
Applying Jlint to Space Exploration Software

Cyrille Artho1 and Klaus Havelund2

1 Computer Systems Institute, ETH Zurich, Switzerland
2 Kestrel Technology, NASA Ames Research Center, Moffett Field, California USA

Abstract. Java is a very successful programming language which is also be-
coming widespread in embedded systems, where software correctness is critical.
Jlint is a simple but highly efficient static analyzer that checks a Java program
for several common errors, such as null pointer exceptions, and overflow er-
rors. It also includes checks for multi-threading problems, such as deadlocks and
data races. The case study described here shows the effectiveness of Jlint in find-
ing certain faults, including multi-threading problems. Analyzing the reasons for
false positives in the multi-threading warnings gives an insight into design pat-
terns commonly used in multi-threaded code. The results show that a few analy-
sis techniques are sufficient to avoid almost all false positives. These techniques
include investigating all possible callers and a few code idioms. Verifying the
correct application of these patterns is still crucial, because their correct usage is
not trivial.

1 Introduction

Java is becoming more widespread in the area of embedded systems, both as a scaled-
down “Micro Edition” [20] or by having real-time extensions [6, 5]. In such systems,
software cannot always be replaced on a running system. Failures may have expensive
or even catastrophic consequences. These costs are obviously prohibitively high when
a software-related problem causes the failure of a space craft [14]. Therefore an auto-
mated tool which can detect faults easily, preferably early in the lifecycle of software,
can be very useful. One tool that allows fault detection easily, even in incomplete sys-
tems, is Jlint. Among similar tools geared towards Java, it is one of the most suitable
with respect to ease of use (no annotations required) and free availability (the tool is
Open Source) [1].

1.1 The Java programming language

Java is a modern, object-oriented programming language that has had a large success
in the past few years. Source code is not compiled to machine code, but to a different
form, the bytecode. This bytecode runs in a dedicated environment, the virtual machine.
In order to guarantee the integrity of the system, each class file containing bytecode is
checked prior to execution [11, 19, 21].

The Java language allows each object to have any number of fields, which are at-
tributes of each object. These may be static, i.e., shared among all instances of a certain

class, or dynamic, i.e., each instance has its own fields. In contrast to that, local vari-
ables are thread-local and only visible within one method.

Java allows inheritance: a method of a given class may be overridden by a method
of the same name. Similarly, fields in a subclass shadow those with the same name in
the superclass. In general, these mechanisms work well for small code examples but
may be dangerous in larger projects. Methods overriding other methods must ensure
they do not violate invariants of the superclass. Similar problems occur with variable
shadowing. The programmer is not always aware that a variable with the same name
already exists on a different level, such as the superclass.

In order to prevent incorrect programs from corrupting the system, Java’s virtual
machine has various safety mechanisms built in. Each variable access is guarded against
manipulating memory outside the allocated area. In particular, pointers must not be
null when dereferenced, and array indices must be in a valid range. If these properties
are violated, an exception is thrown indicating a programming error. This is a highly
undesirable behavior in most cases. Ideally, such errors should be prevented by static
analysis, rather than caught at run-time.

Furthermore, Java offers mechanisms to write multi-threaded programs. The two
key mechanisms are locking primitives, using the synchronized keyword, and inter-
thread synchronization with the wait and notify methods. Incorrect lock usage using
too many locks may lead to deadlocks. For example, if two threads each wait on a lock
held by the other thread, both threads cannot continue their execution. On the other
hand, if a value is accessed with insufficient lock protection, data races may occur: two
threads may access the same value concurrently, and the results of the operations are no
longer deterministic.

Java’s message passing mechanisms for threads also is a source of problems. A
call to wait allows a thread to suspend until a condition becomes true, which must
be signaled by notify by another thread. When calling wait the calling thread must
ensure that it owns the lock it waits on, and also release any other locks before the call.
Otherwise, remaining locks held are unavailable to other threads, which may in turn
block when trying to obtain them. This can prevent them from calling notify which
would allow the waiting thread to release its lock. This situation is also a deadlock.

1.2 Related work

Much effort has gone into fault-finding in Java programs, single-threaded and multi-
threaded. The approaches can be separated into static checkers, which check a program
at compile-time and try to approximate its run-time behavior, and dynamic checkers,
which try to catch and analyze anomalies during program execution.

Several static analysis tools exist that examine a program for faults such as null
pointer dereferences or data races. The ESC/Java [9] tool is, like Jlint, also based on
static analysis, or more generally on theorem proving. It, however, requires annotation
of the program. While it is more precise than Jlint, it is not nearly as fast and requires a
large effort from the user to fully exploit the power of this tool [9].

Dynamic tools have the advantage of having more precise information available
in the execution trace. The Eraser algorithm [22], which has been implemented in the
Visual Threads tool [12] to analyze C and C++ programs, is such an algorithm that

2

examines a program execution trace for locking patterns and variable accesses in order
to predict potential data races.

The Java PathExplorer tool (JPaX) [16] performs deadlock analysis and the Eraser
data race analysis on Java programs. It furthermore recently has been extended with the
high-level data race detection algorithm described in [3]. This algorithm analyzes how
collections of variables are accessed by multiple threads.

More heavyweight dynamic approaches include model checking, which explores
all possible schedules in a program. Recently, model checkers have been developed
that apply directly to programs (instead of just models thereof). This includes the Java
PathFinder system (JPF) developed by NASA [15, 24], and similar systems [10, 8, 17, 4,
23]. Such systems, however, suffer from the state space explosion problem. In [13] we
describe an extension of Java PathFinder which performs data race analysis (and dead-
lock analysis) in simulation mode, whereafter the model checker is used to demonstrate
whether the data race (deadlock) warnings are real or not.

This paper focuses on applying Jlint [2] to the software for detecting errors stat-
ically. Jlint uses static analysis and abstract interpretation to find difficult errors at
compile-time. A similar case study with Jlint has been made before, applying it to large
projects [2]. The difference to this case study is that the other case study had scalability
in mind. Jlint had been applied to packages containing several hundred thousand lines
of code, generating hundreds of warning messages. Because of this, the warnings had
been evaluated selectively, omitting some hard-to-check deadlock warnings. In this case
study, an effort was made to analyze every single warning and also see what kinds of
design patterns cause false positives.1

1.3 Outline

This text is organized as follows: Section 2 describes Jlint and how it was used for this
project. Sections 3 and 4 show the results of applying Jlint to space exploration program
code. Design patterns which are common among these two projects are analyzed in
Section 5. Section 6 summarizes the results and concludes.

2 Jlint

2.1 Tool description

Jlint checks Java code and finds bugs, inconsistencies and synchronization problems by
performing a data flow analysis, abstract interpretation, and building the lock graph. It
issues warnings about potential problems. These warnings do not imply that an actual
error exists. This makes Jlint unsound as a program prover. Moreover, Jlint can also
miss errors, making it incomplete. The reason for this is that the goal was to make Jlint
practical, scalable, and possible to implement it in a short time.

1 Design patterns commonly denote compositions of objects in software. In this paper, the notion
of composition is different. It includes lock patterns and sometimes only applies to a small part
of the program. In that context, we also use the term “code idiom”.

3

Typical warnings about possible faults issued by Jlint are null pointer dereferences,
array bounds overflows, and value overflows. The latter may occur if one multiplies two
32 bit integer values without converting them to 64 bit first.

Many warnings that Jlint issues are code guidelines: A local variable should never
have the same name as a field of the same class or a superclass. When a method of a
given name is overridden, all its variants should be overridden, in order to guarantee a
consistent behavior of the subclass.

Jlint also includes many analyses for multi-threaded programs. Some of Jlint’s
warnings for multi-threaded programs are overly cautious. For instance, possible data
race warnings for method calls or variable accesses do not necessarily imply a data
race. The reason for such false positives are both difficulties inherent to static analysis,
such as pointer aliasing across method calls, and limitations in Jlint itself, where its
algorithms could be refined with known techniques.

Jlint works in two passes: a first pass, where all methods are analyzed in a modular
way, and a second pass with the deadlock analysis. In the first pass, each method is
analyzed with abstract interpretation. The abstraction used for numbers includes their
maximal possible range and, for integers, bit masks that apply to them. For pointers,
the abstraction records whether a pointer is possibly null or not, distinguishing the
special this pointer, values loaded from fields, and new instance references created by
the object constructor. The data flow analysis merges possible program states at branch
targets but only executes loops once.

Most properties, such as possible value overflows, are analyzed in this first pass.
The lock graph is also built in this first pass and checked for deadlocks in a second
pass. A possible refinement would be to defer some data race analyses to the second
pass, where global information, such as if a field is read-only, can be made available.

2.2 Warning review process

Jlint gives fairly descriptive warnings for each problem found. The context given is lim-
ited to the class in which the error occurs, the line number, and fields used or methods
called. This is always sufficient to find the source of simple warnings, which concern
sequential properties such as null pointer dereferences. These warnings are easy to
review and were considered in a first review phase. The other warnings, concerning
multi-threading problems, take much more time to consider, and were evaluated in a
second phase.

The review process essentially checks whether the problems described in the warn-
ings can actually occur at run-time. In simple cases, warnings may be ruled out given
the algorithmic properties of the program. Complex cases include reviewing callers to
the method in question.

Data race and deadlock warnings fall in the latter category. They require construct-
ing a part of the call graph including locks owned by callers when a method is called.
If it can be ensured that all calls to non-synchronized, shared methods are made only
through methods that already employ lock protection, then there cannot be a data race.2

2 Methods that access a shared field are also considered “shared” in this context. The lock used
for ensuring mutual exclusion must be the same lock for all calls.

4

This review process can be rather time-consuming. Many warnings occur in similar
contexts, so warnings referring to the same problem can usually be easily confirmed as
duplicates. This part of the review process was not yet automated in any way but could
be automated to a large extent with known techniques. Both cases studies were made
without prior knowledge of the program code. It can be assumed that the time to review
the warnings is shorter for the author of the code, especially when reviewing data race
or deadlock warnings.

During the review process, Jlint’s warnings were categorized to see whether they
refer to the same problem. Such situations constitute calls to the same method from
different callers, the same variable used in different contexts, or the same design pat-
tern applied throughout the class. In a separate count, counting the number of distinct
problems rather than individual warnings, all such cases were counted once. Note that
the review activity was often interrupted by other activities such as writing this paper.
We believe this reduced the overall time required because manual code reviews require
much attention, and cannot be carried out in one run without a degradation of the con-
centration required.

3 First case study: Rover code

The first case study is a software module, called the Executive, for controlling the move-
ment of the planetary wheeled rover K9, developed at NASA Ames Research Center.
The run time for analyzing the code with Jlint was 0.10 seconds on a PowerPC G4 with
a clock frequency of 500 MHz.

3.1 Description of the Rover project

K9 is a hardware platform for experimenting with rover technology for exploration of
the Martian surface. The Executive is a software module for controlling the rover, and is
essentially an interpreter of plans, where a plan is a special form of a program. Plans are
constructed from high-level constructs, such as sequential composition and condition-
als, but no while loops. The effect of while loops is achieved by assuming that plans are
generated on the fly during rover operation as environment conditions change. The low-
est level nodes of a plan are tasks to be directly executed by the rover hardware. A node
in a plan can be further constrained by a set of conditions, which when failing during
execution, cause the Executive to abort the execution of the subsequent sibling nodes,
unless specified otherwise through options. Examples of conditions are pre-conditions
and post-conditions, as well as invariants to be maintained during the execution of the
node. The examined Executive consists of 7,300 lines of Java code. This code was ex-
tracted by a colleague from the original rover code, written in 35,000 lines of C++.
The code is highly multi-threaded, and hence provides a risk for concurrency errors.
The Java version of the code was extracted as part of a different project, the purpose of
which was to compare various formal methods, such as model checking, static analysis,
runtime analysis, and simple testing [7]. The code contained a number seeded of errors.

5

Type Warnings Problems Correct False Time
found warnings positives [min.]

null pointer 5 1 4 1 10
Integer overflow 2 2 2 0 5
equals overridden but not hashCode 2 1 2 0 1
String comparison as reference 1 0 0 1 1
Total: Sequential errors 10 4 8 2 17

Incorrect wait/notify usage 21 5 5 16 26
Data race, method call 157 5 18 139 112
Data race, field access 31 0 0 31 43
Deadlock 30 7 20 10 36
Total: Multi-threading errors 239 17 43 196 217

Total 249 21 51 198 234

Table 1. Jlint’s warnings for the Rover code.

3.2 Jlint evaluation

Jlint issues 249 warnings when checking the Rover code. Table 1 summarizes Jlint’s
output. The first two columns show each type of problem and how many warnings Jlint
generated for them. The third, forth and fifth column show the result of the manual
source code analysis: how many actual, distinct faults, or at least serious problems,
in the code were found, how many warnings described such actual faults, and how
many were considered to be false positives. The last column shows the time spent on
code review. In the first phase, focusing on sequential properties, ten warnings were
reviewed, while the second phase had 239 warnings to be reviewed.

Sequential errors: Among the problems found are two integer overflows, where two
32-bit integers were multiplied to produce a 64 bit result. However, integer conversion
took place after the 32 bit multiplication, where an overflow may occur.

Two other warnings referred to one problem, where equals was overridden, but not
hashCode. This is dangerous because the modified equals method may return true for
comparing two objects even though their hashCode differs, which is forbidden [21].

A noteworthy false positive concerned two strings that were compared as references.
This was correct in that context because one of the strings was always known to be null.

Multi-threading errors: The number of deadlock and data race warnings given by
Jlint was almost prohibitive. Yet, for answering the question why the false positives
were generated, all warnings were investigated. All warnings were relatively easy to
analyze. In most cases, possible callers were within the same class. Only for the most
complex class, the call graph was large, making analysis more difficult.3

A surprisingly high number of multi-threading warnings were of type “Method
’<this>.wait|notify|notifyAll’ is called without synchronizing on ’<this>’.”

3 The portion of the call graph to be investigated for this was up to eight methods deep.

6

After discounting dead code and false positives, one scenario remained: A lock was
obtained conditionally, although it should be obtained in all cases, as required by the
Java semantics for wait and notify. In the Rover code, this reflects a global switch in
the original C++ program that would allow testing the program without locking, elimi-
nating possible deadlocks at the cost of introducing data races. Java does not allow this,
so the Java version of the program always needs to be run with locking enabled.

All data race warnings about shared field accesses were false positives. Reasons
for false positives include the use of thread-local copies [18] or a thread-safe container
class. In one case, only one thread instance that could access the shared field is ever
generated. Evaluating data races for method calls was even more difficult and time-
consuming. The errors found referred to cases where a read-only pattern, was broken
by certain methods, creating potential data races. Because of their high number, the
distribution of method data race warnings is noteworthy. A few classes which embody
parallelized algorithms incurred the largest number of warnings, which were also the
hardest to review. Classes encapsulating data are usually much simpler. Because some
of these were heavily used in the program, a few of them were also responsible for a
large number of warnings. However, these warnings were usually much easier to review.

The 30 deadlock warnings all referred to the same two classes. There were two
sets of warnings, the first set containing ten, the second one 20 warnings. The first ten
warnings, all of them false positives, showed incomplete synchronization loops in the
lock graph. The next 20 warnings, referring to seven methods, showed the same ten
warnings with another edge in the lock graph, from the callee class back to the caller.
Such a synchronization loop includes two sequences of different lock acquisitions in
reverse order. This makes a cyclic deadlock possible. Therefore these warnings referred
to actual faults in the code.

Results: In only 15 minutes, four faults could be found by looking at the ten warnings
referring to sequential properties. While reviewing the multi-threading warnings was
time-consuming due to the complex interactions in the code, it helped to highlight the
critical parts of the code. The effort was justifiable for a project of this complexity.

3.3 Comparison to other projects

In an internal case study at NASA Ames [7], several other tools were applied to the
Rover code base, detecting 38 errors. Among these errors were 18 seeded faults. In-
terestingly, most of these errors found were not those detected by Jlint. Almost all the
seeded bugs concerned algorithmic problems or hard-to-find deadlocks, which Jlint was
not capable of finding. However, Jlint in turn detected a lot of faults which were not
found by any other tool. Table 2 compares Jlint to the other case studies. In that table,
missed faults include both sequential and multi-threading properties.

The eleven new bugs found by Jlint were a great success, even considering that the
seven deadlocks correspond to two classes where other deadlocks have been known to
occur. However, Jlint reported different methods than those reported in other analyses.

7

Error type # Evaluation

Seeded faults 18 Not found by Jlint
Non-seeded faults, other than overflow 18 Not found by Jlint
Integer overflow 2 Found by both case studies
null pointer 1 New (i.e., only found by Jlint)
equals overridden but not hashCode 1 Translation artifact (not occurring in the C version)
Incorrect wait/notify usage 5 Debugging artifact (not executable in Java)
Data races 5 3 new, 2 dead code (unused methods)
Deadlocks 7 new (two classes known to be faulty involved)

Table 2. Comparison of errors found by Jlint and by other tools.

4 DS1

The second case study consisted of an attitude control system and a fault protection
system for the Deep Space 1 (DS1) space craft. It took 0.17 seconds to check the entire
code base on the same PowerPC G4 with a clock frequency of 500 MHz.

4.1 Description of DS1

DS1 was a technology-testing mission, which was launched October 24 1998, and
which ended its primary mission in September 1999. DS1 contained and tested twelve
new kinds of space-travel technologies, for example, ion propulsion and artificial intel-
ligence for autonomous control. DS1 also contained more standard technologies, such
as an attitude-control system and a fault-protection system, coded in C. The attitude-
control system monitors and controls the space craft’s attitude, that is, its position in 3-
dimensional space. The attitude is controlled by small thrusters, which can be pointed,
and fired, in different directions. The fault-protection system monitors the operation of
the space craft and initiates corrective actions in case errors occur. The code examined
in this case study is an 8,700-line Java version of the attitude-control system and fault-
protection system, created in order to examine the potential for programming flight
software in Java, as described in [5]. That effort consisted in particular of experiment-
ing with the real-time specification for Java [6]. The original C code was re-designed in
Java, using best practices in object-oriented design. The Java version used design pat-
terns extensively, and put an emphasis on pluggable technology, relying on interfaces.

4.2 Jlint evaluation

Sequential errors: Again, a first evaluation of Jlint’s warnings included only the se-
quential cases. Table 3 shows an overview. Eleven warnings referred to name clashes
in variable names, a large risk of future programming errors. False positives resulted
from either dead code, a code idiom that was poor choice but acceptable in that case,
and compiler artifacts introduced by inner classes. Three warnings reported problems
with overridden methods, where several versions of a method with the same name but

8

Type Warnings Problems Correct False Time
found warnings positives [min.]

Local variable shadows field 4 2 2 2 2
Component shadows base class 7 0 0 7 3
Incomplete method overriding 3 3 3 0 3
equals overridden but not hashCode 1 0 0 1 1
Total: Sequential errors 15 5 5 10 9

Incorrect wait/notify usage 7 0 0 7 3
run method not synchronized 5 0 0 5 0
Overriding synchronized methods 3 0 0 3 2
Data race, field access 1 0 0 1 7
Data race, method call 20 1 6 14 38
Deadlock 11 0 0 11 20
Total: Multi-threading errors 47 1 6 41 70

Total 62 6 11 51 79

Table 3. Jlint’s warnings for the DS1 code.

different parameter lists (“signatures”) were only partially overridden. This must be
avoided because inconsistencies among the overridden and inherited variants are al-
most inevitable.

Multi-threading errors: In the second phase, the 47 multi-threading warnings were
investigated. Most of them were false positives: Warnings about run methods which are
not synchronized are overly conservative. Warnings about wait/notify were caused
by the unsoundness of Jlint’s data flow analysis. False positives for data race warnings
were mostly caused by the fact that Jlint does not analyze all callers when checking
methods for thread safety. If all callers synchronize on the same lock, a seemingly un-
safe method becomes safe. Other reasons for false positives were the use of thread-safe
container classes in such methods, the use of read-only fields, and per-thread confine-
ment [18], which always creates a new instance as return value.

The six warnings indicating an error concerned calls to a logger method. In the
logger method, there were indeed data races, even though they may not be considered to
be crucial: The output of different formatting elements of different entries to be logged
may be interleaved.

Again, as in all non-trivial examples, deadlock warnings are almost impossible to
investigate in detail without a call graph browsing tool. Nevertheless, an effort was
made. After 12 minutes, it was found that the first deadlock warning was a false alarm
due to the lack of context sensitivity in Jlint’s call graph analysis. After this, most warn-
ings could be dismissed as duplicates of the first one. In the two remaining cases, Jlint’s
warnings did not give the full loop context, so they could not be used.

Results: Most sequential warnings could be evaluated very quickly. The problems
found were code convention violations, which would not necessarily cause run-time

9

Code base Rover DS1 Total
Problem wait/ Data race Data race Data race Data race
category notify (field) (method) (field) (method)

Read-only fields – 9 19 – 3 31
Synchronization for all callers 12 – 7 1 2 22
Return copy of data – – 3 – 1 4
Thread-local copy – 1 1 – – 2
during operation
Thread-safe container – – 1 – 2 3
One thread instance – 1 – – – 1

Total 12 11 31 1 8 63

Table 4. Design patterns for avoiding data races in seemingly unsafe methods.

errors. However, they are easy to fix and should be addressed. Reviewing the data race
warnings was relatively simple, although it would have been much easier with a call
graph visualization tool. Most false positives could have been prevented by a more
complete call graph analysis or recognizing a few simple design patterns.

5 Design patterns in multi-threaded software

Sections 3 and 4 have shown that sequential properties are easy to evaluate with the aid
of a static analysis tool. This is not the case with multi-threading problems. There are
two ways to improve the situation: Make the evaluation of warnings easier using visu-
alization tools, or improve the quality of the analysis itself, reducing the false positives.
We focused on the latter aspect. When analyzing the warnings, it soon became apparent
that only a few common code idioms were behind the problems. The remainder of this
paper investigates what patterns are used to avoid multi-threading problems.

Table 4 shows an overview of the different design patterns used in the code of the
two space exploration projects to avoid conflicts with unprotected fields or methods.
The counts correspond to the applications of these patterns, all of which result in one
or more spurious warnings when analyzed with Jlint. When using these patterns, there
appears to be a data race, if a method is considered in isolation or without considering
thread ownership. There is no data race when considering the entire program.

The most common idiom used to prevent data races was the use of read-only val-
ues. Read-only fields are usually declared final and not changed after initialization.
Because this declaration discipline is not always followed strictly, recognizing it stati-
cally is not always trivial, but nevertheless feasible by checking all uses of a given field
in the entire code. Ensuring global thread-safety in such cases is of course only possible
in the absence of dynamic class loading. Other design patterns include:

– Ensuring mutual exclusion in an unsafe method by having all callers of that method
acquire a common lock. Such callers work as a thread-safe wrapper around unsyn-
chronized parts of the code.

10

– The usage of (deep) copies of data returned by a method ensures that the “working
copy” used subsequently by the caller remains thread-local [18]. This eliminates
the need for synchronization in the caller.

– Copying method parameters restricts data ownership to the called method and the
current thread [18]. The callee then does not have to be synchronized, but it is not
allowed to use any shared data other than the copied parameters supplied by the
caller. Doing otherwise would again require synchronization.

– Legacy container data structures such as Vector are inherently thread-safe because
they internally use synchronization [21].

– Finally, if there exists only one thread instance of a particular class, no data races
can occur if that thread is the only type that calls a certain method.

Two cases of false positives were not included in this summary: unused meth-
ods (dead code) and conditional locking based on a global flag used for debugging
wait/notify locking (which was permissible in the original C++ Rover code but not
in the Java version).

This study indicates that four design patterns prevail in cases where code is appar-
ently not thread-safe: Synchronization of all callers, use of read-only values, thread-
local copies of data, and the use of thread-safe container classes. Although simple pat-
terns prevail, their usage is not always trivial: Some of the data race warnings for the
Rover code pointed out cases where it was attempted to use the read-only pattern, but
the use was not carried out consistently throughout the project. Such a small mistake
violates the property that guarantees thread-safety. This discussion so far concerned
only data race warnings. No prevailing pattern has been found in the case of deadlocks,
where the programmer has to ensure no cyclic lock dependency arises between threads.

6 Conclusions

Space exploration software is complex. The high costs incurred by potential software
failures make the application of fault-finding tools very fruitful. Jlint was very success-
ful as such a tool in both case studies, complementing the strengths of other tools. In
each project, the study found four or five significant problems within only 15 minutes
of evaluating Jlint’s warnings. The multi-threading warnings were more difficult and
time-consuming to evaluate but still effective at pointing out critical parts in the code.

An analysis of the false positives showed that in apparently thread-unsafe code,
four common design patterns ensure thread-safety in all cases. Static analysis tools
should therefore be extended with specific algorithms geared towards these patterns to
reduce false positives. Furthermore, these patterns were not always applied correctly
and are still a significant source of programming errors. This calls for tools that verify
the correct application of these patterns, thereby pointing out even more subtle errors
than previously possible.

References

1. C. Artho. Finding Faults in Multi-Threaded Programs. Master’s thesis, ETH Zürich, 2001.

11

2. C. Artho and A. Biere. Applying Static Analysis to Large-Scale, Multi-threaded Java Pro-
grams. In D. Grant, editor, Proceedings of the 13th ASWEC, pages 68–75. IEEE CS Press,
2001.

3. C. Artho, K. Havelund, and A. Biere. High-Level Data Races. In VVEIS’03, April 2003.
4. T. Ball, A. Podelski, and S. Rajamani. Boolean and Cartesian Abstractions for Model Check-

ing C Programs. In Proc. TACAS’01: Tools and Algorithms for the Construction and Analysis
of Systems, LNCS, Italy, 2001.

5. E. G. Benowitz and A. F. Niessner. Java for Flight Software. In Space Mission Challenges
for Information Technology, July 2003.

6. G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and M. Turnbull. The Real-Time
Specification for Java. Addison-Wesley, 2000.

7. G. Brat, D. Giannakopoulou, A. Goldberg, K. Havelund, M. Lowry, C. Pasareanu, A. Venet,
and W. Visser. Experimental Evaluation of Verification and Validation Tools on Martian
Rover Software. In SEI Software Model Checking Workshop, 2003. Extended abstract.

8. J. Corbett, M. B. Dwyer, J. Hatcliff, C. S. Pasareanu, Robby, S. Laubach, and H. Zheng.
Bandera: Extracting Finite-state Models from Java Source Code. In Proc. 22nd International
Conference on Software Engineering, Ireland, 2000. ACM Press.

9. D. L. Detlefs, K. Rustan, M. Leino, G. Nelson, and J. B. Saxe. Extended Static Checking.
Technical Report 159, Compaq Systems Research Center, Palo Alto, California, USA, 1998.

10. P. Godefroid. Model Checking for Programming Languages using VeriSoft. In Proc. 24th
ACM Symposium on Principles of Programming Languages, pages 174–186, France, 1997.

11. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Virtual Language Specification,
Second Edition. Addison Wesley, 2000.

12. J. Harrow. Runtime Checking of Multithreaded Applications with Visual Threads. In 7th
SPIN Workshop, volume 1885 of LNCS, pages 331–342. Springer, 2000.

13. K. Havelund. Using Runtime Analysis to Guide Model Checking of Java Programs. In 7th
SPIN Workshop, volume 1885 of LNCS, pages 245–264. Springer, 2000.

14. K. Havelund, M. Lowry, S. Park, C. Pecheur, J. Penix, W. Visser, and J. White. Formal
Analysis of the Remote Agent Before and After Flight. In 5th NASA Langley Formal Methods
Workshop, June 2000. USA.

15. K. Havelund and T. Pressburger. Model Checking Java Programs using Java PathFinder.
International Journal on Software Tools for Technology Transfer, 2(4):366–381, 2000.

16. K. Havelund and G. Roşu. Monitoring Java Programs with Java PathExplorer. In
K. Havelund and G. Roşu, editors, Runtime Verification (RV’01), volume 55 of ENTCS.
Elsevier Science, 2001.

17. G. Holzmann and M. Smith. A Practical Method for Verifying Event-Driven Software. In
Proc. ICSE’99, International Conference on Software Engineering, USA, 1999. IEEE/ACM.

18. D. Lea. Concurrent Programming in Java, Second Edition. Addison Wesley, 1999.
19. T. Lindholm and A. Yellin. The Java Virtual Machine Specification, Second Edition. Addison

Wesley, 1999.
20. Sun Microsystems. Connected, limited device configuration. specification version 1.0a, may

2000. http://java.sun.com/j2me/docs/.
21. Sun Microsystems. Java 2 documentation. http://java.sun.com/j2se/1.4/docs/.
22. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A Dynamic

Data Race Detector for Multithreaded Programs. ACM Transactions on Computer Systems,
15(4):391–411, 1997.

23. S. D. Stoller. Model-Checking Multi-threaded Distributed Java Programs. In 7th SPIN
Workshop, volume 1885 of LNCS, pages 224–244. Springer, 2000.

24. W. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Programs. In Proc.
ASE’2000: The 15th IEEE International Conference on Automated Software Engineering.
IEEE CS Press, 2000.

12

