
Runtime Verification Logics
A Language Design Perspective

Klaus Havelund1? and Giles Reger2??

1 Jet Propulsion Laboratory, California Inst. of Technology, USA
2 University of Manchester, Manchester, UK

Abstract. Runtime Verification is a light-weight approach to systems verifica-
tion, where actual executions of a system are processed and analyzed using rigor-
ous techniques. In this paper we shall narrow the term’s definition to represent the
commonly studied variant consisting of verifying that a single system execution
conforms to a specification written in a formal specification language. Runtime
verification (in this sense) can be used for writing test oracles during testing when
the system is too complex for full formal verification, or it can be used during de-
ployment of the system as part of a fault protection strategy, where corrective
actions may be taken in case the specification is violated. Specification languages
for runtime verification appear to differ from for example temporal logics applied
in model checking, in part due to the focus on monitoring of events that carry
data, and specifically due to the desire to relate data values existing at different
time points, resulting in new challenges in both the complexity of the monitoring
approach and the expressiveness of languages. Over the recent years, numerous
runtime verification specification languages have emerged, each with its differ-
ent features and levels of expressiveness and usability. This paper presents an
overview and a discussion of this design space.

1 Introduction

Runtime Verification (RV) [31, 48] is narrowly viewed3 as the process of monitoring
and checking the runtime behavior of a system, from here on referred to as the System
Being Monitored (SBM), against a formal specification. RV can be applied for safety,
security, and comprehension purposes. The SBM must emit an event stream (via in-
strumentation or otherwise), the execution trace, which is then consumed by a monitor,
which as a secondary input takes a formal specification. RV can be applied in online
mode, where the monitor executes at the same time as the SBM, tracking its moves step

? The research performed by this author was carried out at Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space Adminis-
tration.

?? The work of this author is related to COST Action ARVI IC1402, supported by COST (Euro-
pean Cooperation in Science and Technology).

3 RV more broadly includes such topics as checking traces with algorithms, learning specifica-
tions including statistical information from traces, trace visualization, program instrumenta-
tion, and fault protection.

by step, or it can be applied in offline mode to a log produced by the SBM. Orthogo-
nally, RV can be applied before deployment of the software, for example as part of the
testing process, or after deployment, for example as part of a fault protection strategy,
where the monitor can influence the behavior of the SBM. In this case, the monitor will
usually be run in online mode. The monitor in the simplest case will produce a true/-
false verdict, but can be more informative, and produce richer information about the
trace seen so far.

To be effective, a runtime verification method requires an expressive specification
language to capture properties of interest, an elegant specification language allowing
specifications to be succinct and easy to write and read, and an efficient monitoring al-
gorithm to ensure that monitoring does not impede the running of the monitored system.
In this paper we shall focus on the former two (although efficiency will be discussed as
it does indeed influence the design space), and investigate what we consider the most
common variations of specification languages for RV. Numerous such specification lan-
guages have been developed in recent time. These are usually based on well known
concepts such as e.g. state machines, regular expressions, temporal logics (past time as
well as future time), timed logics, context free grammars, variations of the µ-calculus,
rule-based systems, stream processing, and process algebras.

A big emphasis over the last decade has been on data parameterized logics, suited
for monitoring sequences of events carrying data parameters (named records). Temporal
logics applied in model checking (MC) [39] have to some extent allowed data as well.
However, state of the art RV logics tend to support relating data across time points in
a manner not as commonly supported in temporal logics for MC (although instances
exist, e.g. [1]). To illustrate this, assume that we analyze finite traces (logs), and that we
operate with a variant of LTL [53] with a finite trace semantics. Consider the following
classical MC formula: �(p → ♦q), meaning if p is true in a position in the trace,
then q must be true at a later point in that finite trace. In a system such as SPIN, it is
possible to associate expressions over the state to the propositions p and q, for example
p = x ≥ 0 and q = y ≥ 0. Expanding these names in the formula, we get the formula:
�(x ≥ 0→ ♦y ≥ 0). This formula refers to data. However, to monitor such a formula
(on a finite trace) requires a memory of only 1 bit, raised iff. x ≥ 0 has been observed
true and y ≥ 0 has not yet been observed true when analyzing the trace from left to
right. Consider now a different formula, expressing that whenever x ≥ 0 and has a
value k then y should eventually obtain that value: ∀k �((x ≥ 0∧ x = k)→ ♦y = k).
This property can be very costly to monitor since the monitor from any point where
x ≥ 0 will have to remember the value k of x until y catches up.

Due to the nature of RV where only a single trace is examined, it is considered
possible to allow very expressive specification languages, in contrast to static analysis,
where expressiveness of the specification language normally is considered in conflict
with degree of automation achievable. It is this perceived freedom to explore richer
logics that have caused RV logics to incorporate data on a larger scale. It is, however,
not the case that RV logics need to be so different from for example MC logics. RV
logics can fundamentally focus on finite traces (safety properties), whereas MC logics
must handle infinite traces (safety and liveness properties). But beyond this point, the
two classes of logics could in principle have a very large intersection. Runtime verifica-

2

tion can be seen as exploring new branches of logics also potentially useful for model
checking.

This paper presents a discussion of some of the design space for state-of-the-art RV
logics, that we have found of general interest. The presentation is split into a discussion
of core temporal constructs without considering data (although data occur), followed
by considerations of how to deal with data. The discussion is in part based on prop-
erty examples and their specifications produced by participants of two recent runtime
verification competitions, CRV (Competition on Runtime Verification) 2014 [8] and
CRV 2015 [32]. Participants used their favorite specification language to specify a set
of shared properties proposed by the participants. In this study we inspected proper-
ties submitted by the developers of MARQ [55], LOGFIRE [37], Larva [22], JAVAMOP
[51], JUnitRV [24], Monpoly [10], and Solist [17]. The paper focuses due to lack of
space specifically on state machines, regular expressions and temporal logics, since
these are the most commonly seen. This leaves out RV systems for such formalisms
as context free grammars [51], variations of the µ-calculus [4], rule-based systems [6,
37], stream processing [23], and process algebras [7], all of which are quite interesting
alternatives. As the focus of this paper is on the usability of specification languages, we
will often make use of ASCII representations of specifications in different formalisms.
However, where the focus is not on usability, but on some other feature of the language,
we will use more convenient formalisms such as graphical automata and mathematical
formula.

The paper is organized as follows. We begin with a brief summary of the main
elements considered of importance in runtime verification (Section 2). We then present
parts of the design space for propositional logics ignoring data (Section 3) and then
with data (Section 4). We conclude with a summary of our findings (Section 5).

2 Fundamentals of Runtime Verification

To set the scene we briefly recall what we mean by runtime verification (RV) in this
paper and, therefore, what a specification language for RV involves. In runtime verifica-
tion we abstract an executing system being monitored (SBM) as a sequence of discrete
observations, also referred to as a trace. We call these observations events. Commonly
events are either propositional names or named data records i.e. a pair of a name and a
list of data values. Events can be produced directly by the system, or extracted by code
instrumentation: special code pieces inserted in the executing code, either manually
or using some form of automated code instrumentation software, for example aspect-
oriented programming technology [41]. In the case of offline monitoring, the trace will
be finite. In the case of online monitoring, the executing system may be theoretically
non-terminating. However, even in this case any monitor will at any time have to rely
only on a finite set of observations - a finite prefix of the theoretically infinite execution.

We shall refer to a desired behavior of a system to be monitored as a property. Let
Γ denote the set of all possible traces. A property is abstractly seen as a subset P ⊆ Γ
of traces, namely the traces that we say satisfy (belong to) the property. We shall usu-
ally describe properties in informal English, and then formalize them in a specification
language. A specification language allows us to formally define P via a textual speci-

3

fication ϕ. The property (set of traces) represented by a specification ϕ is denoted by
P(ϕ). The monitoring problem is then to check whether a particular trace τ belongs to
this set i.e. to check τ ∈ P(ϕ). This is often referred to as matching the trace against the
property. Note that specifications can be provided in negative form as discussed below.
For this reason we need to distinguish between the language L(ϕ) denoted by a speci-
fication, which is a very straight forward definition, and the property P(ϕ) denoted by
the specification, defined in terms of L(ϕ). This will be clarified in the following. A
number of concerns must be addressed in any RV system, as discussed below.

Polarity A specification ϕ may specify the good (desired) behavior or the bad (un-
desired) behavior. In the positive case P(ϕ) = L(ϕ). In the negative case P(ϕ) =
Γ \ L(ϕ). In the former case matching represents validation and in the latter it repre-
sents violation of the property. This choice can have an impact on the readability of a
specification. For example, consider the following UnsafeMapIterator property about
JAVA collection objects.

Property 1 (UnsafeMapIterator). Given a map object m, collection object c, and itera-
tor object i, if c is created from m (c is for example the set of m’s key values), and i is
created from c, and laterm is updated, then i should not be used any further. We use the
event create(x, y) to indicate that object y is created from object x, use(i) to indicate
that iterator i is used for iteration, and update(m) to indicate that map m is updated.

A positive formulation of this property using a data parameterized regular expression4

(note that the main emphasis is not on data here) could be:

Λm, c, i : create(m, c).update(m)∗.create(c, i).use(i)∗.update(m)∗ (1)

This property states the sequence of events that are allowed (for a map m, collection c
and iterator i). Most notably, this sequence disallows an use event occurring after a map
update. The positive formulation needs to capture all acceptable behaviors. A negative
formulation could be:

∃m, c, i : create(m, c).create(c, i).update(m).use(i) (2)

Where we take a non-standard skip semantics (see Section 3.1) that skips any event
that does not match the next expected event. In the negative formulation it suffices to
describe the sequence of events required to lead to failure, which in some cases can
be simpler. Therefore, there is an argument for allowing for both positive and negative
formulations even if the underlying language is closed under negation.

Where to Match In the previous example we matched the total trace against the for-
mulas, that is checking τ ∈ L(ϕ) in the positive case and τ ∈ Γ \ L(ϕ) in the negative
case. This is referred to as total matching, and is the most common approach. An al-
ternative is to perform suffix matching, first proposed in [2], where a trace belongs to

4 Here Λm, c, i is related to trace-slicing (see Section 4.4) and has the meaning that the property
should hold for all subtraces projected on possible values for m, c, i.

4

the property denoted by the specification if a suffix of the trace belongs to the language
of the specification. That is: P(ϕ) = {σ.τ | τ ∈ L(ϕ), σ ∈ Γ}. To see how this can
improve readability consider the following property, also about JAVA objects.

Property 2 (HasNextIterator). For every iterator object i, a call to next must be pre-
ceded by a call to hasNext returning true, without any other next calls occurring in
between.

The following two specifications of this property are negative (the undesired case). One
(left) uses total-matching on the whole trace, and the other (right) uses suffix-matching.

Λi : (hasNext(i, true)+.next(i))∗.next(i) Λi : (ε | next(i)).next(i)

Where ε denotes the start of the trace. Suffix-matching also allows us to write the
slightly more concise Λi : next(i).next(i), which is not quite equivalent as it misses
the case where the trace begins with next(i). Suffix matching is typically combined
with negatively formulated regular expressions.

Finite versus Infinite Traces When monitoring a trace produced by a system, at any
point in time the trace observed so far will be finite. This means that the semantics
of runtime verification logics should deal with finite traces. Finite state machines and
regular expressions are typically defined over finite traces. However, traditionally, tem-
poral logics applied in, for example, model checking, are defined over infinite traces,
and such temporal logics must be adapted to the finite trace scenario, re-defining their
semantics, when applied in a runtime verification context. One such approach, which
for example is applicable to off-line log file analysis, is to handle obligations such as
♦p as false on a finite trace where p never occurs. Hence the result of evaluating a tem-
poral formula on a trace is either true or false, as in the case of finite state machines and
regular expressions (language membership). A different approach, applicable to online
monitoring, consists of viewing a finite trace as a prefix of some infinite trace. At each
time point the current verdict depends on whether the finite trace observed so far po-
tentially can be extended to a satisfying (finite or infinite) trace. This naturally leads
one to go beyond the true and false verdicts, and introduce additional verdicts, such as
“so far true” and “so far false”, for cases where there are both satisfying and violating
extensions. The reader is invited to consult [14, 31] for further discussions.

Safety and Co-Safety Properties A safety property intuitively captures the notion that
nothing bad happens [44]. The languages of such properties are prefix-closed since if
a trace is safe then all of its prefixes must be safe. A consequence of this is that safety
properties can be falsified by a finite prefix of a trace i.e. there can be a point before
the end of the trace where it is known that the property has been falsified. Conversely,
co-safety properties capture the notion that something good happens, are extension-
closed5, and can be validated by a finite prefix. Properties may be neither safety or
co-safety properties but may share qualities with both classes. A response property of

5 A language is extension closed if whenever τ is in the language then so is τ.σ for any σ.

5

the form “whenever A happens B should eventually happen” is an example of a property
that is neither, and can not be decided by a prefix of a trace. One may therefore deem
such a property non-monitorable. However, in the case of offline monitoring, where one
checks a finite trace that is not extended, it is possible to give a very precise true/false
semantics to such a formula. Classes of monitorable properties are discussed further in
[30, 15].

Beyond Language Inclusion So far we have mostly discussed logics for checking
Boolean satisfaction in the form of: τ ∈ P(ϕ). We have, however, briefly mentioned
extending the Boolean verdict domain {true, false} with values such as “so far true”
and “so far false” [14, 15], in some work unified into a “so far unknown” ?-result [51].
The full generalization of the Boolean result domain is any data domain D considered
useful. For example, a logic could be designed for computing statistical information as
to how well the trace satisfies a property, or even producing user-defined computations
over the trace. Collecting statistical information as a query is described in [33]. The
LOLA system [23] produces streams of data. Statistical model checking [46, 47] is
an approach where executions of the systems are monitored until an algorithm from
statistics can produce an estimate for the system to satisfy a given property.

3 The Choice of Base Language

The first, and most important, choice when designing an RV logic is that of the base
language. Here we consider the most classical choices of state machines and regular
expressions [58], as well as temporal logic [49].

3.1 State Machines

One of the most fundamental formalisms for specifying orderings of events is state
machines. We begin by introducing a property well-suited to state machines, concerned
with the allocation of resources to tasks.

Property 3 (Resource Lifecycle). For every task t and resource r there is a life-cycle of
allowed actions. Initially the task does not own the resource and from this state it can
request the resource. This request can be denied or granted. If denied it returns to the
unowned state, if granted it moves to an owned state. In an owned state the task can be
asked to rescind the resource (hand it back), in which case it stays in this state, or the
task can cancel its ownership, in which case it returns to the unowned state. A granted
resource must eventually be canceled. No other action orderings are allowed.

If we ignore the data part (task and resource identities), this property can be spec-
ified as a state machine as follows, where only states 1 and 2 are acceptance states,
meaning that a granted resource must be eventually canceled. We give both a graphical
and textual representation of the state machine.

6

1 2 3

request

deny

grant

cancel

rescind accept state 1 {
request -> 2

}
accept state 2 {
deny -> 1
grant -> 3

}
state 3 {
rescind -> 3
cancel -> 1

}

The Semantics of Missing Transitions In the above state machine the transition rela-
tion is not complete (closed) i.e. we do not have a next target state for each combination
of source state and event. For example, there is no transition with the label deny leaving
state 1. The implicit understanding is that the transition relation is closed to an implicit
failure state: all missing transitions lead to the failure state. We will call this approach
a next semantics as it requires each next event to cause a transition. The alternative is a
skip semantics where observed events may be skipped if there is no transition for them.
Note that the standard interpretation of finite state machines (in theoretical computer
science) is a next semantics. In contrast, UML statecharts [52, 27] are often given a skip
semantics. See [3, 5] for RV systems allowing a mix of next and skip semantics.

To illustrate the difference, let us return to Property 1 (UnsafeMapIterator) where
we gave a positive (formula (1) page 4) and negative (formula (2) page 4) formulation
of the property as regular expressions. We can turn these regular expressions into state
machines6 as follows. Graphically we represent states with a next and skip semantics
as circles and squares respectively7. The positive state machine formulation is:

1 2 3 4
create(m, c) create(c, i) update(m)

update(m) use(i) update(m)

The negative state machine formulation of this property is:

1 2 3 4 5
create(m, c) create(c, i) update(m) use(i)

Traditionally regular expressions are translated to finite state machines with next-states.
We observe that the positive formulation uses next-states whilst the negative uses skip-
states. It is quite common to use a next semantics with positive formulations and a skip

6 As before, the focus is not on the data part. Here we use the same operators as before, which
are like universal and existential quantification for the positive and negative formulations re-
spectively. The way we add parameters to state machines is covered extensively in Section 4.

7 We note that this graphical presentation has been reversed compared to some previous work
[3, 55]. We have chosen this presentation here as a next semantics is more typical for state
machines as is a circle being used to represent a state, and states in state charts, which usually
have skip semantics, normally are drawn as boxes, although typically with rounded corners.

7

semantics with negative formulations. We would, however, want to allow a mixture of
such states within one specification, allowing a fine-grained control over the closure.
As a simple example demonstrating this desire, consider a property over an alphabet of
events {e1, . . . , en, quiet, loud} stating that no other events should occur between quiet
and loud. Below we demonstrate three different state machines capturing this property.
The first uses implicit next states, the second uses implicit skip states, and the third uses
a mixture. Using a mixture of states allows us to specify the property more concisely.
Whilst this is a simple example, the general idea extends to more complex properties.

accept state 1 {
e1 -> 1
...
en -> 1
quiet -> 2

}
accept state 2 {

loud -> 2
}

accept state 1 {
quiet -> 2

}
accept state 2 {
e1 -> error
...
en -> error
loud -> 2

}

accept skip state 1 {
quiet -> 2

}
accept next state 2 {
loud -> 2

}

Alphabets In the case where next-states are used, as in the first positive formulation
above, where each observed incoming event must match a transition, it is crucial that
only events of concern are matched against the transitions. Otherwise any trace with ad-
ditional events might easily fail to conform. To avoid this problem, such a specification
must be associated with an alphabet: the events of concern. A trace that contains events
not in the alphabet must first be projected to remove such. Often the alphabet is the set
of events mentioned in the specification, but that is not always the case.

Fine-Grained Acceptance An advantage of state machines is that they allow for a
fine-grained notion of acceptance. This is demonstrated in the above state machine for
Property 3 (Resource Lifecycle) where state 3 is non-final whilst states 1 and 2 are final.
This is key for any language wanting to capture properties which are not purely safety
properties. An extension of this fine-grained acceptance is the ability to attach different
kinds of failures to different states. This has particular use in runtime monitoring where
different correction actions may be required for different forms of failure, as i.e. sup-
ported in [51]. Indeed, it would allow a specification to separate soft failures that only
require reporting and hard failures that require immediate termination or intervention.

Anonymous States One reason that temporal logics and regular expressions often yield
more succinct specifications than state machines is that all intermediate states need to
be explicitly named in the state machine. A simple syntactic layer of syntax on top of
state machines can, however, allow anonymous states [5], making state machines more
succinct. Below left we merge states 1 and 2 of the Resource Lifecycle property by
turning state 2 into an anonymous acceptance state (state 3, which is not shown, is the
same as before). Ignoring the rescind event, below right is shown how an event with a
single outgoing transition can be treated even more concisely (here states are accepting
by default and there is a next-semantics).

8

accept state 1 {
request -> accept {

deny -> 1
grant -> 3

}
}

state 1 {
request -> {
deny -> 1
grant -> cancel -> 1

}
}

Generally, one has to capture these assumptions (acceptance state or not, next-state or
skip-state) with an additional annotations in the non-default cases.

3.2 Regular Expressions

Anonymous states are carried to the extreme in regular expressions i.e. there are no
named states. State machines and regular expressions have the same expressive power in
the propositional case. Regular expressions are more succinct than their corresponding
state machines since intermediate states are not mentioned by name, only transitions
are mentioned.

Standard Operators We have already seen several examples of regular expressions
and how they related to state machines, including how next-states and skip-states can
be used to model their semantics. The basic form of a regular expression is a letter, such
as for example: a, representing the language {a}. The operators apply semantically to
languages and produce new languages. Given two regular expressions E1 and E2, the
basic operators are union: E1|E2 (the union of the languages denoted by E1 and E2,
sometimes written, although not here, as E1 + E2); concatenation: E1E2 (the set of
words, each of the form l1l2 where li is a word in the language denoted by Ei); and
finally closure: E∗ (set of words each obtained by concatenating any number of words
denoted by E). Additional operators are usually defined for convenience, but provide
no additional expressive power. These include the dot: ‘.’ (representing any letter, the
union of all letters in the alphabet); plus: E+ (meaning one or more, equivalent to
EE∗); optional: E? (meaning E|ε where ε accepts the empty string); and repetition:
En (for some number n, meaning n copies of E, and variants of this operator indicat-
ing minimum and maximum number of occurrences). Negation is also commonly seen
but most typically on letters. A common approach is to write unions of many letters:
a1|a2| . . . |an, as a list: [a1, a2, . . . , an], and negation of all these letters is then written
as [∧a1, a2, . . . , an]. Negation of entire regular expressions, as in ¬E, is also semanti-
cally possible, but usually avoided due to complexity in generating the corresponding
state machine.

Safety Properties The standard interpretation of the regular expression concatenation
operator (that E1E2 denotes the set of words l1l2 where li is in the language denoted
by Ei) makes it inconvenient to express certain safety properties. Consider for example
the language denoted by the following state machine:

1 2 3
a b

c

9

The main observation here is that all states are acceptance states, hence the language
includes strings such as a, ab, abc, abca, etc. Representing this language as a regular
expression with the standard semantics, however, becomes slightly inconvenient and
error prone to write:

(a b c)∗(ε | a | a b)

It would instead be desirable just to write:

(a b c)∗

However, this formula denotes the following automaton with the standard interpretation
of regular expressions:

1 2 3
a b

c

If we want the former interpretation, but the latter formulation of the regular expression,
we need to provide a closure operation that closes a language to include all its prefixes.
That is, given a regular expression E with the standard interpretation one can form
the closure closure(E) of this to include the language denoted by E as well as all its
prefixes. Our property would then become closure((a b c)∗).

Limitations of Regular Expressions While regular expressions generally are very
succinct and useful, in some cases the regular expression formulation of e.g. a state
machine can become so convoluted that an ordinary user will be challenged in creating
it, as well as in reading it. To illustrate this let us revisit Property 3 (ResourceLifecycle).
Recall that the state machine was pretty straightforward to create. A regular expression
version of this property is the following:

((request deny)∗ request grant rescind∗ cancel)∗ request?

This regular expression is not completely obvious to create, in part due to the fact that
some of the states in the state machine are acceptance states and some are not. In fact,
we got this regular expression wrong in the first attempt. It is easy to see that if the state
machine gets much more complicated, the regular expression becomes overly complex
to write and even read. Furthermore, updatable data variables, which are straightforward
to support in state machines, are not straightforward to introduce in regular expressions,
this will be discussed in the subsequent section. Consequently, one may want to pursue
a formalism that supports state machines (or a similar concept such as rule systems or
variants of the µ-calculus [43], which in common have that states can be named and
used in loops) in addition to a logic such as regular expressions or/and temporal logic.

3.3 Temporal Logic

In Section 3.1 it was discussed how states in a state machine can be anonymous, mix-
ing anonymous states and named states in one notation. Regular expressions go to

10

the extreme and eliminate the notion of named state all together. Likewise, temporal
logic eliminates the notion of named states. It was generally clear from the competi-
tion benchmarks that temporal logic provided the most elegant formulation of many
properties. The difference was rather remarkable in several cases.

Standard Operators Introducing temporal logic in its many variations is beyond the
scope of this paper. However, we will discuss the standard operators of future time
Linear Temporal Logic (LTL) [53], the most common temporal logic used in runtime
verification8, and their past time counterparts. Future time LTL can be described as
propositional logic plus the temporal operators© (next) and U (until). Their semantics
are that©ϕ holds if ϕ holds at the next time point, and ϕ1 U ϕ2 holds if ϕ2 holds at
some future time point and ϕ1 holds at all time points from the current until and in-
cluding the one before that future time point. The operators ♦ (eventually), � (always),
and W (weak until) can then be defined as follows: ♦ϕ = true U ϕ, �ϕ = ¬♦¬ϕ,
and ϕ1 W ϕ2 = �ϕ1 ∨ (ϕ1 U ϕ2). Similarly, past time operators include (previous,
the dual of ©) and S (since, the dual of U). Their semantics are that ϕ holds if ϕ
holds at the previous time point, and ϕ1 S ϕ2 holds if ϕ2 holds at some past time point
and ϕ1 holds at all time points since then to the current. The operators � (sometime in
the past) and � (always in the past) can then be defined as follows: �ϕ = true S ϕ,
�ϕ = ¬�¬ϕ. A convenient logic is likely one that includes past time as well as future
time operators.

The symbols just introduced look mathematically elegant, but they are not in ASCII
format. Therefore it is typical to replace these logical symbols by text. For example �
may be written as the word always, or as the symbol []. We will use a mix of the
logical and textual word presentations here.

Illustrating Strength of Temporal Logic With the following property we shall illus-
trate the advantage of a temporal logic over a state machine.

Property 4 (ResourceConflictManagement). This property represents the management
of conflicts between resources as managed by a planetary rover’s internal resource man-
agement system - or any resource management system in general. It is assumed that
conflicts between resources are declared at the beginning of operation. After this point
resources that are in conflict with each other cannot be granted at the same time. A con-
flict between resources r1 and r2 is captured by the event conflict(r1,r2) and a con-
flict is symmetrical. Resources are granted and canceled using grant(r) and cancel(r)
respectively.

The specification of this property as a state machine in textual format becomes some-
what verbose (note that here we write properties in ASCII format for better illustrating
how they would be written down in practice):

8 CTL (Computation Tree Logic) [21] is a logic on execution path trees, and has therefore not
been popular in runtime verification. However, one can imagine a CTL-like logic being used
for analyzing a set of traces, merged into a tree.

11

For all r1,r2
accept skip state start {
conflict(r1,r2) -> free
conflict(r2,r1) -> free

}
accept skip state free {

grant(r1) -> granted
}
accept skip state granted {

cancel(r1) -> free
grant(r2) -> failure

}

Alternatively, this property can be stated as a more concise temporal logic formula, for
example as the following future time temporal logic formula:

forall r1,r2
always ((conflict(r1,r2) or conflict(r2,r1)) =>
(always (grant(r1) =>
((not grant(r2)) weakuntil cancel(r1)))))

That is, it is always the case that if a conflict is declared between two resources r1 and
r2, then it is always the case that if r1 is granted then r2 is not thereafter granted unless
r1 is canceled first. In both formulations, to capture the symmetric conflict event, we
need to match against either conflict(r1, r2) or conflict(r2, r1).

We can express this as a negative (a match is an error) regular expression as follows:

forall r1,r2
(conflict(r1,r2)|conflict(r2,r1)) .* grant(r1) (!cancel(r1))* grant(r2)

When working in temporal logic one usually formulates properties positively: what is
desired to hold, whereas when formulating the same properties as regular expressions
they appear easier to write in negative form. When formalizing requirements, however,
it may appear somewhat inconvenient to have to negate the properties. Another example
is the property �(a ⇒ ♦b), which as a regular expression may be stated as a suffix
matching negative expression a.(¬b)∗. A positive regular expression formulation gets
rather convoluted: ((¬a)∗(a.∗b)?)∗. Hence if a positive formulation of requirements is
desired, as e.g. in project requirement documents, temporal logic may in some scenarios
be more attractive than regular expressions.

The Convenience of Past Time Operators The same property can also be stated as a
past time formula, as follows.

(∀r1, r2)�

grant(r1) ∧ �

conflict(r1, r2)
∨

conflict(r2, r1)

⇒ ¬
¬cancel(r2)S
grant(r2)

However, this past time logic formula is not convincingly easier to read than the future
time version. Especially as there are multiple references to different points in the past.
There are, however, cases where past time is more convenient, as also pointed out in

12

[45]. Consider the hasNextIterator property 2 again. The property states that every call
of next on an iterator should be preceded by a call of hasNext (which returns true). If
we should state this property as a future time property, it would become:

(∀i)
(
(¬next(i)W hasNext(i, true))∧
�(next(i)⇒©(¬next(i)W hasNext(i, true)))

)
This property seems overly complicated. This is caused by the necessity to separate
two scenarios: (i) the first occurring next in the trace, and (ii) subsequent next events,
appearing after previous next events. The property becomes slightly more concise, and
thus more readable, when formulated in past time logic:

(∀i) �(next(i)→ (¬next(i) S hasNext(i, true)))

Adding Convenient Operators Temporal logic is often attributed being difficult to
use, and it is occasionally claimed that even state machines are easier to use by practi-
tioners. The specification of the competition exercises, however, shows to us that tem-
poral logic makes specification substantially easier in quite many cases. A logic like
LTL, however, appears to have some flaws from a usability point of view, including:
binary operators that are tricky to remember the semantics of (such as weak until versus
until, since, etc.), formulas tend to get nested, requiring use of parentheses for grouping
sub-expressions for even the simplest formulas, and cumbersome handing of sequenc-
ing. We briefly recall how some of these problems can be alleviated with convenient
alternative syntax.

Consider the previous past time formulation of the HasNextIterator property, that
contains the subterm: ¬next(i) S hasNext(i, true), meaning: hasNext(i, true) has
occurred in the past and since then no next(i) has occurred. This is not a very readable
formulation of this property. An example of a more convenient operator is the temporal
operator [P,Q) from MaC [42], meaning P has been true in the past and since then Q
has not. Using this operator the sub-term becomes: [hasNext(i, true), next(i)), which
visually better illustrates the temporal order of events. The property now becomes:

(∀i) �(next(i)→ [hasNext(i, true), next(i)))

Consider further that in such implications usually the right-hand temporal expression is
meant to be true in the previous state (hence the use of the -operator). One could fold

the →-operator and -operator into one operator →, assume all variables quantified,
and a � in front of all properties, and write the property as follows:

next(i)
 → [hasNext(i, true), next(i))

Similarly one can imagine a P
©→ Q = P → ©Q operator for future time logic.

Another classical convenient operator is never P being equivalent to �¬P .

13

Limitations of Temporal Logic As shown in [61], LTL cannot express all regular
properties (it is only star-free regular), for example it cannot express the property: “p
holds at every other moment”, which can easily be expressed as a state machine or
a regular expression as follows: (. p)∗. LTL is furthermore also at times inconvenient
as a notation. We shall consider two examples here, a state machine, and a temporal
formula conditioned on a sequence of events. First the state machine. The temporal
logic formulation of Property 3 (ResourceLifecycle), ignoring the data element, can be
given as follows:

stop ∨ (request ∧�

request→©(deny ∨ grant ∨ stop)
deny→©(request ∨ stop)
grant→©(rescind U cancel)
cancel→©(request ∨ stop)

where stop = �¬(request ∨ deny ∨ grant ∨ rescind ∨ cancel), and is used to
indicate that no further events are required. These rules exactly mirror the state transi-
tions of the state machine. In this case, temporal logic, specifically LTL, is arguably less
elegant than state machines. Note that without introducing the name stop the formula
would become even more complicated.

As our second example, let us consider a temporal formula conditioned on a se-
quence of events. To do this we will use Property 1 (UnsafeMapIterator). Suppose we
wanted to express this property in temporal logic. A possible formulation would be the
following rather unreadable formula:

Λm, c, i : �¬
(
(create(m, c) ∧

(
¬create(c, i) U (create(c, i) ∧
(¬update(m) U (update(m) ∧ ♦use(i))))

))
A more readable temporal logic formula is the following, which, however, does not say
quite the same thing (since the second and third �-operator occurrences each quantify
over all future events), although it seems in this case to be usable.

Λm, c, i : �(create(m, c)⇒ �(create(c, i)⇒ �(update(m)⇒ �¬use(i))))

To obtain a more readable formula, we could instead combine regular expressions and
temporal logic and write it as follows, using a regular expression on the left-hand side
of the implication and an LTL formula on the right-hand side:

Λm, c, i : create(m, c).create(c, i).update(m)⇒ �¬use(i)

The temporal logic PSL [28] adds an operator to LTL named suffix implication, and
denoted r 7→ ψ, for a regular expression r and a temporal logic formula ψ, which holds
on a word w if for every prefix of w recognized by r, the suffix of w starting at the
letter on which that prefix ends, satisfies ψ. This addition to LTL results in a logic with
an expressive power corresponding to ω-regular languages (PSL is a logic intended for
model checking, where infinite words are considered). Similar ideas are also seen in
dynamic logic, see for example [34]. PSL generally contains several operators, which

14

make modeling easier. These include beyond the suffix implication also: repetition r ∗
n (repeat a regular expression n times); intersection r1 ∩ r2; a past time operator
ended(r) that turns a regular expression r to hold on the past trace; strong r! and weak
regular expressions r, where strong is the normal interpretation of a regular expression,
and a weak regular expression denotes the language of the strong regular expression
augmented with all prefixes (what on page 10 was referred to as the closure of a regular
expression and denoted by closure(r)).

4 Handling Data

The previous section ignored the details of how each of the languages could be extended
to deal with data. Here we review the main approaches. We shall first outline what we
mean by data. Subsequently, the handling of data is discussed in the contexts of state
machines, regular expressions and temporal logics. However, the discussion of data for
one base language usually carries over to other base languages.

4.1 Where do Data Occur?

Data can come from three sources.

Variables in the SBM. The monitor may be able to directly observe the internal state of
the executing program. For example, if the monitor code is embedded (as code snippets)
into the SBM. Program assertions, as supported by most programming languages, form
an example of this. Alternatively, a transition of a state machine may be guarded by
x > 4 where x is a program variable. This introduces a tight coupling between the
specification and system being monitored. This form of data is not discussed here.

Event Parameters. Events transmitted from the SBM to the monitor can carry data as
parameters. That is, an event consist of a name and a list of data values. An example
is the event login(u, t) representing the logging in by user u at time t. Within the
runtime verification community such events are often called parametric events, as the
data values are seen as parameters, and traces of these events are called parametric
traces. Parametric events are the main source of data in this presentation.

Variables in the Monitor. The monitor itself can declare, update and read variables local
to the monitor. This is seen in solutions where monitors are given as state machines or
written in a programming language. This approach will also be discussed below.

4.2 Extended Finite State Machines

Conventional finite state machines have a finite number of control states and transitions
are labelled with atomic letters over a finite alphabet. Extended finite state machines
(EFSM) [19, 40] extend finite state machines by allowing the declaration of a set of
mutable variables, which can be read in transition guards, and updated in transition
actions, where an action is a sequence of assignment statements assigning values to

15

the variables. The standard transition relation is lifted to configurations, i.e. pairs of
(control) states and variable valuations. Turing machines and pushdown automata (with
the expressive power of context free languages) [58] are examples of EFSMs, so this is
a powerful model. However, as we shall see, EFSMs are not convenient for our purposes
in their original form. We use the following property to illustrate EFSMS.

Property 5 (Reconciling Account). The administrator must reconcile an account ev-
ery 1000 attempted external money transfers or an aggregate total of one million dol-
lars. The reconcile event is recorded when accounts are reconciled and the event
transfer(a) records a transfer of a dollars.

Note that the transfer(a) event in this property carries data (the amount a trans-
ferred). EFSMs traditionally do not operate on such parameterized events but on atomic
events. We shall, however, make this extension here in our first example, moving from
evaluating input over a finite alphabet to input over an infinite alphabet. The EFSM for
this property is shown in the following.

1

2

3

transfer(a)/count := 1; total := a

reconcile

transfer(a)[count ≥ 1000 ∨ total ≥ 1M]

transfer(a)[count < 1000 ∧ total < 1M]/count += 1; total += a
reconcile/count := 0; total := 0

Two variables are introduced. The variables count and total hold the number of
transfers respectively the sum of amounts transferred since the last reconciliation. Tran-
sitions are now written as event[guard]/assignment . Event transfer(a) on a tran-
sition is used to match a concrete event in the trace and bind the value in that event to
the variable a. Each new transfer in the trace causes a to be bound to a new value, it is
essentially just a variable just like count and total . Typically variables are used to hold
data of primitive types (integers, reals, Booleans, etc), but they could be used to hold
more complex data structures. It is worth observing that UML state charts effectively
are a form of extended state machines, with added concepts such as hierarchical states.

4.3 Typestates

Extended state machines with parameterized events as described above, where parame-
ters are mutable variables, however, are still not convenient for specification purposes.
We need an event parameter concept where parameters once bound stay constant, and
we have a copy of the state machine for each parameter value. In other words, we need
to quantify over parameters. To demonstrate a case where this may be required let us
consider a further extension of the account reconciliation example.

16

Property 6 (Reconciling Accounts). The administrator must reconcile every account x
every 1000 attempted external money transfers or an aggregate total of one million
dollars. The reconcile event is recorded when accounts are reconciled and the event
transfer(x, a) records a transfer of a dollars for account x.

This can be specified in the same way as before but this time adding a quantification
over account x.

1

2

3

∀x

transfer(x, a)/count := 1; total := a

reconcile

transfer(x, a)[count ≥ 1000 ∨ total ≥ 1M]

transfer(x, a)[count < 1000 ∧ total < 1M]/count += 1; total += a
reconcile/count := 0; total := 0

There will be an instance spawned of this state machine for each account x being
monitored. This notion of quantification corresponds to what is also referred to as a
typestate property [60], a programming language concept for static typing, which ex-
tends the notion of type with a (safety) state machine over the methods of that type.
This state machine is quantified over all objects of the given type. Consider the account
as a type with the methods transfer(a) and reconcile(). A typestate is a refinement
of such a type where a constraint is defined on the order in which these methods can
be called. A typestate monitor can very simply be implemented by adding the EFSM
monitor to each object of the type (state). This approach can also be used for Property 2
(HasNextIterator).

As noted, there are now two kinds of variables in the state machine, those that
are quantified (x) and constant once bound, and those that are continuously mutable
(a, count , total), referred to as free variables. In this formulation we want each instance
of the state machine to have its own copies of the free variables. Therefore, we can view
these variables as having local scope i.e. they are local to each particular instantiation
of quantified variables. In extended finite state machines variables are often thought of
us global, but it is clear that in this case we want locality. There is, however, a case
to be made for variables with global scope where all instances of the extended finite
state machine read from and write to such. This would be needed i.e. if reconciliation
frequency depended on the total number of transfers for all accounts.

4.4 Parametric Trace Slicing

Typestates, implemented as extended state machines, although pleasantly simple, are
not sufficiently convenient for commonly occurring monitoring scenarios due to the
restriction of only quantifying over one variable. Consider for example Property 3 (Re-
source Lifecycle). We here need to deal with tasks as well as resource objects. We

17

want to specify the appropriate behavior for each pair of tasks and resources. Similarly
for Property 1 (UnsafeMapIterator). A generalization of the typestate approach is the
concept of parametric trace slicing, first introduced in Tracematches [2] to work for
regular expressions, and then generalized in JavaMOP [18, 51] for adding parametric
trace slicing to any propositional temporal language, that can be defined as a “plugin”.
Quantified Event Automata (QEA) [3, 54] are a further generalization adding existen-
tial quantification and free variables (see below). Consider for example the following
property (not taken from the competitions).

Property 7 (Simple ResourceManagement). A resource can only be granted once to a
task until the task cancels the resource (granting and canceling a resource wrt. a partic-
ular task must alternate). A resource r is granted to a task t using the event grant(t, r)
and canceled using cancel(t, r).

This property can be formalized as follows using a trace slicing approach.

1 2

∀t∀r grant(t, r)

cancel(t, r)

The parametric trace slicing approach considers collections of instantiations of quan-
tified variables. In the original formulation of this idea, each collection is associated
with a propositional monitor for that combination of parameter values. In this case
the propositional monitor is a standard state machine. The trace is then projected into
slices: one for each instantiation (combination of parameter values), so that only events
relevant to the instantiation are included in the monitoring wrt. these particular values.
This view of quantification requires domains for the quantified variables (the sets of
values they quantify over). A typical choice is to let these domains consist of the values
occurring in the trace. Given the above state machine, the following (satisfying) trace
results in the domain for the variable t to be {A} and the domain for the variable r to
be {R1, R2}:

grant(A,R1).cancel(A,R1).grant(A,R2).cancel(A,R2)

4.5 Parametric Trace Slicing with Free Variables

In parametric trace slicing each instantiation of quantified variables encountered in the
trace is associated with a propositional monitor, and only events concerned with that
instantiation are mapped to the monitor. Things, however, become more complex when
free variables are introduced, which is necessary to increase expressiveness (see [3]
for how parametric trace slicing is extended with free variables). To illustrate this, we
introduce a more complex version of Property 7 (SimpleResourceManagement).

Property 8 (ResourceManagement). In addition to Property 7 (i.e. granting and cancel-
ing a resource wrt. a particular task must alternate), a resource can only be held by at
most one task at a time. Recall that a resource r is granted to a task t using the event
grant(t, r) and canceled using cancel(t, r).

18

The previous specification for Property 7 does not capture this property. Consider
the trace grant(A,R).grant(B,R), violating the property. This generates two vari-
able valuations: [t = A, r = R] and [t = B, r = R]. The event grant(B,R) is not rel-
evant for the instance [t = A, r = R], it is only relevant for the instance [t = B, r = R],
and vice versa. The trace is unfortunately consequently sliced into two independent sub-
traces: grant(A,R) and grant(B,R), with no connection between them. Therefore
this formulation will not detect a violation in this trace.

To detect a violation we need to detect the existence of a violating task, i.e. the one
that tries to take the resource r whilst it is held by task t. We could attempt to do this
using a free variable tfree to capture the violating task as follows.

1 2 3

∀t∀r grant(t, r)

cancel(t, r)

grant(tfree , r)

It turns out that we need to re-define the notion of projection to handle such free
variables. Assume again the quantification instance [t = A, r = R]. Clearly, events
that only mention A and R are relevant as before. But also grant events mention-
ing R and some other task are also relevant as they could match grant(tfree , r). This
would mean that grant(B,R) would be relevant to the instance [t = A, r = R]. But
now we can see a further issue. Consider the safe trace grant(B,R).cancel(B,R).
grant(A,R). The projection to [t = A, r = R] will be grant(B,R).grant(A,R),
since grant(B,R) is considered relevant for the reason mentioned above, and since
cancel(B,R) is not since A 6= B. This trace will therefore be rejected as the monitor
cannot make a transition on the first event grant(B,R).

This highlights the subtleties that occur when dealing with free variables and projec-
tion. Once an event with a free variable has been added to the alphabet the user should
consider how this affects the events that could be relevant at other states. This leads to
a final correct, but less attractive, formulation:

1 2 3

∀t∀r grant(t, r)

cancel(t, r)

grant(tfree , r)
grant(tfree , r)[t 6= tfree]

This extends the state machine with a looping transition to skip grants of the re-
source to other tasks when the current task t does not hold the resource. An alternative
solution would have been to existentially quantify tfree. However, this has implica-
tions related to the efficiency of the associated monitoring algorithm, which we do not
discuss here [54].

4.6 Quantification in Temporal Logics

First-Order Quantification The standard way of dealing with data in logic via quan-
tification is relevant to temporal logic, and is based on the notion of evaluating a formula

19

with respect to a first-order temporal structure. The standard approach is to add a for-
mula expression such as ∀x.ϕ to the syntax of the logic and include a case similar to
the following in the trace semantics [10]

T , i, σ |= ∀x.ϕ iff for every d ∈ D(x) we have T , i, σ[x 7→ d] |= ϕ

where the temporal structure T captures the trace, i.e. it is a finite sequence of structures
where each structure describes which events are present in that time point. This usually
follows the standard logical approach of modeling events as predicates and defining an
interpretation evaluating events occurring at that time point to true and all other events
to false. The temporal structure also defines the domain functionD but the way in which
it does this differs between approaches, as described below.

The notion of first-order LTL introduced by Emerson [29] follows this approach,
although assumes predicates have global interpretation, which is not suitable here but
the extension is straightforward. However, for pragmatic reasons, languages for runtime
verification have been designed to consider alternative first-order extensions of LTL.
The rest of this section discusses these alternative design decisions.

Different Notions of Quantification There are two main approaches to defining the
domain function D above. Simply, either D is local to the current time point (as in
[13, 36]), or it is constant throughout the temporal structure (as in [10] and the original
work of Emerson). If the domain function is local then it is typically derived from the
events occurring in that time point. If the domain function is constant then it typically
consists of (a superset of) values appearing in the trace. The idea of the first approach is
to restrict quantification so that it is only used to create future obligations about events
occurring at the current point in time. For this to work it is necessary to syntactically
restrict the occurrence of quantification so that the values it is quantifying over occur at
the current time point e.g. the first of the following two (normally) equivalent formulas
would break this rule.

(∀f)�(open(f)→ ♦close(f)) �(∀f)(open(f)→ ♦close(f))

The second formula has the same interpretation in the two models of quantification
(where we assume that the domain in the current time point is a subset of the constant
domain) as the right-side of the implication will only be true for values in the current
time point. This demonstrates that, under certain syntactic restrictions, the two models
of quantification coincide. This can be advantageous as monitoring algorithms dealing
with the first model of quantification will generally be more straightforward as decisions
about quantification can be local. To see that the two models are different, note that the
formula

�(∃x)(¬p(x))

is unsatisfiable in general for the first model of quantification as the domain of x is
given exactly by the values such that p(x) is true at the current time point. But in the
second model of quantification this becomes a reasonable statement.

Note that the first model is dependent on where quantification happens and as a
result cannot express some formulas. For example, this formula cannot be expressed

20

in this model as the values being quantified over cannot be present in the current time
point:

(∀f)�(open(f)→ ∃u : (♦read(f, u) ∨ ♦write(f, u)))

In either setting it is possible for domains to be infinite (in theory) as long as formulas
are domain independent, which is a semantic notion ensuring that only a finite subset of
the domain is required for trace-checking (see [20, 11]). As an example, (∀x)♦p(x) is
not domain independent, but (∀x)�p(x) → ♦q(x) is domain independent as checking
this formula only requires checking the finite subset of values v such that p(v) appears
in the trace. Note that determining whether a formula is domain independent is unde-
cidable and practically this is checked via conservative syntactic restrictions.

The Difference with Parametric Trace Slicing It is at this point appropriate to point
out, that the standard logic interpretation of quantification presented above is different
from the parametric slicing approach, resulting in subtly different interpretations of
formulas. Consider Property 3 (Resource Lifecycle). Previously (page 14) we gave a
propositional temporal logic formulation (no data) that included the sub-formula:

�(request→©(deny ∨ grant ∨ stop)

When we add first-order quantification this becomes:

(∀r)�(request(r)→©(deny(r) ∨ grant(r) ∨ stop(r))

This formula, however, no longer means what we want it to. Consider e.g. the trace:

request(A).request(B).deny(A).deny(B)

This is expected to be a correct trace, but it does not satisfy the quantified formula since
in the first state request(A) is true but none of deny(A), grant(A), nor stop(A) are
true in the next (second) state. However, with parametric trace slicing, the formula (note
the use of Λ instead of ∀).

Λr. �(request(r)→©(deny(r) ∨ grant(r) ∨ stop(r))

has the intended interpretation (accepting the trace), as parametric trace slicing projects
the trace to a slice only including events relevant for r. As outlined in [57], the main
difference is the treatment of the notion of next.

Everything is Quantification We have previously seen the need for introducing free
variables in state machines in combination with parametric trace slicing. Free variables
are not needed in temporal logic, where quantification is sufficient. Consider for exam-
ple Property 8 (ResourceManagement) and the corresponding state machine on page
19, which uses a free task variable tfree in addition to the quantified t. The property
can alternatively be formulated in temporal logic only using quantification as follows:

(∀t, r)�(grant(t, r)⇒©((¬(∃t′) grant(t′, r))W cancel(t, r)))

21

The approach is to allow quantification inside the formula, and not only at the outermost
level. In first-order temporal logic it is generally possible to write the quantifiers at
arbitrary points of the specification. It is important to understand that quantification is
to be evaluated at the point in the trace that it is met. For example,

(∀x)♦f(x) 6≡ ♦(∀x)f(x)

as the first property says that for every x the event f(x) eventually happens, but for
different values for x this could happen at different points, whereas the second property
requires that these all happen at the same point. However, in some cases quantification
inside a temporal operator can be lifted outside, the standard identities are the following:

(∀x)�ϕ ≡ �(∀x)ϕ (∃x)♦ϕ ≡ ♦(∃x)ϕ

The main reason why quantification is enough in temporal logic is due to the fact
that temporal logic has a notion of sub-formula, and a quantification is over some sub-
formula. In state machines we usually do not operate with a notion of sub-machine
(except in state charts), and it therefore becomes difficult to define the scope of a quan-
tifier. One can imagine embedded quantifiers in regular expressions, however, just as
one can imagine free variables in regular expressions.

Section 4.3 discussed the concept of free variables with global scope. A similar
notion in temporal logic could correspond to the usage of so-called counting quanti-
fiers. Suppose for example that we wanted to state that each task t can at most hold N
resources at a time. This can be captured as the property:

�(∀t)(∃≤Nr)(¬cancel(t, r) S grant(t, r))

This can be read as: it is always the case that for all tasks, there exist at most N resources
r, that have not been canceled by t since they were granted to t. Counting quantifiers
typically preserve the expressiveness of the language, assuming that the language in-
cludes predicates.

Some properties of interest to runtime verification go beyond the expressiveness
of first-order temporal logic. A simple extension is the usage of so-called percentage
counting quantifiers [50] of the form A≥Px : p(x)⇒ φwhich capture the property that
for at least P% of the values d in the domain of x such that p(d) holds, the statement φ
holds. This allows for the expression of properties such as

A≥0.95s : socket(s)⇒ (�receive(s)⇒ ♦respond(s))

stating that at least 95% of open sockets are eventually closed.
Another property of interest corresponding to second-order quantification is that of

deadlock avoidance. As described in [16], if a graph is constructed where directed edges
between locks indicate a lock ordering, then a cycle in this graph indicates a potential
deadlock. Cycle detection is a reachability property, which is inherently second-order
i.e. it relates to the second-order temporal property

¬∃{l1, . . . ln}

(
lock(ln+1, l1) ∧

i=n−1∧
i=0

lock(li, li+1)

)
i.e. there does not exist a set of locks containing a cycle.

22

The Past is not Simpler Concerning monitoring algorithms, future time logic with
data lends itself to a very simple syntax-oriented tableaux-like procedure, as in [4, 12,
5, 36]. Past time logics interestingly require a different more elaborate approach, i.e.
dynamic programming, as described in [38, 10].

Events and the Signature Typically in first-order logic one has predicates and func-
tions. As mentioned previously, it is normal for first-order extensions of LTL for run-
time verification to model events as predicates interpreted as either true or false in the
current time point. This easily supports the notion of multiple events occurring in a
single time point. Indeed, if one were to restrict this to a single event then this no-
tion becomes an implicit axiom of the logic, changing the semantics i.e. the formula
(∀x, y)♦(f(x) ∧ g(y)) becomes unsatisfiable.

Some extensions also allow other non-event predicates and functions to appear in
the signature. In this case the temporal structure should provide an interpretation for
these symbols. This can support the calling of external functions. It would be usual for
these interpretations to be constant throughout the trace. A specific case of this is when
those predicates and functions are taken from a particular theory as described next.

Modulo Theories There has been a lot of recent interest in automated reasoning in
first-order logic, also referred to as Satisfiability Modulo Theories (SMT). The general
idea is to extend first order logic with theories for particular sub-domains (i.e. arith-
metic, arrays, datatypes, etc.), and build decision procedures specific to those domains.
The same concept can be extended to reasoning in first-order temporal logic. SMT can
specifically be applied in runtime verification, as described in [25], which presents an
approach for monitoring modulo theories, which relies on an SMT solver to discharge
the data related obligations in each state.

4.7 Register Automata and Freeze Quantification

Register automata [40] and freeze quantifiers in temporal logic [26] are systems based
on the notion of registers, in which data observed in the trace can be stored, and later
read and compared with other data in the trace. A register automaton [40] has in addition
to the traditional control states also a finite set of registers. Data observed in the trace
can be stored in registers when encountered, and can later be read for comparison with
other data. Register automata form a subclass of extended finite state machines where
the registers play the role of the variables. Similarly, freeze quantifiers [26] are used in
temporal logic to capture “storing” of values. The formula ↓r ϕ stores the data value
at the current position in the trace in register r (actually it stores an equivalence class
denoting all those positions having an equivalent value), and evaluates the formula with
that register assignment. The unfreeze formula ↑r checks whether the data value at the
current position is equivalent to that in register r. As an example, the following temporal
property using quantification:

(∀f)�(open(f)→ ♦close(f))

23

can instead be formulated as follows using a freeze quantifier:

�(open→ ↓r ♦(close ∧ ↑r))

Such registers here can be seen as the equivalent of the pattern matching solutions found
in systems such as JLO [59] and TraceContract [5], and correspond to quantification
over the current time point (see page 20). Register-based systems are typically studied
for their theoretical properties, and are usually somewhat limited. For example is it
usually only possible to compare data for equality. Register automata have been used
within runtime verification [35].

5 Conclusion

Our discussion has centered around state machines, regular expressions, and temporal
logics, and how data can be integrated in such. Important systems have due to lack of
space been left out of this discussion, including context free grammars, variations of
the µ-calculus, rule-based systems, stream processing, and process algebras. We have,
however, hopefully succeeded in illustrating important parts of the design space for run-
time verification logics. It has been pointed out that formulas in a logic can be used to
identify good traces (positive formulations) or bad traces (negative formulations), and
that the succinctness of specifications can depend on this choice. Furthermore, such
formulas can be matched against the entire trace, or just against a suffix of the trace.
Negative formulations usually go with suffix matching. The useful distinction between
next-states and skip-states in state machines has also been pointed out. For writing
formalized requirements for a project, the positive formulation over total traces is prob-
ably to be preferred, whereas negative formulations over suffixes can be more succinct
in some cases. It has been illustrated how different base logics appear advantageous for
particular examples, a fact that is not too surprising. How to (whether to) handle data
is a crucial problem in the design of a runtime verification logic, and alternative ap-
proaches have been promoted in the literature. Parametric trace slicing has so far shown
the most efficient [56, 9], although initially causing limited expressiveness.

If we allow ourselves to dangerously imagine an ideal runtime verification logic,
it would be a combination of regular expressions (allowing to conveniently express
sequencing) and future and past time temporal logic (often resulting in succinct speci-
fications). However, the notion of states, as found in state machines and rule systems is
important as well. The ability to distinguish between next-states and skip-states seems
useful, in state machines as well as in regular expressions. It is interesting that state ma-
chines with anonymous states (where intermediate states are not named) is a formalism
very related to future time temporal logic. It would be useful if convenient shorthands
for formulas and aggregation operators could be user-defined. A logic should support
time, scopes, and should allow for modularizing specifications. The Eagle logic [4],
based on a linear µ-calculus with future and past time operators as well as a sequencing
operator, was an attempt to support many of these ideas. Eagle allowed for user defined
temporal operators, including the standard Linear Temporal Logic operators.

Working with engineers has shown that current practice to write trace checkers con-
sists of programming in high-level scripting/programming languages, such as for ex-

24

ample Python. Observing the kind of checks performed on such traces suggests that a
monitoring logic needs to be rather expressive, and probably Turing complete for prac-
tical purposes, allowing for example advanced string processing features and arithmetic
computations. Some specification logics have been developed as APIs in programming
languages, in the realization of these observations. The distinction between formal spec-
ification in a domain-specific logic on the one hand, and programming in a general
purpose programming language on the other hand, might get blurred in the field of run-
time verification due to the practical needs of monitoring systems. We also expect to
see more systems that compute data from traces rather than just produce Boolean-like
verdicts.

References

1. XTL Manual. http://cadp.inria.fr/man/xtl.html.
2. C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhoták, O. de Moor,

D. Sereni, G. Sittampalam, and J. Tibble. Adding trace matching with free variables to
AspectJ. SIGPLAN Not., 40:345–364, October 2005.

3. H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. E. Rydeheard. Quantified event
automata: Towards expressive and efficient runtime monitors. In FM, pages 68–84, 2012.

4. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verification. In
VMCAI, pages 44–57, 2004.

5. H. Barringer and K. Havelund. TraceContract: A Scala DSL for trace analysis. In Proc.
of the 17th International Symposium on Formal Methods (FM’11), volume 6664 of LNCS,
pages 57–72, 2011.

6. H. Barringer, D. Rydeheard, and K. Havelund. Rule systems for run-time monitoring: from
EAGLE to RuleR. J Logic Computation, 20(3):675–706, June 2010.

7. M. M. Bartetzko D., Fischer C. and W. H. Jass - Java with assertions. In Proc. of the 1st Int.
Workshop on Runtime Verification (RV’01), Paris, France, volume 55(2) of ENTCS, pages
103–117. Elsevier, July 2001.

8. E. Bartocci, B. Bonakdarpour, and Y. Falcone. First international competition on software
for runtime verification. In Runtime Verification - 5th International Conference, RV 2014,
Toronto, ON, Canada, September 22-25, 2014. Proceedings, pages 1–9, 2014.

9. E. Bartocci, Y. Falcone, B. Bonakdarpour, C. Colombo, N. Decker, K. Havelund, Y. Joshi,
F. Klaedtke, R. Milewicz, G. Reger, G. Rosu, J. Signoles, D. Thoma, E. Zalinescu, and
Y. Zhang. First international competition on runtime verification: rules, benchmarks, tools,
and final results of crv 2014. International Journal on Software Tools for Technology Trans-
fer, pages 1–40, 2017.

10. D. Basin, F. Klaedtke, S. Marinovic, and E. Zălinescu. Monitoring of temporal first-order
properties with aggregations. Formal Methods in System Design, 2015.

11. D. Basin, F. Klaedtke, S. Müller, and B. Pfitzmann. Runtime monitoring of metric first-order
temporal properties. In Proceedings of the 28th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, volume 2 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 49–60. Schloss Dagstuhl - Leibniz Center for
Informatics, 2008.

12. A. Bauer, R. Goré, and A. Tiu. A first-order policy language for history-based transaction
monitoring. In Proceedings of the 6th International Colloquium on Theoretical Aspects of
Computing (ICTAC), volume 5684 of Lect. Notes Comput. Sci., pages 96–111. Springer,
2009.

25

13. A. Bauer, J. Küster, and G. Vegliach. The ins and outs of first-order runtime verification.
Form. Method. Syst. Des., 46(3):286–316, 2015.

14. A. Bauer, M. Leucker, and C. Schallhart. The good, the bad, and the ugly, but how ugly is
ugly? In Proceedings of the 7th international conference on Runtime verification, RV’07,
pages 126–138, Berlin, Heidelberg, 2007. Springer-Verlag.

15. A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for ltl and tltl. ACM Trans.
Softw. Eng. Methodol., 20(4):14:1–14:64, Sept. 2011.

16. S. Bensalem and K. Havelund. Dynamic deadlock analysis of multi-threaded programs. In
Haifa Verification Conference, Haifa, Israel, November 13-16, 2005, volume 3875 of Lect.
Notes Comput. Sci., pages 208–223. Springer, 2006.

17. D. Bianculli, C. Ghezzi, and P. San Pietro. The Tale of SOLOIST: A Specification Language
for Service Compositions Interactions, pages 55–72. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

18. F. Chen and G. Roşu. MOP: An Efficient and Generic Runtime Verification Framework. In
Object-Oriented Programming, Systems, Languages and Applications(OOPSLA’07), pages
569–588. ACM press, 2007.

19. K. T. Cheng and A. S. Krishnakumar. Automatic functional test generation using the ex-
tended finite state machine model. In Proceedings of the 30th International Design Automa-
tion Conference, DAC ’93, pages 86–91, New York, NY, USA, 1993. ACM.

20. J. Chomicki, D. Toman, and M. H. Böhlen. Querying ATSQL databases with temporal logic.
ACM Trans. Database Syst., 26(2):145–178, 2001.

21. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. In D. Kozen, editor, Proceedings of the Workshop on Logics
of Programs, volume 131 of Lecture Notes in Computer Science, pages 52–71, Yorktown
Heights, New York, May 1981. Springer.

22. C. Colombo, G. J. Pace, and G. Schneider. Larva — safer monitoring of real-time java
programs (tool paper). In Proceedings of the 2009 Seventh IEEE International Conference
on Software Engineering and Formal Methods, SEFM ’09, pages 33–37, Washington, DC,
USA, 2009. IEEE Computer Society.

23. B. D’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson, B. Finkbeiner, H. B. Sipma,
S. Mehrotra, and Z. Manna. LOLA: Runtime monitoring of synchronous systems. In Pro-
ceedings of the 12th International Symposium on Temporal Representation and Reasoning,
pages 166–174. IEEE Computer Society, 2005.

24. N. Decker, M. Leucker, and D. Thoma. jUnitRV—adding runtime verification to jUnit. In
G. Brat, N. Rungta, and A. Venet, editors, NASA Formal Methods, 5th International Sympo-
sium, NFM 2013, Moffett Field, CA, USA, May 14-16, 2013. Proceedings, volume 7871 of
Lecture Notes in Computer Science, pages 459–464. Springer, 2013.

25. N. Decker, M. Leucker, and D. Thoma. Monitoring modulo theories. International Journal
on Software Tools for Technology Transfer, pages 1–21, 2015.

26. S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. ACM Trans.
Comput. Logic, 10(3):16:1–16:30, Apr. 2009.

27. D. Drusinsky. Modeling and Verification using UML Statecharts. Elsevier, 2006. ISBN-13:
978-0-7506-7949-7, 400 pages.

28. C. Eisner and D. Fisman. Temporal logic made practical. 2014.
29. E. A. Emerson. Handbook of theoretical computer science (vol. b). chapter Temporal and

Modal Logic, pages 995–1072. MIT Press, Cambridge, MA, USA, 1990.
30. Y. Falcone, J.-C. Fernandez, and L. Mounier. Runtime verification. chapter Runtime Ver-

ification of Safety-Progress Properties, pages 40–59. Springer-Verlag, Berlin, Heidelberg,
2009.

31. Y. Falcone, K. Havelund, and G. Reger. A tutorial on runtime verification. In Engineering
Dependable Software Systems, pages 141–175. 2013.

26

32. Y. Falcone, D. Nickovic, G. Reger, and D. Thoma. Second international competition on
runtime verification - CRV 15. In Runtime Verification - 15th International Conference, RV
2015, Vienna, Austria, 2015. Proceedings, volume 9333, pages 365–382, 2015.

33. B. Finkbeiner, S. Sankaranarayanan, and H. Sipma. Collecting statistics over runtime exe-
cutions. Formal Methods in System Design, 27(3):253–274, 2005.

34. M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. J. Comput.
Syst. Sci., 18:194–211, 1979.

35. R. Grigore, D. Distefano, R. L. Petersen, and N. Tzevelekos. Runtime verification based on
register automata. In Tools and Algorithms for the Construction and Analysis of Systems:
19th International Conference, TACAS 2013, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.
Proceedings, pages 260–276. Springer Berlin Heidelberg, 2013.

36. S. Hallé and R. Villemaire. Runtime enforcement of web service message contracts with
data. IEEE Trans. Services Computing, 5(2):192–206, 2012.

37. K. Havelund. Rule-based runtime verification revisited. International Journal on Software
Tools for Technology Transfer, 17(2):143–170, 2015.

38. K. Havelund and G. Roşu. Efficient monitoring of safety properties. International Journal
on Software Tools for Technology Transfer, 6(2):158–173, 2004.

39. G. Holzmann. The SPIN Model Checker. Addison-Wesley, 2004.
40. M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci., 134(2):329–

363, Nov. 1994.
41. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview

of AspectJ. In Proc. of the 15th European Conference on Object-Oriented Programming
(ECOOP’01), volume 2072 of Lect. Notes Comput. Sci., pages 327–353, 2001.

42. M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: A run-time as-
surance approach for Java programs. Formal Methods in System Design, 24(2):129–155,
2004.

43. D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27(3):333–354, 1983.

44. O. Kupferman and M. Y. Vardi. Model checking of safety properties. Form. Methods Syst.
Des., 19(3):291–314, Oct. 2001.

45. F. Laroussinie, N. Markey, and P. Schnoebelen. Temporal logic with forgettable past. In
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, LICS’02,
pages 383–392, Washington, DC, USA, 2002. IEEE Computer Society.

46. K. G. Larsen and A. Legay. Statistical Model Checking: Past, Present, and Future, pages
3–15. Springer International Publishing, 2016.

47. A. Legay, B. Delahaye, and S. Bensalem. Statistical model checking: An overview. In 1st
Int. Conference on Runtime Verification (RV’10), volume 6418 of LNCS. Springer, 2010.

48. M. Leucker and C. Schallhart. A brief account of runtime verification. J. Log. Algebr.
Program., 78(5):293–303, 2009.

49. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-Verlag
New York, Inc., New York, NY, USA, 1995.

50. R. Medhat, B. Bonakdarpour, S. Fischmeister, and Y. Joshi. Accelerated runtime verification
of LTL specifications with counting semantics. In Runtime Verification - 16th International
Conference, RV 2016, Madrid, Spain, September 23-30, 2016, Proceedings, pages 251–267,
2016.

51. P. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu. An overview of the MOP runtime
verification framework. J Software Tools for Technology Transfer, pages 1–41, 2011.

52. OMG. OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.4.1, Au-
gust 2011.

27

53. A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Symposium
on Foundations of Computer Science, SFCS ’77, pages 46–57, Washington, DC, USA, 1977.
IEEE Computer Society.

54. G. Reger. Automata Based Monitoring and Mining of Execution Traces. PhD thesis, Univer-
sity of Manchester, 2014.

55. G. Reger, H. C. Cruz, and D. Rydeheard. MarQ: monitoring at runtime with QEA. In Pro-
ceedings of the 21st International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’15), 2015.

56. G. Reger, S. Hallé, and Y. Falcone. Third international competition on runtime verification
CRV 2016. In Runtime Verification - 16th International Conference, RV 2016. Proceedings,
2016.

57. G. Reger and D. Rydeheard. From first-order temporal logic to parametric trace slicing. In
E. Bartocci and R. Majumdar, editors, Runtime Verification: 6th International Conference,
RV 2015, Vienna, Austria, September 22-25, 2015. Proceedings, pages 216–232. Springer
International Publishing, 2015.

58. M. Sipser. Introduction to the Theory of Computation. Cengage Learning, Boston, Mas-
sachusetts, 3rd edition, 2013.

59. V. Stolz and E. Bodden. Temporal assertions using AspectJ. In Proc. of the 5th Int. Workshop
on Runtime Verification (RV’05), volume 144(4) of ENTCS, pages 109–124. Elsevier, 2006.

60. R. E. Strom and S. Yemini. Typestate: A programming language concept for enhancing
software reliability. IEEE Trans. Softw. Eng., 12(1):157–171, Jan. 1986.

61. M. Y. Vardi. From Church and Prior to PSL, pages 150–171. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008.

28

