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Abstract. We present the textual wide-spectrum modeling and pro-
graming language K, which has been designed for representing graphical
SysML models, in order to provide semantics to SysML, and pave the
way for analysis of SysML models. The current version is supported by
the Z3 SMT theorem prover, which allows to prove consistency of con-
straints. The language is intended to be used by engineers for designing
space missions, and in particular NASA’s proposed mission to Jupiter’s
moon Europa. One of the challenges facing software development teams
is the notion of change: the fact that code changes over time, and the
subsequent problem of demonstrating that no harm has been done due
to a change. K is in this paper being applied to demonstrate how change
can be perceived as a software verification problem, and hence verified
using more traditional software verification techniques.
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1 Introduction

The core topic of this paper is the concept of change, and how it relates to
the way we model as well as program our systems, and how we can ensure cor-
rectness of change using modern verification technology. We shall specifically
discuss this topic by introducing the wide-spectrum modeling and programming
language K, under development at NASA’s Jet Propulsion Laboratory (JPL),
and demonstrate change scenarios and their verification in K.

The first call for opinion statements on the topic of change, with this journal
in mind, was published in [48], in which it is characterized as “a discipline for
rigorously dealing with the nature of today’s agile system development, which is
characterized by unclear premises, unforeseen change, and the need for fast reac-
tion, in a context of hard to control frame conditions, like third party components,
network-problem, and attacks”. Our view is that change fundamentally can be
considered as a software verification problem, where the question is the follow-
ing: given a program P1, and a new program P2, does P2 implement/refine P1?

? The work described in this publication was carried out at Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.



As such, in the extreme, the topic of correctness under change can potentially
be considered as the well known topic of correctness.

As is well known, analysis of correctness can be performed dynamically by
analyzing execution traces. Dynamic methods include such topics as testing,
runtime verification, and specification mining, where learned models of previous
behavior are compared to models of current behavior (after change). Dynamic
methods are known to scale well, which is their attraction, but are also known
to yield false negatives: not to report errors that exist, and in some cases (i.e. in
dynamic analysis of data races and deadlocks) to yield false positives (to report
errors that do not exist). Our focus in this paper is on static analysis of code:
where proofs are carried out on the basis of the structure of the code.

The K language is being developed at NASA’s Jet Propulsion Laboratory
(JPL), as part of a larger effort at JPL to develop an in-house systems modeling
language and associated tool set, referred to as EMS (Engineering Modeling Sys-
tem). EMS is based on the graphical SysML formalism [49], which is a variant of
UML [50], both designed by the OMG (Object Management Group) technology
standards consortium. SysML is meant for systems development more broadly
considered, including physical systems as well as software systems, in contrast
to UML, which is mainly meant for software development. EMS is being devel-
oped (and already in use) to support the design of NASA’s proposed mission to
Jupiter’s moon Europa, referred to as the Europa Clipper mission [13], planned
to launch around 2022 at the moment of writing.

The K language design was initially triggered by a desire from within the
EMS project to create a textual version of SysML. Although the graphical na-
ture of SysML can be attractive from a readability point of view, it suffers from
a number of issues, including lack of clear semantics, lack of analysis capabilities,
requiring heavy mouse-movement and clicking, and generally demanding much
more visual space than a textual formalism. The K language is in addition in-
spired by the idea of combining modeling and programming into one language.
This idea has been, and is being, pursued by others in various forms, includ-
ing past works on wide-spectrum specification languages. See the related work
section (Section 4) for a more detailed discussion. It is interesting to observe,
that modern programming languages to an increasing degree look and feel like
specification languages from the past.

A constantly returning discussion point in the design of K has been whether
to actually design a new language or adopt an existing specification or program-
ming language. The decision to design a new language was in part influenced
by the felt need (perhaps unwarranted) to control the syntax and the tool de-
velopment stack, including parsers, compilers, etc. Whether this decision was/is
correct, an important factor that makes K interesting is that it is being de-
signed to meet the needs of a real space mission. As such it can be considered
as a confirmation of already existing work in the area of specification as well as
programming languages.

The contents of the paper is as follows. Section 2 introduces the K language,
focusing on a small analyzable subset, which is currently being tested during the



initial design phase of the Europa Clipper mission. Section 3 discusses various
aspects of change by formalizing them in K. Section 4 outlines related work,
and Section 5 concludes the paper. Appendix A contains the grammar for K in
ANTLR [3] format.

2 The K Language

K is a textual language with various constructs for modeling and programming.
The UML and SysML communities use the term modeling, whereas the formal
methods community normally uses the term specification. We consider these
terms for equivalent in this context, and shall use them interchangeably. A
model (specification) is an abstract representation of a system (be it physical,
conceptual, software, etc.), which has a concrete implementation, which in the
software context is the program. It can be a physical object, however. The pri-
mary intended use for K is to easily create models and in the software context:
implementations, and then be able to perform analysis on them. We primarily
see K being used by system modelers who are used to expressing their models in
SysML/UML. In this section, we briefly provide an overview of the K language.
The presentation is centered around the example K model of geometric shapes,
shown in Figure 1.

Classes : Similar to classes in other object-oriented languages, the class in K is
the construct for performing abstraction. It is K’s module concept. Classes
can be arranged in packages, as in Java. A class can contain properties
(corresponding to fields in Java), functions, and constraints, as discussed
below. For example, class Triangle contains three properties, which are of
type TAngle.

Inheritance : K provides the extends keyword for specifying an inheritance
relation. In Figure 1, the TAngle class extends the Angle class. As a result,
TAngle, not only inherits the properties and functions of Angle, but also the
constraints. K also allows for multiple inheritance. Property and function
names must be uniquely specified.

Primitive Types : K provides the following primitive types: Int, Real, Bool,
String, Char, Unit.

Collections : K provides Set, Seq, and Bag as the three basic collections. K also
provides support for tuples. The shapes model does not contain collections.

Properties : In K, properties can be present within classes or at the outermost
level. Each property must have a name and a type. Our use of the term
property is due to the use of this term in the model-based engineering (UM-
L/SysML) community for name-type pairs, which in programming language
and formal methods terminology normally are called constant/variable/field
declarations. In the model shown in Figure 1, class Shape contains a single
property named sides of type Int.

Modifiers : Each property can also have one or more modifiers specified for it,
for example val/var to make the property read only or writable (the default
being read only). The shapes model does not contain modifiers.



class Shape { s i d e s : Int }

class Angle {
value : Int

fun eq ( other : Angle ) : Bool { value = other . va lue }

req value >= 0 && value <= 360
}

class TAngle extends Angle {
req value < 180

}

class Tr iang l e extends Shape {
a : TAngle
b : TAngle
c : TAngle

req s i d e s = 3
req Angles : a . va lue + b . va lue + c . va lue = 180

}

class E q u i l a t e r a l extends Tr iang l e {
req a . eq (b) && b . eq ( c )

}

class Obtuse extends Tr iang l e {
req a . va lue > 90 | | b . va lue > 90 | | c . va lue > 90

}

Fig. 1: A simple model of geometrical shapes in K

Constraints : K provides syntax for specifying constraints in a class. This is
done using the req keyword (we use the term requirements for constraints)
followed by a name (optional), and an expression that specifies the constraint
on the class. Constraints are class invariants. However, since side effects are
not supported with analysis in the current version of K, constraints simply
become axioms on names defined in the signature of a class. For example,
in class Angle, the value of any angle should always be between 0 and 360
degrees. Multiple constraints can also be specified. Their effect is the same
as if all expressions were conjoined into a single constraint. For example,
each instance of the Triangle class should have exactly three sides and the
sum of the angles should be exactly 180 degrees. Constraints are expressed
in predicate logic, including universal and existential quantification.



Functions : A function provides the ability to perform computation. In K,
functions can take arguments and return the result of the computation of
the function. The eq function in class Angle compares a given argument
angle’s value to the class local angle value, returning a Bool.

Function Specifications : Each function in K can also have a specification
associated with it. The specification can be a pre-condition and/or a post-
condition. The shapes example does not contain function specifications. They
are discussed in more detail along with an example in Section 3.

Expression Language : Similar to other high-level specification languages, K
provides a rich expression language for specifying functions and require-
ments. K generally provides predicate logic with multiple operators, such as
arithmetic operators, Boolean operators, if-then-else, blocks (a form of let-
expressions inspired by Scala), set and sequence constructors and operators,
and universal and existential quantification.

Annotations K provides the ability to create new annotations by specifying a
name and a type for the annotation. The annotations can then be applied by
writing an @ sign followed by the annotation name, and possible parameters,
immediately before the element that is desired to be annotated. There is no
limit on how many annotations can be applied to any entity.

Comments : Single line comments can be specified with the prefix −− and
multi-line comments are specified with === as both the start and end of
the multi-line comment.

In addition to the language constructs described here, K also has syntactic
support for programming with side effects (assignment, sequential composition,
and looping constructs, although these concepts are not yet supported by the-
orem proving or execution), type abbreviations, as well as SysML/UML specific
concepts such as associations and multiplicities (which can be used for specify-
ing the allowed size of a property). To conserve space, these constructs are not
discussed in further detail. Appendix A shows part of the K ANTLR grammar,
omitting grammar rules dealing with parsing of values of primitive types, such
as digits, strings, etc.

Currently, the K infrastructure comes with a parser, that has been generated
using ANTLR version 4. Using the parser, an abstract syntax tree is created that
is used for performing type checking. In addition, we have also developed a trans-
lator from K to SMT2, which currently is processed by the Z3 theorem prover
[11]. This is used as a means to perform various checks such as function spec-
ification satisfiability, class consistency checking, and model generation. More
generally, K works (similarly to Z3) by finding an assignment to all properties
that satisfies the requirements (constraints). In case there are more than one
assignment satisfying the requirements, an arbitrary is returned (although the
result is deterministic). In case no assignment is possible, an identification of
which requirements are inconsistent is returned. In the worst case scenario, the
solver cannot determine the result in reasonable time, and it times out after
a user-definable time period. The entire K infrastructure is implemented using
Scala. It is planned to make a subset of the language executable. The source



code along with binary releases along with a fully functional online solver and
K editor can be found at [33]. It is used by engineers and developers at JPL for
expressing requirements and verifying their consistency. The use is, however still
in evaluation mode.

3 Change

3.1 Behavior

K at JPL so far, has mostly been used for specifying static structure, similar to
what can be represented by UML/SysML class diagrams, with requirements typ-
ically constraining integer and real variables that represent properties of physical
nature, such as for example weights and distances. The shapes model in Figure
1 is an example of a model of structure, namely the shape of triangles. K can,
however, also be used for specifying behavior, using the same concepts used for
specifying structure, namely classes, properties, functions and requirements on
these. The idea is in other words to use mathematical logic to represent behav-
iors. This is an illustration of the pursued objective during the design of K to keep
the language as small as possible, relying as much as possible on the language
of mathematics for expressing problems and solutions. This approach of course
has algorithmic consequences when it comes to analyzing models. Our intention
is to stay in mathematics as far as the tooling (existing theorem provers) allows
us. In the following subsections we illustrate how one can encode two different
behavior concepts in K, namely state machines and event scheduling.

State Machines State machines are commonly used to specify the behavior of
software as well as hardware systems. They are frequently used at JPL for speci-
fying the behavior of embedded flight software modules controlling, for example,
planetary rovers. A state machine is defined by a collection of states, a collection
of events, and a labeled transition relation (labels are events) between states.
This can of course be modeled in numerous ways. Here we shall assume deter-
ministic state machines, and model the transition relation as a function. The K
model in Figure 2 represents an encoding of a state machine modeling a rocket
engine, which can be in one of the states: off, ready or firing. Events include
turn on, fire, and turn off. The types of states and events (State and Event) are
modeled as body-less classes. The class RocketEngine models our state machine.
It defines the three states as well as the three events as properties of the appro-
priate types. A requirement expresses that the states are all different (a similar
requirement should in principle also be provided for events).

The function move represents the transition relation, and is declared to take
two arguments: a state and event, and to return a state. It has no body, mean-
ing that it is yet to be defined. The subsequent four requirements define the
move function. For example the first requirement states that in the off state, on
encountering a turn on event, the engine moves to the ready state.



class State
class Event

class RocketEngine {

o f f : State
ready : State
f i r i n g : State

turn on : Event
f i r e : Event
t u r n o f f : Event

req o f f != ready && o f f != f i r i n g && f i r i n g != ready

fun move( s : State , e : Event ) : State

req move( o f f , turn on ) = ready
req move( ready , f i r e ) = f i r i n g
req move( f i r i n g , t u r n o f f ) = ready

req move( ready , f i r e ) = o f f −− added Monday morning
}

Fig. 2: State machine

The last requirement demanding the engine to move from the ready state to
the off state on a fire event was added on a Monday morning by a tired modeler,
and in our context represents a change to the model. This requirement, however,
is inconsistent with a previous requirement that demands the resulting state to
be firing. Since move is a function (the transition relation is deterministic),
and cannot return two different values for the same argument, this is detected
by the solver. Without this last requirement, the solver will declare the model
satisfiable, and will synthesize the state machine function based on the provided
requirements. Note, however, that not all transitions are modeled, hence the
synthesized state machine may not be the desired one.

Event Scheduling Event scheduling is a very common problem faced in a
plethora of fields and domains. The typical scenario usually involves specifying
multiple different allowed orderings of events and determining whether the spec-
ified ordering is satisfiable or not, and if satisfiable, generating a timeline for the
specified events. Figure 3 shows one such example encoded using K.

The foundation of the scheduling problem is specified by the Event class,
which represents a single event that has a start and end time (both of these



specified using the Int type). The requirements on this class specify that the
duration of any event has to be non-zero (req nonZeroDuration) and the start
time of all events is greater than or equal to zero (req afterBigBang). Further,
the three functions in the Event class encode Allen logic operators [2] using
simple mathematical expressions on the start and end times of two events in
question. The functions specify whether an event occurs before another event e,
meets another event e, or contains another event e. We do not include the full
set of Allen logic operators for sake of brevity.

class Event {
startTime : Int
endTime : Int

req afterBigBang : startTime >= 0
req nonZeroDuration : endTime > startTime

fun be f o r e ( e : Event ) : Bool { endTime < e . startTime }

fun meets ( e : Event ) : Bool { endTime = e . startTime }

fun conta in s ( e : Event ) : Bool {
( startTime <= e . startTime && e . endTime < endTime ) | |
( startTime < e . startTime && e . endTime <= endTime )

}
}

class Schedule {
sciWin : Event
digHole : Event
takePic : Event
commWin : Event
c o n f i g : Event
comm : Event

oneSc i enceAct i v i ty : Bool =
( sciWin . conta in s ( digHole ) | | sciWin . conta in s ( takePic ) ) &&

! ( sciWin . conta in s ( digHole ) && sciWin . conta in s ( takePic ) )

req sciWin . be f o r e (commWin) && oneSc i enceAct i v i ty &&
commWin . conta in s ( c o n f i g ) && commWin . conta in s (comm) &&
c o n f i g . meets (comm)

}

Fig. 3: Scheduling



Using this foundation, it is now easy to specify schedules and events. This is
exactly what the Schedule class does. Five events are created as instances of the
Event class. The actual schedule is specified as a requirement, which expresses
the ordering of the events. In this particular example, the schedule specifies that
the sciWindow (science window) must occur before the commWindow (commu-
nication window) and at least one science activity must have taken place. By
translating the scheduling specification to SMT2 and applying the Z3 theorem
prover, it can now be checked if the provided ordering on the events is satisfiable
or not by checking if the Schedule class is satisfiable. A satisfying assignment
to the class also provides us with a concrete time line of the events. It can be
common for schedules and events to change as the project evolves and reaches
maturity. Using such a mechanism for encoding the schedule of events provides
great power and flexibility. Dealing with the changing schedule is easily done by
either modifying existing requirements in the Schedule class, or by adding new
events and requirements. Each change in the schedule is also verified using a
theorem prover, which adds greater confidence in the change.

3.2 Refinement

Change can be considered as refinement. In the formal methods literature refine-
ment usually refers to the situation where one model/program, the specification,
and typically abstract of nature, is replaced by a lower level model/program, the
implementation. Along with the refinement normally goes a proof, that the im-
plementation refines the specification. The literature offers many solutions to
how specifications, implementations and refinements are expressed as well as
proved correct, see for example [6, 7, 31, 16, 17]. We shall not here enumerate all
of these, but bring forward two examples, one illustrating function refinement,
and one illustrating data refinement.

Function Refinement Function refinement consists of making the body of a
function more concrete, while the signature (name as well as argument and result
types) of the function stays unchanged. More generally, data structures accessed
by the function stay unchanged. One popular approach to this is design-by-
contract, where a function is first specified using pre/post conditions, and then
later implemented with a function body. This form of refinement is advocated
for example in specification languages such as VDM [6, 7, 31] and RAISE [16,
17], as well as in programming languages such as Eiffel [12] and Java in the form
of the JML comment language [30].

K supports design-by-contract using pre/post conditions. The example in
Figure 4 illustrates this with two class definitions. The left-most class Util Spec
represents the specification of a mathematics utility module containing two func-
tions, min for computing the minimum of two values, and abs for returning the
absolute value of an integer. Both functions are specified with a post condition
stating what is expected to be true about the resulting value, denoted by $result.
As an example, the post condition for the min function states that the result is
equal to one of the arguments, and it is smallest such.



Specification Implementation

class Ut i l Spec {
fun min( x : Int , y : Int ) : Int

post
( $ r e s u l t = x | |

$ r e s u l t = y ) &&
$ r e s u l t <= x &&
$ r e s u l t <= y

fun abs ( x : Int ) : Int
post $ r e s u l t >= 0 &&

( $ r e s u l t = x | |
$ r e s u l t = −x )

}

class U t i l extends Ut i l Spec {
fun min ( x : Int , y : Int ) : Int {

i f x <= y then x else y
}

fun abs ( x : Int ) : Int {
i f x < 0 then −x else x

}
}

Fig. 4: Mathematical function refinement

The class Util to the right extends class Util Spec and refines the functions
with proper function bodies. The semantics of K is such that the refined function
bodies will have to satisfy the post conditions. The K solver proves this auto-
matically in this case. The fact that the implementation class extends (inherits
from) the specification class reflects that this form of refinement is a form of
theory refinement, where the theory denoted by the implementation must im-
ply that of the specification: the implementation signature contains that of the
specification, and the requirements logically imply those of the specification:

Implementation ⇒ Specification

Data Refinement Data refinement consists of changing the data structures
used, which will cause functions to change as well. Data refinement has for
example been advocated in the VDM method [6, 7, 31], which is the approach
we shall illustrate here using K. The approach consists of defining a specification
and an implementation as follows. The specification consists of a type Σa of
abstract states, as well as abstract operations opna : Σa → Σa on this state.
The implementation consists of a type Σc of concrete states, as well as concrete
operations opnc : Σc → Σc on this state. To perform a proof of correctness
of the refinement, an abstraction function abs : Σc → Σa from the type of
concrete implementation states to the type of abstract specification states must
be provided, and the following property must (amongst others) be proved for
each operation opn, where opna is the abstract version and opnc is the concrete



version, and prea : Σa → B is the pre-condition of the abstraction operation
opna:

∀σ : Σc · prea(abs(σ))⇒ opna(abs(σ)) = abs(opnc(σ)) (1)

Each concrete operation must in other words be proved to update the concrete
state in a manner corresponding to the desired operation on the abstract state.
We illustrate this approach with a rather simple K model of a light switch, which
can be turned on and off. The specification is shown on the left of Figure 5. A
state is defined abstractly as an object of a class State. The two states off and
on are defined as distinct states of that type. Two functions are defined, one
for toggling the state (toggle), and one for testing whether the light switch is on
(isOn). The toggle function is only declared by its signature, no function body
is provided. The behavior is instead provided as a couple of requirements.

Specification Implementation

class State

class LightSwitch Spec {
o f f : State
on : State

req o f f != on

fun t o g g l e ( s : State ) : State

fun isOn ( s : State ) : Bool {
s = on

}

req t o g g l e ( o f f ) = on
req t o g g l e ( on ) = o f f

}

class LightSwitch {
fun t o g g l e ( cs : Int ) : Int {

i f cs = 1 then 0 else 1
}

fun isOn ( cs : Int ) : Bool {
cs = 1

}
}

Fig. 5: Lightswitch refinement

The implementation is shown on the right of Figure 5. Here we have decided
to model the state as an integer, being 1 when the light switch is on and 0 when
it is off. Note that in this case the implementation does not extend (inherit
from) the specification as was the case in the mathematical function refinement
in Figure 4. Instead, the proof corresponding to equation (1) above is provided



class RefinementProof {
spec : LightSwitch Spec
impl : LightSwitch

fun abs ( cs : Int ) : State {
i f cs = 1 then spec . on else spec . o f f

}

req f o r a l l c s : Int :−
spec . t o g g l e ( abs ( cs ) ) = abs ( impl . t o g g l e ( cs ) )

req f o r a l l c s : Int :−
spec . isOn ( abs ( cs ) ) = impl . isOn ( cs )

}

Fig. 6: Lightswitch refinement proof

in the separate class RefinementProof in Figure 6. To express the refinement
property to be proved, an instance spec of the specification and an instance impl
of the implementation are created such that we can refer to their respective
operations (functions). Then the abstraction function abs is defined from the
concrete state of integers to the abstract state State of the specification. Finally,
the requirement is the K formulation of equation (1) above, ignoring the pre-
condition part since all pre-conditions in this example are true. The K solver
proves the implementation correct automatically. An incorrect modification of
the implementation, such as for example to change the body of isOn in the
implementation to cs = 0 will dually be caught by the solver.

4 Related Work

K is intended to represent a textual modeling language capable of representing
SysML concepts, specifically class diagrams with constraints. However, as men-
tioned in the introduction, it also contains programming constructs, although
these are not yet supported by theorem proving or execution. As such it can be
perceived as a wide-spectrum modeling/programming language.

Wide-spectrum specification languages have been investigated to length in
the formal methods community. One of the well-known examples is VDM [6,
7, 31, 32]. VDM in its original form [6] provided a combination of procedural
programming and functional programming, as well as specification using sets,
lists and maps (with proper mathematical notation), and higher-order predicate
logic. VDM++ [14] added object-orientation to VDM, which is now part of the
VDM standard. The RAISE specification language (RSL) [16] is a wide-spectrum
language taking inspiration from VDM as well as from other modeling languages



such as Z [47], and algebraic equational specification languages. Here refinement
is the simpler theory implication: the implementation shall imply the specifica-
tion in a logic sense. AsmL [19] is a more recent wide-spectrum specification
language, in many ways similar to VDM, but based on the idea that operations
with side effects operate on algebras. Other fundamental works on refinement
include (not a comprehensive list): [51, 25, 38, 52, 4, 1].

Alloy [29] added new life to this community by being supported by an au-
tomated SAT solver. In many respects, K is close in spirit to Alloy, but differs
by being supported by an automated SMT solver (in contrast to a SAT solver),
resulting in a richer set of constructs, including arithmetic, being exposed to
analysis. K also combines a type view as found in traditional specification and
programming languages, as well as a relational view, whereas Alloy is purely
relational. We are of the belief that the notion of a type is fundamental to pro-
gramming as well as to modeling. In contrast to automated provers, interactive
theorem provers such as PVS [41, 43], Coq [10], and Isabelle [28], allow the user
to steer the proofs. Although this allows to perform more complex proofs, it also
requires more skills of the user, and time, which is often a limited resource in
software development projects.

Several high-level programming languages have been developed over time,
including the early SML (Standard ML) [37], its derivative Ocaml [39], and
Haskell [21]. However, also Java can be considered high-level due to its libraries
of collections (sets, lists, and maps), as well as the iterator concept. Python [44]
is close to combining object-oriented and functional programming. Scala [45]
does this to the full extent. The close relationship between Scala and VDM is
discussed in [22]. Fortress [15] introduced built-in notation for sets, lists, and
maps, very much resembling the notation in VDM.

Specification constructs have been introduced in programming languages, in
the form of design-by-contract (pre/post conditions + class invariants). Exam-
ples are Eiffel [12] and Spec# [46], where contracts are part of the language. Scala
has library functions for writing pre/post conditions on functional programs [40].
Finally, The JML language [30] allows to write design-by-contract specifications
for Java as comments. These are ignored by the standard Java compiler, and
therefore must be processed with special tools. EML (Extended ML) [34] takes
a slightly different approach to specification and formal development of SML pro-
grams. EML specifications look just like SML programs except that axioms are
allowed in signatures and in place of code in structures and functors. Some EML
specifications are executable, since SML function definitions are just axioms of
a certain special form. This makes EML a wide-spectrum language.

Programming languages are now also being designed with verification in
mind. Dafny [36] supports specifications that can be used to write correctness
conditions for programs. It is supported by a verifier, which is implemented on
top of the Boogie verification engine, which itself is built on top of Z3. Why3
[8] provides a rich language for specification and programming, called WhyML,
and relies on external theorem provers, both automated and interactive, to dis-
charge verification conditions. A user can write WhyML programs directly and



get correct-by-construction Ocaml programs through an automated extraction
mechanism. Model checking is another form of analysis that has been applied
to programming languages. Java PathFinder [23, 24] performs model checking of
Java programs. SLAM [5] performs static analysis and counter-example guided
abstraction refinement of device drivers, and has been applied in a large scale
industry setting. Spin [27] performs model checking of models expressed in the
Promela language, but can also model check C code directly. The ABS [20]
language and system provide various types of analysis such as resource anal-
ysis, deadlock analysis, as well as tools to perform test generation and formal
verification. The notions of abstract contracts and abstract class invariants are
introduced in [9], in order to reduce proof efforts when contracts change. In
[26] is presented an approach to integrate a semiautomatic verification tool into
a state-of-the-art integrated development environment (IDE), with the specific
objective to keep implementation, specification and proofs in sync.

The great improvements in model checking, static analysis, theorem proving,
and SMT solvers such as Z3 have all contributed to investigating and dealing
with software change. To this effect, differential symbolic execution [42] has been
investigated for establishing equivalence between two versions of a program. The
work described in [35] uses verification conditions and SMT solvers for detecting
semantic change between two closely related versions of a function (program),
by discovering inputs to the function that cause the outputs to differ. The work
described in [18] deals with regression verification and provides a technique for
performing equivalence checking of C programs, by using the older version of
the program as a specification for the new version of the program. A large part
of the inspiration for such work comes from the theorem proving community.

An important use of K that we have observed so far, which differs in the
way traditional verification tools are used, is that modelers tend to use K along
with it’s solving ability as a tool for discovering the right set of requirements
for their class before introducing a change. For example, uncertainty about a
particular variable and it’s potential range of valid values can be quite common
in modeling environments. Since K helps discover unsatisfiability, modelers use
an iterative refinement technique to discover the appropriate range of a variable
for their needs. K in this case is providing validation before a change is completely
committed.

5 Conclusion

In this paper, we have addressed the topic of change in a software/modeling
development environment. More generally, we have developed what we refer to
as a development language for modeling as well as programming, also referred
to as a wide-spectrum programming language, with verification support. This
enables developers to easily study properties of their models and programs, and
in particular, in this case, the effect of their change, thus helping to avoid making
changes that could potentially lead to unsatisfiability and inconsistencies. We
have studied various scenarios, and how consistency checking and change viewed



as refinement can be applied to each of those. While the topic of change itself is
extremely broad, we believe that a language oriented approach as presented in
this paper provides concrete value and provides a good foundation for developing
stronger techniques.
Acknowledgements. We would like to thank Chris Delp and Bradley Clement
for the opportunities and insights they provided during the development of the
K language.
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A K Grammar

model:
packageDeclaration? importDeclaration*
annotationDeclaration* topDeclaration* EOF;

packageDeclaration: ’package’ qualifiedName ;

importDeclaration: ’import’ qualifiedName (’.’ ’*’)? ;

annotationDeclaration: ’annotation’ Identifier ’:’ type ;

annotation: ’@’ Identifier ’(’ expression ’)’ ;

topDeclaration: annotation* entityDeclaration | annotation* memberDeclaration ;

entityDeclaration:
(’class’|’assoc’|Identifier) Keyword? Identifier typeParameters? extending?
(’{’ block ’}’)? ;

Keyword: ’<’ Identifier ’>’ ;

typeParameters: ’[’ typeParameter (’,’ typeParameter)* ’]’ ;

typeParameter: Identifier (’:’ typeBound)? ;

typeBound: type (’+’ type)* ;

extending: ’extends’ type (’,’ type)* ;

block: blockDeclaration* ;

blockDeclaration: annotation* memberDeclaration ;

memberDeclaration:
typeDeclaration | propertyDeclaration | functionDeclaration |
constraint | expression ;

typeDeclaration: ’type’ Identifier (typeParameters? ’=’ type )? ;

propertyDeclaration:
propertyModifier* Identifier ’:’ type multiplicity? ((’=’|’:=’) expression)? ;

propertyModifier:
’part’ | ’var’ | ’val’ | ’ordered’ | ’unique’ | ’source’ | ’target’;

functionDeclaration:
’fun’ Identifier typeParameters? (’(’ paramList ’)’)? (’:’ type)?
functionSpecification* (’{’ block ’}’)? ;

paramList: param (’,’ param)* ;

param: Identifier ’:’ type ;

functionSpecification: ’pre’ expression | ’post’ expression ;

constraint: ’req’ (Identifier ’:’)? expression ;

multiplicity: ’[’ expressionOrStar (’,’ expressionOrStar)? ’]’ ;

expressionOrStar: expression | ’*’ ;

type:
primitiveType | classIdentifier typeArguments? | type (’*’ type)+ |
type ’->’ type | ’(’ type ’)’ | ’{|’ Identifier ’:’ type ’:-’ expression ’|}’ ;

primitiveType: ’Bool’ | ’Char’ | ’Int’ | ’Real’ | ’String’ | ’Unit’ ;



classIdentifier: qualifiedName | ’Class’ | collectionKind ;

collectionKind: ’Set’ | ’Bag’ | ’Seq’ ;

typeArguments: ’[’ type (’,’ type)* ’]’ ;

expression:
’(’ expression ’)’ | ’Tuple’ ’(’ expression (’,’ expression)+ ’)’

| literal | Identifier | expression ’.’ Identifier
| expression ’(’ argumentList? ’)’
| ’!’ expression | ’{’ block ’}’
| ’if’ expression ’then’ expression (’else’ expression)?
| ’match’ expression ’with’ match+
| ’while’ expression ’do’ expression
| ’for’ pattern ’in’ expression ’do’ expression
| collectionKind ’{’ expressionList? ’}’
| collectionKind ’{’ expression ’..’ expression ’}’
| collectionKind ’{’ expression ’|’ rngBindingList ’:-’ expression ’}’
| expression (’*’|’/’|’%’|’inter’|’\\’|’++’|’#’|’^’) expression
| expression (’+’|’-’|’union’) expression
| expression (’<=’|’>=’|’<’|’>’|’=’) expression
| expression (’!=’|’isin’|’!isin’|’subset’|’psubset’) expression
| expression (’&&’|’||’) expression
| expression (’=>’|’<=>’) expression
| expression (’:=’|’is’|’as’) expression
| ’assert’ ’(’ expression ’)’
| ’-’ expression
| qualifiedName ’~’
| ’forall’ rngBindingList ’:-’ expression
| ’exists’ rngBindingList ’:-’ expression
| pattern ’->’ expression
| ’continue’ | ’break’ | ’return’ expression? | ’$result’ ;

match: ’case’ pattern (’|’ pattern)* ’=>’ expression ;

argumentList: positionalArgumentList | namedArgumentList ;

positionalArgumentList: expression (’,’ expression)* ;

namedArgumentList: namedArgument (’,’ namedArgument)* ;

namedArgument : Identifier ’::’ expression ;

collectionOrType: expression | type ;

rngBindingList: rngBinding (’,’ rngBinding)* ;

rngBinding: patternList ’:’ collectionOrType ;

patternList: pattern (’,’ pattern)* ;

pattern:
literal | ’_’ | Identifier | ’(’ pattern (’,’ pattern)+ ’)’ | pattern ’:’ type ;

identifierList: Identifier (’,’ Identifier)* ;

expressionList: expression (’,’ expression)* ;

qualifiedName: Identifier (’.’ Identifier)* ;

literal:
IntegerLiteral | RealLiteral | CharacterLiteral | StringLiteral |
BooleanLiteral | NullLiteral | ThisLiteral ;


