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Formal specification languages have long languished, due to the grave scalability problems faced by
complete verification methods. Runtime verification promises to use formal specifications to auto-
mate part of the more scalable art of testing, but has not been widely applied to real systems, and
often falters due to the cost and complexity of instrumentation for online monitoring. In this paper we
discuss work in progress to apply an event-based specification system to the logging mechanism of
the Mars Science Laboratory mission at JPL. By focusing on log analysis, we exploit the “instrumen-
tation” already implemented and required for communicating with the spacecraft. We argue that this
work both shows a practical method for using formal specifications in testing and opens interesting
research avenues, including a challenging specification learning problem.

1 Introduction

NASA’s Mars Science Laboratory Mission (MSL), now scheduled to launch in 2011 [1], relies on a num-
ber of different mechanisms used to command the spacecraft from Earth and to understand the behavior
of the spacecraft and rover. The primary elements of this communication system are commands sent
from the ground, visible events emitted by flight software (essentially formalized printfs in the code)
[7], snapshots of the spacecraft state, and data products — files downlinked to earth (e.g., images of Mars
or science instrument data). All of these elements may be thought of as spacecraft events, with a canon-
ical timestamp. Testing the flight software (beyond the unit testing done by module developers) usually
relies on observing these indicators of spacecraft behavior. As expected, test engineers cannot “eyeball”
the hundreds of thousands of events generated in even short tests of such a complex system. Previously,
test automation has relied on ad hoc methods — hand-coded Python [9] scripts using a framework to
query the ground communications system for various kinds of events, as a test proceeds. This was the
state-of-the-art at the time members of our group, the Laboratory for Reliable Software, joined the MSL
team, as developers and test infrastructure experts. Lengthy collaboration with test engineers convinced
us that something better was required: the test script approach required large amounts of effort, much
of it duplicated, and often failed due to changes in event timing and limitations of the query framework.
Moreover, the scripts, combining test input activity, telemetry gathering, and test evaluation, proved dif-
ficult to read — for other test engineers and for developers and systems engineers trying to extract and
understand (and perhaps fix) a specification. Runtime verification using formal specifications offered
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a solution, and the MSL ground communications system suggested that we exploit an under-used ap-
proach to runtime verification: offline examination of event logs already produced by system execution.
In the remainder of this paper we report on two aspects of this project — in Section 2 we discuss the
general idea of event sequences as requirements, and our specification methodology; Section 3 gives a
brief introduction to our application of these general ideas to MSL and our new specification language.

2 Event Sequences as Requirements

Systems verification consists of proving that an artifact (hardware and/or software) satisfies a specifica-
tion. In mathematical terms we have a model M ∈ML (for example the complete system) in some model
language ML, and a specification S ∈ SL in some specification language SL, and we want to show that
the pair (M,S) is member of the satisfaction relation |=⊆ ML×SL, also typically written: M |= S. The
general problem of demonstrating correctness of a combined hardware/software system is very hard, as
is well-known. Advanced techniques such as theorem proving or model checking tend not to scale for
practical purposes. Extracting abstract models of the system, and proving these correct, has been shown
to sometimes be useful, but also faces scalability problems when dealing with real systems or complex
properties. The problem is inherently difficult because the models are complex – because the behav-
ior of systems is complex. The problems of full verification have long limited the adoption of formal
specification.

In runtime verification a specification is used to analyze a single execution of a system, not the com-
plete behavior. In this case a model is a single execution trace σ , and the verification problem consists of
demonstrating that σ |= S, a much simpler problem with scalable solutions. The original model M (the
full system) can be considered as denoting the set of all possible runs σ , of which we now only verify
a subset. This approach of course is less ambitious, but seems to be a practical and useful deployment
of formal specification. Though these observations are well known, they are less often taken into prac-
tice. It is still rare to observe the application of formal specification — even for runtime verification.
There may be several reasons for this, one of which is the problem of program instrumentation. A large
body of research considers the problem: how to we produce traces to verify? There is, however, a much
simpler approach, namely to use logging information that is already generated by almost any computer
system when it is tested. Our first recommendation is therefore that runtime verification should be used
to formally check logged data. Our second recommendation is that logging and requirements engineer-
ing should be connected in the sense that requirements should be testable through runtime verification of
logs. The common element is the event: requirements should be expressed as predicates on sequences of
events, and logging should produce such sequences of events, thereby making the requirements testable.
This means that logs preferably should consist of events with a formal template, connected to the orig-
inal requirements. Note, however, that it is possible to extract formalized events from chaotic logging
information produced by the usual ad hoc methods — using, e.g., regular expressions.

The obvious scientific and methodological question is: what kind of information should a log contain,
in order to help verify requirements? We shall adopt the simple view that a log is a sequence of events,
where an event is a mapping from names to values of various types (integers, strings, etc.):

Log = Event∗

Event = Name→Value

This definition is quite general. An event can carry information about various aspects of the observed
system. Events can be classified into various kinds by letting a designated name, i.e. kind, map to
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the kind. In the context of MSL, five forms of events are used, see Figure 1. We claim that these
five event kinds are generally applicable to any system being monitored. The five forms of events are:
(1) commands (input) issued to the monitored system, (2) products (output) delivered by the system,
(3) periodic samplings of the state of the system, such as the value of continuous-valued sensors (like
position coordinates), (4) changes to the state of the system, those changes that are observable, and
(5) transitions performed by the system (also referred to as EVent Reports - EVRs), for example when
printf statements would normally be used to record an important event. The two forms of observation
of the state (3, 4) could potentially be regarded as one kind of observation: that of the state of the system
at any point in time. The state observations (3, 4) and the transitions (5) are internal events, while the
commands (1) and products (2) are external events.

commands products 

transitions 

state samples state changes 

Figure 1: observable events of a system

We have developed a specification language, and corresponding monitoring system, to be presented
in the next section, which have been applied by testing engineers within the MSL project. The specifica-
tion language consists of a mixture of automata and temporal logic with elements of regular expressions.
The logic can specifically refer to the data in events. This mixture seems to be attractive for the engineers.
In the longer term, we argue that such a specification language and monitoring system should be used
in combination with a systematic logging discipline, such that requirements are formulated in terms of
events, and, minimally, these events should be produced as part of logging. These observations may not
appear to be ground-breaking, and to some extent have the flavor of “yes of course” — but as it turns
out, considering current practices in software projects, they may be rather ground-breaking. A successful
formal verification story always relies on finding the proper mixture of formality and common practice,
as well as the right specification language for the task. We believe that the work described in this short
paper has shown the potential for being such a success story.
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pattern CommandSuccess:
COMMAND{Type : "FlightSoftwareCommand", Stem : x, Number : y} =>

{
EVR{Dispatch : x, Number : y},
[

EVR{Success : x, Number : y},
not EVR{Success : x, Number : y}

],
not EVR{DispatchFailure : x, Number : y},
not EVR{Failure : x, Number : y}

}

Figure 2: A generic specification for flight software commands.

3 Framework

MSL’s ground software stores all events in a SQL database, which we interpret as a chronologically or-
dered sequence of events — a log. Our Python framework, called LOGSCOPE, allows us to check logs for
conformance to a specification and to “learn” patterns from logs. The architecture of LOGSCOPE divides
functionality into a LOGMAKER tool, specific to MSL, and a core LOGSCOPE module for checking logs
and learning specifications, which may be applied to any ordered event sequence.

3.1 LogMaker

LOGMAKER communicates with MSL’s SQL-based ground software to generate a list of events, where
each event is a record mapping field names to their values. A special field indicates the type of the event:
command, transition (EVR), state sampling, state change, or data product. Note how the MSL events
map to the generalized idea of a monitored system shown in Figure 1. The log extractor sorts events
according to spacecraft event times, since the order in which events are received by ground communica-
tions software does not correspond to the order in which events are generated on-board (due to varying
communication priorities). Further analysis annotates the log with meta-events for ease of use in speci-
fication, and uses spacecraft telemetry to assign a spacecraft time to ground events. We hope to extend
and exploit previous work on monitoring distributed systems with multiple clocks [10] to influence flight
software’s use of telemetry to ensure that effective event ordering is always possible.

3.2 Monitoring

The monitoring system of LOGSCOPE takes two arguments: (1) a log generated by logmaker, and (2)
a specification. Our specification language supplies an expressive rule-based language, which includes
support for state machines, and a higher-level (but less expressive) pattern language, which is translated
into the more expressive rule-based language before monitoring.

Specifications in the pattern language are easy for test engineers and software developers to read
and write. Figure 2 illustrates a pattern. The CommandSuccess pattern requires that following every
command event (meaning a command is issued to the flight software), where the Type field has the value
"FlightSoftwareCommand", the Stem field (the name of the command) has a value x (x will be bound
to that value), and the Number field has a value y (also a binding variable), we must see (=>) — in any
order, as indicated by set brackets {...} — (1) a dispatch of command x with the number y; (2) a
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success of x/y, and after that no more successes — the square brackets [...] indicate an ordering of
the event constraints. Furthermore, (3) we do not want to see any dispatch failures for the command; and
finally (4) we do not want to see any failures for the command.

Interesting features of the language include its mixture (and nesting) of ordered and unordered event
sequences of event constraints, including negations, and its support for testing and capturing data values
embedded in events. The pattern language is translated into our rule-based language derived from the
RULER specification language [4, 5, 3]. A subset of this language defines state machines with parameter-
ized events and states, where a transition may enter many target states — essentially alternating automata
with data. The language is also inspired by earlier state-machine oriented specification/monitoring lan-
guages, such as RCAT [11] and RMOR [8].

In addition to exact requirements on field values, our language supports user-defined predicates (writ-
ten in Python) that may take field values and bound variables as arguments, providing very high expres-
sive power. Specifications are visualized with Graphviz [6], and extensive error trace reporting with
references to the log files ensures easy interpretation of detected specification violations.

3.3 Learning

LOGSCOPE was well-received by test engineers, and was integrated into MSL flight software testing for
two modules shortly after its release. One important result of early use was to alert us to the burden of
writing patterns more specific than the kind of generic rule shown above. In order to ease this burden
we introduced a facility for learning specifications from runs. Consider a test engineer or developer
who runs a flight software test one or more times. If these runs have been “good” runs he/she can
“endorse” (perhaps after making manual modifications) the specification, and it can then be used to
monitor subsequent executions. Learning requires a notion of event equality, and users can define which
fields should be compared for testing event equality (e.g., exact timing is usually expected to change
with new releases and perhaps even new test executions). We have implemented and applied a concrete
learner which learns the set of all execution sequences seen so far (essentially a “diff” tool for logs).
We also expect to learn mappings from commands to events expected in all execution contexts — a
pattern based approach, like that of Perracotta [12]. More ambitiously, we hope to incorporate classic
automata-learning results [2] in order to generalize specifications.

4 Conclusions and Future Work

The MSL ground control and observation software demonstrates an important concept: many critical
systems already implement very powerful logging systems that can be used as a basis for automated
evaluation of log files against requirements. Such log files can be analyzed with scripts (programs)
written using a scripting (programming) language. However, there seems to be advantages to using a
formal specification language, as demonstrated with this work. A systematic study could be needed,
investigating to what extent a domain specific language really is required to achieve the added benefit, or
whether a well designed Python API (or API in any other programming language) would yield the same
benefits.
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