conditions. PyContract was
evaluated against other systems in [10], performing reasonably by processing 4
million events in under 100 s.

PyContract visualizes a monitor using PlantUML [27] by first analyzing
the AST of the monitor (using Python’s meta-programming capabilities) and
then generating PlantUML text. Figure 4 is such a visualization of the monitor
in Fig. 2. Green states (the initial state) are always active, and safe to terminate
in. Bright yellow states, the DoComplete state, indicate danger: they must be left
eventually. Faded yellow states, the Executed state, are safe to terminate in as
well. Finally red states are error states. Transitions out of a state are numbered
to indicate the order of evaluation caused by the semantics of Python’s match-
statements.

3 Data Analysis Scripts

In this section we present five different monitors using the PyContract library
for performing various forms of combined property checking and data analysis.
We show only essential code fragments that provide the general idea. The scripts
offer user options for different behaviours, which we largely ignore in this presen-
tation. A spacecraft reports telemetry to ground as individual messages. There
are three general types of spacecraft data sent to ground [7]:

2 In Python’s pattern matching, dotted names, such as self.cmd, must match the
incoming value, whereas non-dotted names, such as c, are binding the incoming
value.
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Fig. 2. A monitor for property Commands.

– Time series data (EHAs3) representing onboard measurements of spacecraft
state over time. JPL missions generally refer to this type of data as “channel-
ized telemetry” or “channels”, with each channel representing a time series of
measurements from spacecraft hardware sensors, as well as data reported by
software components (e.g. onboard memory states).

– Event Records (EVRs) representing single events that occur onboard the
spacecraft. Rather than the single data value of a channel record, each EVR
record contains a message string, which contains further spacecraft state infor-
mation embedded in that message.

– Data Products (DPs), each containing a range of types of information, depend-
ing on the need. There are a wide variety of data products used by projects,
including snapshots of state such as memory and data management states.

3 EHA stands for ‘Engineering Housekeeping & Accountability’.
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Fig. 3. Translation of the outermost transition function of the Commands monitor
in Fig. 2 to an AlwaysState containing the transition function.

Fig. 4. Visualization of the monitor in Fig. 2, generated by PyContract.

In this work we are only concerned here about the first two kinds (EHAs and
EVRs). The five monitors will analyze logs containing sequences of such space-
craft data. These include (1) counting of EHAs per 5 s, illustrating a very basic
monitor not using state machines; (2) reporting of EVRs that occur within a
certain time frame after having been reported missing, illustrating a temporal
property formulated as state machine with multiple states active, as well as the
handling of time in such a state machine; (3) file uplink to the spacecraft, con-
sisting of several events that must occur in order, and where at the end several
statistics are computed, illustrating data storage, many states, and hot states;
(4) verification that issued commands are followed by expected responses (suc-
cess, failure), and the durations of these (minimal, maximal, average, median),



Space Telemetry Analysis with PyContract 279

illustrating trace slicing for optimization and modeling of past time properties;
and finally (5) measuring rates with which sampled values change, illustrating a
more complicated past time property. The examples are non-trivial, and demon-
strate the combination of Boolean first-order temporal properties combined with
data analysis going beyond Boolean verdicts.

3.1 The Sample Counting Monitor

Our first monitor shows the number of channel values (EHAs) that are received
per 5 s. Figure 5 shows the first lines of an example CSV file4. Each row reports
the reading of a channel in a particular software module on board the spacecraft.
Specifically, column D contains channel IDs of the form <module>-<chan>, con-
sisting of a module name and a channel number. Column J contains time stamps
of the form <year>-<day>T<hour>:<min>:<sec>.<ms>. To process this we can
import and use various Python libraries, in this case csv (for reading CSV files),
re (regular expressions), datetime (handling of time stamps), statistics (for
statistics), and the substantial data analysis and visualization libraries pandas
[26] and dash [13], illustrating why an internal programming oriented monitoring
library is useful.

Fig. 5. An example of a log represented as a CSV file.

Figure 6 shows the type of events (used for all scripts), namely that of dic-
tionaries from CSV column names to values. The function convert (line 8–12)
takes as argument an event and augments it with additional fields, in this case
the module in which the channel is sampled, and the time. This approach of
extending events with additional “columns” is used as a general approach to deal
with data fields, who’s composition needs processing before being referred to in
monitors.

Figure 7 illustrates a statistics module that our monitor will instantiate and
update. The essence here is that of going beyond Boolean verdict monitoring.
The statistics module maintains a list of channel reading counts per 5 s, and a
mapping from module names to the number of channel readings in that module.
Finally the results can be shown textually and in graphs, implemented using
Python’s dash library.
4 Data have been left out or renamed to keep sensitive data hidden.
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Fig. 6. The event type and functions for extending events.

Fig. 7. The statistics class.

Finally, our monitor can be programmed as shown in Fig. 8. Note that this
monitor represents a basic case where no states are needed, only the top level
transition function. It corresponds to basically just writing a program. We have
shown it here to illustrate how also such a monitor can be made to fit into the
library’s vocabulary, extending the Monitor class and defining the transition
function. The result of running the monitor is statistics about how many channels
were read per 5 s, an example is visualized in Fig. 9, as well as various tables,
including e.g. one showing how many readings that were observed per module,
see Fig. 10.

3.2 The Missed Event Monitor

The second monitor in Fig. 11 highlights (as its output) any row that reports a
missing EVR (line 4), which then occurs anyway (line 19) with a matching name
later within 5 s, and without any intervening rows reporting a timeout (line 13),
another failure report for the same EVR (line 15), or a success report for that
EVR (line 17). This monitor is temporal in nature in that upon detection of
a reported missing event (line 4), it creates a new Watch-state, parameterized
with the EVR name and the time. The Watch-state subsequently watches rows
relevant for that EVR. Note that if several EVRs are missing a Watch-state will
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Fig. 8. The channel sample counting monitor.

Fig. 9. Graphing of channel counts per 5 s.

be created for each. The monitor demonstrates a temporal property combined
with reporting, via calls of the info method, of events that modify its state.

3.3 The File Uplink Monitor

The objective of the next monitor is to report on file uplinks from Earth to
spacecraft. A file uplink is recorded in the telemetry as a sequence of EVRs,
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Fig. 10. Tabulation of channel counts per module.

Fig. 11. The missing EVR monitor.

each providing additional information about the uplink. This information must
be gathered and shown, including durations between EVRs, the total duration,
the file size, and file size divided by duration, etc. In addition various statistics
across file uplinks must be tabulated.

Figure 12 sketches the monitor for this analysis. Upon detecting the start of
a file uplink (line 8) a ReceiveMeta state is created, that now looks for the next
relevant event in the file uplink process. The monitor illustrates a number of
points that one normally does not see in temporal specifications. First, we define
storage to keep track of statistics across file uplinks (line 4). This resembles the
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variable state of an extended finite state machine [8]. Second, instead of passing
numerous parameters to each state, a single object containing all data for a
particular uplink sequence is created and passed as argument (line 9). This is
then parameter to each state (e.g. line 13), and can be updated (line 21) before
being passed on. Three more states are needed (lines 24–31), all following the
same pattern that one is replaced by the next upon a certain event, and where in
the final Finish state, upon detecting the end of the uplink, statistics is printed
out. Note that the pc.ok return state (line 18) indicates that monitoring of this
particular file uplink is terminated, a FIT_INFO event aborts the monitoring of
this particular uplink.

3.4 The Command Execution Monitor

The next monitor examines the execution of commands and tabulates their exe-
cution time (minimal, maximal, average, median). The monitor also verifies that
expected responses (success, failure) follow the dispatch of commands. That is, a
dispatched command must be followed by a success or failure, with command id
and number (and other parameters) matching (all extracted by regular expres-
sions from data columns). Furthermore, a success or failure of a command that
has not been dispatched should cause an error.

The monitor in Fig. 13 performs this analysis. The monitor creates a Succeed
state upon detection of a command dispatch (line 19), which then watches for
success or failure of the command. The monitor illustrates a few points. First of
all, as previously, we notice the statistics updating (lines 4 and 32). The monitor
also shows the definition of the key function (lines 6–9), which overrides its
definition in the Monitor class (where it returns None) to return the hash value
of an event. This is used for storing Succeed states in hash buckets for faster
lookup. As mentioned before, this corresponds to slicing as found in systems
such as MOP [25] and QEA [30]. A final comment concerns the definition of
the monitored function (lines 11–14), which is called as a transition condition
(line 21), returning true if a Succeed state exists in the monitor memory, with
appropriate command code and number. It is here used to flag if a command
succeeds or fails without a previous dispatch.

3.5 The Sample Rate Monitor

The last analysis reports, amongst other things, the rates with which chan-
nels change per second, measured for each channel in periods of 15 s, called
rate events. The data can be collected in two modes chosen by the user with
an option: (1) across the entire log, or (2) in so-called autopsy windows only.
Autopsy windows are 60 s periods where the spacecraft records autopsy infor-
mation in a buffer, which is then later dumped to a data product and sent to
ground, indicated by a recording off EVR at the end of the window. During
analysis, however, we do not know when a 60 s window begins until we see the
recording off EVR, complicating the analysis from a temporal point of view.
Events overlapping an autopsy window are considered relevant if they terminate
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Fig. 12. The file uplink monitor.

within 60 s after the recording off EVR. The monitor reports in table format
statistics such as time periods of autopsy windows, rates of change for each
channel, and file compression rates.

Figure 14 shows fragments of this monitor. The main transition function
(lines 2–10) creates different kinds of states, depending on what the incoming
event is. Specifically an EventBegun (line 6, expiring on a 15 s timeout in line
19) when a channel is read, and a DumpBegun (line 10) when a autopsy win-
dow end has been detected (expiring on a 60 s timeout in line 28). Note that
rate event monitoring is not initiated in the 60 s after the autopsy recording off
event, ensured by a call of the dumping function (defined in a similar manner
as the monitoring function in Fig. 13 line 11) in the transition condition (line
5). Note how we record each 60 s autopsy window (line 9) upon detecting the
end of the window with a recording off event. Due to the fact that we only
know the windows at their end, we need to re-access all information produced
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Fig. 13. The command execution monitor.

during monitoring once we know the windows. PyContract stores all messages
produced with the methods error and info internally, which can be extracted
with a call of the method get_all_messages(). These are then processed again,
this time taking the now known windows into account. The fact that we have to
process the messages again illustrates a weakness in the PyContract library
wrt. expressing past time properties. Note, however, that even if PyContract
could express past time properties conveniently, there is still the data analysis
aspect which complicates matters.
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Fig. 14. The sample rate monitor.

4 Conclusion

We presented an application of the RV library PyContract in Python to the
analysis of log files from NASA’s Europa Clipper flight computer. The analysis
had as purpose to evaluate functional as well as non-functional (performance)
properties. The effort demonstrates how such a temporal formalism can be used
for data analysis, where the objective is not only to produce Boolean yes/no
verdicts as in classical runtime verification, but also to produce richer forms of
data. PyContract supports writing temporal properties. Adding data analysis
to these becomes easy due to the fact that PyContract is a Python library,
allowing to mix temporal specifications with code. Current work includes further
development of the web-based interface using Dash, allowing easier construction
and application of monitors as plugins. The interface allows to select monitors
and logs to which they are applied. The logs are extracted from a database. The
interface allows convenient browsing (filtering and coloring) of logs as well as
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visualization and tabulation of results. Wrt. longer term future work, there are
rich opportunities for log analysis visualization.
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