
Automated Testing of Planning Models

Klaus Havelund, Alex Groce, Gerard Holzmann,
Rajeev Joshi, and Margaret Smith

Jet Propulsion Laboratory?, California Institute of Technology
4800 Oak Grove Drive, Pasadena/Los Angeles, CA 91109

{klaus.havelund,alex.d.groce,gh,rajeev.joshi,margaret}@jpl.nasa.gov

Abstract – Automated planning systems (APS) are maturing to the point
that they have been used in experimental mode on both the NASA Deep Space
1 spacecraft and the NASA Earth Orbiter 1 satellite. One challenge is to improve
the test coverage of APS to ensure that no unsafe plans can be generated. Unsafe
plans can cause wasted resources or damage to hardware. Model checkers can be
used to increase test coverage for large complex distributed systems and to prove
the absence of certain types of errors. In this work we have built a generalized
tool to convert the input models of an APS to Promela, the modeling language
of the Spin model checker. We demonstrate on a mission sized APS input model,
that we with Spin can explore a large part of the space of possible plans and
verify with high probability the absence of unsafe plans.

1 Introduction

Automated Planning Systems (APS) have performed onboard planning and com-
manding in experimental mode for two NASA technology validation missions:
Deep Space 1 and Earth Orbiter 1. APS are also used to support ground planning
of sequences for both the Mars Exploration Rovers and the Phoenix missions.
Unlike traditional software, which executes a fixed sequence, an APS takes a
few high level goals, and an input model describing behavioral constraints, and
automatically generates a sequence of actions, called a plan, that achieves the
goals while satisfying the constraints. An APS can respond to unexpected situa-
tions and opportunities that a fixed sequence can not. The same flexibility that
makes it possible to respond to unanticipated situations also makes a planner far
more difficult to verify. If a mission manager is to trust an APS to autonomously
command, it must be shown to generate the correct plan for a vast number of
situations. Empirical test cases can cover only a handful of the most likely or
critical situations. Formal methods can in principle prove that every plan meets
certain properties and can prove the absence of a dangerous or undesirable plan.

In this work, we expand upon the results of our previous work [1] that demon-
strated that it was possible to apply formal methods, and in particular, the Spin
model checker [2, 3, 5] to improve test completeness when verifying APS input

? The research described in this paper was carried out at the Jet Propulsion Labora-
tory, California Institute of Technology, under a contract with the National Aero-
nautics and Space Administration.

2 Havelund, Groce, Holzmann, Joshi, Smith

models. In particular, we have constructed a tool called Map to automate the
conversion of APS models to Promela, the language of the Spin model checker.
We have demonstrated that a large portion of the semantics of an APS model
is expressible in the language of the model checker. As the subject of this work,
we selected the Aspen APS and its modeling language Aml [11, 13–15] devel-
oped by Jet Propulsion Laboratory (JPL) because it is currently successfully
commanding the Earth Observer 1 (EO1) Autonomous Sciencecraft Experiment
onboard the EO1 satellite.

~100 plans

undesirable
plan

all desirable

plans

Empirical Testing
(current approach)

input
model

Manually inspect
plans to identify

undesirable plans

end
testing

Adjust model
to exclude

undesirable
plan

Testing

limited by time

required to

inspect sample

plans

requirements

plans

Testing

undesirable plan
(error trace)

no errors

Testing with the SPIN Model Checker
(our work)

correctness
properties

Adjust model
to exclude

undesirable
plan end

testing

limited only by

memory and

processor

speed

Promela
Model

analyzes

billions

of plans

Fig. 1. Map in context.

The traditional approach to testing a plan model is to use Aspen to exercise
the model with various goals, and manually examine the generated plans, see
Figure 1. The Map conversion tool offers an alternative approach where an Aml
model is translated to a Promela model, such that the Spin model checker can
be used to test the plan model. The tool handles goals, activity decomposition,
temporal constraints, and automated calculation of a cone of influence of vari-
ables (slicing) to reduce the search space. We demonstrate that the substantial
increase in test coverage achieved through the use of model checking can work
in practice and scale to a mission sized Aml input model.

Automated Testing of Planning Models 3

In work that predated publication of our previous paper [1], the real-time
model checker UPPAAL was used to check for violations of mutual exclusion
properties and to check for the existence of a plan meeting a set of goals [6]. In
contrast, the work reported in this paper shows that for verification of a set of
properties of interest, it is not necessarily required to reason about time. Spin has
also been used to verify plan execution engines [7, 8]. Automatically generated
test oracles have been used to assist in the interpretation of test plan outputs
from APS [9]. A comparison of three popular model checkers, Spin, SMV and
Murphi showed that these model checkers can be used to check for the existence
of a plan meeting a set of goals [10].

The rest of the paper is organized as follows. Section 2 briefly describes the
Aspen planner and the Spin model checker. Section 3 presents an example of an
Aml model, and how Spin is used to explore the Promela model generated by
the Map tool. Section 4 explains the principles of the translation from Aml to
Promela. Section 5 presents the results of analyzing the EO1 model. Finally,
Section 6 concludes the paper and suggests future work.

2 The Aspen Planner and the Spin Model Checker

2.1 The Aspen Planner

The Aspen planner takes as input: an initial state, a goal, and a plan model
describing allowable activities and constraints on their relationships; and pro-
duces a plan of activities that achieves the goal while satisfying the constraints
in the model. In order to be efficient for on-board planning, the Aspen planner
performs a heuristics-based search, not exploring all possible paths, but instead
only exploring a minimal search space. The objective of the planner is to find a
single good plan, and the assumption is that such a plan exists. While this min-
imal search approach makes Aspen efficient for finding plans quickly when they
exist, it makes Aspen’s search incomplete, which is a drawback during testing.
For instance, if Aspen does not return a plan, one cannot conclude that there
is no plan.

An Aml model consists of a set of goals, activity specifications, resources, and
states. C++ functions may be called from the model to calculate values used to
determine resource requirements and states. The start of an activity is normally
guarded so that the activity can only be scheduled if necessary resources are
available and if the spacecraft is in a desired state. Activities typically modify
states and resources at the beginning and/or end of the activity. Activities can
be decomposed into lower level, sub-activities. A number of temporal relations
can be defined to order the start and completion of sub-activities with respect
to one another. States and resources are used in Aml models to constrain the
types of plans that are generated to a set that will be safe and feasible. For
instance, an atomic resource such as a solid state recorder (SSR), that can only
be safely accessed by one reader or writer at a given time, will be tracked by a
mutex state. An activity that needs to write to the SSR will have a guard that
prevents the activity from starting until the SSR lock is available. The activity

4 Havelund, Groce, Holzmann, Joshi, Smith

needing to read or write to the SSR takes the lock upon entry and restores it
upon exit.

A tightly constrained Aml input model will have a smaller number of poten-
tial plans, and can be more completely tested, but will be less agile in respond-
ing to unexpected events during spacecraft operation. A less tightly constrained
model exploits the strengths of the APS system to respond to the unexpected,
but in order to be trusted, must be more thoroughly tested than is possible with
standard test techniques.

2.2 The Spin Model Checker

Spin is a model checker and can analyze the correctness of finite state concurrent
systems with respect to formally stated properties [3]. A particular concurrent
system is formalized in the PROcess MEta LAnguage (Promela), and correct-
ness properties to be verified can be formalized either in Linear Temporal Logic
(Ltl), in a visual tool such as the TimeEdit tool [12] that generates Buchi au-
tomata, or using assertions placed in the Promela model. The Spin tool also
provides a simulator, with which Promela models may be executed. This can
in particular be used to re-run error traces generated by the model checker for
properties that are not satisfied. Spin’s search attempts to be exhaustive, con-
tinuing until it finds an error, memory is exhausted, or the search completes.
The correctness property can express a desired behavior, like a goal in Aspen’s
Aml language, or an undesired behavior, such as a unsafe plan that should be
excluded from an Aml input model.

Promela is Spin’s modeling language, supporting the declaration of process
types, and instantiation (spawning) of instances of these types. The language can
be thought of as a multi-threaded programming language. Processes communi-
cate via shared variables and/or by message passing through communication
channels. A process can block by waiting for a Boolean predicate over the global
variables to become true, or it can block on waiting for a value to appear on an
input channel. The execution of a Promela model consists of executing these
parallel running processes in a non-deterministic interleaved manner until no
process can continue, either because all processes have terminated normally, or
they have deadlocked. A Promela model denotes the set of all such finite and
infinite execution traces. The Spin model checker conceptually explores all traces
for conformance to or violation of a formal property.

3 Example

The following example is intentionally made as small as possible (and conse-
quently rather artificial), but sufficiently complex to still illustrate the funda-
mental principles. The scenario is the operation of a planetary rover performing
drilling activities. First an Aml model is represented. Second, it is shown how
Spin is used to analyze the Promela model generated by Map. In this section
the generated Promela will be regarded as a black-box, not unlike how a user
would perceive it. In Section 4 the translation will be explained.

Automated Testing of Planning Models 5

01 resource power {
02 type = depletable;

03 default_value = 75;

04 capacity = 100;

05 min_value = 10;

06 }
07

08 resource buffer { type = atomic; }
09

10 state_variable buffer_sv {
11 states = ("empty","full");

12 transitions = ("empty"->"full", "full" -> "empty");

13 default_state = "empty";

14 };
15

16 activity drill {
17 string hole;

18 int depth;

19 int power_use;

20 dependencies = power_use <- powerof(depth);

21 reservations =

22 buffer,

23 buffer_sv must_be "empty",

24 buffer_sv change_to "full" at_end,

25 power use power_use;

26 }
27

28 activity uplink {
29 reservations =

30 buffer,

31 power use 30;

32 }
33

34 activity charge {
35 reservations = power use -25;

36 }
37

38 activity experiment {
39 decompositions =

40 (drill with ("hole1" -> hole, 7 -> depth),uplink,charge

41 where charge ends_before end of drill)

42 or

43 charge;

44 }

Fig. 2. Aml model of drilling scenario.

6 Havelund, Groce, Holzmann, Joshi, Smith

3.1 Aml Model of Drilling Rover

The rover can perform three activities: (i) Drill: the rover drills a hole of a
certain depth, extracts some soil, and performs some analysis on the selected
material, for example using an oven. All these activities are here abstracted into
the single drill action. (ii) Uplink : when the drilling (and included analysis) has
been performed the results must be uplinked to a spacecraft (which subsequently
transmits it to earth, not modeled). (iii) Charge : the drilling as well as the
uplink both require power, represented by a power resource. This resource can
be charged with new energy when becoming low. The Aml model presented in
Figure 2 formalizes this scenario. Our goal will be to generate plans that request
drilling and uplink of the results, with charging occurring as needed. We shall
illustrate how Map can be used to detect various errors in the model to be
presented.

The rover and the equipment on board the rover uses various resources. There
are two types of resources: atomic, and variable. Atomic resources are physical
devices that can only be used (reserved) by one activity at a time (for example a
science instrument). A variable resource has at any point in time a value and can
be used by more than one activity at a time, each reducing the quantity of the
resource, as long as the minimum/maximum bounds are not exceeded. A variable
resource is either depletable or non-depletable. A depletable resource’s capacity
is diminished after use (for example a battery), in contrast to a non-depletable
resource, where the used quantity is automatically returned (for example solar
power).

The model contains one variable depletable power resource (lines 01–06).
The power resource has a current starting value of 75, a minimum value of 10
(it cannot go below) and a maximum capacity of 100. Digital results collected
during drilling are stored in a data buffer before being uplinked. The data buffer
is modeled as an atomic resource (line 08) and will be reserved by the drill
and the uplink activities to ensure mutual access. In addition, a state variable
buffer sv is introduced (lines 10–14) to model the status of the buffer: whether
it is empty or full. The state machine has two states ("empty" and "full") and
two transitions: one from "empty" (the initial state) to "full", and one from
"full" back to "empty".

The drill activity (lines 16–26) declares three local variables: hole, depth
and power use (lines 17–19). Any local variable in Aml can function as a pa-
rameter. The first two will function as parameters (what hole to drill and what
depth), while the third is a real local variable holding how much power to con-
sume, being assigned a value in a dependency clause (line 20) as a function of
the depth. The drill activity reserves a collection of resources (lines 21–25):
the data buffer (line 22, ensuring mutual exclusion during use), which must
be "empty" (line 23), and will transition to "full" after (line 24); and power
as a function of the depth of the hole (line 25). The uplink activity (lines 28–
32) reserves the buffer from where data are uplinked and uses 30 power units.
The charge activity (lines 34–36) adds 25 units back to the power resource (us-

Automated Testing of Planning Models 7

ing Amls semantics of providing negative numbers when adding, and positive
numbers when subtracting).

The main activity is called experiment (lines 38–44) and is decomposed
into the three activities: charge, drill and uplink. The decomposition consists
of either (lines 40–41) performing a drill, an uplink and a charge, where the
charge is required to end before the end of the drill (to save time); or, if there
is not power enough, just charging the rover with new energy (line 43). Note
the constraint: ‘charge ends before end of drill’. Aml allows for several
kinds of constraints , ‘A constraint B’, between two activities A and B (that
can occur in any order if no constraints are given): contains, contained by,
starts before, ends before, starts after, ends after, all further followed
by one of start of, end of, or all of. Examples are: A starts before start
of B, A starts after end of B, and A contains all of B (the B activity
occurs during the A activity, not before and not after).

An initialization file outlines what activities should be instantiated. In this
case one instance of the experiment activity is initiated:

experiment exp {}

Note that the experiment activity itself launches the charge, drill and uplink
activities through decomposition.

3.2 Analyzing the Model with Spin

Verification 1 In order to verify Ltl properties with Spin, atomic conditions
(Promela macros using #define) are introduced by Map. For example, the
event e uplink will become true when the uplink activity terminates. For each
activity A, there will be a b A (begin A) and a e A (end A) event, which can be
referred to in Spin. The first property we will verify is that eventually an end
of uplink is observed. This is achieved by asking Spin to prove that there is no
execution satisfying the Ltl property <>e uplink (see Figure 3).

The property states that eventually the end of an uplink occurs. A trace sat-
isfying this property should constitute in a good plan. By making Spin attempt
to verify that an execution satisfying this property does not exist, we use Spin
to generate an error trace (a plan) that achieves such a state in case it exists.
Note that we have chosen the “No Executions” option in Xspin in order to get
an error trace (plan). The verification causes Xspin to generate the message
sequence diagram shown in Figure 4.

The message sequence diagram shows for each activity (a Promela process,
see Section 4) a vertical time line, showing when it begins and when it ends.
In this case it is observed that there is an uplink before any drilling has taken
place. This is an error according to our informal requirements. By studying the
model it is detected that the uplink activity does not check the status of the
data buffer to see whether it contains data before the uplink takes place. The
buffer must be full before uplink (a check on the buffer state variable), and after
the uplink it must be set to empty. To fix this we modify the uplink activity as
follows:

8 Havelund, Groce, Holzmann, Joshi, Smith

Fig. 3. Xspin – generate a plan ending in an uplink.

Fig. 4. Xspin – an error trace equals a plan.

Automated Testing of Planning Models 9

activity uplink {
reservations =

buffer,
buffer_sv must_be "full", // added
buffer_sv change_to "empty", // added
power use 30;

}

3.3 Verification 2

Retrying the verification after this modification yields no errors. However, no
errors means no plan. Recall that Spin is asked to prove that there is no execution
leading to an uplink. After further examination it is discovered that even though
the charge activity adds 25 units, which should be enough to cover the combined
usage of 70 (drill) plus 30 (uplink) with an initial resource value of 75, another
10 needs to be added since the minimal value of the resource is set to 10 (cannot
go below). The maximum capacity must consequently also be increased. The
power resource therefore needs to be modified as follows:

resource power {
type = depletable;
default_value = 85; // changed from 75 to 85
capacity = 110; // changed from 100 to 110
min_value = 10;

}

This time an acceptable sequence of events is generated: first drilling, then a
charge, and then uplink.

3.4 Verification 3

We have now demonstrated that there is a plan that ends in an uplink preceded
with a drill. The question is whether there are any plans that end in an uplink
without being preceded with an drill. We can verify this by searching for a plan
satisfying the following Ltl property:

!e_drill U e_uplink

That is: no drill until an uplink. The until operator of Ltl is strong, hence this
means that an uplink must occur (and no drill before that). Since we want to
show that there is no such plan, we enter this property with “No Executions”
set. The verification shows that there are no such executions (errors : 0), which
is a satisfactory result.

All our properties so far have been stated as the Ltl property <>goal, using
the “No Executions” option to make Spin attempt finding just one execution
that makes the goal true. It turns out that for verification of plan models this

10 Havelund, Groce, Holzmann, Joshi, Smith

seems to be the most natural verification style: to postulate the non-existence of
an execution (plan) that satisfies a particular property. It is, however, possible
also to use the “All Executions” option in Xspin. That is, to prove that for all
execution traces some property is true. Note though that a plan model denotes
executions that lead nowhere. Such blind alleys are simply part of the search
problem. Hence, one has to be careful when stating properties to be true on all
executions. One has to limit the verification to only those executions that achieve
some meaningful goal. In our last case we can state the property that: every
uplink is preceded by a drill as the following property to be true on all traces,
knowing that there is only one uplink possible: <>e uplink -> <>(e drill &
<>e uplink). That is, “for all traces, if the trace is a good plan (eventually from
the beginning of the trace there is an uplink), then (also from the beginning of
the trace) there is a drill, followed by a (the) uplink”. This is, however, a slightly
complicated way of stating our desired property.

4 Translation from Aml to Promela

Planning in principle can be regarded as the following problem: given is a model
M = (Σ,A) consisting of a state Σ (resources and state machines), and a finite
set of activities A = A1, A2, A3, . . . , An that access variables in the state Σ.
Each activity Ai has a precondition pre−Ai on the state Σ that has to be true
before that activity can execute (or “be put down on a time-line”, using planning
terminology), and a post-condition post−Ai, defining a side-effect on the state Σ.
The activities can be thought of as guarded commands. A planning problem is a
triple (I,G,M) consisting of an initial state I and a goal state G to be achieved
from the initial state while obeying the model M (obeying the pre-conditions
essentially). The planning problem is obviously more complicated, in particular
in the case of Aml, which allows for dynamically created activities and time
constraints.

However, this view of the planning problem directly leads to a process view
of planning: given a set of processes (activities), find an execution of these that
leads from the initial state to the goal state, without deadlocking or otherwise
failing in between. This is the view underlying the Map translator. It translates
an Aml model into a Promela model of concurrent processes, one for each
activity, with a pre-condition and a post-condition. Concurrency is normally
regarded as a hard problem for users to get right, and the above argumentation
suggests that the planning problem is equally difficult to get right.

More specifically, an Aml model is translated into a Promela model, which
contains a process type (proctype) for each activity. The body of each such
process type consists of two sequentially composed statements S1;S2: a beginning
S1 and an ending S2, each of which is an atomic statement (encapsulated with
Promelas atomic{. . .}-construct). The basic idea is that the scheduling of an
Aml activity A over a time period starting at time t1 and ending at time t2 in
Spin will result in the corresponding process executing its first atomic statement
S1 at a point corresponding to time t1 and its second atomic statement S2 at

Automated Testing of Planning Models 11

a point corresponding to time t2. However, since Spin does not model real-
time, time periods are not measured, only the relative ordering of events is
modeled. Planning in Spin consists of finding an execution trace that executes
the processes (respecting the guards) in such a manner that a specific end state
is reached, with the expected processes executing in a desired order, and such
that the state satisfies some invariants during the execution.

Resources are declared as state variables that get written to and read from
during the “execution” of the Promela model:

int power;
bool buffer;
byte buffer_sv;
int buffer_sv_reserve_count;

The power variable holds current power level. The buffer variable represents
a semaphore, which is either taken (value 1) or free (value 0). The buffer state
variable (buffer sv) holds the current state of the buffer state machine. The
buffer sv reserve count is increased each time a process performs a must be
request, as for example the drill action in line 23 of Figure 2. The drill action
requires the state variable to have this value throughout its execution. Several
activities can require this to be true, and all be able to execute at the same time.
Each process will count this variable up at entry and down on exit, and the state
variable (buffer sv) itself cannot change unless this counter is 0.

As already mentioned, an activity is modeled as a process. SPIN attempts
to ”execute” processes, thereby producing an execution trace, which becomes
the sought plan. In the example, the experiment activity starts the three sub-
activities drill, uplink, and charge, with the constraint that the charge should
end before the end of the drill action. In addition, the three sub-activities should
all terminate before the end of the experiment activity since they are created as
sub-activities (AML semantics). These constraints are illustrated in Figure 5.

Fig. 5. Activity constraints. Stipled lines are constraints imposed by AML semantics.
The fully drawn constraint comes from the model constraint: “charge ends before

end of drill”.

12 Havelund, Groce, Holzmann, Joshi, Smith

These constraints are imposed in the Promela model by passing two sets
(collections) of events to each process: those that it should wait for before it
starts, and those it should wait for before it terminates. In the above case, for
example, the drill process should be passed the sets: ∅ (don’t wait to start) and
{end charge} (wait for charge to terminate before terminating). In order to
know what events actually happened in the context (parent) in which a process
exists, it takes a third parameter, a reference to a set that is continuously up-
dated with events as they happen. The generated process declaration in Figure
6 contains these parameter definitions.

proctype drill(set begin_events; set end_events;

set external_events; short sigstart; short sigend;

int depth)

{

byte _e_;

int power_use;

atomic {

subset(begin_events,external_events);

power_use = powerof(depth);

(buffer==1 && buffer_sv==ENUM_empty &&

(power-power_use)<=110 && (power-power_use)>=10) ->

buffer = buffer-1;

buffer_sv_reserve_count = buffer_sv_reserve_count+1;

power = power-power_use;

addorlog(external_events,sigstart)

};

atomic {

subset(end_events,external_events);

(buffer_sv==ENUM_empty &&

(buffer_sv_reserve_count==1 || buffer_sv==ENUM_full)) ->

buffer = buffer+1;

buffer_sv_reserve_count = buffer_sv_reserve_count-1;

buffer_sv = ENUM_full;

addorlog(external_events,sigend)

}

}

Fig. 6. Promela model of drill activity.

The first two parameters are the sets of events to wait for before start-
ing (begin events) respectively ending (end events). Sets are not available
in Promela as a built in data type, so they are modeled as channels (the
Promela model contains a macro definition of the form: ‘#define set chan’).
The external events parameter is a reference (pointer) to the set of actual
events that happen, to be updated by the context. The process itself can add

Automated Testing of Planning Models 13

events to this set when starting and when ending such that other processes can
be made aware thereof. The events to add are the last two parameters of the
process: sig start and sig end. Whether these events should be added or not
really depends on the context, whether some other process needs to know. If no
process needs to know the parameter is negative, and it will not be added.

The last parameter (depth) to the process is an Aml model-parameter, intro-
duced by the user in the drill activity (line 18). Recall that any local “variable”
of an activity in Aml can be a parameter in case an instantiating activity passes
a value to this variable. The drill activity has 3 local variables: hole, depth,
and power use, but only the first two of these are real parameters instantiated
at call time in the experiment activity:

drill with ("hole1" -> hole, 7 -> depth)

However, only the depth parameter influences planning since it impacts how
much power is used (lines 20 and 25). Map performs abstraction by applying
data flow analysis of the Aml model in order to determine which variables are
not used in planning, and which can therefore be abstracted away. The string
variable hole does not influence the planning, and hence is abstracted away.

The body of the drilling process is divided into two atomic statements, repre-
senting respectively the beginning and the end of the activity. The explanations
of the two blocks are similar. The beginning block starts by waiting for the
events in the begin events set to become a subset of the external events set
(subset(begin events,external events)). The various operations on sets are
really operations on channels, modeling set addition, set membership test, and
subset test. It then performs checks on and assignments to various resource, state
and semaphore variables. A conditional statement “condition -> statement”
causes the process to block until the condition becomes true (Promela seman-
tics). Finally, it is signaled to the external events set that the process has
started (if the sigstart value is not negative). The addorlog(set,signal)
function adds the signal to the set, if the signal is not negative, and furthermore
stores the signal in a global variable event (such that Ltl formulas can refer
to it) of an enumerated type of all the possible events, one for the beginning and
end for each activity:

mtype {
BEGIN_drill, END_drill,
BEGIN_uplink, END_uplink,
BEGIN_charge, END_charge,
BEGIN_experiment, END_experiment

}
local mtype _event_;

The experiment activity is similarly translated into the Promela process shown
in Figure 7. This process declares two variables. The set-valued variable events
will be updated continuously during execution and will contain the events that
occur during an experiment (it becomes the external events parameter to the

14 Havelund, Groce, Holzmann, Joshi, Smith

sub-activities). The set-valued variable end drill is initialized once to contain
the set of events that the drill activity has to wait for before it can end. The
required sizes of these sets (3 and 1) are calculated at translation time. For
example, 3 events will need to be recorded: end of charge (needed by the drill),
and end of drill and uplink (needed by the experiment that cannot terminate
before these have terminated, see Figure 5).

The first atomic block contains a conditional if . . . fi statement, having
two entries (each preceded by ::) that are chosen non-deterministically, corre-
sponding to the or operator occurring in line 42 of the Aml model in Figure 2.
The form of the two choices are similar. In the first case, corresponding to lines
40-41 of Figure 2, the set end drill is created to contain the event END charge
by: mustwaitfor(end drill,END charge), which adds its second argument to
the first argument set. This set is then passed as the second argument to the
drill activity in the subsequent line to indicate that the drill activity has to
wait for the charge to end before it can end itself. The other event sets passed
around are empty (nullset). The events passed as arguments, for example the
negative -BEGIN charge and the positive END charge to the charge activity,
indicate that no activity cares about when a charge begins (negative so it will
not be added to the events set), whereas for example the drill activity needs
to know when the charge ends. Finally, the experiment will not continue before
the sub-activities spawned in each branch have terminated (isin(. . .)).
The Aml model contains in line 20, Figure 2, a call of the function powerof,
which must have been defined as a C++ function in a separate file. Map does
not translate these C++ functions. Instead, their occurrence in the Aml model
is marked by the translator, and a user has to program these as macros: #define
powerof(depth) (depth*10).

5 The Earth Orbiter 1 Application

Aspen has successfully commanded (and is still at the time of writing command-
ing) the Earth Observer 1 (EO1) Autonomous Sciencecraft Experiment onboard
the EO1 earth orbiting satellite. The EO1 satellite orbits earth, taking photos of
the surface and comparing recent images with previous images to detect changes
due to, for instance, flooding, fire and other natural events. Upon detecting a
change, the spacecraft software generates a new goal to take a more detailed
follow-up image and Aspen generates a plan to achieve that goal.

Our original goal was to enable Map to convert the EO1 Aml model into
Promela. The EO1 model features the most commonly used Aml constructs,
and therefore, a tool that can convert this model will be capable of converting
a very broad set of realistic Aml models, a non-trivial achievement. With well
over 100 activities in the EO1 Aml model, and an ever changing set of goals,
EO1 also illustrates that an automated conversion tool is necessary to make the
logic model checking of APS input models practical.

EO1 has two imaging instruments that can read from and write to a solid
state recorder. The designers of the Aml model were concerned about a possible

Automated Testing of Planning Models 15

proctype experiment(set begin_events; set end_events;

set external_events; short sigstart; short sigend)

{

byte _e_;

set events = [3] of {mtype};

set end_drill = [1] of {mtype};

atomic {

subset(begin_events,external_events);

addorlog(external_events,sigstart);

if

::

mustwaitfor(end_drill,END_charge);

run drill(nullset,end_drill,events,-BEGIN_drill,END_drill,7);

run uplink(nullset,nullset,events,-BEGIN_uplink,END_uplink);

run charge(nullset,nullset,events,-BEGIN_charge,END_charge);

isin(END_drill,events) && isin(END_uplink,events) &&

isin(END_charge,events)

::

run charge(nullset,nullset,events,-BEGIN_charge,END_charge);

isin(END_charge,events)

fi

};

atomic {

subset(end_events,external_events);

addorlog(external_events,sigend)

}

}

Fig. 7. Promela model of experiment activity.

data race on the state recorder, violating that reads and writes must mutu-
ally exclude each other. This property was formulated in Promela using a
semaphore access counter that was shown not to go beyond 1 on a very large
state space, although not the complete state space. The Aml model analyzed is
approximately 7300 lines of code, causing approximately 4000 lines of Promela
code to be generated. Two experiments were performed, each applying Spins
bit-state hashing where not all of the state space is explored. Each experiment
was performed comparing single core (1 CPU) and multi-core (8 CPUs) runs,
using a recently developed multi-core version of Spin [4]. In the first experiment
10 million states were explored using 11.6 minutes on 1 CPU and 89 seconds on
8 CPUs. In the second experiment, with more aggressive bit-state hashing, 2.5
billion states were explored, using 2.6 days on 1 CPU and 8 hours on 8 CPUs.

16 Havelund, Groce, Holzmann, Joshi, Smith

6 Conclusion and Future Work

The translator translates a large subset of Aml relatively faithfully by attempt-
ing to map Aml source constructs to Promela target constructs, which are
supposed to yield a behavior in Spin similar to the behavior of the source in
Aspen. However, some parts of Aml are not translated, in some cases as an
optimization mechanism. The main constructs of Aml that are not translated
include time values and durations, reals and floats, priorities, and a special form
of call-by-reference parameter passing that Promela does not support. Of the
omitted concepts, some are generally hard to translate, such as time, real num-
bers, and call-by-reference of activities. The remaining omissions could be han-
dled more easily. The Map tool shall be seen as an aid in examining the utility of
model checking in testing plan models. Future work includes examining exactly
what forms of verification can be performed with the presented tool that cannot
easily be performed with Aspen.

References

1. M. Smith, G. Holzmann, G. Cucullu, B. Smith, Model Checking Autonomous Plan-
ners: Even the Best Laid Plans Must be Verified, IEEE Aerospace Conference, Big
Sky, Montana, March, 2005.

2. G. Holzmann, The Model Checker Spin, IEEE Transactions on Software Engineer-
ing, Vol. 23, No. 5, May 1997, pp. 279-295.

3. G. Holzmann, The Spin Model Checker: Primer and Reference Manual, 2003,
Addison-Wesley, ISBN 0- 321-22862-6, 608 pgs.

4. G. Holzmann, D. Bosnacki, The Design of a Multi-Core Extension of the Spin
Model Checker, IEEE Transactions on Software Engineering, Vol. 33, No. 10, Oc-
tober 2007, pp. 659-674.

5. http://www.spinroot.com.
6. L. Khatib, N. Muscettola, K. Havelund Verification of Plan Models using UPPAAL,

First Goddard Workshop on Formal Approaches to Agent-Based Systems. NASAs
Goddard Space Center, Maryland. March 2000.

7. K. Havelund, M. Lowry, J. Penix, Formal Analysis of a Space Craft Controller
using Spin, IEEE Transactions on Software Engineering, Vol. 27, No. 8, August,
2001.

8. K. Havelund, M. Lowry, S. Park, C. Pecheur, J. Penix, W. Visser, J. L. White,
Formal Analysis of the Remote Agent - Before and After Flight, The Fifth NASA
Langley Formal Methods Workshop, Virginia. June 2000.

9. M. Feather, B. Smith, Automatic Generation of Test Oracles: From Pilot Stud-
ies to Applications, Proceedings of the Fourteenth IEEE International Conference
on Automated Software Engineering (ASE-99), Cocoa Beach, FL. October, 1999.
IEEE Computer Society, pp 63-72.

10. J. Penix, C. Pecheur, K. Havelund, Using Model Checking to Validate AI Plan-
ner Domain Models, 23 Annual NASA Goddard Software Engineering Workshop,
Goddard, Maryland, Dec 1998.

11. B. Cichy, S. Chien, S. Schaffer, D. Tran, G. Rabideau, R. Sherwood, Validating
the Autonomous EO-1 Science Agent, International Workshop on Planning and
Scheduling for Space (IWPSS 2004). Darmstadt, Germany. June 2004.

Automated Testing of Planning Models 17

12. M. Smith, G. Holzmann and K. Ettessami, Events and Constraints: a Graphical
Editor for Capturing Logic Properties of Programs, 5th International Symposium
on Requirements Engineering, pp 14-22, Toronto, Canada. August 2001.

13. S. Chien, R. Knight, A. Stechert, R. Sherwood, G. Rabideau, Using Iterative Repair
to Improve Responsiveness of Planning and Scheduling, International Conference
on Artificial Intelligence Planning Systems (AIPS 2000). Breckenridge, CO. April
2000.

14. A. Fukunaga, G. Rabideau, S. Chien, ASPEN: An Application Framework for
Automated Planning and Scheduling of Spacecraft Control and Operations, Pro-
ceedings of International Symposium on Artificial Intelligence, Robotics and Au-
tomation in Space (i-SAIRAS97), Tokyo, Japan, 1997, pp. 181-187.

15. B. Smith, R. Sherwood, A. Govindjee, D. Yan, G. Rabideau, S. Chien, A. Fuku-
naga, Representing Spacecraft Mission Planning Knowledge in Aspen, AIPS-98
Workshop on Knowledge Engineering and Acquisition for Planning, June 1998.
Workshop notes published as AAI Technical Report WS-98-03.

