
Experimental Evaluation of Verification and

Validation Tools on Martian Rover Software

Guillaume Brat1, Doron Drusinsky2, Dimitra Giannakopoulou3, Allen
Goldberg1, Klaus Havelund1, Mike Lowry4, Corina Pasareanu1, Arnaud

Venet1, Willem Visser3, Rich Washington3

1 Kestrel Technology, NASA Ames Research Center
2 Time-Rover

3 RIACS, NASA Ames Research Center
4 NASA Ames Research Center

Abstract. We report on a study to determine the maturity of differ-
ent verification and validation technologies (V&V) applied to a repre-
sentative example of NASA flight software. The study consisted of a
controlled experiment where three technologies (static analysis, runtime
analysis and model checking) were compared to traditional testing with
respect to their ability to find seeded errors in a prototype Mars Rover
controller. What makes this study unique is that it is the first (to the
best of our knowledge) controlled experiment to compare formal meth-
ods based tools to testing on a realistic industrial-size example, where
the emphasis was on collecting as much data on the performance of the
tools and the participants as possible. The paper includes a description
of the Rover code that was analyzed, the tools used, as well as a detailed
description of the experimental setup and the results. Due to the com-
plexity of setting up the experiment, our results cannot be generalized,
but we believe it can still serve as a valuable point of reference for future
studies of this kind. It confirmed our belief that advanced tools can out-
perform testing when trying to locate concurrency errors. Furthermore,
the results of the experiment inspired a novel framework for testing the
next generation of the Rover.

1 Introduction

To achieve its science objectives in deep space exploration, NASA has a need
for science platform vehicles to autonomously make control decisions in a time
frame that excludes intervention from Earth-based controllers. Round-trip light-
time is one significant factor motivating autonomy capabilities, another factor
being the need to reduce ground support operations cost. An unsolved problem
potentially impeding the adoption of autonomy capabilities is the verification
and validation of such software systems, which exhibit far more behaviors (and
hence distinct execution paths in the software) than is typical in current deep-
space platforms. Hence the need for a study to benchmark advanced Verification
and Validation (V&V) tools on representative autonomy software.



The objective of the study was to assess the maturity of different technologies,
to provide data indicative of potential synergies between them, and to identify
gaps in the technologies with respect to the challenge of autonomy V&V.
The study consists of two parts: first, a set of relatively independent case

studies of different tools on the same autonomy code; second, a carefully con-
trolled experiment with human participants on a subset of these technologies.
This paper describes the second part of the study. Overall, nearly four hundred
hours of data on human use of three different advanced V&V tools and tra-
ditional testing were accumulated. The experiment simulated four independent
V&V teams debugging three successive versions of an executive controller for a
Martian Rover. Defects were seeded into the three versions based on a profile of
defects from CVS logs that occurred in the actual development of the executive
controller.
The experiment evaluates tools representing three technologies: static anal-

ysis, model checking, and runtime analysis, and compared them to conven-
tional testing methods. The static analysis tool is the commercial PolySpace
C-verifier [14]. This tool analyzes a C program without executing it; it focuses
on finding errors that lead to run-time faults such as underflow/overflow, non-
initialized variables, null pointer de-referencing, and array bound checking. The
model checking tool is Java PathFinder (JPF) [16], which is an explicit-state
model checker that works directly on Java code. JPF specializes in finding dead-
locks, verifying assertions, and checking temporal logic specifications. JPF ex-
plores all possible interleavings in multi-threaded Java programs. The runtime
analysis tools are Java Path Explorer (JPaX) [13] and DBRover [10]. JPaX can
infer potential concurrency errors in a multi-threaded program by examination
of a single execution trace. Amongst the errors detectable are deadlocks and data
races. DBRover supports conformance checking of an execution trace against a
specification written in metric temporal logic.
The rest of the document is structured as follows. We discuss related work

in Section 2. In Section 3 we discuss the Rover Executive that we analyzed
in the experiment as well as the correctness requirements this software should
satisfy. The methodology used for setting up the experiment is given in Section 4,
followed by a description of the V&V tools used in Section 5. The results obtained
from the study are divided between qualitative (Section 6) and quantitative
(Section 7) results. Concluding remarks are given in Section 8.

2 Related Work

There is relatively little work on comparative studies of different formal methods
tools, and their relationship to traditional methods. The reason for this is likely
the fact that this kind of comparative work is hard, and for many researchers
perhaps not as interesting as developing theory and tools. Early work seemed
to be focused on analyzing and comparing formal specification languages and
refinement environments (which refine specifications into code). With the arrival
of model checkers, work has been done on comparing them with the purpose of



evaluating how well bugs are located. Only recently has work appeared which
relates different bug-locating tools. We will outline a few references in each of
these categories.

Amongst early work on comparing a formal method, based on a formal spec-
ification language, to standard practice is the much celebrated CICS experi-
ment [7], where the Z specification language was used to specify IBM’s CICS
transaction system (Customer Information Control System). The project was so
successful that Oxford University Computing Laboratory and IBM received the
Queens’s Award for Technological Achievement. The use of Z reduced develop-
ment costs significantly and improved reliability and quality. It was estimated
that IBM was able to reduce their costs for the development by almost five and
a half million dollars. In addition, the quality was claimed to be higher based on
feedback from users. As an example of a study comparing specification languages,
an international Dagstuhl seminar was organized in 1995 as a competition be-
tween different researchers, each representing a formal method/specification lan-
guage. The participants were all asked to specify a steam-boiler problem based
on an informal requirement description. The result is presented in [1].

In [19] a more recent experiment is described comparing the state-of-the-art
formal specification and code generation method Specware (combined with the
functional programming language Haskell) with a state-of-the-practice waterfall
method rated at Capability Maturity Model (CMM) level 4. Two teams were
established, which concurrently applied the method in which they were special-
ists, to the given problem. The goal was to develop a real-time Personal Access
Control System (PACS) (badge reader). Both parties were given the same re-
quirement specification, in which two errors had been seeded. An independent
third party evaluated the results at the end using extensive testing. The formal
methods project seemed to perform better: in contrast to the CMM team, they
found the two errors, and produced code with a reliability of 0.77 (23 failures
within 100 test-cases), whereas the CMM team produced code with reliability
0.56. Had the formal methods team corrected the two errors they found, which
they did not, they would have had a reliability of 0.98. Neither of the teams
satisfied the original requirements completely.

With the increased focus on formal methods tools, some work has been done
on comparing such tools. A comparison of four different finite-state verification
tools is for example described in [4]. The tools were the model checkers SPIN
and SMV, INCA, which performs necessary conditions analysis, and FLAVERS,
which performs data flow analysis of Ada programs. The verification tools were
applied to the Chiron user interface system, a real Ada program of substantial
size. A tool automatically translated the Ada program into the input languages
of the respective verification tools. After the translation, different researchers
applied the different tools, and comparisons were made with respect to time
and memory. It was concluded that the results were very dependent on the
translation schemes from Ada to the input notations. Other authors have also
compared model checking tools [11, 6, 8].



The work in [2] describes an analysis of five different formal methods tools:
the model checker Rivet, the temporal logic runtime monitoring tool MaC, the
concurrency runtime analysis tool VisualThreads, the static analysis and theo-
rem proving tool ESC/Java and finally the static analyzer Jlint. The goal was to
identify the most practical tool for finding defects in software developed by the
company in which the author was an intern. Each tool was examined on fifteen
test-cases, which were created for this particular experiment, and which repre-
sented small well-known errors that can occur in multi-threaded programs. The
15 test-cases were created based on a statistical analysis of a large body of code.
Not surprisingly, the different tools had different weaknesses and strengths. The
conclusion for static checkers was that the simple checkers worked as well as the
complex checkers. The VisualThreads tool worked very nicely but did not work
for Java programs. The MaC tool did not deal with multi-threading.

3 Target Software and Verification Requirements

3.1 Rover Executive

The NASA Ames K9 Rover is an experimental platform for autonomous wheeled
vehicles called rovers, targeted for the exploration of a planetary surface such
as Mars. K9 is specifically used to test out new autonomy software, such as the
Rover Executive [18]. Previous to the development of autonomy software, plan-
etary rovers were controlled through sequences of detailed, low-level commands
uploaded from Earth. The Rover Executive provides a more flexible means of
commanding a rover through the use of high-level plans. Plans are programs
written in a language that specify actions and constraints on the movement, ex-
perimental apparatus, and other resources of the Rover. The operational seman-
tics of this language takes into account the possibility of failure of atomic-level
command actions. The Rover Executive is a software prototype written in C++
by researchers at NASA Ames.
The Rover Executive is approximately 35K lines (Kloc) of C++ code, of

which 9.6 Kloc are related to core functionality and the rest is for data structure
manipulation (modules for specific rovers and science instruments) and research-
related extensions. Here the main focus is on the core functionality. Because
the V&V tools benchmarked in this experiment analyze programs written in
Java and C, the C++ code was manually translated into these languages. Due
to resource constraints, the translation was selective; some components of the
executive were stubbed. The translated Java version is approximately 7.3 Kloc.
The C version consists of approximately 4.5 Kloc.
The Rover Executive is essentially an interpreter for the plan language. The

executive also monitors execution of primitives, and performs appropriate re-
sponses and cleanup when the execution of a primitive fails. A plan consists of
nodes representing high-level control structures or primitive plan elements called
tasks. The high-level control structures of the plan are sequential composition
(block) and conditional execution (branch). Primitive tasks command the vehi-
cle to perform an action that is monitored by the Rover Executive. Associated



(block

:id plan

:node-list (

(task

:id drive1

:action action1

:end-conditions (time +0 +20)

:continue-on-failure

)

(task

:id drive2

:action action2

:start-conditions (time +0 +10)

:end-conditions (time +1 +30)

)

)

)

Fig. 1. Example plan.

with nodes are conditions. A node succeeds or fails based on evaluation of these
conditions. Four types of conditions may be specified: wait-for, start, maintain,
and end conditions. A wait-for condition is monitored prior to the execution of a
node; the node cannot begin execution until its wait-for condition is satisfied. A
start condition is a pre-condition on the execution of node. If the start condition
evaluates to false then execution of the node fails. The maintain condition is
monitored during execution of the node; should the maintain condition at any
time evaluate to false, the node fails. The end condition is evaluated at the end
of execution of the node; if the end condition evaluates to false, the node fails.
Conditions are conjuncts of atomic conditions. There are two types of atomic

conditions. One type of atomic condition is a predicate over values in a main-
memory database. The database is an environment mapping names to values.
Typically the database is updated with values provided by the controlled system,
e.g. the vehicle’s current state. In addition, the Executive uses the database to
record and manage its own state. The second type of condition is a temporal
condition that specifies a time interval, using relative time (with respect to a
plan element) or absolute time (relative to the start of execution of the plan).
For example, the start of a task can be constrained to a relative or absolute time
interval.
Execution of a node either succeeds or fails and the outcome affects further

execution of the plan. Associated with each node is a Boolean attribute continue-
on-failure. If the continue-on-failure flag of a node is false, then failure of the node
will propagate up and cause the containing node (or the plan itself) to fail. When
a node fails its execution terminates. Thus if a node n is a sequential composition
of nodes, n1; . . . ;nk, and node ni fails and its continue-on-failure flag is false,
then nodes ni+1; . . . ;nk are not executed, and the failure is propagated to node



n. What happens to node n subsequently depends on whether its continue-on-
failure is true or false. If false, node n also fails. Similarly if the execution of an
alternative of a conditional node fails, the conditional node itself fails. If the flag
is true, then failure of a sub-node does not cause the node to fail. Hence in the
case of sequential composition, after failure of node ni with continue-on-failure
set to true, the executive will initiate execution of node ni+1. Figure 1 is an
example of a plan.

Rover

Planner

ExecCondChecker

Telemetry Database
(state of system)

ActionExecution

PlanWatcher

Executive

ExecTimerWaiter ExecTimer

DbMonitor

Internal

Fig. 2. Rover Executive architecture.

The architecture of the Rover executive is illustrated in Figure 2. Generally
each component in Figure 2 executes as a separate thread. The Executive is
the central component interpreting the plan and controlling execution of plans
(received from a Planner via the PlanWatcher). The ExecTimer and ExecTimer-
Waiter provide a timer capability used to support temporal conditions. These
conditions are processed by the Executive, which then posts timer requests to
the ExecTimer thread. The ExecTimerWaiter signals the Executive when posted
time points are reached. The Database is an environment holding name-value
pairs. The ActionExecution thread sends commands to the Rover and monitors
the status of action execution on the Rover, updating the Database to reflect
changes to that status. The Telemetry thread monitors the state variables of the
external system and updates the Database. The ExecCondChecker (composed of
two separate threads) monitors changes in the database (DbMonitor) and prior-
itizes the changes and signals the Executive (Internal). Changes in the database
or the passing of posted time points (events that may lead to the change of valua-
tion of a condition) are signaled to Executive. Should these changes cause a node



to succeed or fail, the Executive advances execution through the plan according
to the semantics described above. Execution of a primitive task causes the Ex-
ecutive, via the ActionExecution thread, to command the vehicle to perform the
task’s action.
The Java version (7.3 Kloc, 6 threads, 81 classes) used for this experiment

contains all the components of Figure 2, except the Telemetry thread. The
Database and PlanWatcher were simplified versions of the original C++ code:
Database only contained a small subset of variables in order to preserve the com-
munication behavior, and similarly PlanWatcher only contained the mechanism
to communicate the fact that a new plan was available. The C version (4.5 Kloc,
6 threads) used for static analysis was very similar to the Java version in terms
of its general structure (i.e. used the same components), but used further simpli-
fied code, e.g. the exception mechanisms were not treated (since the PolySpace
verifier doesn’t support exceptions).

3.2 Autonomy Requirements

Due to speed-of-light, bandwidth, and energy considerations, low-level com-
manding of a Rover on the surface of Mars severely limits the amount of tasks
a Rover can perform in a day and decreases the science return of the mission.
Thus it is NASA’s goal to increase the autonomy of spacecraft. For example, an
objective of one mission profile for the Mars Science Laboratory mission, sched-
uled for launch in 2009, is to command the Rover to travel distances as long as
one kilometer. This requires complex energy planning, terrain mapping, obstacle
avoidance, localization, etc.
This in turn may require use of heuristic algorithms and other Artificial Intel-

ligence programming techniques. At the same time, flight software has extreme
reliability requirements. Thus verification and validation of autonomy flight soft-
ware is of prime importance. The methodology used previously involved exten-
sive testing with simulations that represent nominal and slightly-off-nominal
flight scenarios. However for highly autonomous software, the number of sce-
narios is much larger, limiting the effectiveness of traditional testing. In this
context, mathematical methods, which have the potential of proving at once
system properties for large classes of input scenarios, become attractive.
Concurrency is a necessary attribute of highly autonomous software, for two

reasons. The first is that robust autonomy software responds to many envi-
ronmental variables that change asynchronously, including status of mechanical
systems, features of the terrain, obstacles, unplanned science opportunities, etc.
Thus V&V of autonomy software entails analyzing the parallel composition of a
software system and an environment running concurrently and changing asyn-
chronously. Second, because of the logical complexity of autonomy software,
such as the need to initiate and monitor concurrent streams of control, auton-
omy software is typically written as a set of interacting threads or processes. The
number of threads in deep-space flight software has grown substantially over the
last decade, and is expected to continue to grow in the future (e.g. the Mars Ex-
ploration Rover has over a hundred threads) The Rover executive studied in this



paper demonstrates many of the characteristics of autonomy software, especially
the substantial use of concurrency.

Properties for Verification of Rover Software A simple definition of cor-
rectness of the Rover implementation is that plans are executed correctly. That
is, given a plan, the Rover shall execute that plan according to its intended
semantics, which is given informally in various documents describing the plan
language. Note that the plans could be provided by a science team on earth, or,
in the case of an autonomous rover, can be produced by a planning and schedul-
ing system on board. We do not distinguish these two sources here; rather, we
just consider a plan as the input to the Executive that we would like to ana-
lyze. As an example plan, consider the one provided in Figure 1. It consists of
a top-node (a block) named “plan”, which is decomposed into two sub-nodes
(tasks), “drive1” and “drive2”. The corresponding actions to be executed are
called “action1” and “action2”. The task named drive1 is supposed to termi-
nate between 0 and 20 seconds after it has started. The task named drive2 is
supposed to start between 0 and 10 seconds after drive1 terminates and drive2
is expected to terminate itself between 1 and 30 seconds after it starts. Since
the continue-on-failure flag is set, in case drive1 fails, drive2 should be executed
anyway. The just presented informal description is part of the semantics of this
plan, and any execution of the plan should satisfy this. The (partial) semantics
can be formalized by expressing it in temporal logic. The following formulae
express some of the informal semantics stated above:

P1 : [](end("drive1") -> <0,10>start("drive2"))

P2 : [](start("drive2") -> (<1,30>success("drive2") or <>fail("drive2")))

The formula P1 states that it is always the case ([]) that when drive1 ends
(successfully or by failure) then (->) eventually (<>) between 0 and 10 seconds
later drive2 should start. Formula P2 states that after drive2 starts, it should
either eventually terminate successfully within 1 to 30 seconds, or eventually fail.
These two formulae only constitute a subset of the formulae that can be written
for this particular plan.

The Rover can violate the plan semantics in numerous ways, which we of
course cannot exhaustively cover here. However, some of the tools examine a
program for particular kinds of bugs, or rather coding errors, that can cause
a program to fail its goal. Deadlocks can for example cause the Rover to halt
execution in the middle of a plan. Data races can cause unexpected concurrent
accesses to variables that may alter the outcome. Null pointer references, un-
initialized variables and indexing out of array bounds may cause the program to
terminate abruptly during execution.



4 Methodology

This section describes the design of the methodology for conducting the con-
trolled experiment. The main reference for experimental design with human
participants is [9].
The experiment had the following goals:

1. Evaluate relative strengths and weaknesses of traditional and advanced ver-
ification and validation approaches and tools on autonomy software, po-
tentially leading to a methodology for their combined use in the software
life-cycle;

2. Determine whether the current state-of-the-art gives evidence that advanced
verification techniques have a potential for significant improvement over tra-
ditional ones.

In this experiment, the four different methods for V&V of representative
autonomous software, were:

1. traditional testing (TT)
2. runtime analysis (RA)
3. model checking (MC)
4. static analysis (SA)

4.1 Code Preparation - Defect Seeding

In order to be able to guarantee the existence of at least a few bugs of different
categories in the code for the experiment, we seeded bugs in the current version
of the code. This facilitated the control and understanding of the results of
the experiment. We considered two options: first, to seed bugs randomly in the
code, and second, to re-seed old bugs retrieved from the developer’s CVS logs.
We opted for the second choice because, as pointed out by Barry Boehm and
Daniel Port in [5], it has the advantage of being unbiased since the bugs seeded
have been real defects. The shortfall is that such bugs are likely to be the most
detectable defects using traditional techniques.
We modified the code so that the specific actions of the Executive would

be observable during execution. For example a task starting, failing, etc. were
made observable by adding print statements to the code. This allowed the ob-
servers and participants in the experiment to have a common framework for
understanding the program execution and the errors being reported.

Bug classification We classified the bugs into three categories: deadlocks, data
races, and plan execution defects. We made the distinction between concurrency
errors (deadlocks and data races) and plan errors, since we wanted to obtain
information on the relative strengths and weaknesses of the V&V techniques in
finding errors of these different classes.



Number of bugs seeded A total of 12 bugs were extracted from the CVS
logs, of which 5 were deadlocks, 2 were data races, and 5 were plan-related. One
of the deadlock bugs was given as an example during training on the tools, and
one of the data races was unreachable in the code that was eventually analyzed
- thus leaving only 10 seeded errors.

Versions In our experiment, we simulated a normal development cycle where
testing teams receive updated versions of the code and perform regression test-
ing. Moreover, we also wanted to evaluate to what extent the set-up effort that
advanced verification techniques sometimes require gets levelled-off during re-
gression testing. For these reasons, we produced 3 versions of the code, where
versions contained a number of common and a number of different errors. The
code was also reorganized and changed at places between versions. All three
versions ended up with the same number of bugs (7) and distribution, namely,
2 deadlocks, 1 data race, and 4 plan-related.

New bugs During the experiment, 18 previously unknown bugs were detected,
3 of which were deadlocks, and 15 of which were plan-related. Although we did
our best to understand these bugs and their causes, it is possible that some of
them are different manifestations of the same actual bug.

4.2 Experiment Design

We used the traditional approach to experimentation where we assigned one
group per treatment (V&V method) and the observers analyzed the results ob-
tained by each group.
The questions that our study targets are difference questions that are based

on comparing the performance of the various groups. To populate groups we
need to determine the frame of our experiment, which, for our purposes, is sys-
tem developers/engineers with a good understanding and training in computer
science. However, due to lack of human resources, we could not construct a
sample of subjects that would be large or diverse enough to allow for proper
generalization of the results of our study. We believe the results are nonetheless
useful, since they supported our first intuitions on the usefulness of advanced
V&V technologies for error-detection in flight software.

Participants The participants in the study consisted of 4 graduate students in
Computer Science on summer internships at NASA Ames, and 4 NASA Ames
computer scientists. The summer interns were working towards PhDs in the
domain of formal methods. Some were very proficient with the tools used in the
study, while others had only a superficial knowledge of these tools. However,
even the latter were very knowledgeable in formal methods and had worked
with similar tools. The permanent Ames employees held Masters or PhDs in
relevant fields of computer science, and had extensive background in software
development.



Validity For reasons stated earlier in this section, our study does not claim
external validity (possibility to generalize), but focuses on establishing internal
validity. To achieve the latter, we tried to ensure the following characteristics:

1. Groups must be equivalent.

Each of the four groups for our study was formed by two participants. We
assigned to each approach/treatment the participants that were most pro-
ficient in the particular approach, based on their work experience and the
focus of their PhDs. More specifically:

Testing (TT): two NASA Ames software engineers with extensive devel-
opment and testing background.

Runtime Analysis (RA): one NASA Ames software engineer with a PhD
in monitoring in distributed systems, and one intern with extensive expe-
rience in building tools for model checking Java programs and knowledge
of runtime analysis algorithms.

Model Checking (MC): two summer interns working on model checking,
one of them involved in the development of some features of the model
checking tool used.

Static Analysis (SA): one NASA Ames software engineer with extensive
background on static analysis techniques and compilers, and one summer
intern whose PhD is related to static analysis techniques for module
verification.

To bring all participants to a similar level of competence within the time
frame of the experiment, we gave them 3 days of training on the tools they
were to use and the code they were to analyze, as described in the training
section (see below).

2. Groups must be independent. Each group had their own office, but for the
most part we relied on their honesty not to communicate between groups.
The observers also avoided personal communications with the participants,
except through the use of a mailing list that was visible to all observers. The
groups could send messages to the list, but only received messages directed
to their group.

3. All factors, except for the particular V&V technology applied (treatment),
must be constant among the groups. This is to ensure that the differences
could only be influenced by the treatments. Except for the SA group, all
participants were provided with exactly the same code, as well as a set of
requirements that the code must satisfy. Specifically, in our context, these
requirements consisted of the semantics of the plan language that the Execu-
tive interprets. The experiment time was exactly the same for all groups. As
already mentioned, since the SA team worked on different code and concen-
trated on different types of bugs, their experiment results were not directly
used for comparison with other tools. However, the SA experiment has still



been valuable for obtaining some information about the benefits that the
PolySpace tool can offer vs. the effort that its use requires in practice.
Each participant had a powerful PC on their desk, with the exact same
configuration - Dual 2.2 GHz CPU with 4 Gb of memory running Windows
2000 and Linux. The mailing list, open to all observers, gave time to the
observers to read the queries carefully, think before sending replies, and check
the replies sent by others. Four experts in each technology were responsible
for replying to queries of their respective groups.

Training The training was performed in four stages:

1. An introduction to the Executive functionality and architecture. That was
performed during an interactive session by the developer of the software to
all the participants in the experiment.

2. Code walk-through. One group consisted of the TT, RA and MC partici-
pants, since they would all work on the Java code, and the other one con-
sisted of the SA participants that would work on C code. The walk-through
was performed by the software engineers that translated the code.

3. Use of the tools and methodologies associated with the approaches/treatments.
The participants got hands-on experience on running the tools on examples
that were different from the experiment code. The four groups received sep-
arate training during this session.

4. Running the Rover and writing plans. The use of each tool was also demon-
strated on one of the seeded bugs of the Rover code.

4.3 Experimental Set-Up

Working hours Each version of the code to be verified was sent to all partic-
ipants at the same time through email, at the beginning of the session for the
particular version. The participants had 16 hours to work on the version. The
start and the end times of each sub-experiment were fixed. However, since each
sub-experiment was two working days, and to accommodate the constraints on
the daily schedule of the participants, they had the flexibility to schedule their 16
hours as fit. Experiments started at 1pm and ended 1pm, to allow for overnight
runs of the PolySpace Verifier.

Reports Participants had to send a report to the mailing list after every hour
of work. This report accounted for the way they used their time during this hour.
The aim was for us to collect data about the relative set-up times of tools, tool
running times, time required to understand/analyze the results obtained, etc.
Although the reports were in the form of multiple-choice options (e.g. 5 mins,
10 mins, etc.) and hence wasn’t time-consuming to fill in, the time spent on the
reporting was also reported and formed part of the “Delays” data in Section 7.2.
Moreover, participants were asked to send two types of bug reports. The first,

called a preliminary bug report, was a report that had to be sent immediately



after a potential bug was encountered, together with the information (output)
provided by the tool, or the reason why this was considered a potential bug.
The second, called a final bug report, had to be sent after the participants had
performed sufficient analysis of the bug to be able to say with some confidence
whether they considered the bug in the preliminary report spurious, or real. All
teams had to provide at least the following information associated with each bug
considered real: the input that resulted in the manifestation of the bug (a plan,
or a property, or both), whether the bug was reproducible, and the reason why
the behavior of the system on the specific input was considered erroneous.
The intention for the bug reports was to collect data about types and percent-

ages of bugs that were found by different tools, rates of finding defects, spurious
errors reported, etc. If code fixes for a bug were available, they were provided to
the relevant team, as soon as the bug was confirmed real.

4.4 Debriefing

After the end of the experiment, all participants were asked about their expe-
riences from the use of the tools. They also prepared written reports including
such issues as the approach/methodology they followed, difficulties that they
faced, and potential improvements for the tools.

5 Overview of Technologies Benchmarked

Here we give brief descriptions of the technologies used as well as the experi-
mental setup used for each one. Note that we do not address the tools and setup
for testing, since we purposefully did not constrain the testing approach in any
way. In other words, the testing team was free to use any available testing tool
(with the obvious exception of the other tools being evaluated).

5.1 Runtime Analysis

Two tools were used: DBRover, which checks execution traces against temporal
logic requirements, and JPaX, which checks execution traces for deadlock and
data race potentials.

DBRover Run-time monitoring is a method whereby the correctness of a single
execution is validated against a set of formally stated requirements. DBRover
[10] uses Metric Temporal Logic (MTL), which essentially is Linear Temporal
Logic (LTL) extended with real-time constraints. LTL extends propositional logic
with four future time operators: Until, Eventually, Always, and Next, and four
dual past-time operators. LTL has the property of being capable of describing
many interesting properties of reactive systems. MTL extends LTL in that every
temporal operator can be augmented with a real-time constraint. Hence, for
example, ‘x > 0 Until<5 y > 0’ means ‘x > 0’ must be true until a future time,
at most 5 real-time units in the future, where ‘y > 0’ must hold.



The DBRover consists of a GUI for editing temporal formulae, a simulator
for testing the semantics of the formulae, and a remote execution/validation
engine. The DBRover builds and executes temporal rules for a target program
or application. During run-time, the DBRover listens for messages from the
target application and evaluates corresponding temporal formulae. Hence, in
the example above, the DBRover will listen for Boolean messages pertaining to
the run-time value of the ‘x > 0’ and ‘y > 0’ propositions, and then evaluate
the corresponding MTL formula. Monitoring is performed on-line; namely, the
DBRover operates in tandem with the target program, and re-evaluates formulae
every cycle. The DBRover uses an underlying algorithm that does not store a
history trace of the data it receives; it can therefore monitor very long and
potentially never ending target applications with no performance degradation
over time.
In order to drive the DBRover temporal logic monitoring engine, the program

to be verified must be instrumented to emit events to it. When a set of formulae
has been created in DBRover, a code snippet can automatically be generated,
which the tester then inserts in the program to be monitored at places where
the formula should be evaluated.

JPaX The Java PathExplorer (JPaX) [13] can detect deadlock and data race
potentials in Java programs by analyzing a single execution trace. A character-
istic of the tool is that it can detect such flaws even if these do not occur in the
actual execution trace examined. The program to be analyzed is automatically
instrumented to emit events representing acquisitions and releases of locks as
well as read and write accesses to variables. The lock acquisition/release events
are used by the deadlock analysis as well as by the data race analysis. The
variable read/write events are used by the data race analysis. For each kind of
analysis, the tool builds an internal data structure representing an abstraction
of the execution trace. The abstraction will violate a certain well-formedness
predicate if there is an allowed permutation of the original execution trace that
causes an error (a deadlock or a data race).
The deadlock algorithm detects cycle deadlocks where several threads ac-

quire locks in a cyclic manner, such as, for example, when a thread T1 acquires
a lock L1 and then a lock L2 (without releasing L1), and another thread T2 ac-
quires these locks in the opposite order. The data race detection uses the Eraser
algorithm [15], adapted to Java. A data race occurs if several threads access a
variable at the same time, and at least one of the threads writes to the variable.
Normally variables must be protected with locks to avoid this. JPaX checks that
for each variable that is shared between several threads, there is a common lock
that all the threads acquire before they access the variable. If not, a violation is
reported.

Runtime Experiment Setup Instructions for the participants were separated
into general instructions on how to use DBRover and JPaX on any application,
and specific instructions on how to use the tools on the Executive. The general



instructions for using JPaX were minimal since the tool requires no specifications
to be written and since instrumentation is performed automatically by the tool.
Since DBRover requires specification writing, and manual code-snippet gener-
ation and insertion, the general instructions for this tool were more elaborate.
However, the learning curve did not seem to cause any problems and could be
done in a few hours.
The participants furthermore were instructed on how to write temporal for-

mulae in DBRover for plans, representing the plan semantics. In general terms,
for each action node in the plan the testers were recommended to write a set of
formulae that would test that it was executed correctly. Note that although the
other groups were also given instructions on the plan semantics and its temporal
properties, the RA group received specific instructions.
The RA group was asked to use the DBRover as much as possible, and not

to only rely on the printed information from the program executions.

5.2 Model Checking

The Java PathFinder (JPF) model checker [16, 17] is an explicit-state model
checker that analyzes Java bytecode classfiles directly for deadlocks, assertion
violations and general linear-time temporal logic (LTL) properties. JPF is built
around a special-purpose Java Virtual Machine (JVM) that allows all Java pro-
grams to be analyzed. Furthermore there are no limitations on the number of
threads, objects or classes in the program to be analyzed - in theory it can there-
fore find errors in infinite-state programs, but it cannot determine whether such
programs are correct. The level of atomicity can be set to either one bytecode
instruction or one line of code, with the latter being the default setting.
JPF supports depth-first, breadth-first as well as heuristic search strategies

such as best-first and A*. The heuristic search strategies can be guided by built-
in heuristics for finding concurrency errors, achieving structural coverage of the
code, etc., or the user can define their own heuristics [12]. A novel feature of the
heuristic search is that it also allows the user to specify the size of the queue of
states to be analyzed next - this allows a lossy search that focuses in on errors
(somewhat like a beam-search) to deal with cases where the state-explosion is
too severe.
In order for the user to interact with the model checker a special class called

Verify has been introduced: the user can call special methods of this class
that gets intercepted during model checking. The following methods are most
commonly used:

random(n) - Returns a nondeterministic value between 0 and n - used when
modeling a nondeterministic environment.

randomBool() - Returns true or false nondeterministically - often used for
data abstraction.

assertTrue(condition) - Allows local assertions to be checked - if the condi-
tion fails an exception is thrown. Note, since the introduction of assertion
checking within Java (since Java 1.4), JPF also traps these methods.



beginAtomic(), endAtomic() - Respectively indicates the start and end of a
block of code that the model checker should treat as one atomic statement.

ignoreIf(condition) - Allows the user to truncate the analysis of a specific
behavior if a condition becomes true.

boring(condition), interesting(condition) - These directives are used only
during heuristic search and respectively decrease and increase the heuristic
values for a specific state if the condition holds.

JPF cannot deal with native code - that is code that is not written in Java, but
is called from within the Java program. In these cases the user needs to specify
the behavior of the native code and JPF will treat it as an atomic statement,
which means errors in this code might be missed. In this study no native code
was used, since we were not analyzing the actual communications between the
Executive and the Rover hardware.

JPF Experiment Setup Abstraction is typically a very important technique
required for the success of model checking, since it combats the state-explosion
problem inherent to the analysis of complex software systems. We therefore
provided a framework in which the participants could add abstractions in a non-
intrusive fashion to the code. Besides the infrastructure for adding abstractions
we also gave the participants the so-called “point” abstraction for all time-related
data; i.e. all operations on time become nondeterministic choices. We anticipated
that they would refine this abstraction to suit their needs. We also provided the
Rover code with beginAtomic() and endAtomic() calls to show where interleav-
ings are unnecessary. These were provided, since at the time of the experiment,
a newer version of JPF than the one used, supported the automatic discovery of
atomic regions and we therefore felt this was not giving the participants an un-
due advantage. In fact, as it turned out, providing these atomic regions actually
slowed down the search for errors, since a number of small, but hard to detect,
mistakes were made during the creation of the atomic regions (see section 6.3).
Lastly, we also provided the participants with a number of simple Rover

plans as examples, as well as a so-called “universal” planner that can generate all
possible plan structures up to a specific size limit in a nondeterministic fashion.
The idea behind the universal planner is common in model checking, where a
system is often analyzed within the most general environment it can operate in.
Note that the same code was provided to the other teams working on the Java
version of the Rover (runtime and testing), and they could therefore also benefit
from using it.
Since the participants were both familiar with model checking and more

specifically had used JPF before, the instructions on how to use the tool were
minimal. Essentially, we requested that the participants “only” run the model
checker and not run the code directly to determine where possible errors might
exist - we wanted them to use the model checker to discover errors rather than
just localize errors first observed during testing/simulation. We also requested
them to determine whether errors reported were spurious or real - this meant
that they needed to understand the code quite well.



5.3 Static Analysis

The PolySpace Verifier is the first commercial tool that uses abstract interpreta-
tion to find runtime errors. Abstract interpretation is a static analysis technique
that explores the source code of the program without executing it, and therefore
no test-cases are required. The tool focuses on identifying the following errors:

– Attempt to read a non-initialized variable

– Access conflicts for unprotected shared data in multi threaded applications

– Referencing through null, or out-of-bound pointers

– Out-of-bounds array access

– Illegal type conversion (long to short, float to integer)

– Invalid arithmetic operations (e.g. division by zero)

– Overflow / underflow of arithmetic operations

– Unreachable code

In the context of the V&V benchmarking study the static analyzer, PolySpace
Verifier, was solely used as an abstract debugger for finding runtime errors. The
output of the tool consists of a color-coded version of the program source code.
Each potentially dangerous operation can be flagged by four colors depending
on how the associated safety conditions have been handled by the tool:

– Red: the operation causes a runtime error for all execution paths that lead
to that operation.

– Green: the operation is safe, a runtime error can never occur at that point.

– Orange, this color covers two cases:

• An execution path to this operation causes a runtime error, whereas
another execution path does not.

• the tool has not been able to draw any conclusion on this operation.

– Gray: the operation is unreachable (dead code).

The verification process using the static analyzer starts with a piece of soft-
ware and no a priori insight on the structure of the code. This is the most
common situation: it amounts to using the static analyzer during the validation
process of fully developed software. There are three main stages in putting the
static analyzer to work:

– Isolate the part of the code that will be analyzed and make it accepted by
the front-end. This is the compilation stage.

– Run the analyzer and correct all certain runtime errors that are detected by
the tool. This is the debugging stage.

– Run the analyzer and modify the code in order to improve the precision and
remove false alarms. This is the refinement stage. Refinement can be done
by either adding assertions that will both be checked and assumed to hold
henceforth, or, by refining stubs if any were used.



Each of these three stages is highly iterative: the user runs the analyzer
and modifies the command-line parameters and/or the code until no more error
messages are issued. If this process had to be compared to software development,
the first stage would correspond to compiling the program and eliminating all
syntax and type errors, the second stage to debugging the program and the third
stage to optimizing the algorithms for achieving better efficiency.
The training of the participants consisted of verifying the cipher algorithm

RC4 from the ssh source distribution with PolySpace Verifier. Several runtime
errors were artificially inserted into this algorithm.

Static Analysis Experiment Setup At the time of the experiment, PolySpace
Verifier worked only on Ada and C programs. Therefore, the participants were
given a C version of the Rover executive code. The translation from C++ to C
was done automatically by a commercial compiler frontend (from Edison Design
Group). However, this led to a code explosion (due to the exhaustive nature
of such a translation) and we therefore modified the resulting code to stub out
some low level calls before giving it to the participants. We also gave the stubs to
the participants so that they could see how to write stubs within the PolySpace
analysis context. They were free to refine those stubs and write additional ones.
The participants used the PolySpace Verifier on two machines with the same

configuration (PC running Linux). Unfortunately, in the Linux configuration
available, we could not use the full power of PolySpace Verifier (i.e., the tool ran
out of memory in its highest precision level). Therefore, the participants were
restricted to using the quick analysis mode and the low precision level of the
tool. We made sure that the seeded bugs could be found with these restrictions.
Finally, each version was delivered to the participants with a short description

of what changes were made to the code. The intent was to give the same type
of information a CVS repository would give in a typical NASA development
environment.

6 Qualitative Results

We will first describe the information we got from debriefing the participants
after the experiment - augmented with our own comments in italics - followed
by some final thoughts on how each technology was used.

6.1 Testing

Debriefing The initial focus was on finding concurrency related errors, since
the assumption was made that this would form a good basis of comparison with
model checking and runtime analysis. Note that even with this focus, testing
found less seeded concurrency errors than the other teams. Due to the time-
limitations of the experiment and the tight-coupling of the components in the
code, both unit testing and integration testing phases were skipped in favor of
system level testing. Furthermore, due to the input-output nature of the system



(plans as input and Rover executive actions being observable) the focus was on
black-box testing. The system design indicated the likelihood of race conditions
and inconsistent system states due to the use of exceptions for control flow.
Although this was a very accurate observation, the seeded errors only contained
one race error. On the other hand, the use of exceptions contributed, in one way
or the other, to one seeded error and most of the unseeded errors in the code.

Since, the system consisted of multiple threads, two different operating sys-
tems (Linux and Windows) and two different Java Virtual Machines (1.4 and
1.3.1) were used during the testing to see if the native scheduling would show
different behaviors that would point to concurrency errors. In addition, the only
other tool support was the Java debugger environment to allow a dump of the
thread’s call stacks when a deadlock was perceived - this was used to eliminate
possibly spurious deadlocks. Note, the testing team did find spurious deadlocks,
but this was due to the Rover being able to receive multiple plans whereas the
Rover in the experiment was only supplied one input plan - hence it could be
waiting for the next plan, which was not considered to be a deadlock, although,
from a black-box point of view, it looked like one. The code was instrumented
to allow Rover actions to be better observable, but care was taken to do this
without unduly affecting the system timing. The plan parser was extended to al-
low the expected output to be printed when the plan was parsed - this expected
output could then be compared to the actual output to find discrepancies.

The test strategy was to use the grammar of the plans to create test-cases
that might cause problems, e.g. having an end-time that was before a start-time
in a plan, missing parts of a plan, etc. Note, that although this was the strategy,
the testing team didn’t find the only two seeded plan errors that were due to
malformed plans. The explanation for this is that the testing was not systematic
and therefore not all the combinations of “bad” plans were tried. During the last
phase of testing, active scheduler variants (as opposed to passive variations from
the different execution environments) were used to try to find concurrency errors;
these included changing thread priorities, adding yield and sleep statements, etc.
These changes allowed two unknown deadlocks to be uncovered during the testing
of the last version of the code.

The plans that produced errors in the code were kept in a regression suite
for use in later versions.

Summary The testing group took a black box approach to finding bugs. How-
ever they did modify the code to provide more elaborate diagnostic information
via print statements. The participants recognized from the tutorial that concur-
rency was extensively used and might be a major source of bugs. Thus they fo-
cused their efforts on formulating test plans that might demonstrate concurrency
bugs. They ran their tests on multiple platforms to identify whether behavior
depended upon the scheduling algorithm. For some tests they modified task pri-
orities. They also wrote plans in which the time point in temporal constraints
were temporally close, to analyze boundary cases.



The testing group maintained a regression suite that they ran on each new
version, and so quickly identified bugs that were seeded in multiple versions.
Very limited tool support was used.

6.2 Runtime Analysis

Debriefing The JPaX tool was particularly attractive since it didn’t require
any user input and therefore it was always tried first to find deadlocks and data
races. More complex plans were then created to flush out other errors and JPaX
was ran periodically on these new plans. Although it is possible in general,
JPaX didn’t produce any spurious errors during the experiment. This was a
particularly interesting result, and points to the usefulness of the approach to
finding data races and deadlocks. JPaX did miss one of the seeded deadlocks, but
this was because it cannot find so-called “wait-notify” deadlocks, only deadlocks
due to cycles in the lock graph. No time was spent coming up with ways to make
the errors JPaX reported appear during execution; code inspection was deemed
sufficient to determine if the errors were real. Near the end of the experiment
they also constructed plans to maximize the execution of locking instructions
to find more concurrency errors. This attempt seemed to have been unsuccessful
since no new concurrency errors were found doing this. This is expected since
they at this point had found all seeded cycle deadlocks and data races.

DBRover had the overhead of first requiring one to determine a temporal
logic formula that the input plan should satisfy and then to input this formula
to the tool. For simple plans it turned out that it was easier to just look at the
output of the run to determine if a formula was satisfied. This approach will not
work for complex plans. The runtime team concluded that if they had a tool that
could produce the formulae for each plan automatically they would have used
DBRover more often. We considered creating such a tool before the experiment,
but didn’t do it - we have since created it and it is now in use for analyzing the
current version of the Rover (see section 8).

Once an anomalous behavior was detected, they analyzed it in more detail
by trying to understand what the program was doing, to determine if it was a
real error or maybe a misinterpretation of the specification. Also, they consid-
ered whether the current error might be due to a previous error that was not
corrected (yet). The runtime team spent much more time analyzing the code than
the testing team did and thus produced error reports that could more easily be
classified by the experiment observers. Although we tried, it was often impossible
for the observers to produce a fix for an unknown error - we had fixes for all the
known errors. Time was also spent trying to fix errors that were found, for which
no fix was provided. Although this was a possible waste of time, new errors were
discovered this way that were masked by the original ones.

The collaboration within the team consisted of one person coming up with
plans and the other mostly trying to locate an error after observing an anomalous
behavior. The person looking at the code was particularly good at finding errors
through inspection and acquired an understanding of the code that rivaled that of



the developer. The team members also spent a large amount of time discussing
the different errors they found.

Summary The JPaX tool appeared to be used in the way it was intended. When
receiving a new version of the Executive, the partcipants usually started out by
applying JPaX to a few simple test-cases, and thereby easily discovered deadlocks
and data races this way. No advance preparation was required in addition to
writing the test-cases. From time to time, in between applications of DBRover,
they further applied JPaX on some of the more complex plans, to see if it could
detect in them other possible deadlock and race conditions. Close to the end of
the time available they also tried to construct plans to maximize the coverage
of the locking instructions reported by the deadlock analysis, or determined by
examining the code that such locking instructions were not reachable. The use
of JPaX required checking that a deadlock or race condition (potential) reported
was actually able to lead to a real error. For these kinds of errors, the code was
analyzed to understand if the error could effectively occur or not. They did not
try to make the errors happen in the real code. The participants stated that the
tool allowed them to “easily detect deadlock and race conditions”; also stating
that “We could run it and it would come back with suspected deadlock and race
condition problems which would have been very hard and time-consuming to
find with the traditional testing”.

The DBRover was not fully used as requested. For each plan, they had to
write temporal formulae, generate instrumentation, and insert the instrumen-
tation in the Rover code. It took some time to get familiar with the notation
and the tool. Furthermore, they perceived the writing of temporal formulae as
“consistent overhead”, while for most of the simple plans just looking at the
output was effective to determine if the plan executed correctly or not. Hence,
their general working mode was to write test-cases, and in some cases just run
the program while examining the output, and in some cases also write temporal
formulae using DBRover. In some cases DBRover detected errors that were not
caught by analyzing printed results.

One of the participants was specifically responsible for applying JPaX, while
both RA participants applied DBRover. The participant that applied JPaX also
wrote most of the test-cases. The other participant would mostly try to locate
and often fix the bugs in the code, and hence was the one that eventually became
very familiar with the code and found bugs by simple code inspection.

JPaX found all the cyclic deadlocks and the data race condition that were
seeded in the program quite easily. Since these are the only kinds of bugs the tool
is designed to catch, one may say that its application was a success. Furthermore,
it gave no false positives. The participants were quite happy with the tool. Of
course, the ease of use has been achieved by restricting the kind of errors that can
be found to cycle deadlocks and data races. DBRover, on the other hand, allows
much more general properties to be analyzed, and hence is more complicated to
use. In general, however, DBRover seemed to be less useful for the participants
(their own formulation), and the main reason for this was that it took time to



write the temporal formulae. Although this can be said to be a negative result,
three observations can be made for a positive evaluation of DBRover for testing
real systems in a realistic development environment:

– the plans used were quite small and one could manually check the outputs,
but in general plans will be very large and an automated tool to check the
properties will be required.

– if an automated translation from plans to temporal formulae had been avail-
able, the tool would have been used much more. This idea has in fact later
been pursued in a testing environment for the Rover, where automated test-
case generation has been combined with automated generation and monitor-
ing of temporal formulae.

– the tool is specifically useful in regression testing where large numbers of
tests are run, which was not the case here.

6.3 Model Checking

Debriefing The team started running the model checker on the supplied code
straight-away looking for deadlocks, i.e using the supplied sample plans. They
modified the search parameters rather than modify the input plans at first. This
is in contrast to the more traditional testing approach, for example used by the
testing and runtime teams.When errors no longer appeared using this approach
they started using the universal planner - that generated all plans up to a specific
size. The universal planner was used only sparingly. We assume this is due to
the fact that they wanted control over the exact plans that were used in a model
checking run.
They found an error immediately, but then spent hours to determine that the

error was spurious due to the abstraction of time. It turned out that this error
was in fact a real error, but the specific path found was spurious. One of the team
members then decided to create a more realistic version of a time abstraction
that would not allow over-approximations of time behavior. The team didn’t
want to spend all their time figuring out if an error was spurious, since the code
was too complicated to understand completely in the time allowed. This new
abstraction of time was an under-approximation of timing behavior and could
lead to missing some errors, although it did allow all the seeded plan errors that
could be found by model checking to be found.
Both team members cited the difficulty in understanding what the program

was doing as their major stumbling block in model checking the code. Under-
standing the code was mostly required during abstraction, and specifically in de-
termining whether errors after abstraction were spurious or not. A large amount
of time was also spent tuning the model checker’s search options to cover parts
of the state-space that weren’t covered before - e.g. to cover “deep” paths with-
out cutting too many behaviors during the early parts of the search. The fact
that the team members knew the model checker’s search characteristics very well
might have hampered them more than it helped, since it made them spend more
time on tuning the model checker than what was needed. Lastly, they didn’t use



any temporal properties to check program behavior, rather they encoded plan-
related properties as assertions. Writing these assertions was cited as the third
most time consuming activity.
Two problems in the provided code hampered the model checking team:

firstly, there were some mistakes in the atomic regions provided that would
mask some errors, and secondly, a mistake in the universal planner meant it was
not complete and certain plans were not generated. The latter problem made the
model checking team miss a plan related error until the last version when the
problem was discovered and fixed. The atomic-problem was discovered early on,
but the participants spent a fair amount of the first version’s time fixing it.

Summary After finding the first spurious error the participants abandoned the
point abstraction of time in favor of a more realistic (under-approximation) of
time. The main reason for this was the complexity involved in understanding
the Rover code to determine if a bug is spurious or not. This new abstraction of
time had time starting at 0 and on each lookup of time, time either remained
the same or incremented a random amount up to a certain maximum time at
which point time stood still. This was a good decision on their behalf since they
clearly spent less time on determining whether bugs were spurious than what
we anticipated, but still found almost all the known errors.
The participants only used the universal planner sparingly: first they would

try to uncover bugs with the concrete plans provided (and small modifications
thereof) and only after exhausting most of their ideas would they turn to the
universal planner to discover errors.
During the running of the JPF tool most time was spent in trying differ-

ent search strategies to reach different parts of the state-space. These mostly
included setting different parameters for the heuristic facilities provided by the
tool.

6.4 Static Analysis

Debriefing The participants ran the short (imprecise) runs during the day and
left the longer (more precise) runs for the evenings. Long analysis runs generally
took eight hours, and up to, in at least one case, 23 hours. Their main strategy
was as follows:

1. Run PolySpace Verifier
2. Analyze red checks (definite errors)
3. Analyze gray checks (dead code, possibly due to errors)
4. Analyze orange checks (possible errors)

This already reveals a problem; dead code is indicative of errors only if it follows
a definite error. Therefore, manually analyzing dead code will not help in finding
more errors. It will just delay the analysis of the possible errors. This aspect
somehow eluded the participants.



Not surprisingly, the participants encountered difficulties analyzing possible
errors. There was very little feedback from the tool, and no way to let the tool
know which errors were spurious. Many possible errors were caused by the impre-
cision of the analysis and the imprecision of stubs. This point actually illustrates
one of the biggest difficulties when using static analysis tools: in dealing with pos-
sible errors, it helps a great deal if one knows the algorithms used by the analysis.
It allows the user to make intelligent decisions about improving precision (other
than raising the precision level, which was not an option in this case). For exam-
ple, knowing the source of approximations in the analysis algorithms may help
you avoid wasting time on trying to reduce uncertainty on some possible errors.
They tried to simplify the code and improve the stubs so that PolySpace Verifier
can do a better analysis.
The participants felt that reading the code, beyond what was required to clas-

sify orange errors, violated the spirit of the experiment. They however did some
of it and actually found errors that could not have been found by the tool, e.g.,
correctness issues. Overall, they found that reading code was difficult because
of the nature of the code that they analyzed.
Iterating over the errors was also difficult, because it was not supported by

PolySpace Verifier. They would have liked support for:

1. Recording which warnings are spurious during code inspection, to avoid re-
analyzing potential errors.

2. Annotations that record variables that are defined (i.e. are not uninitialized).
3. The types of the variables and sub-expressions involved in the problem.
In more than one case, the bug involved knowing that a variable or sub-
expression was signed versus unsigned. This led to false dismissals of real
problems.

4. Example paths/data values to demonstrate the problem. In a more recent
release of PolySpace Verifier (not the one used here) this problem is partly
addressed by showing all numerical invariants that hold at a program point.

Overall, they favored the option of simplifying the code (which is a really
bad idea since you are not analyzing the real code anymore), and working on the
stubs (this also led them to get confused and start reporting stub errors instead
of code errors).

Summary The users of the static analyzer spent a lot of time trying to remove
orange alerts by adding assertions into the code (refinement). Their efforts were
mostly in vain because the assertions they inserted could not be taken into
account precisely by the tool. Performing refinement efficiently requires a very
good knowledge of the abstract interpretation used by PolySpace Verifier. This
can be interpreted as a limitation of the tool.
During the reviewing process of orange alerts, some obvious runtime er-

rors were completely overlooked whereas numerous spurious bugs were reported.
There are two interpretations:



– The domain of applicability of each operation flagged as orange should be
carefully checked in every possible execution context. The overwhelming
amount of orange operations makes this process very difficult to apply rig-
orously.

– Most importantly, the notion of runtime error was loosely interpreted: a run-
time error is the violation of a safety condition which is clearly defined by
the programming language (in this case C) specification for each operation.
Several (spurious) bugs that were not related to the violation of a safety con-
dition have been reported. Similarly, the users of the tool spent a substantial
amount of their time trying to increase the number of execution paths that
could be analyzed by the tool. This resulted in unduly modifying the original
program or trying to make dead code reachable.

On the positive side, while sorting the orange alerts, the participants read
the code with careful attention. It resulted in finding four correctness errors
(e.g., erroneous conditions in conditional statements and loss of precision
problems), which were unseeded. Correctness errors are typically not caught
by a tool like PolySpace Verifier. So, as it has been observed with other
formal methods, using the tool brought a new sense of attention to reading
the code, which resulted in finding errors. In all cases, these errors were
found around the 9th or 10th hour of running the experiment. This reflects
the fact that it takes a long time to sort through the orange alerts, which
corresponds to the period of increased attention.

Similarly, as expected, we noticed that errors that are easy to understand
such as attempts to access non-initialized variables were caught much faster
than others such as overflow problems. In the case of overflows, it takes a
while to be convinced that it is a real problem. Most of the time, these errors
reflect type clashing that results in theoretical overflow rather than realistic
ones (in the sense that the program might never execute long enough to
reach the overflow).

7 Quantitative Results

In this section we will give some quantitative results from the study. Due to
the complexity of setting up an experiment like this it is impossible to draw
statistically valid conclusions. We will nonetheless give our interpretation of the
results in the hope that it will serve as a source of reference for similar studies.

The static analysis portion of the results was obtained on a different version
of the code than the other techniques, and furthermore, static analysis looked
for a different set of errors since the errors from the CVS log were not suitable
for static analysis. For these reasons we only concentrate on the results from
model checking, runtime analysis and testing in this section.

Note that a vast amount of data was collected during this study, but here we
only highlight some selected pieces. In the future we hope to make all the data
available for the research community to interpret.



7.1 Finding Seeded Bugs
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Fig. 3. Seeded bugs found by each technique.

Figure 3 shows how the different techniques performed when looking for the
seeded errors. Although we started with 12 errors, one was used for illustration
during the training phase and one of the race errors was unreachable in the
version of the Rover the participants worked on. The advanced tools - model
checking and runtime analysis - performed better on the concurrency related
errors. This was a result we anticipated beforehand, and is also common folk-
lore in the verification community. The fact that testing performed worse than
model checking in all categories was somewhat of a surprise. Runtime analysis
outperforming testing is not surprising, since runtime analysis can be seen as an
advanced form of testing.
In Figure 4 we can see the breakdown per day of the bugs found on a 48 hour

time-line (3 2-day sessions, each day consisting of 8 hours). For the known bugs
one can also see when each team found the bug, since the bugs are identified by
their numbers (there was only one race error). The spurious errors as well as the
unknown bugs are also shown. As pointed out before, we focus on the known
bugs, since it was often impossible to tell if an unknown bug was a (different)
manifestation of another unknown bug (or maybe even a known bug). Note that
Figure 4 doesn’t show the exact times when a bug is found; rather, all the bugs
discovered are grouped per the day they were found.
The first observation is that, for model checking, spurious errors decrease

across the three versions. This is due to the participants becoming more familiar
with the code and also developing better abstractions as the experiment contin-
ued. This seems to indicate that the start-up cost to establish a framework for
efficient model checking can be amortized effectively for verification of long-term
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Fig. 4. Time-line for seeded and unknown (dotted boxes) bug discovery across versions.

systems/projects. For runtime analysis spurious errors were almost nonexistent
- the one reported was due to a misunderstanding of the Executive behavior -
the two spurious errors for testing also fell into this category.

For runtime analysis, deadlock and race checking were run near the start of
each experiment - within the first day of each version there was a race and a
deadlock found (except in the 3rd version where the seeded deadlock was not of
the kind that the runtime analysis could detect).

Deadlock 3 is very simple and was found early on by all three methods.
Deadlock 1 on the other hand is more subtle, but both model checking and
runtime analysis found it early in version 2 (the only version in which that
error was seeded), and testing never found it. Deadlock 2 was complex and
it was only present in the last version. Deadlock 2 was only found by model
checking; note that the runtime analysis tool could not detect this kind of (“wait-
notify”) deadlock. There was only one race violation bug in the code and it
was seeded in all three versions. Runtime analysis is geared to finding these
efficiently and found them in each version. The model checking team on the
other hand only attempted to find race errors later on in the experiment and
therefore only found the bug in the last version. A race violation is almost
impossible to find with black-box testing and hence testing didn’t find this error.
The remaining deadlock, that no team found, was extremely subtle and followed
as a consequence from the race violation. We counted this error in the seeded
errors, since we found it with JPF before the experiment started (on a slice of



the code that was used during the experiment), but the developer of the code
was not aware of the error. The most plausible reason no one found it during
the experiment was that it was an error that only occurred near the end of a
plan evaluation (i.e. it was a “deep” error), and also only if a specific sequence
of actions happened.
Testing did well on the seeded plan errors, but although the focus was on

trying to create potentially “problematic” plans (see Section 6.1 for the debrief-
ing of the testing team) they didn’t find plan bugs 2 and 4 that were caused by
malformed plans. Runtime analysis performed best on plan errors. Interestingly
though, many of the plan errors that they discovered were found by using very
similar techniques to the testing team - i.e. printing observable execution events
and comparing them with expected results. The DBRover tool, that could have
automated this process for them, was not used as extensively due to the constant
overhead of adding temporal formulae - see Section 6.2 for the debriefing of the
runtime analysis team. Model checking didn’t find many plan errors early in the
experiment since they focused on finding errors by tuning the model checker’s
search strategy while keeping the plan constant - with the hope of finding con-
currency errors.
Testing and runtime analysis found a large number of previously unknown

errors, but the errors found by the respective tools seem to be different. This
could have been caused by the fact that the observers could not adequately
determine the cause of each anomaly reported by these two teams. The reason
of course is that for both runtime analysis and testing the diagnosis of each error
is hard since, unlike with model checking, there is no trace that shows the error
happening. Interestingly, the only two unknown errors found by model checking
was also found by the other tools (testing found one and runtime analysis found
one).

7.2 Tool Usage

Figures 5, 6 and 7 show how the participants spent their time during the analysis
of the three different versions of the code. The information for these figures was
constructed from the hourly reports that the participants provided during the
experiment. The different categories were defined roughly as follows:

Delays: This includes waiting for hardware or tool failures to be resolved, as
well as time spent waiting for feedback on questions to the observers.

Setup/Preparation: This category had a different meaning to each group.
For example for model checking this included time to create abstractions,
writing properties and test-cases, whereas for runtime analysis this mostly
included creating properties and test-cases, and for testing, the activity of
creating test-cases and instrumenting the code (for example, adding print
statements).

Running the Rover: Not really relevant for model checking, but essential for
runtime analysis and testing.

Running the tool: Testing didn’t really use any tools, but model checking and
runtime analysis were tool-based.



Result Analysis: This is the time spent determining what the cause of an error
is. For model checking and to a lesser extent runtime analysis this involves
determining whether an error is spurious or not.

Fig. 5. Time usage during version 1.

The most notable observation is that the model checking participants used
the tool a great deal - essentially running the tool at all times while doing other
activities. There is less time spent running the model checker in the first version,
obviously due to getting to grips with the problem, and then in the other versions
almost 100% tool usage is reported. This is due to the fact that the model checker
is quite slow on such a large example.
Another observation for the model checking group is that they spent more

time on setup in the first version than the next two. This also confirms the
suspicion that when using a complex tool such as a model checker, it takes some
time to setup the ideal working environment before any meaningful work can be
done. A similar pattern is seen for runtime analysis - again as to be expected.
The testing group didn’t spend much time analyzing the errors they found.

This put much more of a burden on the observers of the experiment to determine
which of the known bugs, if any, they found. The other two groups spent quite
large amounts of time on determining the cause of errors in the first version, but
far less on the later two versions. We assume this is due to having to understand
the code in the beginning, whereas later they could go through error-traces more
quickly.



Fig. 6. Time usage during version 2.

Fig. 7. Time usage during version 3.



8 Conclusions

We described an experimental study to determine the relative strengths of three
advanced verification and validation technologies, namely, static analysis, model
checking and runtime analysis, as compared to traditional testing for finding er-
rors in a representative example of Mars flight software. A conservative estimate
on the amount of effort in setting up and running the experiment, as well as
interpreting the results, is one man-year. An anecdotal observation is that this
experiment inspired a rewrite of the Rover Executive.
The most important conclusion we drew from this study is that one should

conduct such a complex study in the most controlled fashion possible. Although
for the most part we achieved this goal, one area where we did not, was in
understanding the code sufficiently. This meant that in the end there was a large
number of previously unknown defects reported that we could not adequately
classify - although we knew they were not one of the seeded errors we could
not determine if they were manifestations of the same error, etc. We did not
expect any unknown errors, and hence missed the opportunity to also conclude
information about these errors. We decided to exclude them completely when
making judgements about the relevant merits of the techniques.
A consequence of the static analyzer not working on the same notation as

the other tools was that we could not make any comparisons between it and
the other techniques. However, we believe the information obtained from the
study of the PolySpace Verifier turned out to be very useful and has guided our
own research in a significant fashion. The most notable conclusion we drew here
was that for complex static analysis, such as done by PolySpace Verifier, the
tool users are required to have knowledge about the underlying algorithms to
adequately use the tool.
With respect to the analysis of the Java version of the Rover the following

general observations were made:

– The advanced tools performed very well on concurrency related errors, where
traditional testing often performs worst - as it did here.

– Runtime analysis is a light-weight technique that produces very few spurious
errors, and should always be one of the first techniques to be used on new
code.

– Model checking requires some initial start-up costs, for example in coming
up with suitable abstractions, but once this has been done it can be reused
(thus amortizing the cost over the rest of the verification phase).

– Using abstractions during model checking forces one to achieve a very good
understanding of the code to determine whether errors are spurious or not.

– A major weakness of black-box testing is that it doesn’t typically provide
enough information to diagnose the cause of an error. Runtime monitor-
ing/analysis also suffers from this problem, but to a lesser extent, since the
monitoring of the events allows for a partial trace to the error to be ob-
servable. Model checking gives a precise trace, but it might be spurious if
abstractions were used.



A number of important lessons were learned during the experiment that
would be useful to keep in mind when doing a similar experiment in the future.
Considering these lessons it will be clear that the study in this paper had a
number of positive aspects, but also was lacking in certain aspects.

– Conducting an experiment that has external validity is hard/expensive, if not
impossible, in this setting. Note that statistically valid studies are expensive
in general: as an example, consider studies of new drugs in the medical
field. However, one can still learn very useful qualitative information from
an experiment such as ours even if statistical validity is not achieved.

– Analyzing real-life code and seeding it with real errors are important for the
validity of the results. Although the experiment can be conducted in a more
controlled fashion on fabricated code (and errors) this might give an undue
advantage to tools that do not scale well — and scalability is one of the
major points to validate in a study like this.

– The tools being evaluated need to analyze the original code directly (not via
a translation) and also they need to be capable of finding the same, or at
least overlapping, types of errors. Although we didn’t achieve this here, it is
necessary in order to give more validity to this type of study.

– The teams must be equal. Within our resources we tried very hard to achieve
this, but still we had issues that some participants were more inclined to
study the code than others and hence could have biased the results. The
obvious solution to this is to have more teams, i.e. more teams per technology,
but this was not possible here. Another interesting alternative is to first
calibrate the teams by considering the results from first analyzing smaller
applications and swapping the applications and teams around. The data from
this calibration phase can then be used to handicap teams during the actual
study (i.e. weigh their results according to how well they performed during
the calibration), and also to determine in advance the variance between
teams.

– In order to adequately classify results obtained from the experiment, one
needs to provide clear guidelines to the participants on what is to be re-
ported. For example, we could not classify some of the new errors completely,
since not enough information was provided during the error reporting — if
we asked not only for the error scenario, but also exactly what the error
is thought to be, we would not have had this problem. In addition, make
sure the study is feasible and useful by experimenting with the form of er-
ror reporting before the study starts — we tried to do this, but were not
completely successful.

– Information gathering during the experiment is crucial. We used an email-
based system that worked very well as an archive, but still had minor prob-
lems with participants not sending emails every hour as instructed (minor
prompting solved this problem though). Also, it is important to consider the
techniques with which one will analyze the data before the experiment so
that it can be used to guide the formatting of error reports. Since we only
decided on using MATLAB for the data analysis after the experiment, we
first had to convert our data, which was cumbersome and error-prone.



One of the goals of the experiment was to determine synergies between the
different techniques for finding errors in flight software. To this end we have
developed a framework for analyzing the Rover executive inspired by our obser-
vations of the experiment. The framework, named X9, combines model checking
and runtime analysis techniques in a novel way [3].

It was clear that deadlock and data race runtime analysis were very suc-
cessful in uncovering the seeded errors. Both this analysis and temporal logic
monitoring techniques require the code to be executed. Whereas deadlock and
data race runtime analysis seems to be effective on a few random inputs, tem-
poral logic monitoring is only as effective as the test-inputs. In other words, one
requires good coverage of the input space for this type of analysis to uncover
errors - note that in the experiment, testing missed two errors due to malformed
plans although that was their focus, simply because they were not exhaustive in
creating such bad plans. Model checking on the other hand is good at systematic
analysis, for example, covering all input plans up to a specific size for the Rover
- as was done with the “Universal” planner in the experiment. Lastly, the run-
time team didn’t use the monitoring facility of DBRover as much as we thought
they would, due to the effort involved in writing the temporal formulae to be
monitored for each plan. Our new X9 framework therefore combines the model
checker’s ability to create all plan structures (up to a specific size) and temporal
formulae that each such plan should satisfy with a temporal monitoring facility
to check that each plan is executed correctly.
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