
Verifying Execution Traces

Klaus Havelund

NASA JPL, California Inst. of Technology, USA

Joint work with:

Ylies Falcone

University of Grenoble, France

Giles Reger

University of Manchester, UK

Markoberdorf Summer School, August 2012

Acknowledgements

Part of the work described in this publication was carried out at Jet
Propulsion Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.

Copyright 2012. All rights reserved.

Overview of lectures

Introduction: what is runtime verification (RV)?

How to manage without an RV system
I Writing monitors using AspectJ and Java.

Survey of four RV systems with different characteristics:
I TraceMatches:

F an extension of AspectJ with regular expressions.

I JavaMOP:
F supports many different logics as plugins.

I RuleR:
F a form of rule-based programming.

I TraceContract:
F an internal DSL extending Scala.

Part I
Introduction to Runtime Verification

System verification

Static: based on complete analysis of code/models of code
I static analysis / abstract interpretation
I theorem proving
I model checking

Dynamic: based on an single executions of program/system
I testing
I runtime verification

F a focus of research on analysis of program executions

Attempting a definition of “Runtime Verification”

Definition (Runtime Verification)

Runtime Verification is the discipline of computer science dedicated to the
analysis of system executions (possibly leveraged by static analysis) by
studying specification languages and logics, dynamic analysis algorithms,
system instrumentation, and system guidance.

Definition (Runtime Verification - wider version)

Runtime Verification is the study of how to get as much out of your runs
possible.

Attempting a definition of “Runtime Verification”

Definition (Runtime Verification)

Beyond assert and print.

We focus on runtime verification of user-provided specifications.

One field - many names

Runtime verification

Runtime monitoring

Runtime checking

Runtime analysis

Dynamic analysis

Trace/log analysis

Fault protection

Runtime enforcement

Runtime verification applications

Testing

Fault protection

Intrusion detection

Program understanding

Profiling

Execution visualization

Testing, runtime verification, fault protection

runtime verification focuses on the oracle problem

tes$ng	
 fault	

protec$on	
 rv	

the	
 oracle	
 problem	

test	
 input	
 genera$on	
 recovery	

The different approaches compared

technique automated scalable coverage properties

model checking yes no finite complex
theorem proving no no complete complex

static analysis yes yes complete simple
runtime verification yes yes low complex

Signature:

automated : once model/program, input, and specification is provided

scalable : applies to realistic systems without too much pain

coverage : to what extent all possible executions are explored

properties : how complex properties can be expressed and how
elegantly

System verification

Several attempts at combining static and dynamic analysis. For example:

From static to dynamic:
I prove as much as possible with static techniques.
I leave the rest for dynamic techniques.

From dynamic to static (a dual view):
I decide set of program locations to instrument to drive monitors.
I use static analysis to reduce that set.

These two views most likely represent the same problem.

Runtime verification in theory

Events record runtime behavior
I snapshots of state or actions performed

A finite sequence of events is a trace τ

A property φ denotes a language L(φ) (a set of traces)

τ satisfies φ iff τ ∈ L(φ)

Viewing the execution as a trace

A trace σ is a formal view of a discretized execution:

a sequence of program’s states

a sequences of program’s events

a mix states/events

At any time during execution:
possible

future(s)

nowpast

we are in the present moment now

past in known

future is unknown - many possible

Giving verdicts along the way

Should detect success/failure as soon as possible

Standard approach is to use four-valued verdict domain

Consider all possible extensions of a trace

current trace τ all suffixes σ Action

1 τ ∈ L(ϕ) τσ ∈ L(ϕ) stop with Success T
2 τ ∈ L(ϕ) unknown carry on monitoring Tstill

3 τ /∈ L(ϕ) τσ /∈ L(ϕ) stop with Failure F
4 τ /∈ L(ϕ) unknown carry on monitoring Fstill

Runtime verification in practice
Start with a system to monitor.

system	

Runtime verification in practice
Instrument the system to record relevant events.

system	

instrumenta,on	

Runtime verification in practice
Provide a monitor.

system	

instrumenta,on	

monitor	

Runtime verification in practice
Dispatch each received event to the monitor.

system	

instrumenta,on	

monitor	

observe	

Runtime verification in practice
Compute a verdict for the trace received so far.

system	

instrumenta,on	

monitor	

observe	

verdict	

Runtime verification in practice
Possibly generate feedback to the system.

system	

instrumenta,on	

monitor	

observe	

verdict	

feedback	

Runtime verification in practice
We might possibly have synthesized monitor from a property.

system	

instrumenta,on	

monitor	

observe	

verdict	

feedback	

property	

Generating the trace

The concrete execution of the program needs to be abstracted:

Discrepancy:
I events of the program in Σc

I events of the specification in Σa

Define a function Σc → Σa ∪ {irrelevant}

It is the role of the instrumentation phase

Monitor Placement: how the monitor is integrated

Offline: the trace is analyzed aposteriori
e.g., analyzing log file/trace dump

Online: the trace is analyzed in a lock-step manner
I external: monitor runs in parallel with the system e.g., communication

over pipes, sockets
F synchronous (system waits for response)
F asynchronous (buffered communication)

I internal: monitor’s code is embedded into the application

Monitor placement

system	
 monitor	

system	
 monitor	

monitor	
 system	

offline	

online	
 external	

online	
 internal	

About reaction

Reaction can take several forms:

1 Display an error message

2 Throw an exception in the monitored program, and monitored
program then deals with it

3 Launch some (recovery) code: the effect depends on monitor’s
placement

How is the monitor specified?

Program (built-in algorithm focused on specific problem)
I data race detection
I atomicity violation
I deadlock detection

Programming language

Design by contract (pre/post conditions), JML for example

Logic (formal system)
I state machines
I regular expressions
I grammars (context free languages)
I temporal logic (past time, future time)
I rule-based logics

From propositional to parametric monitoring

Field started with propositional monitoring
I events are just strings

Recently moved to parametric monitoring
I events carry data values

Solutions exist spanning the two classical dimensions
I Expressiveness of specification language
I Efficiency of monitoring algorithm

We shall see solutions in both dimensions.

The propositional approach : an example

Record propositional events, for example
I open, close

Define a property over propositional events, for example

I LTL (finite-trace) �(open→©(¬open U close))

I RE (open.close)∗

I DFA
1 2

open

close

Check if each trace prefix is in the language of the property

Using Projection

With the property
1 2

open

close

Take the trace

open.read.write.close.open.read.close

What do we do with read and write ?

Filter out irrelevant events / Project on relevant events

open.close.open.close

Going parametric

Consider the code

File f1 = new File("manual.pdf");

File f2 = new File("readme.txt");

f1.open();

f2.open();

f2.close();

f1.close();

Say we just focus on propositional events

open.open.close.close

Not good, we want to parameterize events with data values and use
those values in the specification

Instead record the parametric trace

open(manual.pdf).open(readme.txt).close(readme.txt).close(manual.pdf)

Parametric properties

Using the events
I open(f) when file f is opened
I close(f) when file f is closed

the property becomes

1 2

open(f)

close(f)

From parametric to quantified

Quantify over variables in parametric property:

1 2

∀f open(f)

close(f)

Some instrumentation techniques

Manual:

assertions

pre/post conditions in design by contract solutions

Automated:

instrumentation of source code
I CIL (C) http://sourceforge.net/projects/cil

instrumentation of byte/object code
I Valgrind (C) http://valgrind.org
I BCEL (Java) http://jakarta.apache.org/bcel

aspect-oriented programming (AOP):
I AspectC (C)

https://sites.google.com/a/gapp.msrg.utoronto.ca/aspectc
I AspectC++ (C++) http://www.aspectc.org
I AspectJ (Java) http://www.eclipse.org/aspectj

http://sourceforge.net/projects/cil
http://valgrind.org
http://jakarta.apache.org/bcel
https://sites.google.com/a/gapp.msrg.utoronto.ca/aspectc
http://www.aspectc.org
http://www.eclipse.org/aspectj

Detection of concurrency errors

Debugging is hard to achieve on multi-threaded systems, due to:

the large number of possible behaviors

the difficulty to establish causality between events

An RV approach is to use predictive analysis:

Turn a hard to test property into an easy to test property (footprints).

Violation is only suggestive, indicating the potential for an error in
some other trace of the monitored system.

report(σ)⇒ ∃σ′ ∈ Exec(System) : error(σ′) . . . or not. . .

Existing approaches for detection of deadlocks, dataraces, atomicity errors

Challenges

Code instrumentation

Definition of specification languages
I expressive
I elegant

Synthesis of efficient monitors

Low impact monitoring

Integration of static and dynamic analysis

How to control application in case of violation/validation

Programming language design that supports RV

Learning specifications from traces

Program visualization

...

Runtime Verification 2012 - Istanbul, Turkey

Summary

RV aims to answer the word problem for executions of a program wrt.
a specification.

Also sometimes coined the oracle problem.

Efficient monitoring of parametric properties is a main challenge.

Practical and effective technique.

Growing community with a lot of research opportunities.

References

Klaus Havelund and Allen Goldberg: Verify Your Runs. Verified
Software: Theories, Tools, Experiments (VSTTE’05), 2005.

Martin Leucker and Christian Schallhart: A Brief Account of Runtime
Verification. Journal of Logic and Algebraic Programming, Volume 78,
Issue 5, May-June 2009.

Part II
Instrumentation with AspectJ

Specification with Java

Recap

Last lecture we looked at

General definition of what runtime verification is.

Decided to focus on checking executions against formalized
requirements.

Challenges:
I Instrumentation techniques.
I Specification languages for writing monitors.

Propositional versus parametric monitors.

In this lecture

We will demonstrate how program monitors can be written in Java
using AspectJ for code instrumentation

A through-going example: a planetary rover

Design-by-contract: programming with pre- and post-conditions

From design-by-contract to temporal specifications

Code instrumentation with AspectJ: separating concerns

Specification with Java: while instrumenting with AspectJ

Rover example

A rover contains various instruments, each represented as a task

Command execution:
I Command sequences are received from ground
I Commands get dispatched to instruments
I Commands either succeed or fail on instruments

Resource management:
I Tasks need resources, and sends resource requests to an arbiter
I Some resources can be in conflict and some have higher priority
I The arbiter can grant or deny resources
I Or ask tasks to rescind (cancel) resources if another task asks for

higher priority resources.

File system:
I Results get stored in file system
I Logged data gets sent back to earth

Systems architecture

resource	

arbiter	

task	

task	

task	

task	

command	

dispatcher	

request	

grant	

rescind	

cancel	

command(“take_picture”)	

command	
 sequence	

log	
 resource	

conflicts	

success/fail	

resources	

	
 	
 or	

requestResource	

	
 	
 deny	

addPriority	

addConflict	

Example of resource acquisition sequence

Task 1 Task 2 Arbiter

request

grant

request

rescind

cancel

grant

request

deny

cancel

Design-by-Contract of a method

We first consider a method for requesting a resource.

We will specify its pre- and post-condition.

Subsequently we shall discuss the limitations of pre/post conditions.

The requestResource method

resource	

arbiter	

task	

task	

task	

task	

command	

dispatcher	

request	

grant	

rescind	

cancel	

command(“take_picture”)	

command	
 sequence	

log	
 resource	

conflicts	

success/fail	

resources	

	
 	
 or	
 	
 	
 deny	

requestResource	

addPriority	

addConflict	

The requestResource method

An actor (task) calls this method when requesting a resource by name.

The object representing the resource is looked up.

The method declares a result variable representing the response,
updates it, and finally returns it.

1 Response r e q u e s t R e s o u r c e (Actor a c t o r , S t r i n g name) {
2 R e s o ur c e r e s o u r c e = r e s o u r c e s . g e t (name) ;
3 Response r e s u l t = n u l l ;
4 . . .
5 r e t u r n r e s u l t ;
6 }

The returned result is of type Response

1 p u b l i c c l a s s Response {
2 p r i v a t e R e s o u r c e r e s o u r c e = n u l l ;
3 p r i v a t e L i s t <Resc indOrder> r e s c i n d s =
4 new A r r a y L i s t <Resc indOrder >() ;
5
6 p u b l i c Response (R e s o u r c e r e s o u r c e ,
7 L i s t <Resc indOrder> r e s c i n d s) {
8 t h i s . r e s o u r c e = r e s o u r c e ;
9 t h i s . r e s c i n d s = r e s c i n d s ;

10 }
11
12 p u b l i c R e s o u r c e g e t R e s o u r c e () {
13 r e t u r n r e s o u r c e ;
14 }
15
16 p u b l i c L i s t <Resc indOrder> g e t R e s c i n d s () {
17 r e t u r n r e s c i n d s ;
18 }
19 }

Informal requirement statement

1 Response r e q u e s t R e s o u r c e (Actor a c t o r , S t r i n g name) {
2 R e s o ur c e r e s o u r c e = r e s o u r c e s . g e t (name) ;
3 Response r e s u l t = n u l l ;
4 . . .
5 r e t u r n r e s u l t ;
6 }

Requirement CorrectResponse

Pre-condition: the name should correspond to an existing resource.

Post-condition: the Response object returned by requestResource
must be well-formed. For example:
result.getResource() != null and result.getRescinds() == null

iff.
the resource is not owned by another task, and it is not in conflict
with other resources.

Design by contract with JML (Java Modeling Language)

/*@ requires resources.containsKey(name);

@ ensures
@ (\result.getResource() != null &&

@ \result.getRescinds() == null)
@ ==

@ (\exists Resource resource;

@ resource == resources.get(name) &&

@ \result.getResource() == resource &&

@ \old(isAvailable(resource)) &&

@ \old(getActiveConflicts(resource).isEmpty()));
@*/

1 Response r e q u e s t R e s o u r c e (Actor a c t o r , S t r i n g name) {
2 R e s o u r c e r e s o u r c e = r e s o u r c e s . g e t (name) ;
3 Response r e s u l t = n u l l ;
4 . . .
5 r e t u r n r e s u l t ;
6 }

Pre- and post-conditions expressed as assertions

Most programming languages, however, do not explicitly support
DBC. So we use assertions.

Post-condition is complex, so we call a post-condition method.

1 Response r e q u e s t R e s o u r c e (Actor a c t o r , S t r i n g name) {
2 assert resources.containsKey(name);
3 R e s o ur c e r e s o u r c e = r e s o u r c e s . g e t (name) ;
4 boolean o l d I s A v a i l a b l e = i s A v a i l a b l e (r e s o u r c e) ;
5 L i s t <Resource> o l d I n C o n f l i c t = g e t A c t i v e C o n f l i c t s (r e s o u r c e) ;
6 Response r e s u l t = n u l l ;
7 . . .
8 assert post requestResource(actor, name, oldIsAvailable, oldInConflict, result);
9 r e t u r n r e s u l t ;

10 }

The post-condition function
Parameterized with:

I arguments to original function (actor, name)
I old values of variables needed in post-condition (old...))
I returned value of original function (result)

private boolean post_requestResource(

Actor actor, String name,

boolean oldIsAvailable, List<Resource> oldInConflict,

Response result)

{

Resource resultResource = result.getResource();

List<RescindOrder> resultRescinds = result.getRescinds();

Resource resource = resources.get(name);

if (resultResource != null && resultRescinds == null)
return oldIsAvailable && oldInConflict.isEmpty();

...

}

Design By Contract: discussion

Assertions only check current state.

DBC, like Jml, also allows reference to previous state (old(. . .)). In
addition DBC also supports checking invariants, for example at
method boundaries.

If we want to check temporal properties we need to build data
structures to represent - at any point in the execution the following
information:

I the past: selected facts about what happened so far in the execution.
I the future: obligations indicating what should and what should not

happen in the future execution.

The 2 monitor dimensions: temporal and remoteness

remoteness
temporal internal to code external to code

assertions assert AspectJ + assert
design by contract Jml AspectJ + assert
temporal logic Jml + TL AspectJ + assert + history

In the rest of this lecture we shall study how to write
monitors external to the code in AspectJ.

Aspect-oriented programming

An alternative module concept compared to object oriented
programming.

Emphasis on separating cross-cutting concerns. Logging for example.
That is, code for one aspect of the program is collected together in
one place.

We use it for monitoring, and do not focus on the broader application
of AOP as a programming paradigm.

Key idea: define hooks into program and indicate code to be executed
when they are reached during execution.

Enables to capture data as well, such as method arguments and
returned results

The problem with object-oriented programming

code tangling: one module handles many concerns.
I Flow of core logic gets obscured.

code scattering: one concern is handled in many modules.
I lots of typing, searching, ...
I increases probability of consistency errors
I big picture is missing

Example: logging

Monitoring-oriented examples of cross-cutting code

Logging (tracking program behavior)

Verification (checking program behavior)

Policy enforcement (correcting behavior)

Security management (preventing attacks)

Profiling (exploring where a program spends its time)

Visualization (of program executions)

Aspect-oriented programming systems

AspectJ - for Java:
http://www.eclipse.org/aspectj

AspectC++ - for C++:
http://www.aspectc.org

ACC - for C:
https://sites.google.com/a/gapp.msrg.utoronto.ca/aspectc

Arachne - for C:
http://www.emn.fr/x-info/arachne/index.html

Aspicere - for C:
http://mcis.polymtl.ca/~bram/aspicere

InterAspect - for GCC:
http://www.fsl.cs.stonybrook.edu/interaspect

http://www.eclipse.org/aspectj
http://www.aspectc.org
https://sites.google.com/a/gapp.msrg.utoronto.ca/aspectc
http://www.emn.fr/x-info/arachne/index.html
http://mcis.polymtl.ca/~bram/aspicere
http://www.fsl.cs.stonybrook.edu/interaspect

Aspect-oriented programming with AspectJ

Url: http://www.eclipse.org/aspectj

Works well with Eclipse: http://www.eclipse.org

An extension of Java.

Launched 1998 at Xerox PARC.

The AspectJ compiler is free and open source, very mature.

Outputs .class files compatible with the JVM.

Hello world AspectJ example

1 p u b l i c c l a s s H e l l o {
2 p u b l i c s t a t i c vo id main (S t r i n g [] args) {
3 System . out . p r i n t l n (” t h i s i s ”) ;
4 System . out . p r i n t l n (” h e l l o ”) ;
5 }
6 }

1 p u b l i c aspect World {
2 a f t e r (S t r i n g s) :
3 c a l l (vo id j a v a . i o . P r i n t S t r e a m . p r i n t l n (S t r i n g))
4 && args (s)
5 && i f (s . e q u a l s (” h e l l o ”))
6 {
7 System . out . p r i n t l n (” w o r l d ”) ;
8 }
9 }

this is
hello
world

http://www.eclipse.org/aspectj
http://www.eclipse.org

Hello world AspectJ example

1 p u b l i c c l a s s H e l l o {
2 p u b l i c s t a t i c vo id main (S t r i n g [] args) {
3 System . out . p r i n t l n (” t h i s i s ”) ;
4 System . out . p r i n t l n (” h e l l o ”) ;
5 }
6 }

1 p u b l i c aspect World {
2 a f t e r (S t r i n g s) : // advice
3 c a l l (vo id j a v a . i o . P r i n t S t r e a m . p r i n t l n (S t r i n g)) // pointcut
4 && args (s) // pick up argument
5 && i f (s . e q u a l s (” h e l l o ”)) // condition
6 {
7 System . out . p r i n t l n (” w o r l d ”) ; // do this after such a call
8 }
9 }

this is
hello
world

The core idea

Use AspectJ to instrument code.

Use Java to fill in data declarations and advice bodies to perform
monitoring.

AspectJ terminology

join point : point in a program that one can “join on”

pointcut : specifies a set of join points + picks out values at those
points

advice :
I pointcut
I + advice code to be inserted
I + insertion point (before, after, around)

aspect : a modular unit for cross cutting behavior
I normal Java definitions (fields, methods)
I + list of pointcut definitions
I + advice definitions

Three kinds of advice

before(...): 〈pointcut〉 { 〈adviceCode〉 }
inserts advice code before join points that match pointcut.

after(...): 〈pointcut〉 { 〈adviceCode〉 }
inserts advice code after join points that match pointcut.

T around(...): 〈pointcut〉 { 〈adviceCode〉 }
replaces join points that match pointcut with advice code.

In the advice code the proceed(...) construct represents the original
matching join point, taking arguments and returning a value if it is a
method call.

Pointcuts

call(〈methodPat〉) : call of a method

execution(〈methodPat〉) : body of method

get(〈fieldPat〉) : reading from a field

set(〈fieldPat〉) : writing to a field

handler(〈typePat〉) : exception handler

adviceexecution() : within any advice

within(〈typePat〉) : within class

withincode(〈methodPat〉) : within method

this(〈type〉 | 〈var〉) : current object

target(〈type〉 | 〈var〉) : object on which method is called

args(〈type〉 | 〈var〉 . . .) : arguments of method call

if(〈expression〉) : conditional

cflow(〈pointcut〉) : any join point in the control flow of pointcut

...

Recall pre- and post-condition for method requestResource

/*@ requires resources.containsKey(name);

@ ensures
@ (\result.getResource() != null &&

@ \result.getRescinds() == null)
@ ==

@ (\exists Resource resource;

@ resource == resources.get(name) &&

@ \result.getResource() == resource &&

@ \old(isAvailable(resource)) &&

@ \old(getActiveConflicts(resource).isEmpty()));
@*/

1 Response r e q u e s t R e s o u r c e (Actor a c t o r , S t r i n g name) {
2 R e s o u r c e r e s o u r c e = r e s o u r c e s . g e t (name) ;
3 Response r e s u l t = n u l l ;
4 . . .
5 r e t u r n r e s u l t ;
6 }

Same pre- and post-condition as an aspect

1 p r i v i l e g e d p u b l i c aspect P r e P o s t R e q u e s t R e s o u r c e {
2 ... // declaration of data fields
3
4 po in tc ut requestResource(R e s o u r c e T a b l e t a b l e , S t r i n g name) :
5 c a l l (Response R e s o u r c e T a b l e . r e q u e s t R e s o u r c e (Actor , S t r i n g))
6 && args (∗ , name) && t a r g e t (t a b l e) ;
7
8 before (R e s o u r c e T a b l e t a b l e , S t r i n g name) :
9 requestResource(t a b l e , name) {

10 ... // check pre-condition
11 }
12
13 a f t e r (R e s o u r c e T a b l e t a b l e , S t r i n g name)
14 r e t u r n i n g (Response r e s u l t) :
15 requestResource(t a b l e , name) {
16 ... // check post-condition
17 }
18 }

Declaring data in aspect

1 p r i v i l e g e d p u b l i c aspect P r e P o s t R e q u e s t R e s o u r c e {
2 Resource resource;
3 boolean oldIsAvailable;
4 List<Resource> oldInConflict;
5
6 po in tc ut requestResource(R e s o u r c e T a b l e t a b l e , S t r i n g name) :
7 c a l l (Response R e s o u r c e T a b l e . r e q u e s t R e s o u r c e (Actor , S t r i n g))
8 && args (∗ , name) && t a r g e t (t a b l e) ;
9

10 before (R e s o u r c e T a b l e t a b l e , S t r i n g name) :
11 requestResource(t a b l e , name) {
12 ... // check pre-condition
13 }
14
15 a f t e r (R e s o u r c e T a b l e t a b l e , S t r i n g name)
16 r e t u r n i n g (Response r e s u l t) :
17 requestResource(t a b l e , name) {
18 ... // check post-condition
19 }
20 }

The pre-condition, and preparing for post-condition

1 p r i v i l e g e d p u b l i c aspect P r e P o s t R e q u e s t R e s o u r c e {
2 R e s o u r c e r e s o u r c e ;
3 boolean o l d I s A v a i l a b l e ;
4 L i s t <Resource> o l d I n C o n f l i c t ;
5
6 po in tc ut requestResource(R e s o u r c e T a b l e t a b l e , S t r i n g name) :
7 c a l l (Response R e s o u r c e T a b l e . r e q u e s t R e s o u r c e (Actor , S t r i n g))
8 && args (∗ , name) && t a r g e t (t a b l e) ;
9

10 before (R e s o u r c e T a b l e t a b l e , S t r i n g name) :
11 requestResource(t a b l e , name) {
12 assert table.resources.containsKey(name);
13 resource = table.resources.get(name);
14 oldIsAvailable = table.isAvailable(resource);
15 oldInConflict = table.getActiveConflicts(resource);
16 }
17
18 a f t e r (R e s o u r c e T a b l e t a b l e , S t r i n g name) . . . { . . . }
19 }

The post-condition

1 p r i v i l e g e d p u b l i c aspect P r e P o s t R e q u e s t R e s o u r c e {
2 R e s o u r c e r e s o u r c e ;
3 boolean o l d I s A v a i l a b l e ;
4 L i s t <Resource> o l d I n C o n f l i c t ;
5
6 po in tc ut requestResource(R e s o u r c e T a b l e t a b l e , S t r i n g name) :
7 c a l l (Response R e s o u r c e T a b l e . r e q u e s t R e s o u r c e (Actor , S t r i n g))
8 && args (∗ , name) && t a r g e t (t a b l e) ;
9

10 before (R e s o u r c e T a b l e t a b l e , S t r i n g name) . . . { . . . }
11
12 a f t e r (R e s o u r c e T a b l e t a b l e , S t r i n g name)
13 r e t u r n i n g (Response r e s u l t) :
14 requestResource(t a b l e , name) {
15 if (result.getResource() != null && result.getRescinds() == null) {
16 assert oldIsAvailable && oldInConflict.isEmpty();
17 }
18 }
19 }

To sum up

We saw how a pre- and post-conditions can be specified using
AspectJ and Java.

Although somewhat verbose it does separate code from specification,
which becomes essential if substantial specifications are written.

We shall now extend this approach to temporal properties.

For this purpose we shall illustrate:
I The join points were are interested in for temporal specification.
I An aspect Instrument that instruments the program to generate events

at those points.
I A class Monitor that every specific monitor shall extend (sub-class).
I Selected properties of resource management defined as sub-classes of

class Monitor.

Join points (red and underlined) of interest
The arbiter receives, processes and sends messages.

1 p u b l i c c l a s s A r b i t e r extends Actor {
2 R e s o u r c e T a b l e t a b l e = new R e s o u r c e T a b l e () ;
3
4 p u b l i c vo id run () {
5 whi le (t rue) {
6 Message message = r e c e i v e () ;
7 i f (message i n s t a n c e o f Request) {
8 Response r e s p o n s e = table.requestResource(requester,resourceName) ;

9 . . .
10 i f (r e s o u r c e == n u l l && r e s c i n d s == n u l l) {
11 requester.sendDeny() ;

12 } e l s e i f (r e s c i n d s == n u l l) {
13 requester.sendGrant(resource) ;

14 } e l s e . . .
15 } e l s e e l s e i f (message i n s t a n c e o f C a nc e l) { . . . }
16 }
17 }
18 }

The instrumentation aspect
1 p r i v i l e g e d aspect Instrument {
2 // List of all monitors to be notified on each new event
3 L i s t <Monitor> m o n i t o r s = new A r r a y L i s t <Monitor >() ;
4
5 // Creating the list of monitors in aspect constructor
6 p u b l i c Aspect () {
7 m o n i t o r s . add (new m o n i t o r s . G r a n t C a n c e l () , . . .) ;
8 }
9

10 // Advice for the sendGrant event
11 a f t e r (R e s o u r c e r e s o u r c e , Actor r e c e i v e r) :
12 c a l l (vo id m i s s i o n c o n t r o l . Task +. sendGrant (R e s o u r c e))
13 && args (r e s o u r c e) && t a r g e t (r e c e i v e r)
14 {
15 // activate event on each monitor (not efficient)
16 f o r (Monitor mon i to r : m o n i t o r s)
17 monitor.sendGrant(resource, receiver);
18 }
19 . . .
20 // Advice for other events
21 }

The class Monitor
Every specific monitor must extend class Monitor.
Each event is represented by a method that will get called from the
instrumentation aspect when the corresponding join point is reached.
Method bodies are empty. An extending specific monitor must
override methods relevant to the property.

1 p u b l i c c l a s s Monitor extends M o n i t o r U t i l s {
2 vo id sendRequest(Actor sen de r , S t r i n g r e s o u r c e) {} ;
3 vo id sendRequest(Actor se nde r , R e s o u r c e r e s o u r c e) {} ;
4 vo id sendCancel(Actor se nde r , R e s o u r c e r e s o u r c e) {}
5 vo id sendGrant(R e s o u r c e r e s o u r c e , Actor r e c e i v e r) {}
6 vo id sendRescind(R e s o u r c e r e s o u r c e , Actor r e c e i v e r) {}
7 vo id sendDeny(Actor r e c e i v e r) {}
8 vo id addConflict(R e s o u r c e r e s o u r c e 1 , R e s o u r c e r e s o u r c e 2) {}
9 vo id addPriority(R e s o u r c e r e s o u r c e 1 , R e s o u r c e r e s o u r c e 2) {}

10 vo id requestResource(Actor a c t o r , S t r i n g name ,
11 Response r e s p o n s e) {}
12 vo id cancelResource(Actor a c t o r , R e s o u r c e r e s o u r c e) {}
13 vo id end () {}
14 }

The class MonitorUtils
Auxiliary methods used for writing monitors.

1 p u b l i c c l a s s MonitorUtils {
2 protected vo id verify(boolean c o n d i t i o n , S t r i n g message) {
3 i f (! c o n d i t i o n) e r r o r (message) ;
4 }
5
6 protected vo id error(S t r i n g message) {
7 System . out . p r i n t l n (”∗∗∗ e r r o r : ” + message) ;
8 }
9

10 protected vo id fail (S t r i n g message) {
11 t r y {
12 throw new Runt imeExcept ion (message) ;
13 } catch (E x c e p t i o n e) {
14 e . p r i n t S t a c k T r a c e () ;
15 }
16 System . e x i t (0) ;
17 }
18 }

JavaDoc documentation of methods representing events

JavaDoc details of methods representing events

Let us specify some properties over these events

GrantCancel: For a given resource, grants and cancellations should
alternate, starting with a grant. Furthermore: a cancellation should
be performed by the same task that was last granted the resource.

OnlyRescindGranted: Only ask a task to rescind the resource if it is
currently owned by the task. That is: it has been granted, and it has
not yet been cancelled.

RespectConflicts: Conflicts must be respected. For every pair of
resources, if they conflict then only one can be granted at any one
time.

RespectPriorities: Let priorities sort conflicts. If there is a conflict and
the requested resource has the highest priority then the other priority
should be rescinded before the resource is granted.

Resource Management: grant and cancel should alternate

Requirement GrantCancel

For a given resource, grants and cancellations should alternate, starting
with a grant. Furthermore: a cancellation should be performed by the
same task that was last granted the resource.

Granting and cancelling resources

resource	

arbiter	

task	

task	

task	

task	

command	

dispatcher	

request	

rescind	

cancel	

command(“take_picture”)	

command	
 sequence	

log	
 resource	

conflicts	

success/fail	

resources	

	
 	
 or	
 	
 	
 deny	
 grant	

requestResource	

addPriority	

addConflict	

Algorithm for checking GrantCancel

Declarations:
I allocated : map from resource to actor if allocated by the actor.

Operations:
I When r is granted to an actor a:

F Verify that allocated(r) = undefined .
F allocated(r) := a.

I When a cancels r :
F Verify that allocated(r) = a.
F allocated(r) := undefined

The GrantCancel Monitor

1 p u b l i c c l a s s G r a n t C a n c e l extends Monitor {
2 HashMap<Resource , Actor> a l l o c a t e d =
3 new HashMap<Resource , Actor >() ;
4
5 @ O v e r r i d e
6 vo id sendGrant (R e s o u r c e r e s o u r c e , Actor r e c e i v e r) {
7 v e r i f y (! a l l o c a t e d . c o n t a i n s K e y (r e s o u r c e)) ;
8 a l l o c a t e d . put (r e s o u r c e , r e c e i v e r) ;
9 }

10
11 @ O v e r r i d e
12 vo id s e n d C a n c e l (Actor se nd er , R e s o u r c e r e s o u r c e) {
13 v e r i f y (a l l o c a t e d . g e t (r e s o u r c e) == s e n d e r) ;
14 a l l o c a t e d . remove (r e s o u r c e) ;
15 }
16 }

Resource Management: only rescind granted

Requirement OnlyRescindGranted

Only ask a task to rescind the resource if it is currently owned by the task.
That is: it has been granted, and it has not yet been cancelled.

Granting, rescinding and cancelling resources

resource	

arbiter	

task	

task	

task	

task	

command	

dispatcher	

request	

rescind	

cancel	

command(“take_picture”)	

command	
 sequence	

log	
 resource	

conflicts	

success/fail	

resources	

	
 	
 or	
 	
 	
 deny	
 grant	

requestResource	

addPriority	

addConflict	

Algorithm for checking OnlyRescindGranted

Declarations:
I allocated : map from resource to actor if allocated by the actor.

Operations:
I When r is granted to an actor a:

F allocated(r) := a.

I When a cancels r :
F allocated(r) := undefined .

I When a rescind message is sent to an actor a to cancel r :
F Verify that allocated(r) = a.

The OnlyRescindGranted Monitor

1 p u b l i c c l a s s O n l y R e s c i n d G r a n t e d extends Monitor {
2 HashMap<Resource , Actor> a l l o c a t e d =
3 new HashMap<Resource , Actor >() ;
4
5 @ O v e r r i d e
6 vo id sendGrant (R e s o u r c e r e s o u r c e , Actor r e c e i v e r) {
7 a l l o c a t e d . put (r e s o u r c e , r e c e i v e r) ;
8 }
9

10 @ O v e r r i d e
11 vo id c a n c e l R e s o u r c e (Actor a c t o r , R e s o u r c e r e s o u r c e) {
12 a l l o c a t e d . remove (r e s o u r c e) ;
13 }
14
15 @ O v e r r i d e
16 vo id s e n d R e s c i n d (R e s o u r c e r e s o u r c e , Actor r e c e i v e r) {
17 v e r i f y (a l l o c a t e d . g e t (r e s o u r c e) == r e c e i v e r) ;
18 }
19 }

Resource Management: respect conflicts

Requirement RespectConflicts

Conflicts must be respected. For every pair of resources, if they conflict
then only one can be granted at any one time.

Granting and cancelling resources with conflicts

resource	

arbiter	

task	

task	

task	

task	

command	

dispatcher	

request	

rescind	

cancel	

command(“take_picture”)	

command	
 sequence	

log	
 resource	

conflicts	

success/fail	

resources	

	
 	
 or	
 	
 	
 deny	
 grant	

requestResource	

addPriority	

addConflict	

Algorithm for checking RespectConflicts

Declarations:
I conflicts: map from resource to set of resources it is in conflict with.
I allocated : map from resource to actor if allocated by the actor.

Operations:
I When the pair (r1, r2) are declared as conflicting:

F Add r2 to the set conflicts(r1) and vice versa.

I When r is granted to an actor a:
F Verify that no resource in set conflicts(r) is in domain of allocated .
F allocated(r) := a.

I When a cancels r :
F Verify that allocated(r) = a.
F allocated(r) := undefined .

The RespectConflicts Monitor 1

1 p u b l i c c l a s s R e s p e c t C o n f l i c t s extends Monitor {
2 MapToSet<Resource , Resource> c o n f l i c t s =
3 new MapToSet<Resource , Resource >() ;
4 Map<Resource , Actor> a l l o c a t e d =
5 new HashMap<Resource , Actor >() ;
6
7 @ O v e r r i d e
8 vo id a d d C o n f l i c t (R e s o u r c e r e s o u r c e 1 , R e s o u r c e r e s o u r c e 2) {
9 c o n f l i c t s . g e t S e t (r e s o u r c e 1) . add (r e s o u r c e 2) ;

10 c o n f l i c t s . g e t S e t (r e s o u r c e 2) . add (r e s o u r c e 1) ;
11 }
12 . . .
13 }

The RespectConflicts Monitor 2

1 p u b l i c c l a s s R e s p e c t C o n f l i c t s extends Monitor {
2 MapToSet<Resource , Resource> c o n f l i c t s = . . .
3 Map<Resource , Actor> a l l o c a t e d = . . .
4
5 . . .
6
7 @ O v e r r i d e
8 vo id sendGrant (R e s o u r c e r e s o u r c e , Actor r e c e i v e r) {
9 Set<Resource> i n t e r s e c t i o n =

10 i n t e r s e c t (c o n f l i c t s . g e t S e t (r e s o u r c e) , a l l o c a t e d . k e y S e t ()) ;
11 v e r i f y (i n t e r s e c t i o n . i sEmpty ()) ;
12 a l l o c a t e d . put (r e s o u r c e , r e c e i v e r) ;
13 }
14
15 @ O v e r r i d e
16 vo id s e n d C a n c e l (Actor a c t o r , R e s o u r c e r e s o u r c e) {
17 v e r i f y (a l l o c a t e d . g e t (r e s o u r c e) == a c t o r) ;
18 a l l o c a t e d . remove (r e s o u r c e) ;
19 }
20 }

Resource Management: respect priorities

Requirement RespectPriorities

Let priorities sort conflicts. If there is a conflict and the requested resource
has the highest priority then the other priority should be rescinded before
the resource is granted.

Requesting, rescinding, cancelling and granting resources
with prioritized conflicts

resource	

arbiter	

task	

task	

task	

task	

command	

dispatcher	

request	

rescind	

cancel	

command(“take_picture”)	

command	
 sequence	

log	
 resource	

conflicts	

success/fail	

resources	

	
 	
 or	
 	
 	
 deny	
 grant	

requestResource	

addPriority	

addConflict	

Algorithm for checking RespectPriorities
Declarations:

I conflicts: map from resource to set of resources it is in conflict with.
I priorities: map from resource to set of resources with lower priority.
I allocated : map from resource to actor if allocated by the actor.
I toRescind : map from resource r to the pairs (r ′, a′) of resources r ′ that

have to be cancelled by actor a′ before the resource r can be granted.
Operations:

I When the pair (r1, r2) are declared as conflicting:
F Add r2 to the set conflicts(r1) and vice versa.

I When r1 is declared as having higher priority than r2:
F Add r2 to the set priorities(r1).

I When r is granted to an actor a:
F Verify that toRescind(r) is empty.
F allocated(r) := a.

I When a cancels r :
F allocated(r) := undefined .

I When a requests r :
F If winning conflict, add loosing conflicts to toRescind .

I When an actor a is asked to rescind r :
F Verify that the pair (a, r) is mapped to by some resource in toRescind .
F Remove the pair (a, r) from toRescind .

The RespectPriorities Monitor 1

1 p u b l i c c l a s s R e s p e c t P r i o r i t i e s extends Monitor {
2 MapToSet<Resource , Resource> c o n f l i c t s = . . . ;
3 MapToSet<Resource , Resource> p r i o r i t i e s = . . . ;
4 HashMap<Resource , Actor> a l l o c a t e d = . . . ;
5 MapToSet<Resource , Pa i r<Actor , Resource>> t o R e s c i n d = . . . ;
6
7 @ O v e r r i d e
8 vo id a d d C o n f l i c t (R e s o u r c e r e s o u r c e 1 , R e s o u r c e r e s o u r c e 2) {
9 c o n f l i c t s . g e t S e t (r e s o u r c e 1) . add (r e s o u r c e 2) ;

10 c o n f l i c t s . g e t S e t (r e s o u r c e 2) . add (r e s o u r c e 1) ;
11 }
12
13 @ O v e r r i d e
14 vo id a d d P r i o r i t y (R e s o u r c e r e s o u r c e 1 , R e s o u r c e r e s o u r c e 2) {
15 p r i o r i t i e s . g e t S e t (r e s o u r c e 1) . add (r e s o u r c e 2) ;
16 }
17 . . .
18 }

The RespectPriorities Monitor 2

1 p u b l i c c l a s s R e s p e c t P r i o r i t i e s extends Monitor {
2 MapToSet<Resource , Resource> c o n f l i c t s = . . . ;
3 MapToSet<Resource , Resource> p r i o r i t i e s = . . . ;
4 HashMap<Resource , Actor> a l l o c a t e d = . . . ;
5 MapToSet<Resource , Pa i r<Actor , Resource>> t o R e s c i n d = . . . ;
6 . . .
7 @ O v e r r i d e
8 vo id sendGrant (R e s o u r c e r e s o u r c e , Actor a c t o r) {
9 Set<Pai r<Actor , Resource>> r e s c i n d s =

10 t o R e s c i n d . g e t S e t (r e s o u r c e) ;
11 v e r i f y (r e s c i n d s . i sEmpty ()) ;
12 a l l o c a t e d . put (r e s o u r c e , a c t o r) ;
13 }
14
15 @ O v e r r i d e
16 vo id c a n c e l R e s o u r c e (Actor a c t o r , R e s o u r c e r e s o u r c e) {
17 a l l o c a t e d . remove (a c t o r) ;
18 }
19 . . .
20 }

The RespectPriorities Monitor 3
1 @ O v e r r i d e vo id sendRequest (Actor s end er , R e s o u r c e r e s o u r c e) {
2 Set<Resource> c o n f l i c t i n g =
3 i n t e r s e c t (c o n f l i c t s . g e t S e t (r e s o u r c e) , a l l o c a t e d . k e y S e t ()) ;
4 i f (! c o n f l i c t i n g . i sEmpty ()) {
5 boolean w i n n i n g C o n f l i c t = f a l s e ;
6 f o r (R e s o u r c e c o n f l i c t : c o n f l i c t i n g) {
7 i f (p r i o r i t i e s . g e t (r e s o u r c e) . c o n t a i n s (c o n f l i c t))
8 w i n n i n g C o n f l i c t = t rue ;
9 i f (p r i o r i t i e s . g e t (c o n f l i c t) . c o n t a i n s (r e s o u r c e)) {

10 w i n n i n g C o n f l i c t = f a l s e ; break ;
11 }
12 } // a conflict is winning if none have higher priority and this has higher priority than at least one

13 i f (w i n n i n g C o n f l i c t) {
14 Set<Pai r<Actor , Resource>> r e s c i n d s =
15 new HashSet<Pai r<Actor , Resource >>();
16 f o r (R e s o u r c e c o n f l i c t : c o n f l i c t i n g)
17 r e s c i n d s . add (new Pai r<Actor , Resource>
18 (a l l o c a t e d . g e t (c o n f l i c t) , c o n f l i c t)) ;
19 t o R e s c i n d . put (r e s o u r c e , r e s c i n d s) ;
20 }
21 }
22 }

The RespectPriorities Monitor 4
1 p u b l i c c l a s s R e s p e c t P r i o r i t i e s extends Monitor {
2 MapToSet<Resource , Resource> c o n f l i c t s = . . . ;
3 MapToSet<Resource , Resource> p r i o r i t i e s = . . . ;
4 HashMap<Resource , Actor> a l l o c a t e d = . . . ;
5 MapToSet<Resource , Pa i r<Actor , Resource>> t o R e s c i n d = . . . ;
6 . . .
7 @ O v e r r i d e
8 vo id s e n d R e s c i n d (R e s o u r c e r e s o u r c e , Actor r e c e i v e r) {
9 f o r (R e s o u r c e w a i t i n g : t o R e s c i n d . k e y S e t ()) {

10 Set<Pai r<Actor , Resource>> r e s c i n d s =
11 t o R e s c i n d . g e t (r e s o u r c e) ;
12 f o r (Pa i r<Actor , Resource> p a i r : r e s c i n d s) {
13 i f (p a i r . second == r e s o u r c e) {
14 v e r i f y (p a i r . f i r s t == r e c e i v e r) ;
15 r e s c i n d s . remove (p a i r) ;
16 break ;
17 }
18 }
19 }
20 }
21 }

Summary

AspectJ is powerful for instrumenting code.

AspectJ extends Java, and Java can therefore be used for
specifying properties.

This combination works!

However, at times it requires a lot of code to write down properties.
We have to invent internal data structures and update them on each
incoming event.

The challenge is whether we can provide a simpler way of writing
properties.

References

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm and William G. Griswold : An Overview of AspectJ. In
ECOOP’01, LNCS volume 2072.

Xerox Corporation, Palo Alto Research Center : The AspectJTM
Programming Guide.
http://www.eclipse.org/aspectj/doc/released/progguide.

http://www.eclipse.org/aspectj/doc/released/progguide

Part III
TraceMatches

Recap

We have looked at the general principles behind Runtime Verification.

We have looked at how to specifying programs using Java and
monitor them using Aspectj.

Contents

In this section we will:

Capture the principles behind Parametric Runtime Verification.

Introduce the TraceMatches tool including:
I The syntax of TraceMatches
I How to use the tool
I An illustrative example
I The semantics of TraceMatches
I An overview of implementation and efficiency

Parametric runtime verification

Propositional Runtime Verification for Finite-State properties can be
carried out using Finite State Automata over a set of states S .

Given a set of events Σ, the next state is computed using a transition
function δ ∈ (Σ× S)→ S .

In Parametric Runtime Verification we consider events carrying data
values drawn from a set of objects O.

We wish to associate a monitor with each set of related objects.

Therefore, these objects should take part in the transition function,
which we may be tempted to write as

δ ∈ (Σ× 2O × S)→ S

However, using the parameter object values in the transition function
in this way is ambiguous.

For example, we want to be able to differentiate between the events
priority(wheels, camera) and priority(camera, wheels).

Producing bindings

Instead of using the set of objects in a parametric events we construct
bindings - which give unique names to parameter object values.

Let Bind = Var ⇁ O be the set of all bindings (partial maps), given
some set of variables Var .

Let name : (Σ×O∗)→ Bind be a function that creates bindings from
a parametric event, how this is implemented is not important here.

For example, a possible implementation of name might give

name(priority(wheels,camera)) = [r1 7→ wheels, r2 7→ camera]
name(priority(camera,wheels)) = [r1 7→ camera, r2 7→ wheels]

It is now possible to differentiate between events priority(wheels,
camera) and priority(camera, wheels).

The parametric transition function should therefore be:

δ ∈ (Σ× Bind × S)→ S

Different approaches
For efficiency reasons, it is desirable to organise the computation of δ,
and there are three different approaches to this:
Object-based

δ ∈ Bind → (S × Σ)→ S

State-based
δ ∈ S → (Σ× Bind)→ S

Event-based
δ ∈ Σ→ (S × Bind)→ S

Each approach requires the monitoring process to be structured in a
different way, leading to different implementations and potential for
optimisations.
In this section we discuss TraceMatches, a state-based approach.
In the next section we discuss JavaMOP, an object-based approach.

TraceMatches : An Overview

What is TraceMatches?

An extension of the AspectJ language.

Was first introduced in a 2005 OOPSLA paper.

Implemented in the abc compiler.

What are its defining principles?

Allows a user to write properties involving the history of computation.

Uses regular expressions over pointcuts.

Uses free variables in events to capture parameters.

Syntax

A tracematch consists of:
I (free) variable declarations
I symbol declarations (using

pointcuts)
I a regular expression over

symbols
I a piece of Java code to be

executed on a match

Availability

TraceMatches is available as an extension to the abc compiler
found at http://www.sable.mcgill.ca/abc/.

Executing TraceMatches

One approach to weaving a tracematch into your code is:

compile code to be woven into a folder at bin

(download and) place abc jars into a folder at abc home path

place source for tracematch(s) into a folder at src/tracematch

run the command

java -classpath "abc home path/abc-complete.jar;bin"

-Xmx256M -Dabc.home=abc home path abc.main.Main

-ext abc.tm -source 1.5 -d bin

-inpath bin -sourceroots src/tracematch

This weaves the tracematches into the compiled Java code.

If you have included any libraries in your Java code you will need to
include them in the classpath here too.

http://www.sable.mcgill.ca/abc/

The GrantCancel example

Recall this requirement - we are going to use it to illustrate how
TraceMatches works.

Requirement GrantCancel

For a given resource, grants and cancellations should alternate, starting
with a grant. Furthermore: a cancellation should be performed by the
same task that was last granted the resource.

Reporting failure

We will use this utility method to report failure. This prints out a
stack trace to enable the user to locate the error.

1 pub l i c c l a s s U t i l {
2 protected s t a t i c vo id f a i l (S t r i n g message) {
3 t r y {
4 throw new Runt imeExcept ion (message) ;
5 } catch (E x c e p t i o n e) {
6 e . p r i n t S t a c k T r a c e () ;
7 }
8 System . e x i t (0) ;
9 }

10 }

The symbols (events) as pointcuts

We first define pointcuts to capture the events we are interested in.
These are:

I grant(requester ,resource)
I cancel(owner , resource)

1 p o i n t c u t g r a n t (Actor r e q u e s t e r , R e s o u r c e r e s o u r c e) :
2 c a l l (vo id m i s s i o n c o n t r o l . Task +. sendGrant (R e s o u r c e))
3 && args (r e s o u r c e) && ta rget (r e q u e s t e r) ;
4
5 po intcut c a n c e l (Actor owner , R e s o u r c e r e s o u r c e) :
6 c a l l (vo id m i s s i o n c o n t r o l . A r b i t e r . s e n d C a n c e l (Task , R e s o u r c e))
7 && args (owner , r e s o u r c e) ;

Grant and cancel should alternate

A tracematch defines a regular expression over pointcuts.

There is a match if any suffix of the trace matches the expression.

We say TraceMatches is suffix-matching / uses suffix semantics.

Here this is whenever either of the two events fail to alternate.

This is parameterised with a Resource r .

1 t r a c e m a t c h (R e s o u r c e r)
2 {
3 sym g r a n t a f t e r : g r a n t (∗ , r) ;
4 sym c a n c e l a f t e r : c a n c e l (∗ , r) ;
5
6 (g r a n t g r a n t) | (c a n c e l c a n c e l)
7 {
8 U t i l . f a i l (” C a l l s o f g r a n t and c a n c e l on r e s o u r c e ”+r
9 +” do not a l t e r n a t e ”) ;

10 }
11 }

Detecting a match

Translate the regular expression into a Finite State Automaton.
I A well understood transformation.
I Easy to manipulate at runtime.

1

2

3

4

5

grant

cancel

grant

cancel

Detecting a match on a propositional trace

Let us consider the trace:

grant.cancel.grant.grant

Remember - we want to match a trace suffix.

Mark reached states.

A state is marked if and only if it can be reached using the current
event from a state marked on the previous step.

Initial states are always marked.

Detecting a match on a propositional trace

ε

1

2

3

4

5

X

grant

cancel

grant

cancel

Detecting a match on a propositional trace

ε.grant

1

2

3

4

5

X

grant

cancel

grant

cancel

Detecting a match on a propositional trace

ε.grant

1

2

3

4

5

X X

grant

cancel

grant

cancel

Detecting a match on a propositional trace

ε.grant.cancel

1

2

3

4

5

X X

grant

cancel

grant

cancel

Detecting a match on a propositional trace

ε.grant.cancel

1

2

3

4

5

X

X

grant

cancel

grant

cancel

Detecting a match on a propositional trace

ε.grant.cancel.grant

1

2

3

4

5

X

X

grant

cancel

grant

cancel

Detecting a match on a propositional trace

ε.grant.cancel.grant

1

2

3

4

5

X X

grant

cancel

grant

cancel

Detecting a match on a propositional trace

ε.grant.cancel.grant.grant

1

2

3

4

5

X X

grant

cancel

grant

cancel

Detecting a match on a propositional trace

We have a match

ε.grant.cancel.grant.grant

1

2

3

4

5

X X X

grant

cancel

grant

cancel

Detecting a match on a propositional trace

We have a match

ε.grant.cancel.grant.grant

Because this suffix matched the regular expression

1

2

3

4

5

X X X

grant

cancel

grant

cancel

Detecting a match on a parametric trace

Works fine when there is no data - but data is useful!

Consider the observations:

grant(driving task,wheels)
grant(driving task, antenna)
cancel(driving task,wheels)
grant(camera task, antenna)

The antenna resource is granted without first being cancelled.

For resource ‘antenna’ this trace matches the regular expression on
the fourth event.

Our propositional approach would flag an error on the second event.

Need a new approach - label states with constraints.

Detecting a match on a parametric trace

Label the initial state as true and all other states as false.

1

2

3

4

5

true false

false

false

false

grant

cancel

grant

cancel

Detecting a match on a parametric trace

Let r stand for resource, a for antenna and w for wheels.

Label state 2 with constraint (r=w).

Note that our symbol only binds the resource to r - the task is
ignored.

grant(driving task,wheels)

1

2

3

4

5

true (r=w)

false

false

false

cancel

grant

cancel

grant

Detecting a match on a parametric trace

Add constraint (r=a) to state 2 (in disjunction).

grant(driving task,wheels)
grant(driving task,antenna)

1

2

3

4

5

true (r=w) ∨ (r=a)

false

false

false

cancel

grant

cancel

grant

Detecting a match on a parametric trace

Remove the constraint (r=w) from state 2, add this to state 3.

grant(driving task,wheels)
grant(driving task,antenna)
cancel(driving task,wheels)

1

2

3

4

5

true (r=a)

(r=w)

false

false

cancel

grant
grant

cancel

Detecting a match on a parametric trace

Add constraint (r=a) to state 4.

grant(driving task,wheels)
grant(driving task,antenna)
cancel(driving task,wheels)
grant(camera task,antenna)

1

2

3

4

5

true (r=a)

(r=w)

(r=a)

false

cancel cancel

grant
grant

Detecting a match on a parametric trace

(r=a) is a solution to the constraint labelling (final) state 4.

Therefore, we execute the method body for (r=a).

1

2

3

4

5

true (r=a)

(r=w)

(r=a)

false

grant

cancel

grant

cancel

The details

We have informally illustrated how TraceMatches operates using
an example, we will now:

I Formalise the components of a tracematch.
I Capture the (declarative operational) semantics formally.
I Consider how this translates into an implementation.
I Discuss efficiency issues.

Symbols

Let A be the alphabet of symbols declared in the tracematch.

Let P be the regular expression over A declared in the tracematch.

A symbol is modeled as a function in Event → Constraint.

The constraint captures a binding for the variables in the symbol.

For example:

grant︸ ︷︷ ︸
symbol

(grant(driving task,wheels)︸ ︷︷ ︸
event

) = (r = wheels)︸ ︷︷ ︸
constraint

grant︸ ︷︷ ︸
symbol

(cancel(driving task,wheels)︸ ︷︷ ︸
event

) = false︸︷︷︸
constraint

A trace of (parametric) events matches a trace of symbols if the
constraints produced are consistent:

match(a1. . .an, e1. . .en) =

{ ∧
i ai (ei) if m = n

false otherwise

Bindings

Recall that a binding is a partial map from variables to values.

Here the variables are the free variables in the tracematch.

A binding can be applied to a constraint to get a truth value e.g.,

[r 7→ w] ((r=w) ∨ (r=a)) = (w=w) ∨ (w=a)
= true ∨ false
= true

Therefore a binding applied to an event creates a predicate on events:

θ(a) = λe.θ(a(e)) ∈ Event → B

here we assume that bindings bind all free variables

Let P(θ) be the regular expression constructed by applying θ to each
symbol in the regular expression P.

Declarative semantics

The aim is to find the bindings (of free variables) for which the code
should be executed i.e., those that we match on, given a trace τ .

We start by defining which events are relevant to a binding θ:

relevant(θ) = {e | ∃a ∈ A : θ(a(e)) = true}

We can filter irrelevant events out of a trace:

ε �θ= ε τe �θ

{
(τ �θ)e if e ∈ relevant(θ)
(τ �θ) otherwise

A trace satisfies P for θ if it matches with a word in P(θ) and its last
event is relevant - otherwise irrelevant events cause matching:

satisfy(τ, θ) =
∨

σ∈L(P(θ))

match(σ, τ �θ) ∧ last(τ) ∈ relevant(θ)

The bindings to execute the code for given trace τ are:

{θ | τ ′ is a suffix of τ ∧ satisfy(τ ′, θ)}

Operational semantics

We define a regular expression that captures the declarative
semantics.

Let this be the regular expression Pat, such that the code is executed
for every solution to ∨

σ∈L(Pat)

match(σ, τ)

As we saw previously, we want a trace to match Pat if:
I a relevant suffix of that trace matches P - Σ∗(P ‖ skip∗)
I the last event of that suffix is in A - (Σ∗A)

Let Pat = Σ∗(P ‖ skip∗) ∩ (Σ∗A) where:
I Σ is the set of all symbols
I ‖ is the interleaving operation
I skip is a special symbol that matches irrelevant events

Defining skip
The skip symbol has two functions:

I Match any event not in A
I Ensure that we do not skip relevant events

So what constraint should skip produce?

An event is relevant (where C is the current constraint) iff

∃a ∈ A : (a(e) ∧ C) 6= false

Therefore, let skip symbol be defined as:

skip(e) =
∧
a∈A
¬a(e)

For example:

skip(grant(d task,w)) = ¬grant(grant(d task,w))∧
¬cancel(grant(d task,w))

= ¬(r = w) ∧ ¬false
= (r 6= w)

Defining skip

The skip symbol has two functions:
I Match any event not in A
I Ensure that we do not skip relevant events

So what constraint should skip produce?

An event is relevant (where C is the current constraint) iff

∃a ∈ A : (a(e) ∧ C) 6= false

Therefore, let skip symbol be defined as:

skip(e) =
∧
a∈A
¬a(e)

This satisfies the two functions:
I If e is not in A then this will be true
I If e is relevant to C then this will contradict C - therefore not allowing

us to match with skip

From semantics to implementation

Construct an automaton for Pat = Σ∗(P ‖ skip∗) ∩ (Σ∗A).

We missed out some transitions earlier:

1

2

3

4

5

grant

cancel

grant

cancel

skip
grant

cancel

Σ

skip

skip

From semantics to implementation

Construct an automaton for Pat = Σ∗(P ‖ skip∗) ∩ (Σ∗A)

We missed out some transitions earlier.

Associate a label (of constraints) with each state.

Update this label for state i as follows:

labeli
′ =

∨
j
a→i

(labelj ∧ a(e))

 ∨ (labeli ∧
∧
a∈A
¬a(e)

)

Partial matches compatible with a(e) at state j transition to state i .

Remove a partial match if any transition can be taken.

This moves constraints representing bindings so that they label states
the trace filtered with repsect to that binding would reach.

Considering efficiency
Removing memory leaks:

Observations
1 If labels store monitored objects directly we will get space leaks
2 The structure of the automaton can be used to identify objects no

longer required for monitoring

Optimisations
1 Store objects using forms of weak references (where applicable)
2 Categorise how the variable should be stored at each state into

F collectableWeakRefs - bound on every path from current to final state
F weakRefs - not in the above and not used in action
F strongRefs - not in either of the above

Indexing:

Observation: An event is only relevant to a small part of a label

Optimisation: Index labels via a set of variables i.e.

label = Valn → Constraint

n variables selected automatically from those guaranteed to be bound

Finishing the requirement

Our requirement was:

Requirement GrantCancel

For a given resource, grants and cancellations should alternate, starting
with a grant. Furthermore: a cancellation should be performed by the
same task that was last granted the resource.

However we have only covered:

For a given resource, grants and cancellations should alternate.

We now finish implementing this requirement in TraceMatches.

Starts with a grant

For a given resource, grants and cancellations should start with a grant.

We need to detect the start of the trace.

It is important that the grant symbol is present.

1 t r a c e m a t c h (R e s o u r c e r)
2 {
3 sym s t a r t before :
4 execut ion (m i s s i o n c o n t r o l . Main . main (S t r i n g [])
5 sym g r a n t a f t e r : g r a n t (∗ , r) ;
6 sym c a n c e l a f t e r : c a n c e l (∗ , r) ;
7
8 s t a r t c a n c e l
9 {

10 U t i l . f a i l (”The r e s o u r c e ”+r+” was c a n c e l l e d b e f o r e ”
11 +” i t was g r a n t e d ”) ;
12 }

Starts with a grant

For a given resource, grants and cancellations should [start] with a grant.

We need to detect the start of the trace.

It is important that the grant symbol is present.

With it in the alphabet we don’t match on start.grant.cancel:

1 2 3

no match

start cancel

grant, cancel
grant, start

Starts with a grant

For a given resource, grants and cancellations should [start] with a grant.

We need to detect the start of the trace.

It is important that the grant symbol is present.

With it in the alphabet we do not match on start.grant.cancel.

Otherwise, grant would be filtered out of the trace and it would
match:

1 2 3

no match

start cancel

cancel
start

The owner of a resource cancels it

Furthermore: a cancellation should be performed by the same task that
was last granted the resource.

Our variables are the resource, the owner of the resource at some
stage and another actor who may try and cancel the resource.

1 t r a c e m a t c h (R e s o u r c e r , Actor owner , Actor o t h e r)
2 {
3 sym g r a n t o w n e r a f t e r : g r a n t (owner , r) ;
4 sym c a n c e l o w n e r a f t e r : c a n c e l (owner , r) ;
5 sym o t h e r c a n c e l a f t e r : c a n c e l (ot h e r , r) ;
6
7 g r a n t o w n e r o t h e r c a n c e l
8 {
9 i f (o t h e r != owner)

10 U t i l . f a i l (” R e s o u r c e ”+r+” c a n c e l l e d by ”
11 +o t h e r+” when h e l d by ”+owner) ;
12 }
13 }

Respect conflicts

We can also define this property using TraceMatches.

Requirement RespectConflicts

Conflicts must be respected. For every pair of resources, if they conflict
then only one can be granted at any one time.

RespectConflicts : Defining Pointcuts

We first define pointcuts to capture the events we are interested in:
I conflict(resource 1, resource 2)
I grant r1(resource 1)
I cancel r1(resource 1)
I grant r2(resource 2)

1 p o i n t c u t c o n f l i c t (R e s o u r c e r e s o u r c e 1 , R e s o u r c e r e s o u r c e 2) :
2 c a l l (vo id m i s s i o n c o n t r o l . R e s o u r c e T a b l e . a d d C o n f l i c t
3 (Resource , R e s o u r c e)) && args (r e s o u r c e 1 , r e s o u r c e 2) ;
4
5 po intcut g r a n t (R e s o u r c e r e s o u r c e) :
6 c a l l (vo id m i s s i o n c o n t r o l . Task +. sendGrant (R e s o u r c e))
7 && args (r e s o u r c e) ;
8
9 po intcut c a n c e l (R e s o u r c e r e s o u r c e) :

10 c a l l (vo id m i s s i o n c o n t r o l . A r b i t e r . s e n d C a n c e l (Task ,
11 R e s o u r c e)) && args (owner , r e s o u r c e) ;

RespectConflicts : defining the property
We define our tracematch using these events.
A trace matches if there is a conflict between resource r1 and
resource r2 and they are (at some point) granted at the same time -
note that cancel r2 is not defined here so the ordering matters.

1 t r a c e m a t c h (R e s o u r c e r1 , R e s o u r c e r 2)
2 {
3 sym c o n f l i c t a f t e r : (c o n f l i c t (r1 , r2) | | c o n f l i c t (r2 , r 1)) ;
4 sym g r a n t r 1 a f t e r : g r a n t (r1) ;
5 sym c a n c e l r 1 a f t e r : c a n c e l (r 1) ;
6 sym g r a n t r 2 a f t e r : g r a n t (r2) ;
7
8 c o n f l i c t+ (g r a n t r 1 | c a n c e l r 1 | g r a n t r 2)∗
9 g r a n t r 1 g r a n t r 2

10 {
11 i f (r 1 != r 2)
12 U t i l . f a i l (” C o n f l i c t i n g r e s o u r c e s ”+r 1 + ” and ”+r 2+
13 ” g r a n t e d a t t h e same t ime ”) ;
14 }
15 }

Summary

TraceMatches is an extension to AspectJ that allows us to write
suffix-matching regular expressions over pointcuts

We can effectively quantify over variables in these pointcuts.

The approach is defined in terms of labelling states with constraints.

Weak References and Indexing are used to improve performance.

References

Adding Trace Matching with Free Variables to AspectJ: C. Allan , P.
Avgustinov , A. Simon Christensen , L. Hendren , S. Kuzins , O. De
Moor , D. Sereni , G. Sittampalam , J. Tibble. In OOPSLA 2005

Making Trace Monitors Feasible: P. Avguistinov, J. Tibble and O. doe
Moor. In OOPSLA 2007

Part IV
JavaMOP

Recap

In the last section we saw the TraceMatches tool.

This was
I defined as an extension to Aspect
I suffix-matching
I implemented via labelling states of a state machine with constraints

Contents

In this section we will look at the JavaMOP tool, considering:

The syntax of JavaMOP

An illustrative example

The semantics

A discussion of algorithms and efficiency

What is JavaMOP

A language in the Monitoring-Oriented Programming family (MOP).

MOP is an attempt to formalise the process of monitoring programs
as a programming methodology.

similar to how AOP is a methodology for cross-cutting concerns.

A stand-alone tool that compiles JavaMOP specifications into
AspectJ advice.

Combines parametric trace slicing with logic plugins to give a generic
framework for parametric runtime monitoring.

Syntax

JavaMOP syntax is a special instance of MOP syntax

At a high level, a JavaMOP specification contains the same
components as a TraceMatches specification:

I parameter/variable declaration
I event declarations
I a propositional property
I code to execute

It also includes additional modifiers to modify the semantics and gives
optimisation hints (see later).

Availability

The MOP website is http://fsl.cs.uiuc.edu/index.php/MOP.

Here you can
I See all publications related to JavaMOP
I Download the tool.
I View examples
I Interact with the tool

http://fsl.cs.uiuc.edu/index.php/MOP

Running JavaMOP

Download JavaMOP installer from
http://fsl.cs.uiuc.edu/index.php/MOP.

Follow instructions to set appropriate paths.

Save specification in <spec-name>.mop file.

Run javamop <spec-name>.mop.

This will produce an AspectJ file - weave this as normal with
javamoprt.jar on the classpath.

You may wish to add javamoprt.jar to your Java extension libraries.

The resource lifecycle

Let us consider the lifecycle of a resource.
It can be in one of three states:

1 Unowned
2 Requested
3 Owned

We would like to make sure it only transits between these states in
certain ways i.e.

1 2

3

request

deny
grant

cancel
rescind

We will call this the Resource Lifecycle requirement.

http://fsl.cs.uiuc.edu/index.php/MOP

Defining a specification

We first capture the variables used in the specification.

Here this is just the resource whose lifecycle we are monitoring.

We can think of this as being universally quantified.

i.e. For all resources.

1 R e s o u r c e L i f e C y c l e (R e s o u r c e r) {

Defining the events

Events are defined in terms of AspectJ pointcuts

2 e v e n t r e q u e s t a f t e r (R e s o u r c e r) :
3 c a l l (vo id ∗ . Task +. se ndRequest (R e s o u r c e))&& args (r){}
4
5 e v e n t g r a n t a f t e r (R e s o u r c e r) :
6 c a l l (vo id ∗ . Task +. sendGrant (R e s o u r c e))&& args (r){}
7
8 e v e n t r e s c i n d (R e s o u r c e r) :
9 c a l l (vo id ∗ . Task +. s e n d R e s c i n d (R e s o u r c e)) && args (r){}

10
11 e v e n t c a n c e l a f t e r (R e s o u r c e r) :
12 c a l l (vo id ∗ . A r b i t e r . s e n d C a n c e l (Task , R e s o u r c e))
13 && args (∗ , r){}
14
15 e v e n t deny a f t e r (R e s o u r c e r) :
16 c a l l (vo id ∗ . A r b i t e r . sendDeny (Task , R e s o u r c e))
17 && args (∗ , r){}

Describing the property

We describe the property with a Finite State Machine (fsm).

We directly implement the fsm on the previous slide.

18 fsm :
19 s t a r t [
20 r e q u e s t −> r e q u e s t e d
21]
22 r e q u e s t e d [
23 deny −> s t a r t
24 g r a n t −> owned
25]
26 owned [
27 r e s c i n d −> owned
28 c a n c e l −> s t a r t
29]

Defining actions

We can perform different actions when reaching different states,
allowing us to record different kinds of error.

For example, we could log when a resource is granted.

And we should record errors.

The fail action is called when no transition can be made.

31 @owned{
32 l o g . p r i n t (” R e s o u r c e ”+r+” g r a n t e d ”) ;
33 }

34 @ f a i l {
35 U t i l . f a i l (” R e s o u r c e ”+r+
36 ” was used i n c o r r e c t l y ”) ;
37 }

Matching

Let us consider how to match against the trace:
request(wheels)
request(antenna)
grant(antenna)
deny(wheels)
cancel(antenna)
request(wheels)
rescind(antenna)

We are already given the finite state machine for our property.

1 2

3

request

deny
grant

cancel
rescind

Capturing full behaviour

We can add in the implicit fail state:

1 2

3

fail

request

deny grant

cancel
rescind

grant

cancel

deny

rescind

request

cancel

rescind

request

grant

deny

Processing the trace

We will associate bindings with states from this state machine.

i.e. We will build a map

Bind ⇁ State

We start with an empty binding and initial state.

r state
- 1

Processing the trace

We will associate bindings with states from this state machine.

i.e. We will build a map

Bind ⇁ State

We start with an empty binding and initial state.

request(wheels)

r state
- 1

wheels 2 (requested)

Processing the trace

We will associate bindings with states from this state machine.

i.e. We will build a map

Bind ⇁ State

We start with an empty binding and initial state.

request(wheels)
request(antenna) r state

- 1
wheels 2 (requested)
antenna 2 (requested)

Processing the trace

We will associate bindings with states from this state machine.

i.e. We will build a map

Bind ⇁ State

We start with an empty binding and initial state.

request(wheels)
request(antenna)
grant(antenna)

r state
- 1

wheels 2 (requested)
antenna 3 (owned)

Processing the trace

We will associate bindings with states from this state machine.

i.e. We will build a map

Bind ⇁ State

We start with an empty binding and initial state.

request(wheels)
request(antenna)
grant(antenna)
deny(wheels)

r state
- 1

wheels 1
antenna 3 (owned)

Processing the trace

We will associate bindings with states from this state machine.

i.e. We will build a map

Bind ⇁ State

We start with an empty binding and initial state.

request(wheels)
request(antenna)
grant(antenna)
deny(wheels)
cancel(antenna)

r state
- 1

wheels 1
antenna 1

Processing the trace

We will associate bindings with states from this state machine.

i.e. We will build a map

Bind ⇁ State

We start with an empty binding and initial state.

request(wheels)
request(antenna)
grant(antenna)
deny(wheels)
cancel(antenna)
request(wheels)

r state
- 1

wheels 2 (requested)
antenna 1

Processing the trace

We will associate bindings with states from this state machine.

i.e. We will build a map

Bind ⇁ State

We start with an empty binding and initial state.

request(wheels)
request(antenna)
grant(antenna)
deny(wheels)
cancel(antenna)
request(wheels)
rescind(antenna)

r state
- 1

wheels 2 (requested)
antenna fail

The details

We have now seen informally how JavaMOP operates using an
example, we will now look at how it works.
JavaMOP is built in two halves.

I The parametric trace slicing technique slices an input parametric trace
into a set of propositional traces, each associated with a binding.

I A logic plugin defines how to interpret each propositional trace.

JavaMOP can run in different modes - which tells us how to
interpret the results from the logic plugin.

Parametric Trace Slicing Logic Plugin

e(v)e(v)e(v) . . .

θ 7→ ee . . .

θ 7→ ee . . .

θ 7→ ee . . .

θ 7→ ee . . . X
θ 7→ ee . . . 7
θ 7→ ee . . . X

Parametric trace slicing

Parametric Trace slicing defines a trace ‘slice’ (subtrace) for a
particular binding of the variables.

JavaMOP implicitly translates parametric events of the form e(v) to
parameterised events of the form e(θ) by associating an event name e
with a parameter signature x - it is assumed this occurs during event
extraction.

An event e(θ′) is relevant to binding θ if it only includes things
mentioned in θ - θ′ is a submap of θ.

Therefore, Parametric Trace Slicing is defined as

ε ↓θ= ε e(θ′)τ ↓θ=

{
e(τ ↓θ) if θ′ v θ
τ ↓θ otherwise

Note the similarity with filtering in TraceMatches.

Slicing our trace

Let us call this trace τ .
request(wheels)
request(antenna)
grant(antenna)
deny(wheels)
cancel(antenna)
request(wheels)
rescind(antenna)

We can slice it with respect to wheels and antenna:

τ ↓[r 7→w]= request(w).deny(w)request(w)
τ ↓[r 7→a]= request(a).grant(a).cancel(a).rescind(a)

Limitations of this approach

We do not illustrate JavaMOP using our GrantCancel and
RespectPriorities examples

As JavaMOP cannot capture these properties without resorting to
programming as we did with AspectJ

The main limitation that prevents us from doing this is that we each
program event may only relate to a single event in the specification

For example, we cannot define the events grant r1 and grant r2

both related to the same pointcut (but with different values) as we
did with TraceMatches

By restricting expressiveness, JavaMOP is able to carry out
monitoring more efficiently

Logic plugins

Logic Plugins provide a function

PropositionalTrace → Verdict

The logic plugins currently provided include:
I Finite State Machines (fsm)
I Extended Regular Expressions (ere)
I Context Free Grammars (cfg)
I Linear Temporal Logic (ltl)
I String Rewriting Systems (srs)

Let us consider how we might write different properties using these
plugins.

Extended regular expressions

We can use the ere plugin to model the first part of the GrantCancel
property, similar to how we did this in the TraceMatches
approach.

This defines the property as matching on a trace suffix by using the
emphsuffix mode.

Code is executed when the ere is matched.

1 s u f f i x G r a n t C a n c e l (R e s o u r c e r) {
2 . . .
3 e r e : (g r a n t g r a n t) | (c a n c e l c a n c e l)
4
5 @match{
6 . . .
7 }
8 }

Grant and Cancel should alternate

Extended regular expressions

Alternatively we can rewrite this so that code is executed when the
expression is not matched.

This can be more intuitive and leads us to write validation rather than
violation properties.

1 G r a n t C a n c e l (R e s o u r c e r) {
2 . . .
3 e r e : (g r a n t c a n c e l)∗
4
5 @ f a i l {
6 . . .
7 }
8 }

Grant and Cancel should alternate.

Linear temporal logic

We have all the standard LTL operators.

Code is executed when the property is violated.

We have future time operators.

1 G r a n t C a n c e l (R e s o u r c e r) {
2 . . .
3 l t l : [] (g r a n t => () c a n c e l)
4
5 @ v i o l a t i o n {
6 . . .
7 }
8 }

When you see a Grant the next event is a Cancel

Linear temporal logic

We have all the standard LTL operators.

Code is executed when the property is violated.

And past time operators.

1 G r a n t C a n c e l (R e s o u r c e r) {
2 . . .
3 p l t l : c a n c e l => (∗) g r a n t
4
5 @ v i o l a t i o n {
6 . . .
7 }
8 }

A cancel must be preceded by a grant.

Context free grammars

Grammars follow the standard syntax.

Again we can either match a grammar.

1 G r a n t C a n c e l (R e s o u r c e r) {
2 . . .
3 c f g : S −> W | G | C
4 W −> s t a r t c a n c e l
5 G −> g r a n t g r a n t
6 C −> c a n e l c a n c e l
7
8 @match{
9 . . .

10 }
11 }

Grants and cancel should alternate, starting with a grant

Context free grammars

Grammars follow the standard syntax.

Or fail to match it.

1 G r a n t C a n c e l (R e s o u r c e r) {
2 . . .
3 c f g : S −> g r a n t c a n c e l S | e p s i l o n
4
5 @ f a i l {
6 . . .
7 }
8 }

Grants and cancel should alternate, starting with a grant.

Putting it together

We have Parametric Trace slicing as a function:

pts ∈ ParametricTrace × Bind → PropositionalTrace

And a Logic Plugin as a function:

plugin ∈ PropositionalTrace → Verdict

So the verdict for a trace given a binding is:

check ∈ ParametricTrace × Bind → Verdict = plugin ◦ pts

We can model an action as a predicate that checks the verdict and a
function that takes a binding and returns code:

Action = (Verdict → B)× (Bind → Code)

Therefore, the code to execute on observing parametric trace τ is:

{act.snd(θ) | act ∈ Actions ∧ θ ∈ Bind ∧ act.fst(check(τ, θ))}

JavaMOP modes

JavaMOP has some additional modes which alter these semantics:

suffix
I Performs suffix matching (as in TraceMatches) rather than

complete matching.

perthread
I Constructs a separate trace per program thread.

full-binding
I Actions are only fired by bindings that bind all variables in the

specification.

unsynchronized
I Access to the monitor state is not synchronized - faster but may

introduce data races.

decentralized
I Indexing is decentralized - see later for details.

JavaMOP modes (cont)

JavaMOP has some additional modes which alter these semantics:

maximal-bindings
I A binding θ can only cause an action to fire if there does not exist a

binding θ′ such that θ v θ′ and pts(θ′, τ) 6= ε.
I i.e. only match on the largest relevant binding

connected
I Only connected bindings may cause an action to fire. A binding is

connected if all bound values are connected (transitively) by events.
I We may wish to define behaviours for objects related by events.
I For example - for every enumeration constructed from some collection.

From semantics to implementation

Now let us consider how we move from the semantics of parametric
trace slicing to an implementation.

We will consider only logic plugins which can be translate to fsm (and
give no details of this translation).

We will not consider alterations required for different modes.

(See published work for these details)

We will present an algorithm for parametric trace slicing.

And refine this based on considerations of efficiency.

An API example
We turn to an example of correct API usage to demonstrate
JavaMOP’s implementation.

Requirement UnsafeMapIterator

When a collection (i.e. key or value set) is created from a map and an
iterator is created for this collection, do not use the iterator after the
original map is updated.

The JavaMOP specification

1 import j a v a . u t i l . ∗ ;
2
3 f u l l −b i n d i n g Unsa f eMap I t e r a to r (Map m, C o l l e c t i o n c , I t e r a t o r i){
4
5 even t c r ea t eC a f t e r (Map m) r e t u r n i n g (C o l l e c t i o n c) :
6 (c a l l (∗ Map . v a l u e s ()) | | c a l l (∗ Map . keySet ()))
7 && t a r g e t (m) {}
8
9 even t c r e a t e I a f t e r (C o l l e c t i o n c) r e t u r n i n g (I t e r a t o r i) :

10 c a l l (∗ C o l l e c t i o n . i t e r a t o r ()) && t a r g e t (c) {}
11
12 even t use be fo re (I t e r a t o r i) :
13 c a l l (∗ I t e r a t o r . nex t ()) && t a r g e t (i) {}
14
15 even t update a f t e r (Map m) :
16 (c a l l (∗ Map . put ∗ (. .)) | | c a l l (∗ Map . p u tA l l ∗ (. .))
17 | | c a l l (∗ Map . c l e a r ()) | | c a l l (∗ Map . remove ∗ (. .)))
18 && t a r g e t (m) {}
19
20 e r e : c r ea t eC update ∗ c r e a t e I use ∗ update update ∗ use
21
22 @match{ System . out . p r i n t l n (” un sa f e i t e r a t o r usage ! ”) ; }
23 }

An automaton

We can construct an automaton for the expression

createC update∗ createI use∗ update update∗ use

A match is detected if we reach state 5.

1 2 3 4 5
createC

update

createI

use

update

update

use

An example trace

Let us consider the trace:
createC(M1,C1)
createC(M1,C2)
createI(C1,I1)
update(C1)
createI(C2,I2)
use(I1)

According to the theory, the code should be executed for binding
[c 7→ C1,m 7→ M1, i 7→ I1] as the slice

createC createI update use

matches the expression

A basic algorithm

Input: a parametric trace τ
Output: a map from bindings to propositional traces

1 ∆ : [Bind ⇁ PropositionalTrace];
2 Θ : Bind ;
3 ∆← [⊥ → ε] ;
4 foreach e(θ) ∈ τ in order do
5 Θ← dom(∆);
6 foreach θ′ ∈ Θ do
7 if θ is consistent with θ′ then
8 θmax ← [];
9 foreach θalt ∈ Θ do

10 if θmax v θalt v θ † θ′ then θmax = θalt

11 ∆(θ † θ′)← ∆(θmax)e

12 return ∆

What it does

1 ∆← [⊥ → ε] ;
2 foreach e(θ) ∈ τ in order do
3 Θ← dom(∆);
4 foreach θ′ ∈ Θ do
5 if θ is consistent with θ′ then
6 θmax ← θ′;
7 foreach θalt ∈ Θ do
8 if θmax v θalt v θ † θ′

then θmax = θalt

9 ∆(θ † θ′)← ∆(θmax)e

10 return ∆

Initialise ∆

For each event in the trace

Save the domain of ∆ in Θ

For each binding θ′ in Θ

If the event is relevant to θ′

Find the existing binding
θmax that is the largest
binding bigger than θ′

Append the event name to
the trace for θmax and set
this as the trace for θ † θ′

Return the resulting map ∆

First inefficiency

It is inefficient to store the
propositional traces
directly.

We can use the assumption
that our property can be
presented by a fsm to
update the algorithm.

We map bindings to states.

Let q0 and δ be the initial
state and transition
function.

Therefore, we compute the
check function.

Input: a parametric trace τ
Output: a map from bindings to monitors

1 Check(τ){
2 ∆ : [Bind ⇁ State]; Θ : Bind ;
3 ∆← [⊥ → q0] ;
4 foreach e(θ) ∈ τ in order do
5 Θ← dom(∆);
6 foreach θ′ ∈ Θ do
7 if θ is consistent with θ′ then
8 θmax ← θ′;
9 foreach θalt ∈ Θ do

10 if θmax v θalt v θ † θ′ then
θmax = θalt

11 ∆(θ † θ′)← δ(∆(θmax), e)

12 return ∆ return θ ∈ dom(∆) where ∆(θ)
is final

13 }

How it works

Bindings can be represented in a lattice using the submap relation v.

For example, let us represent the bindings computed for our trace
where we use (x,y,z) to represent the binding [m 7→ x , c 7→ y , i 7→ z].

Let us also label the bindings with states (with F for fail).

How it works

1 2 3 4 5
createC

update

createI

use

update

update

use

On receiving create(M1,C1) we construct a new binding

Trace
createC(M1,C1)

(-,-,-):1

(M1,C1,-):2

How it works

1 2 3 4 5
createC

update

createI

use

update

update

use

We initialise new bindings with the state from the maximal binding
(here (-,-,-)) and then apply the event

Trace
createC(M1,C1)
createC(M1,C2)

(-,-,-):1

(M1,C1,-):2(M1,C2,-):2

How it works

1 2 3 4 5
createC

update

createI

use

update

update

use

We extend the existing (M1,C1,-) to get (M1,C1,I1)
As (M1,C1,-) is maximal, we initialise this binding with state 2 and
make the transition to state 3
There is no createI transition from state 1 so (-,C1,I1) fails

Trace
createC(M1,C1)
createC(M1,C2)
createI(C1,I1)

(-,-,-):1

(M1,C1,-):2(M1,C2,-):2 (-,C1,I1):F

(M1,C1,I1):3

How it works

1 2 3 4 5
createC

update

createI

use

update

update

use

update(C1) is relevant to (-,C1,-), (-,C1,I1), (M1,C1,-) and (M1,C1,I1)

(M1,C1,-) does a self transition and (M1,C1,I1) moves to state 4

Trace
createC(M1,C1)
createC(M1,C2)
createI(C1,I1)
update(C1)

(-,-,-):1

(M1,C1,-):2(M1,C2,-):2 (-,C1,I1):F

(M1,C1,I1):4

(-,C1,-):F

How it works

1 2 3 4 5
createC

update

createI

use

update

update

use

(M1,C2,I2) extends (M1,C2,-) and (-,C2,I2) extends (-,-,-)

Trace
createC(M1,C1)
createC(M1,C2)
createI(C1,I1)
update(C1)
createI(C2,I2)

(-,-,-):1

(M1,C1,-):2(M1,C2,-):2 (-,C1,I1):F

(M1,C1,I1):4

(-,C1,-):F

(M1,C2,I2):3

(-,C2,I2):F

How it works

1 2 3 4 5
createC

update

createI

use

update

update

use

applying use for binding (M1,C1,I1) takes it to state 5

Trace
createC(M1,C1)
createC(M1,C2)
createI(C1,I1)
update(C1)
createI(C2,I2)
use(I1)

(-,-,-):1

(M1,C1,-):2(M1,C2,-):2 (-,C1,I1):F

(M1,C1,I1):5

(-,C1,-):F

(M1,C2,I2):3

(-,C2,I2):F

(-,-,I1):F

How it works

Recall that we are in full-binding mode.

We only match if a full-binding reaches a relevant state (here 5).

Therefore, code is executed for (M1,C1,I1) as an improper usage was
detected

Trace
createC(M1,C1)
createC(M1,C2)
createI(C1,I1)
update(C1)
createI(C2,I2)
use(I1)

(-,-,-):1

(M1,C1,-):2(M1,C2,-):2 (-,C1,I1):F

(-,C1,-):F

(-,2,I2):F

(-,-,I1):F

(M1,C1,I1):5(M1,C2,I2):3

Second inefficiency

Let n be the number of bindings in dom(∆) at a particular step.

We access ∆ n2 times on each step - we check every binding to see if
it is relevant to the event.

This is inefficient.

Instead, we can directly lookup relevant events by storing in a map,
for each binding, those existing bindings that are relevant.

What should U be?

Let U : Bind → 2Bind be such a map

We want U to help us update ∆

∆ should be ‘union-closed’ - if two compatible bindings are in ∆,
their union should also be in ∆:

∀θ, θ′ ∈ dom(∆) : compatible(θ, θ′)⇒ θ t θ′ ∈ dom(∆)

U should be ‘submap-closed’ - every submap of a binding in ∆ should
be in U:

∀θ ∈ dom(∆),∀θ′ ∈ Bind : θ′ v θ ⇒ θ′ ∈ dom(U)

U should be ‘relevance-closed’ - every entry in U should point to the
relevant bindings in ∆:

∀θ, θ′ ∈ dom(∆) : θ v θ′ ⇒ θ′ ∈ U(θ)

A refined algorithm

1 ∆ : [Bind ⇁ State];U : Bind → 2Bind

2 ∆← {⊥ → q0};U← ∅ for any θ ∈ Bind
3 foreach e(θ) ∈ τ in order do
4 if θ /∈ dom(∆) then
5 foreach θm @ θ (big to small) do
6 if θm ∈ dom(∆) then break

7 defTo(θ, θm)
8 foreach θm @ θ (big to small) do
9 foreach θ′ ∈ U(θm)

compatible with θ do
10 if (θ′ t θ) /∈ dom(∆)

then defTo(θ′ t θ, θ′)

11 foreach θ′ ∈ {θ} ∪ U(θ) do
12 ∆(θ′)← σ(∆(θ′), e)

13 return ∆

Initialisation

If θ not in U add it and
ensure closure properties

We will look at how this is
done next

Update states for relevant
bindings

Closing U
1 if θ /∈ dom(∆) then
2 foreach θm @ θ (big to small) do
3 if θm ∈ dom(∆) then break

4 defTo(θ, θm)
5 foreach θm @ θ (big to small) do
6 foreach θ′ ∈ U(θm)

compatible with θ do
7 if (θ′ t θ) /∈ dom(∆) then

defTo(θ′ t θ, θ′)

8

9 ...
10

11 defTo(θ, θ′):
12 ∆(θ)← ∆(θ′)
13 foreach θ′′ @ θ do

U(θ′′)← U(θ′′) ∪ {θ}

We only need to update U if θ
is not in U
We first find the maximal
binding in ∆ (might be ⊥)

Use it to add θ

Ensures closure properties

Consier all submaps

Attempt to create all unions

defTo uses the state from the
maximal binding to initialise θ

Relevance-closes U for θ i.e.
adds it to the U-entry for all
smaller existing bindings

Why is this better?

1 foreach e(θ) ∈ τ in order do
2 if θ /∈ dom(∆) then
3 foreach θm @ θ (big to small) do
4 if θm ∈ dom(∆) then break

5 defTo(θ, θm)
6 foreach θm @ θ (big to small) do
7 foreach θ′ ∈ U(θm)

compatible with θ do
8 if (θ′ t θ) /∈ dom(∆)

then defTo(θ′ t θ, θ′)

9 foreach θ′ ∈ {θ} ∪ U(θ) do
10 ∆(θ′)← σ(∆(θ′), e)

11 return ∆

We only update U if we
haven’t seen the event’s
objects before.

Optimise Common Case

Only iterate over small
collections - we expect
U(θ) to be small compared
to dom(∆).

1 defTo(θ, θ′):
2 ∆(θ)← ∆(θ′)
3 foreach θ′′ @ θ do

U(θ′′)← U(θ′′) ∪ {θ}

How it works
We begin with ∆ containing the empty binding and initial state, and
U empty

Trace ∆ U
(-,-,-) 1

How it works
Adding (M1,-,-) and (-,C1,-) to U allows us to find (M1,C1,-) in the
future whenever we see an event using just C1 or M1

Trace ∆ U
(-,-,-) 1 (-,-,-) (M1,C1,-)

createC(M1,C1) (M1,C1,-) 2

(M1,-,-) (M1,C1,-)

(-,C1,-) (M1,C1,-)

How it works
(M1,C2,-) is also added to the entry in U for (M1,-,-) - this relates to
the ‘above-of’ relation in the lattice we were building earlier

Trace ∆ U
(-,-,-) 1 (-,-,-) (M1,C1,-)(M1,C2,-)

createC(M1,C1) (M1,C1,-) 2
createC(M1,C2) (M1,C2,-) 2

(M1,-,-) (M1,C1,-)(M1,C2,-)

(-,C1,-) (M1,C1,-)

(-,C2,-) (M1,C2,-)

How it works
(-,C1,I1) is added from (-,-,-)
(M1,C1,-) in U((-,C1,-)) is used to add (M1,C1,I1)

Trace ∆ U
(-,-,-) 1 (-,-,-) (M1,C1,-)(M1,C2,-)

createC(M1,C1) (M1,C1,-) 2 (-,C1,I1)(M1,C1,I1)
createC(M1,C2) (M1,C2,-) 2
createI(C1,I1) (-,C1,I1) F

(M1,C1,I1) 3 (M1,-,-) (M1,C1,-)(M1,C2,-)
(M1,C1,I1)

(-,C1,-) (M1,C1,-)(-,C1,I1)
(M1,C1,I1)

(-,C2,-) (M1,C2,-)(-,C2,I2)

(-,-,I1) (-,C1,I1)(M1,C1,I1)
(M1,C1,-) (M1,C1,I1)
(-,C1,I1) (M1,C1,I1)
(M1,-,I1) (M1,C1,I1)

How it works
θm is (-,-,-) therefore defTo((-,C1,-),(-,-,-)) sets (-,C1,-) to state 1
which is updated to F by σ
As expected U((-,C1,-)) = { (M1,C1,-),(-,C1,I1),(M1,C1,I1) }

Trace ∆ U
(-,-,-) 1 (-,-,-) (M1,C1,-)(M1,C2,-)

createC(M1,C1) (M1,C1,-) 2 (-,C1,I1)(M1,C1,I1)
createC(M1,C2) (M1,C2,-) 2 (-,C1,-)
createI(C1,I1) (-,C1,I1) F
update(C1) (M1,C1,I1) 4 (M1,-,-) (M1,C1,-)(M1,C2,-)

(-,C1,-) F (M1,C1,I1)
(-,C1,-) (M1,C1,-)(-,C1,I1)

(M1,C1,I1)
(-,C2,-) (M1,C2,-)

(-,-,I1) (-,C1,I1)(M1,C1,I1)
(M1,C1,-) (M1,C1,I1)
(-,C1,I1) (M1,C1,I1)
(M1,-,I1) (M1,C1,I1)

How it works
θm is (-,-,-) so defTo((-,C2,I2),(-,-,-)) adds this to ∆ with state 1 and
applying σ updates this to F
We consider (-,C2,-) @ (-,C2,I2) and use U((-,C2,-)) to add (M1,C2,I2)

Trace ∆ U
(-,-,-) 1 (-,-,-) (M1,C1,-)(M1,C2,-)

createC(M1,C1) (M1,C1,-) 2 (-,C1,I1)(M1,C1,I1)
createC(M1,C2) (M1,C2,-) 2 (-,C1,-)(-,C2,I2)
createI(C1,I1) (-,C1,I1) F (M1,C2,I2)
update(C1) (M1,C1,I1) 4 (M1,-,-) (M1,C1,-)(M1,C2,-)
createI(C2,I2) (-,C1,-) F (M1,C1,I1)(M1,C2,I2)

(-,C2,I2) F (-,C1,-) (M1,C1,-)(-,C1,I1)
(M1,C2,I2) 3 (M1,C1,I1)

(-,C2,-) (M1,C2,-)(-,C2,I2)
(M1,C2,I2)

.
(-,-,I2) (-,C2,I2)(M1,C2,I2)
(M1,C2,-) (M1,C2,I2)
(-,C2,I2) (M1,C2,I2)
(M1,-,I2) (M1,C2,I2)

How it works
We can use the (-,-,I1) entry in U to find the two relevant bindings
Previously we would have had to compare (-,-,I1) with every binding
in ∆

Trace ∆ U
(-,-,-) 1 (-,-,-) (M1,C1,-)(M1,C2,-)

createC(M1,C1) (M1,C1,-) 2 (-,C1,I1)(M1,C1,I1)
createC(M1,C2) (M1,C2,-) 2 (-,C1,-)1-¿(-,C2,I2)
createI(C1,I1) (-,C1,I1) F (M1,C2,I2)(-,-,I1)
update(C1) (M1,C1,I1) 5 (M1,-,-) (M1,C1,-)(M1,C2,-)
createI(C2,I2) (-,C1,-) F (M1,C1,I1)(M1,C2,I2)
use(I1) (-,C2,I2) F (-,C1,-) (M1,C1,-)(-,C1,I1)

(M1,C2,I2) 3 (M1,C1,I1)
(-,C2,-) (M1,C2,-)(-,C2,I2)

(M1,C2,I2)
(-,-,I1) (-,C1,I1)(M1,C1,I1)
(M1,C1,-) (M1,C1,I1)
.

How it works
Trace ∆ U

(-,-,-) 1 (-,-,-) (M1,C1,-)(M1,C2,-)
createC(M1,C1) (M1,C1,-) F (-,C1,I1)(M1,C1,I1)
createC(M1,C2) (M1,C2,-) 2 (-,C1,-)(-,C2,I2)
createI(C1,I1) (-,C1,I1) F (M1,C2,I2)(-,-,I1)
update(C1) (M1,C1,I1) 5 (M1,-,-) (M1,C1,-)(M1,C2,-)
createI(C2,I2) (-,C1,-) F (M1,C1,I1)(M1,C2,I2)
use(I1) (-,C2,I2) F (-,C1,-) (M1,C1,-)(-,C1,I1)

(M1,C2,I2) 3 (M1,C1,I1)
(-,C2,-) (M1,C2,-)(-,C2,I2)

(M1,C2,I2)
(-,-,I1) (-,C1,I1)(M1,C1,I1)
(M1,C1,-) (M1,C1,I1)
(-,C1,I1) (M1,C1,I1)
(M1,-,I1) (M1,C1,I1)
(-,-,I2) (-,C2,I2)(M1,C2,I2)
(M1,C2,-) (M1,C2,I2)
(-,C2,I2) (M1,C2,I2)
(M1,-,I2) (M1,C2,I2)

Further Inefficiencies

There are two other main methods for reducing inefficiency

Minimising Garbage
I Introduce creation events
I Introduce enable and co-enable sets
I Use Weak References

Indexing
I Create and maintain an index map per set of variables
I Decentralise indexing - storing index maps in monitored objects via

weaving

Summary

The JavaMOP automatically generates AspectJ code.

It is based on the concept of parametric trace slicing.

Specifications can be written in a number of different formalisms
using logic plugins.

The tool has a number of optimisations including algorithms which
use complex data structures to remove redundant work

References

Parametric Trace Slicing and Monitoring: F. Chen and G. Roşu. In
TACAS 2009.

An Overview of the MOP Runtime Verification Framework: P.
Meredith, D. Jin, D. Griffith, F. Chen and G. Roşu. In the
International Journal on Software Techniques for Technology Transfer.

Part V
RuleR

Recap

We have seen the TraceMatches tool, defined as an extension to
AspectJ.
We have seen the stand-alone JavaMOP tool based on the concept
of parametric trace slicing.
Both of these have efficient monitoring algorithms.
But both are limited in terms of expressiveness.

Contents

In this section we introduce the RuleR tool.
RuleR focuses on expressiveness.
We consider:

I The syntax of RuleR
I How to use RuleR
I An illustrative example
I The RuleR algorithm

What is RuleR?

Based on the concept of rewrite rules.
The monitor is represented by a set of states, each consisting of a set
of rule activations.
Rules rewrite this state.
Rules can be parameterized with data.
Written as a stand-alone system - events are explicitly dispatched to a
RuleR monitor.

Syntax : high level

1
2 r u l e r <name>{
3 obse rve s : <obs−def> l i s t
4
5 <mod><ru l e−name>(<var−def> l i s t){
6 c o n d i t i o n −> ob l i g a t i o n 1
7 " | " o b l i g a t i o n 2
8 . . .
9 }
10 . . .
11
12 i n i t i a l s : <r u l e−name> l i s t
13 [f o r b i d d e n : <r u l e−name> l i s t]
14 [succeed : <r u l e−name> l i s t]
15 [a s s e r t : <r u l e−name> l i s t]
16 }

A RuleR specification has the
following parts:

a name
observation definitions
rule definitions
initial rules
acceptance conditions

A rule consists of:
a modifier
a name
variable definitions
a list of "condition →
obligations" parts

Syntax : low level
This is only part of the full RuleR syntax.

<spec> ::= ruler <name> { <body> }
<body> ::= observes : <obs-def> list

<rule> list
initials : <rule-name> list
[<rules-cond> : <rule-name> list] list

<rule-cond> ::= succeed | forbidden | assert
<rule> ::= <rule-mod><rule-name>(<vardef> list) { <rule-part> list }
<rule-mod> ::= step | state | always
<rule-part> ::= <literal> list -> <obligation>

| <literal> list {: <rule-part> :}
| <literal> list {| <rule-part> |}

<obligation>::= <p-literal> list "|" <obligation> | <epsilon>
<literal> ::= <atom> | !<atom>
<p-literal> ::= <p-atom> | !<p-atom>
<atom> ::= <rule-name>(<dsymb> list) | <obs-name>(<dsymb> list) | <p-atom>
<p-atom> ::= <rule-name>(<symb> list) | <obs-name>(<symb> list)
<obs-def> ::= <obs-name>(<vardef> list)
<dsymb> ::= <var> | <vardef>
<symb> ::= <var> | <val> | <p-atom>
<vardef> ::= <var> “:” <type>
<type> ::= int | long | string | boolean | obj

Using RuleR

RuleR is a stand-alone tool that presents the following to the user:
I a monitor constructor

new Ruler(String,String,boolean)
i.e.
new Ruler("spec.ruler"︸ ︷︷ ︸

spec name

, "out-file.txt"︸ ︷︷ ︸
out file

, false︸︷︷︸
use timing

)

I a dispatch method of the form
dispatch(String,Object[])
i.e.
dispatch("grant"︸ ︷︷ ︸

name

, new Object[]{ wheels }︸ ︷︷ ︸
parameters

)

I A verdict enumeration for returning results
public enum Verdict

{TRUE, STILL_TRUE, STILL_FALSE, FALSE, UNKNOWN}

These can be called from an AspectJ file containing instrumentation.

The RespectPriorities example

We will use this example to demonstrate how RuleR works.
We assume all conflicts and priorities are declared at the beginning.

Requirement RespectPriorities
Let priorities sort conflicts. If there’s a conflict and the requested resource
has the highest priority then the granted resource should be rescinded
before any shutdown of the system.

Recording events
We need to write instrumentation to:

I construct the RuleR monitor

1 RuleR mon i to r = new RuleR (
2 " sp e c s / R e s p e c t P r i o r i t i e s . r u l e r " ,
3 " out / R e s p e c t P r i o r i t i e s . out " ,
4 f a l s e) ;

Recording events
We need to write instrumentation to:

I construct the RuleR monitor
I record the relevant events and dispatch these to the monitor

29 . . .
30 a f t e r (Resource r e s o u r c e) :
31 c a l l (vo id m i s s i o n c o n t r o l . Task+. sendResc ind (Resource))
32 && args (r e s o u r c e){
33 hand l e (mon i to r . d i s p a t c h (" r e s c i n d " ,
34 new Object [] { r e s o u r c e })) ;
35 }
36
37 a f t e r (Resource r e s ou r c e1 , Resource r e s o u r c e 2) :
38 c a l l (vo id m i s s i o n c o n t r o l . ResourceTab le . a d dCon f l i c t
39 (Resource , Resource)) && args (r e s ou r c e1 , r e s o u r c e 2){
40 hand l e (mon i to r . d i s p a t c h (" c o n f l i c t " ,
41 new Object [] { r e s ou r c e1 , r e s o u r c e 2 })) ;
42 }
43 . . .

Recording events
We need to write instrumentation to:

I construct the RuleR monitor
I record the relevant events and dispatch these to the monitor
I deal with verdicts appropriately

55 p r i v a t e s t a t i c hand l e (S i g n a l v e r d i c t){
56 switch (v e r d i c t){
57 case TRUE :
58 case STILL_TRUE : break ;
59 case STILL_FALSE : l o g . p r i n t l n ("Wait ing ␣ f o r ␣a␣ Resc ind ") ;
60 break ;
61 case FALSE : l o g . p r i n t l n (" F a i l e d ␣ : ␣"+
62 " ou t s t a nd i n g ␣ Resc ind ␣Request ") ;
63 }
64 }

Recording events
We need to write instrumentation to:

I construct the RuleR monitor
I record the relevant events and dispatch these to the monitor
I deal with verdicts appropriately
I capture system shutdown

49 a f t e r () :
50 execut ion (vo id m i s s i o n c o n t r o l . Main . main (S t r i n g []) {
51 hand l e (mon i to r . d i s p a t c h (" shutdown " ,new Object [] { })) ;
52 }

A note on verdicts

RuleR has a 4/5 valued logic.
TRUE and FALSE mean this is the verdict and it cannot change.
STILL_X means that the verdict is currently X but it may change.

1 p r i v a t e s t a t i c hand l e (S i g n a l v e r d i c t){
2 switch (v e r d i c t){
3 case TRUE :
4 case STILL_TRUE : break ;
5 case STILL_FALSE : l o g . p r i n t l n ("Wait ing ␣ f o r ␣a␣ Resc ind ") ;
6 break ;
7 case FALSE : l o g . p r i n t l n (" F a i l e d ␣ : ␣"+
8 " ou t s t a nd i n g ␣ Resc ind ␣Request ") ;
9 }

10 }

The specification : declaring events

We first declare the events used.
An event signature consists of a name and a tuple of types.
A type is either obj or a primitive Java type.

ruler RespectPriorities{
observes conflict(obj,obj), priority(obj,obj),
request(obj), grant(obj), cancel(obj),
rescind(obj),shutdown;

The specification : declaring rules
Record conflicts and
Priorities.
Track when each
resource is granted
and cancelled.
If a conflicting
resource of greater
priority is requested
and no higher priority
granted resource
conflicts with y then
require a rescind.
If a rescind is received
that’s okay but if we
finish first that’s not.

always Start(){
conflict(x:obj,y:obj) -> C(x,y),C(y,x);
priority(x:obj,y:obj) -> P(x,y);
grant(x:obj) -> G(x);

}
state C(x:obj,y:obj){}
state P(x:obj,y:obj){}
always G(x:obj){

cancel(x) -> !G(x);
request(y:obj), C(x,y), P(y,x)
{:

P(z:obj,y), G(z) C(y,z) -> Ok;
default -> Res(x);

:}
}
state Res(x:obj){
rescind(x) -> Ok; shutdown -> Fail;

}

The specification : declaring rules
always Start(){

conflict(x:obj,y:obj) -> C(x,y),C(y,x);
priority(x:obj,y:obj) -> P(x,y);
grant(x:obj) -> G(x);

}
state C(x:obj,y:obj){}
state P(x:obj,y:obj){}
always G(x:obj){

cancel(x) -> !G(x);
request(y:obj), C(x,y), P(y,x)
{:

P(z:obj,y),G(z),C(y,z) -> Ok;
default -> Res(x);

:}
}
state Res(x:obj){
rescind(x) -> Ok; shutdown -> Fail;

}

The specification : declaring rules

ruler RespectPriorities{
observes conflict(obj,obj), priority(obj,obj), request(obj),

grant(obj), cancel(obj), rescind(obj),shutdown;
always Start(){
conflict(x:obj,y:obj) -> C(x,y),C(y,x);
priority(x:obj,y:obj) -> P(x,y);
grant(x:obj) -> G(x);

}
state C(x:obj,y:obj){}
state P(x:obj,y:obj){}
always G(x:obj){
cancel(x) -> !G(x);
request(y:obj), C(x,y), P(y,x)
{:
P(z:obj,y),G(z),C(y,z) -> Ok;
default -> Res(x);

:}
}
state Res(x:obj){
rescind(x) -> Ok; shutdown -> Fail;

}

initials Start;
forbidden Res;

}

The rules fit in here.
Declare initial rule(s).
Declare forbidden
rule(s).
Define a monitor.

monitor {
uses M: RespectPriorities;
run M .

}

Monitoring a parametric trace

Consider the trace:

conflict(wheels,antenna) STILL_TRUE
priority(antenna,wheels) STILL_TRUE
request(wheels) STILL_TRUE
grant(wheels) STILL_TRUE
request(antenna) STILL_FALSE
rescind(wheels) STILL_TRUE
cancel(wheels) STILL_TRUE
grant(antenna) STILL_TRUE
shutdown STILL_TRUE

These are the expected results.
We are waiting for a rescind.
We have reached the end with no outstanding rescinds required.

Building rule activations

As we go through the trace we build up a set of rule activations.

Trace Rule
Activations
Start()

Building rule activations

As we go through the trace we build up a set of rule activations.

Trace Rule
Activations

conflict(w,a) Start()
C(w,a)
C(a,w)

always Start(){
conflict(x:obj,y:obj)
-> C(x,y),C(y,x);

priority(x:obj,y:obj)
-> P(x,y);

grant(x:obj) -> G(x);
}

We match with
conflict(x:obj,y:obj).

Building rule activations

As we go through the trace we build up a set of rule activations.

Trace Rule
Activations

conflict(w,a) Start()
priority(a,w) C(w,a)

C(a,w)
P(a,w)

always Start(){
conflict(x:obj,y:obj)
-> C(x,y),C(y,x);

priority(x:obj,y:obj)
-> P(x,y);

grant(x:obj) -> G(x);
}

We match with
priority(x:obj,y:obj).

Building rule activations

As we go through the trace we build up a set of rule activations.

Trace Rule
Activations

conflict(w,a) Start()
priority(a,w) C(w,a)
request(w) C(a,w)

P(a,w) Nothing matches.

Building rule activations

As we go through the trace we build up a set of rule activations.

Trace Rule
Activations

conflict(w,a) Start()
priority(a,w) C(w,a)
request(w) C(a,w)
grant(w) P(a,w)

G(w)

always Start(){
conflict(x:obj,y:obj)
-> C(x,y),C(y,x);

priority(x:obj,y:obj)
-> P(x,y);

grant(x:obj) -> G(x);
}

We match with grant(x:obj).

Building rule activations

As we go through the trace we build up a set of rule activations.

Trace Rule
Activations

conflict(w,a) Start()
priority(a,w) C(w,a)
request(w) C(a,w)
grant(w) P(a,w)
request(a) G(w)

Res(w)

always G(w){
cancel(w) -> !G(w);
request(y:obj), C(w,y),
P(y,w) {:

P(z:obj,y),G(z),C(y,z)
-> true;
default -> Res(w);

:}
}

We match with request(y:oby).
C(w,a) and P(a,w) exist.
Cannot fint z such that P(z ,w),
G(z) and C(a,z).
Therefore, add Res(w).

Building rule activations

As we go through the trace we build up a set of rule activations.

Trace Rule
Activations

conflict(w,a) Start()
priority(a,w) C(w,a)
request(w) C(a,w)
grant(w) P(a,w)
request(a) G(w)
rescind(w) Res(w)

state Res(w){
rescind(w) -> Ok;

shutdown -> Fail;
}

We match with rescind(w)
directly.
state rule activations are
removed when they fire.

Building rule activations

As we go through the trace we build up a set of rule activations.

Trace Rule
Activations

conflict(w,a) Start()
priority(a,w) C(w,a)
request(w) C(a,w)
grant(w) P(a,w)
request(a) G(w)
rescind(w)
cancel(w)

always G(w){
cancel(w) -> !G(w);

request(y:obj), C(w,y),
P(y,w) {:

P(z:obj,y),G(z),C(y,z)
-> true;
default -> Res(w);

:}
}

We match directly on
cancel(w).
We can explicitly remove rule
activations.

Building rule activations

As we go through the trace we build up a set of rule activations.

Trace Rule
Activations

conflict(w,a) Start()
priority(a,w) C(w,a)
request(w) C(a,w)
grant(w) P(a,w)
request(a)
rescind(w)
cancel(w) G(a)
grant(a)

always Start(){
conflict(x:obj,y:obj)
-> C(x,y),C(y,x);

priority(x:obj,y:obj)
-> P(x,y);

grant(x:obj) -> G(x);
}

We match with grant(x:obj).

Building rule activations

The final set does not contain Res - therefore we have a success.

Trace Rule
Activations

conflict(w,a) Start()
priority(a,w) C(w,a)
request(w) C(a,w)
grant(w) P(a,w)
request(a)
rescind(w)
cancel(w) G(a)
grant(a)
shutdown

The details

We have seen how a RuleR rule system is evaluated for a given
trace.
We now look at the underlying algorithm.

Structure
The monitor keeps track of a set of states called a frontier.
Each state consists of a set of rule activations.
The monitor has access to a rule system containing rule definitions.
The monitor uses an observation to update the frontier, and
computes a result based on this.

Rules and rule activations
A Rule Definition

I Has a name.
I Has a modifier.
I Is parameterised by (typed) variables.
I Associates conditions with obligations i.e., cancel(x)︸ ︷︷ ︸

condition

→ !G(x)︸ ︷︷ ︸
obligation

.

A Rule Activation
I Is associated with a Rule Definition by its name.
I Contains a binding for the rule’s variables.
I We can think of this as an instantiation of the rule with the binding.

always G(x:obj){
cancel(x) -> !G(x);
request(y:obj), C(x,y),
P(y,x) {:
P(z:obj,x),G(z),

C(y,z) -> true;
default -> Res(x);

:}
}

always G(wheels){
cancel(wheels) -> !G(wheels);
request(y:obj), C(wheels,y),
P(y,wheels) {:
P(z:obj,wheels),G(z),

C(y,z) -> true;
default -> Res(wheels);

:}
}

The frontier of states

We call a set of rule activations a State.
A specification can contain non-determinism
through a choice of obligations.
Therefore, the current configuration of the
monitor is represented by a set of states called
a Frontier.
Conceptually a state is in conjunction, whereas
a frontier is in disjunction.
A rule system represents an infinite state
machine.
The approach of expanding the frontier is a
method for non-deterministically searching this
state machine.

High level algorithm

At a high level, we can view the RuleR algorithm as adding the
observation to the frontier, firing all activated rules and then checking
for inconsistency.

1 create an initial frontier with initials rule activations
2 FOREACH observation
3 -Merge observation state across the frontier
4 -use activated rules to generate a successor set of states
5 -union successor sets to form the new frontier
6 -if no self-consistent state exists we have failed
7 -if a state reduces to true we have succeeded

The algorithm : setup

1 frontier : Set[State];
2 frontier := { initials } ;
3 RS : Map[String, Rule];
4 RS := rule definitions;

5 foreach obs ∈ trace do
6 frontier := Process(obs);
7 output check(frontier)

We store the initial set of rule
activations in the frontier.
The rule system is represented
as a map from rule names
(strings) to rules.
For each observation update the
frontier and compute the
appropriate result.

The algorithm : processing observations

1 Process(obs):
2 newF = ∅;
3 foreach s ∈ frontier do
4 S = { { ra ∈ s |
5 RS(ra.name).mod 6= step } };
6 foreach ra ∈ s do
7 rule = RS(ra.name);
8 foreach (c → O) ∈ rule.body do
9 foreach b ∈ unify(ra,c,s) do

10 S = { s′∪ b(o) |
11 s′ ∈ S, o ∈ O};
12 if r.mod=state then
13 S = {s′-ra | s′ ∈S}

14 newF ∪ = { s′ ∈ S | s′∩ assert 6= ∅};
15 return newF;

For each state
Create a new set of states of
persistent rule activations
For each rule activation and
each rule part
For each binding that would
make the condition true, expand
the new states with the
instantiated obligations
If it is a state rule activation,
remove it
Remove any states that do not
have an assert rule

The algorithm : checking the frontier

1 Check(frontier):
2 collapse frontier;
3 if frontier= ∅ then
4 return False
5 if ∃s ∈frontier s = ∅ or s ∩ Success 6= ∅

then
6 return True
7 if ∃s ∈frontier. s ∩ Forbidden == ∅

then
8 return Still_True;
9 else

10 if ∀s ∈frontier. s ∩ Forbidden 6= ∅
then

11 return Still_False;
12 else
13 return Unkown;

Collapse the frontier by removing
inconsistent states
If the frontier is now empty then
there are no paths on which we
have met our obligations
If a state in the frontier is empty
or contains a Success rule
activation then we have met all
obligations on that path
If there is a state with no
forbidden rule activations we are
currently meeting obligations
If all states have forbidden rule
activations no paths meet
obligations
The result may be unknown

A second example

Let us consider a second example.
This involves the command subsystem of the Rover.
A command has a name and an id i.e. command(name,id).

Requirement Commands
A Command should be successful before the end of the system and no
other command with the same name may be issued before it is successful.
Commands ids should be strictly increasing and all replies should be
received within one minute of sending

The instrumentation

We instrument the code to record the events:
I command(name,id)
I fail(name,id)
I succeed(name,id)

When constructing the monitor we set timed mode to true.
In timed mode the dispatch method adds a timestamp to the event
- this adds an additional long parameter.

The specification
ruler Commands{
observes command(string,int,long), success(string,int,long),
fail(string,int,long), shutdown;

state Start(max_id:int) {
command(name:string,id:int,time:long){:

max_id>id -> Fail;
default -> Com(name,id,time), Start(id);

:}
}

state Com(name:string,id:int,time:long){
command(name,x:int,t:long) -> Fail;
success(name,id,t){:

t> time-1000 -> Fail;
default -> Ok;
:}

fail(name,id,t){:
t> time-1000 -> Fail;
default -> Com(name,id,time);

:}
shutdown -> Fail;

}
initials Start(0);
forbidden Com;

}

Summary

RuleR is a very expressive system that captures specifications via
rule systems.
For example, we can embed MetateM-like quantified temporal logic
in RuleR.
Rules are used to rewrite sets of rule activations (facts) and a set of
conditions on these sets determines the verdict given.
Rules can be parameterised and activated and deactivated.
There are additional features that have not been demonstrated here
including non-determinism, monitor chaining and parameterising rules
with rule activations.

References

Rule Systems for Run-time Monitoring: from EAGLE to RuleR: H.
Barringer, D. Rydeheard and K. Havelund. In the Journal of Logic
Computation, 2010.

Rule Systems for Runtime Verification: A Short Tutorial H. Barringer,
K. Havelund, D. Rydeheard, A. Groce

Part VI
TraceContract

An Internal DSL for Trace Analysis

Recap

We have seen three DSLs (Domain Specific Languages) for RV:
I TraceMatches
I JavaMOP
I RuleR

TraceMatches and JavaMOP focus on effiency while RuleR
focuses on expressiveness.

These DSLs are so-called external DSLs requiring special parsers.

Developing and modifying such an external DSL is time consuming.

Expressive power is limited by logic.

In this lecture

We shall explore an alternative to external DSLs: internal DSLs.

Specifically the TraceContract internal DSL written in Scala.

Introduction to TraceContract.

Implementation of TraceContract.

Specification of resource management properties.

External versus internal DSL

External DSL
I small language typically with very focused functionality
I specialized parser
I pros:

F can be optimally succinct
F “easy” to learn for person not familiar with programming language
F analyzable: a spec can be analyzed easily, visualized, etc.

Internal DSL
I an extension of an existing programming language
I typically an API - using base language’s features only
I pros:

F easier to develop and later adapt
F expressive, the programming language is never far away
F allows use of existing tools such as type checkers, IDEs, etc.

Examples

External DSLs:
I JavaMOP
I TraceMatches
I RuleR

Internal DSL:
I TraceContract

Hybrid:
I AspectJ – a syntactic extension of Java

The broader perspective

Programming languages are becoming increasingly advanced,
approaching formal specification languages, such as VDM, ASML, Z,
etc.

It is natural to express specifications in a high-level programming
language/scripting language.

It is furthermore natural to also allow for temporal specifications to
be expressed in the programming language.

The combination of high-level programming and logic is powerful for
runtime verification.

Programmers feel comfortable if they have a real programming
language underneath the logic, as “plan B”.

TraceContract

Developed in the Scala programming language.

An internal DSL (API), hence an extension of Scala.

Sandbox experimental combination of parameterized:
I state machines allowing named as well as un-named states.
I future time Linear Temporal Logic (LTL).
I rule-based programming for past time properties.

Expressive and easy to implement and modify.

LTL part is based on formula rewriting.
I � p = p ∧©(� p)
I ♦ p = p ∨©(♦ p)
I p U q = q ∨ (p ∧©(p U q))

Scala is a high-level unifying language

Object-oriented

Functional

Strongly typed

Script-like, semicolon inference, type inference

Sets, list, maps, iterators, comprehensions

Lots of libraries

Compiles to JVM

Current applications of TraceContract

LADEE
I “Lunar Atmosphere and Dust Environment Explorer”.
I developed at: NASA Ames Research Center.
I purpose: to assess the Lunar atmosphere and the nature of dust above

the surface.
I TraceContract: used for checking command sequences against

flight rules before sent to spacecraft.

SMAP
I “Soil Moisture Active Passive”.
I developed at: NASA’s Jet Propulsion Laboratory.
I purpose: will provide global measurements of soil moisture on Earth.
I TraceContract: used for checking logs produced by running

system against requirements.

TraceContract
by Example

Commands must succeed

We are analyzing log files containing information about commands
being issued, and their success and failure respectively.

Requirement CommandMustSucceed

An issued command must succeed, without a failure to occur before then.

Events in TraceContract

First we need to define the events we observe:
I commands being issued, each having a name and a number
I successes of commands
I failures of commands

Each event type sub-classes a type: Event

case-classes allow for pattern matching over objects of the class

1 abstract class Event
2

3 case class Command(name: String, nr: Int) extends Event
4 case class Success(name: String, nr : Int) extends Event
5 case class Fail (name: String, nr : Int) extends Event

Property in LogScope

For comparison we first show the specification in the external DSL:
LogScope, which was inspiration for TraceContract.

a hot state must be exited before end of log (non-final state).

1 monitor CommandMustSucceed {
2 always {
3 Command(n,x) => RequireSuccess(n,x)
4 }
5

6 hot RequireSuccess(name,number) {
7 Fail (name,number) => error
8 Success(name,number) => ok
9 }

10 }

Property in TraceContract - looks very similar
Uses partial functions: {case ... => ...} defined with pattern matching
as arguments to DSL functions (require and hot) defined in Monitor
class. RequireSuccess is a user-defined function representing a state.
A quoted name, such as ‘name‘ represents the value of that name.

1 class CommandMustSucceed extends Monitor[Event] {
2 require {
3 case Command(n, x) => RequireSuccess(n, x)
4 }
5

6 def RequireSuccess(name: String, number: Int) =
7 hot {
8 case Fail (‘name‘, ‘number‘) => error
9 case Success(‘name‘, ‘number‘) => ok

10 }
11 }

Inlining the call of RequireSuccess(n,x)
Since RequireSuccess(n, x) is a function, the call of it can be inlined.
After all, this is “just” a program and standard program
transformation works.
The result is an interesting temporal logic like specification with an
un-named hot state.

1 class CommandMustSucceed extends Monitor[Event] {
2 require {
3 case Command(n, x) =>
4 hot {
5 case Fail (‘n ‘, ‘x ‘) => error
6 case Success(‘n ‘, ‘x ‘) => ok
7 }
8 }
9 }

Same property in LTL

TraceContract also offers future time linear temporal logic (LTL).

allowing to write events as formulas, negations, propositional
formulas, and temporal.

φ until ψ means: ψ must eventually hold, and until then φ must hold.

1 class CommandMustSucceed extends Monitor[Event] {
2 require {
3 case Command(n, x) =>
4 not(Fail (n, x)) until (Success(n, x))
5 }
6 }

note mix of Scala’s pattern matching (to catch arguments of
command) and LTL.

10 first commands must succeed

Requirement First10CommandsMustSucceed

The first 10 issued commands must succeed, without a failure to occur
before then.

Counting: first 10 commands must succeed

Code (here counting and testing on counter) can be mixed with logic.

That is: increase counter and return LTL formula.

1 class First10CommandsMustSucceed extends Monitor[Event] {
2 var count = 0
3 require {
4 case Command(n, x) if count < 10 =>
5 count = count + 1
6 not(Fail (n, x)) until (Success(n, x))
7 }
8 }

Max one success for a command

Requirement MaxOneSuccess

An issued command can succeed at most once.

Using the state formula

Previously we saw the hot state: we stay in a hot state until a
transition fires. It is an error to end up in a hot state at the end of
the log (it is a non-final state).

The state state has the same semantics, except that it is a final state.

1 class MaxOneSuccess extends Monitor[Event] {
2 require {
3 case Success(, number) =>
4 state {
5 case Success(, ‘number‘) => error
6 }
7 }
8 }

Alternation

Requirement AlternatingCommandSuccess

Commands and successes should alternate.

State machine solution

1 class AlternatingCommandSuccess extends Monitor[Event] {
2 property(s1)
3

4 def s1: Formula =
5 state {
6 case Command(n, x) => s2(n, x)
7 case => error
8 }
9

10 def s2(name: String, number: Int) =
11 state {
12 case Success(‘name‘, ‘number‘) => s1
13 case => error
14 }
15 }

A past time property

Properties so far have been future time properties: from some event,
the future behavior must satisfy some property.

The following requirement refers to the past of some event (success).

Requirement SuccessHasAReason

A success must be caused by a previously issued command.

TraceContract offers limited rule-based programming
State logic and LTL cannot express this property.
TraceContract offers a limited form of rule-based programming,
were a fact f (sub-classing class Fact) can be queried (f ?), created
(f +), and deleted (f−). The result in the latter two cases is True.

1 class SuccessHasAReason extends Monitor[Event] {
2 case class Commanded(name: String, nr: Int) extends Fact
3

4 require {
5 case Command(n, x) => Commanded(n, x) +
6 case Success(n, x) =>
7 if (Commanded(n, x) ?)
8 Commanded(n, x) −
9 else

10 error
11 }
12 }

The ?- abbreviation

We can we make this monitor simpler by using test-and-set: f ?−, for
a given fact f , meaning: return true iff. the fact f is recorded, delete
the fact in any case.

1 class SuccessHasAReason extends Monitor[Event] {
2 case class Commanded(name: String, nr: Int) extends Fact
3

4 require {
5 case Command(n, x) => Commanded(n, x) +
6 case Success(n, x) => Commanded(n, x) ?−
7 }
8 }

Making monitors of monitors

We can create a new monitor which includes other monitors as
sub-monitors. Useful for organizing properties.

The semantics is the obvious one of conjunction: all monitors will get
checked individually.

1 class CommandRequirements extends Monitor[Event] {
2 monitor(
3 new CommandMustSucceed,
4 new MaxOneSuccess,
5 new SuccessHasAReason)
6 }

Analyzing a complete trace (log analysis)
To verify a trace: first create it, then instantiate monitor, and call
verify method on monitor with trace as argument.

1 object TraceAnalysis extends Application {
2 val trace : List [Event] =
3 List (
4 Command(”STOP DRIVING”, 1),
5 Command(”TAKE PICTURE”, 2),
6 Fail (”STOP DRIVING”, 1),
7 Success(”TAKE PICTURE”, 2),
8 Success(”SEND TELEMETRY”, 42))
9

10 val monitor = new CommandRequirements
11 monitor. verify (trace)
12 }

Alternatively: analyzing event by event (online monitoring)

To verify a sequence of events: instantiate monitor, and call verify
method on monitor for each event, and call end() if event flow
terminates.

1 object TraceAnalysis extends Application {
2 val monitor = new CommandRequirements
3 monitor. verify (Command(”STOP DRIVING”, 1))
4 monitor. verify (Command(”TAKE PICTURE”, 2))
5 monitor. verify (Fail (”STOP DRIVING”, 1))
6 monitor. verify (Success(”TAKE PICTURE”, 2))
7 monitor. verify (Success(”SEND TELEMETRY”, 42))
8 monitor.end()
9 }

Result

CommandMustSucceed property violated

Violating event number 3: Fail(STOP_DRIVING,1)

Error trace:

1=Command(STOP_DRIVING,1)

3=Fail(STOP_DRIVING,1)

SuccessHasAReason property violated

Violating event number 5: Success(SEND_TELEMETRY,42)

Error trace:

5=Success(SEND_TELEMETRY,42)

TraceContract
an overview of functions

ScalaDoc documentation of API

ScalaDoc documentation of API

Features by category: state functions

1 class Monitor[Event] {
2 class Formula { ... }
3 type Block = Event =?=> Formula
4

5 // waiting states :
6 def state (block: Block): Formula
7 def hot (block: Block): Formula
8 def always (block: Block): Formula
9

10 // next state :
11 def weak (block: Block): Formula
12 def strong (block: Block): Formula
13 def step (block: Block): Formula
14 ...
15 }

Error and success

1 ...
2 def error : Formula
3 def error (message: String) : Formula
4

5 def ok : Formula
6 def ok (message: String) : Formula
7 ...

Temporal logic

1 ...
2 // propositional logic :
3 def matchEvent (predicate: Event =?=> Boolean): Formula
4 object True extends Formula
5 object False extends Formula
6 def not (formula: Formula): Formula
7

8 // temporal operators :
9 def globally (formula: Formula): Formula

10 def eventually (formula: Formula): Formula
11 def eventuallyLe (n: Int)(formula: Formula): Formula
12 def weaknext (formula: Formula): Formula
13 def strongnext (formula: Formula): Formula
14 ...

Infix operators defined in class Formula

1 ...
2 class Formula {
3 // propositional logic :
4 def and (that : Formula): Formula
5 def or (that : Formula): Formula
6 def implies (that : Formula): Formula
7

8 // temporal operators :
9 def unless (that : Formula): Formula

10 def until (that : Formula): Formula
11 def upto (block: Block): Formula
12 }
13 ...

Rule-based programming

1 class Fact { ... }
2

3 def matchFact (pred: Fact =?=> Boolean): Boolean
4

5 implicit def convFact2FactOps (fact: Fact): FactOps
6

7 class FactOps {
8 def + : Unit
9 def − : Unit

10 def ? : Boolean
11 def ˜ : Boolean
12 def ?− : Boolean
13 def ˜+ : Boolean
14 }

Other implicit conversions

An implicit function is applied to a value by the compiler if the value
is not type correct, but the application is.

Two implicit functions convert events and Booleans to formulas. An
event and a Boolean expression can therefore occur as a formula.

One implicit function converts the unit value to a formula. This
means one can write code as a formula (equals True).

1 implicit def convEvent2Formula (event: Event): Formula
2 implicit def convBoolean2Formula (cond: Boolean): Formula
3 implicit def convUnitToFormula (unit: Unit) : Formula

We will see the implementation of these implicit functions later.

Declaring and verifying properties

1 ...
2 // declaring properties inside a monitor
3 def informal (explanation : String) : Unit
4 def property (formula: Formula): Unit
5 def property (name: Symbol)(formula: Formula): Unit
6 def require (block: Block): Unit
7 def requirement (name: Symbol)(block: Block): Unit
8 def monitor (monitors: Monitor[Event]∗): Unit
9

10 // verification :
11 def select (filter : Event =?=> Boolean): Unit
12 def verify (trace : Trace): MonitorResult[Event]
13 def verify (event: Event): Unit
14 def end () : Unit
15 def getMonitorResult : MonitorResult[Event]
16 ...

Towards a TraceContract calculus
〈TC 〉 ::= matchEvent ‘{’ 〈EventPred〉 ‘}’

| macthFact ‘{’ 〈FactPred〉 ‘}’
| ¬ 〈TC 〉
| 〈TC 〉 ∨ 〈TC 〉
| © 〈TC 〉
| 〈TC 〉 U 〈TC 〉
| 〈StateKind〉 ‘{’ 〈TransitionBlock〉 ‘}’
| 〈BoolExp〉
| 〈Stmt〉
| 〈Fact〉 (‘+’ | ‘-’)

〈StateKind〉 ::= state | hot | always | weak | strong | step

〈EventPred〉 ::= partial function of type: 〈Event〉 ∼⇒ {true, false}

〈FactPred〉 ::= partial function of type: 〈Fact〉 ∼⇒ {true, false}

〈TransitionBlock〉 ::= partial function of type: 〈Event〉 ∼⇒ 〈TC 〉

TraceContract
implementation

The following slides represent a complete implementation of a
mini-TraceContract, focusing only on conceptual ideas. It is sufficient

for the examples provided on previous slides.

Rule system
1 trait RuleSystem {
2 trait Fact

3 var facts : Set[Fact] = Set()

4 var toRecord: Set[Fact] = Set()

5 var toRemove: Set[Fact] = Set()

6
7 implicit def convE(fact: Fact) = new {
8 def + : Unit = { toRecord += fact }
9 def − : Unit = { toRemove += fact }

10 def ? : Boolean = facts contains fact

11 def ˜ : Boolean = !(facts contains fact)

12
13 def ?− : Boolean = {toRemove += fact; facts contains fact}
14 def ˜+ : Boolean = {toRecord += fact; !(facts contains fact)}
15 }
16
17 def matchFact(pred: Fact =?=> Boolean): Boolean = {
18 facts exists (pred orElse { case => false })

19 }
20
21 def updateFacts() {
22 toRemove foreach (facts −=)

23 toRecord foreach (facts +=)

24 toRecord = Set()

25 toRemove = Set()

26 }
27 }

Class Monitor

1 trait Monitor[Event] extends RuleSystem {
2 var current : Formula = True

3 var monitors: List [Monitor[Event]] = List()

4
5 type Block = Event =?=> Formula

6
7 trait Formula {
8 def apply(e: Event): Formula

9 def reduce: Formula = this

10
11 def and(that: Formula) = And(this, that) reduce

12 def or(that : Formula) = Or(this, that) reduce

13
14 def until (f : Formula) = Until(this , f)

15 def upto(b: Block) = Upto(this, b)

16 }
17
18 ... // what follows on the next slides goes here

19 }

True and false

1 case object True extends Formula {
2 def apply(e: Event) = this

3 }
4
5 case object False extends Formula {
6 def apply(e: Event) = this

7 }
8
9

10
11 def error = False

12 def ok = True

Propositional logic

1 implicit def convEvent2Formula(e: Event): Formula = Now(e)

2 implicit def convBoolean(b: Boolean): Formula = if (b) True else False

3 implicit def convUnit(u: Unit) : Formula = True

4
5 case class Now(expect: Event) extends Formula {
6 def apply(e: Event): Formula =

7 if (expect == e) True else False

8 }
9

10 case class matchEvent(p: Event =?=> Boolean) extends Formula {
11 def apply(event : Event): Formula = {
12 if (p. isDefinedAt(event))

13 p(event)

14 else

15 false

16 }
17 }

Propositional operators
1 case class not(f : Formula) extends Formula {
2 def apply(e: Event): Formula = not(f(e)). reduce()

3
4 override def reduce() : Formula = {
5 f match {
6 case True => False

7 case False => True

8 case => this

9 }
10 }
11 }
12
13 case class And(f1: Formula, f2 : Formula) extends Formula {
14 def apply(e: Event) = And(f1(e), f2(e)) reduce

15
16 override def reduce: Formula =

17 (f1 , f2) match {
18 case (False ,) | (, False) => False

19 case (True,) => f2

20 case (, True) => f1

21 case => this

22 }
23 }
24
25 case class Or(f1: Formula, f2 : Formula) extends Formula {
26 ... // same idea

27 }

Temporal Logic

1 case class Until (f1 : Formula, f2 : Formula) extends Formula {
2 def apply(e: Event): Formula =

3 Or(f2(e), And(this, f1(e)). reduce). reduce

4 }
5
6 case class strongnext(f : Formula) extends Formula {
7 def apply(e: Event): Formula = f(e)

8 }
9

10 case class globally (f : Formula) extends Formula {
11 def apply(e: Event): Formula = {
12 val formula = f(e)

13 if (formula == f)

14 this

15 else

16 And(this, formula).reduce

17 }
18 }
19
20 case class eventually (f : Formula) extends Formula {
21 def apply(e: Event): Formula =

22 Or(this , f (e)). reduce

23 }

State logic

1 case class state (b: Block) extends Formula {
2 def apply(e: Event): Formula =

3 if (b. isDefinedAt(e)) b(e) else this

4 }
5
6 case class hot(b: Block) extends Formula {
7 def apply(e: Event) =

8 if (b. isDefinedAt(e)) b(e) else this

9 }
10
11 case class strong(b: Block) extends Formula {
12 def apply(e: Event) =

13 if (b. isDefinedAt(e)) b(e) else False

14 }
15
16 case class always(b: Block) extends Formula {
17 def apply(e: Event) =

18 if (b. isDefinedAt(e)) And(b(e), this) reduce else this

19 }

Upto

1 case class Upto(f: Formula, b: Block) extends Formula {
2 override def apply(e: Event): Formula = {
3 if (b. isDefinedAt(e)) {
4 isFinal (f) and b(e)

5 } else {
6 val formula = f(e).reduce

7 formula match {
8 case False => False

9 case True => True

10 case ‘ f ‘ => this

11 case => Upto(formula , b)

12 }
13 }
14 }
15 }

Property declaration and verification

1 def monitor(monitorList : Monitor[Event]∗) {
2 monitors ++= monitorList.toList

3 }
4
5 def property(f : Formula) {
6 current = f

7 }
8
9 def require (b: Block) = property(always(b))

10
11 def verify (e: Event) {
12 val current = current(e)

13 if (current == False && current != False)

14 println (”∗∗∗ safety violation ” + this . getClass (). getSimpleName)

15 current = current

16 for (monitor <− monitors) monitor.verify(e)

17 updateFacts()

18 }
19
20 def verify (trace : List [Event]) {
21 for (e <− trace) {
22 println (”−−− ” + e)

23 verify (e)

24 }
25 end()

26 }

The end of the trace

1 def end() {
2 if (! isFinal (current)) println (”∗∗∗ liveness violation ” + this . getClass (). getSimpleName + ” on ” + e)

3 monitors foreach (.end())

4 }
5
6 def isFinal (f : Formula): Boolean = {
7 f match {
8 case hot()

9 | strong()

10 | Now()

11 | matchEvent()

12 | Until (,)

13 | strongnext()

14 | eventually () => false

15 case Upto(f,) => isFinal(f)

16 case not(f) => !isFinal(f)

17 case And(f1, f2) => isFinal(f1) && isFinal(f2)

18 case Or(f1, f2) => isFinal(f1) || isFinal (f2)

19 case True

20 | False

21 | state ()

22 | always()

23 | globally () => true

24 }
25 }

TraceContract
applied to resource management

AspectJ, Java, Scala

The following slides represent TraceContract specifications of
resource management properties previously expressed in raw Java.

Since Scala and Java integrates well, AspectJ can in principle be
used together with TraceContract for instrumentation and
monitoring of Java code.

Recall the resource management requirements

GrantCancel: For a given resource, grants and cancellations should
alternate, starting with a grant. Furthermore: a cancellation should
be performed by the same task that was last granted the resource.

OnlyRescindGranted: Only ask a task to rescind the resource if if is
currently owned by the task. That is: it has been granted, and it has
not yet been cancelled.

RespectConflicts: Conflicts must be respected. For every pair of
resources, if they conflict then only one can be granted at any one
time.

RespectPriorities: Let priorities sort conflicts. If there is a conflict and
the requested resource has the highest priority then the other priority
should be rescinded before the resource is granted.

Informative type names

First some types introduced only for their descriptive names.

Scala’s class Any corresponds to Java’s class Object.

To make types available we “open up” the object Util by importing its
contents.

1 object Util {
2 type Actor = Any
3 type Resource = Any
4 type Response = Any
5 }
6

7 import Util .

Declaring events

As before event classes are declared as sub-classing a type: Event

1 abstract class Event
2

3 case class SendRequest(a: Actor, r : Resource) extends Event
4 case class SendCancel(a: Actor, r : Resource) extends Event
5 case class SendGrant(r: Resource, a: Actor) extends Event
6 case class SendRescind(r: Resource, a: Actor) extends Event
7 case class SendDeny(a: Actor) extends Event
8 case class AddConflict(r1 : Resource, r2 : Resource) extends Event
9 case class AddPriority (r1 : Resource, r2 : Resource) extends Event

10 case class CancelResource(a: Actor, r : Resource) extends Event
11 case object End extends Event

Analyzing a trace, assuming monitor: Requirements

1 object TraceAnalysis extends Application {
2 val trace : List [Event] =
3 List (
4 AddConflict (’antenna, ’wheels),
5 AddConflict (’camera, ’wheels),
6 AddConflict (’ drill , ’wheels),
7 AddPriority (’antenna, ’wheels),
8 SendGrant(’antenna, ’commandTask),
9 SendGrant(’wheels, ’ drivingTask),

10 CancelResource(’commandTask, ’antenna),
11 CancelResource(’cameraTask,’antenna)
12

13 val monitor = new ResourceRequirements
14 monitor. verify (trace)
15 }

The requirements

We build a monitor containing four sub-monitors corresponding to the
four requirements.

1 class ResourceRequirements extends Monitor[Event] {
2 monitor(
3 new GrantCancel,
4 new OnlyRescindGranted,
5 new RespectConflicts,
6 new RespectPriorities)
7 }

Let’s build the four monitors

Resource Management: grant and cancel alternate

Requirement GrantCancel

For a given resource, grants and cancellations should alternate, starting
with a grant. Furthermore: a cancellation should be performed by the
same task that was last granted the resource.

Splitting into future and past time property

Future time: when observing a grant of a resource to an actor, then
no other grant of that resource should be given weak-until it has been
cancelled by the same actor:

�(SendGrant(r , a)⇒
⊕(¬SendGrant(r ,) W CancelResource(a, r))

Past time: when observing a cancel of a resource, it should have been
granted in the past to that actor, and not yet cancelled since then:

�(CancelResource(a, r)⇒
	(¬CancelResource(a, r) S SendGrant(r , a))

Future time with states

Requirement: no grant of a resource upon a grant, without a cancel
in between.

1 class GrantCancel extends Monitor[Event] {
2 require {
3 case SendGrant(resource, receiver) =>
4 state {
5 case SendGrant(‘resource ‘,) => error
6 case CancelResource(‘ receiver ‘, ‘ resource ‘) => ok
7 }
8 }
9 }

Future time with LTL

Requirement: no grant of a resource upon a grant, without a cancel
in between.

The TraceContract expression: mathes{f} returns true iff. the
partial function f : Event =?=>Boolean is defined for the current event
e and f(e) = true. The function has the type
matches : (Event =?=>Boolean) =>Formula

1 class GrantCancel extends Monitor[Event] {
2 require {
3 case SendGrant(resource, receiver) =>
4 not(matches { case SendGrant(‘resource ‘,) => true }) unless
5 CancelResource(receiver , resource)
6 }
7 }

LTL and a predicate

To make the specfication simpler to read we can define a function
representing any event that grants a particular resource.

1 class GrantCancel extends Monitor[Event] {
2 def grant(resource : Resource): Formula =
3 matches { case SendGrant(‘resource ‘,) => true }
4

5 require {
6 case SendGrant(resource, receiver) =>
7 not(grant(resource)) unless CancelResource(receiver , resource)
8 }
9 }

Past time with rules
Requirement: no cancel of a resource without a previous grant, and
no cancel in between.
Upon event sendGrant(r,a) a fact Granted(r,a) is stored.
Upon event CancelResource(a,r) it is tested that a fact Granted(r,a)

exists, upon which this fact is deleted.

1 class GrantCancel extends Monitor[Event] {
2 case class Granted(resource : Resource, receiver : Actor) extends Fact
3

4 require {
5 case SendGrant(resource, receiver) =>
6 Granted(resource , receiver) +
7 case CancelResource(sender, resource) =>
8 Granted(resource , sender) ?−
9 }

10 }

Past and future mixing states and rules

1 class GrantCancel extends Monitor[Event] {
2 case class Granted(resource : Resource, receiver : Actor) extends Fact
3

4 require {
5 case SendGrant(resource, receiver) =>
6 Granted(resource , receiver) +;
7 state {
8 case SendGrant(‘resource ‘,) => error
9 case CancelResource(‘ receiver ‘, ‘ resource ‘) => ok

10 }
11 case CancelResource(sender, resource) =>
12 Granted(resource , sender) ?−
13 }
14 }

Past and future with rules only
This monitor is similar to the original AspectJ monitor, but
eliminates the need for inventing data structures, such as a map from
resources to actors.

1 class GrantCancel extends Monitor[Event] {
2 case class Granted(resource : Resource, receiver : Actor) extends Fact
3

4 require {
5 case SendGrant(resource, receiver) =>
6 Granted(resource , receiver) ˜+
7

8 case CancelResource(sender, resource) =>
9 Granted(resource , sender) ?−

10 }
11 }

Resource Management: only rescind granted

Requirement OnlyRescindGranted

Only ask a task to rescind the resource if if is currently owned by the task.
That is: it has been granted, and it has not yet been cancelled.

This is a past time logic property, so we store facts

1 class OnlyRescindGranted extends Monitor[Event] {
2 case class Granted(resource : Resource, receiver : Actor) extends Fact
3

4 require {
5 case SendGrant(resource, receiver) =>
6 Granted(resource , receiver) +
7 case CancelResource(sender, resource) =>
8 Granted(resource , sender) −
9 case SendRescind(resource, receiver) =>

10 Granted(resource , receiver) ?
11 }
12 }

Resource Management: respect conflicts

Requirement RespectConflicts

Conflicts must be respected. For every pair of resources, if they conflict
then only one can be granted at any one time.

Using states

1 class RespectConflictsState extends Monitor[Event] {
2 require {
3 case AddConflict(resource1 , resource2) =>
4 respectConflict (resource1 , resource2) and
5 respectConflict (resource2 , resource1)
6 }
7

8 def respectConflict (resource1 : Resource, resource2 : Resource) =
9 state {

10 case SendGrant(‘resource1 ‘, receiver) =>
11 state {
12 case SendGrant(‘resource2 ‘,) => error
13 case CancelResource(‘ receiver ‘, ‘ resource1 ‘) => ok
14 }
15 }
16 }

Using facts

1 class RespectConflictsFacts extends Monitor[Event] {
2 case class Granted(resource : Resource) extends Fact
3 case class Conflict (resource1 : Resource, resource2 : Resource)
4 extends Fact
5

6 require {
7 case AddConflict(resource1 , resource2) =>
8 Conflict (resource1 , resource2) +;
9 Conflict (resource2 , resource1) +

10 case SendGrant(resource, receiver) =>
11 Granted(resource) +;
12 ! factExists { case Conflict (‘ resource ‘, resource2) =>
13 Granted(resource2) ? }
14 case CancelResource(sender, resource) =>
15 Granted(resource) −
16 }
17 }

Programming it

1 class RespectConflictsProgramming extends Monitor[Event] {
2 var conflicts : Set[(Resource, Resource)] = Set()
3 var granted: Set[Resource] = Set()
4

5 require {
6 case AddConflict(resource1 , resource2) =>
7 conflicts ++= Set((resource1, resource2), (resource2 , resource1))
8 case SendGrant(resource, receiver) =>
9 granted += resource

10 ! conflicts . exists {
11 case (r1 , r2) => r1 == resource && granted.contains(r2) }
12 case CancelResource(sender, resource) =>
13 granted −= resource
14 }
15 }

Resource Management: respect priorities

Requirement RespectPriorities

Let priorities sort conflicts. If there is a conflict and the requested resource
has the highest priority then the other priority should be rescinded before
the resource is granted.

Assume 2 resources

1 class RespectPriorities extends Monitor[Event] {
2 require {
3 case AddConflict(r1 , r2) => state {
4 case AddPriority(hi , lo) if (hi , lo) =?= (r1, r2) =>
5 always {
6 case SendGrant(‘lo ‘, actorLo) => state {
7 case CancelResource(‘actorLo ‘, ‘ lo ‘) => ok
8 case SendRequest(actorHi, ‘ hi ‘) => state {
9 case SendGrant(‘hi ‘, ‘ actorHi ‘) => error

10 case SendRescind(‘lo ‘, ‘actorLo ‘) => ok
11 }
12 }
13 }
14 }
15 }
16 }

Curious about how =?= is defined?

1 implicit def conv[A](pair1 : (A, A)) = new {
2 def =?=(pair2: (A, A)) = {
3 val (a1, a2) = pair1
4 val (b1, b2) = pair2
5 ((a1 == b1) && (a2 == b2)) || ((a1 == b2) && (a2 == b1))
6 }
7 }

Summary

TraceContract is an API.

Very expressive and convenient for programmers to use.

For this reason mainly it has been adopted by practitioners.

Has very simple implementation, which is easy to modify.

Change requests are easy to process.

It is, however, difficult to analyze a TraceContract specification
since it fundamentally is a Scala program - requires some form of
reflection or interaction with compiler.

It will not be suitable for non-Scala programmers.

References

Howard Barringer and Klaus Havelund: TraceContract: A Scala DSL
for Trace Analysis. 17th International Symposium on Formal Methods
(FM’11), Limerick, Ireland, 2011. LNCS Volume 6664.

Howard Barringer, Klaus Havelund, Elif Kurklu and Robert Morris:
Checking Flight Rules with TraceContract: Application of a Scala DSL
for Trace Analysis. Scala Days 2011, Stanford University, USA, June,
2011.

Klaus Havelund: Closing the Gap Between Specification and
Programming: VDM++ and Scala. HOWARD-60: Higher Order
Workshop on Automated Runtime verification and Debugging.
Manchester, UK, December, 2011. EasyChair Proceedings Volume 1.

	Introduction
	Going Parametric
	Summary
	Our Through Going Example
	Design by Contract
	General Introduction to AspectJ
	Resource Management
	Pre and Post Condition
	General setup for monitoring events
	Alternating Grants and Cancels

	Summary
	Recap
	Parametric Runtime Verification
	Summary
	Intro
	Inputs
	Summary
	Summary
	Introduction
	Some example properties
	Constructs and API
	Implementation
	General Framework for Rover Verification
	The GrantCancel property
	The OnlyRescindGranted Property
	Respect Conflicts
	Respect Priorities

	Summary

