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Abstract

In this work, we study how the use of concurrent monitors in a runtime verification
system can improve performance when combined with different layers of index-
ing. We specifically target concurrent monitoring systems that adopt the actor pro-
gramming model which is one way of developing concurrent systems. We employ
monitoring systems which are built using our runtime verification framework, MESA
(MEssage-based System Analysis). MESA allows for building actor-based monitor-
ing systems that check for properties specified in data parameterized temporal logic
and state machines. We performed the empirical study by conducting experiments
with monitoring systems that include different numbers of monitor actors and dif-
ferent layers of indexing. This report describes our experiments, and evaluates our
results. The evaluation shows the value of concurrency in the context of runtime
monitoring.
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1 Introduction

This report presents our empirical study which was conducted to evaluate the im-
pact of concurrent monitors in a runtime verification system. Runtime verification is
a dynamic technique that checks if a run of the system under observation satisfies
a property of interest [1,2]. Properties are usually specified as formal specifications
expressed in forms of linear temporal logic formulas, finite state machines, regular
expressions, etc.

We use the runtime time verification framework MESA in the experiments.
MESA is written in Scala and adopts the actor programming model [3] implemented
in the Akka toolkit [4, 5]. The runtime verification systems built using the MESA
framework are actor-based, that is, they are solely composed of actors which are
lightweight, dedicated components that do not share states and can only commu-
nicate via exchanging asynchronous messages. Each MESA system includes four
steps, which are also adopted by most runtime verification tools, data acquisition,
data processing, monitoring, and reporting. Figure 1 illustrates an example of a
MESA system.

…

Data acquisition

…
…

Data processing ReportMonitoringSUO

Figure 1: An example of a monitoring system building using the MESA framework

MESA uses the platform Runtime for Airspace Concept Evaluation (RACE) [6,7]
as an external library. RACE allows for generating airspace simulations. RACE is
also built on top of the Akka toolkit, and extends it with additional features that
our framework relies on. MESA also incorporates the tools TraceContract [8, 9]
and Daut [10,11] to support property specification to check for properties specified
in data parameterized temporal logic and state machines. These tool are imple-
mented as internal DSLs written in Scala. In this study we use Daut to implement
the property of interest.

The focus of the study is to explore the impact of concurrent monitors for runtime
verification when combined with different layers of indexing. Indexing can be seen
as a restricted from of slicing that using a slicing criteria, it slices the trace up into
sub-traces which are then fed to sub-monitors.

2 Property of Interest

For the experiment, we used the SWIM Flight Data Publication Service (SFDPS)
[12, 13] as the system under observation. SWIM is a highly distributed system
that consolidates data from many sources. We have observed incidents where

4



the SFDPS messages are not distributed in the right order by the SWIM server.
We choose sfdps-seq-order as the property of interest for this experiment which
checks for the chronological order of the SFDPS messages, that is, it verifies that
the SFDPS messages with the same call sign (flight identifier) are ordered by their
time tags. This property is specified as a data-parameterized finite state machine
using the Daut DSL [10, 14]. The class sfdpsOrderMonitor which is presented
in Figure 2 implements sfdps-seq-order. The property sfdps-seq-order is im-
plemented as a Daut monitor which is illustrated in Figure 2. The daut.Monitor

is the key class in Daut that implements the monitor capabilities. A Daut monitor
maintains the set of all active states representing the current states of the state
machines. A state is presented by an object of type state, and the set of transi-
tions out of the state is presented by a Transitions object. Transitions is defined
as a partial function PartialFunction[E,Set[state]] where E is a monitor type
parameter.

trait MesaMonitor {
def verifyEvent(event: Any): Unit
}

class DautMonitor(val config: Config) extends daut.Monitor[Any] with MesaMonitor {
def verifyEvent(event: Any) : Unit = {

verify (event)
}
}

class sfdpsOrderMonitor(config: Config) extends DautMonitor(config){
always {

case FlightState( , cs, , , , , date1, ) =>
watch {
case FlightState( , ‘cs ‘, , , , , date2, )=> {

date2. isAfter (date1)
}
}
}
}

class sfdpsOrderMultiMonitor(config: Config) extends DautMonitor(config){
val size = config. getInt ( ”sub−monitor−count”) − 1
val m = for( i <− 0 to size) yield new sfdpsOrderMonitor(config)
monitor(m: ∗)
}

Figure 2: Daut monitor capturing the property sfdps-seq-order

The functions always and watch in Figure 2, which are defined in daut.

Monitor, act as states. They accept as argument a partial function of type
Transitions and return an object of type state. The case statements defined
within always and watch represent transitions at states which are matched against
incoming events. FlightState and TrackCompleted are the two possible events in
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the input trace. The events are defined as Scala case classes since the built-in pat-
tern matching support in Scala facilitates the implementation of data-parametrized
state machines. The parameter cs represents the flight call sign. For each incom-
ing event fed to the monitor object, the method verify is invoked which creates
new target states, if any, from the transitions, and updates the set of the active
states.

Daut provides an indexing capability within monitors to improve their perfor-
mance. It allows for defining a function from events to keys where keys are used as
entries in a hash map (of type scala.collection.immutable.HashMap) to obtain
those states which are relevant to the event. Using this approach, a Daut monitor
only iterates over an indexed subset of states instead of the entire set of current
states. To use Daut indexing in a monitor, one needs to override the method keyOf

of daut.Monitor. Some of the actor-based systems used in the experiment em-
ploy Daut indexing which is implemented by the class sfdpsOrderMonitor_indx.
As shown in Figure 3, sfdpsOrderMonitor_indx overrides keyOf with an imple-
mentation that given an event, returns the call sign associated with the event.

The sfdps-seq-order property is simple and it leads to a small service time,
which is the time used to process the message within the monitor objects. To
mitigate issues associated with microbenchmarking on JVM, we use a feature
of Daut that allows for defining sub-monitors within a Daut monitor object. A mi-
crobenchmarking deals with evaluating small tasks, and due to optimizations and
mechanisms such as garbage collection, it is often difficult to obtain precise eval-
uation on JVM. By defining sub-monitors, we can increase the monitors service
time. We define the class sfdpsOrderMultiMonitor (Figure 2) which is a Daut
monitor and maintains a list of sfdpsOrderMonitor instances as its sub-monitors.
The size of the list is provided by the user in the configuration file using the key
sub-monitor-count. Similarly, the class sfdpsOrderMultiMonitor_indx (Figure
3) is defined which maintains a list of sfdpsOrderMonitor_indx instances as its
sub-monitors.

class sfdpsOrderMonitor indx(config: Config) extends sfdpsOrderMonitor(config){
override protected def keyOf(event : Any): Option[String] = {

event match {
case FlightState( , cs, , , , , , ) => Some(cs)
case TrackCompleted( , cs, , , , , , ) => Some(cs)
}
}
}

class sfdpsOrderMultiMonitor indx(config: Config) extends DautMonitor(config){
val size = config. getInt ( ”sub−monitor−count”) − 1
val m = for( i <− 0 to size) yield new sfdpsOrderMonitor indx(config)
monitor(m: ∗)
}

Figure 3: Daut monitor capturing the property sfdps-seq-order with indexing
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3 Monitoring Systems

This section presents the actor-based monitoring systems used in our experiment.
These systems are illustrated in Figure 4. The outermost white boxes represent ac-
tors and the vertical lines between them represent the publish/subscribe communi-
cation channels. It can be seen that all the systems have the same data acquisition
and data processing phases, and they are only different in their monitoring phase.
They use the instant-reply actor to acquire the input data and the event-gen

actor to process the data. The instant-reply actor accesses an archive con-
taining recorded SFDPS data messages in the XML format, and as it reads the
messages, it publishes them to the sfdps channel instantly. The event-gen ac-
tor obtains the XML messages by subscribing to the channel sfdps, turns each
message into an event of type FlightState or TrackCompleted, and publishes the
event object to the channel events. FlightState captures the state of the flight,
and TrackCompleted indicates that the flight has reached its final destination.

MESA provides components referred to as dispatchers which are configurable
and used in the monitoring phase of the runtime verification to determine how the
check for the property of interest is distributed among different monitor actors. The
actors that contain one or more monitor instances are referred to as monitor actors.
The MESA dispatchers which are implemented as actors are not tied to a specific
application and they can be extended towards different systems under observation.
As explained below, these components are key to our experiments.

Let n, in Figure 4, be the total number of different call signs in the input se-
quence of SFDPS messages. The gray boxes inside the actors represent monitor
instances, where M refers to instances of type sfdpsOrderMultiMonitor (Figure 2)
and MI refers to instances of type sfdpsOrderMultiMonitor_indx (Figure 3). The
white box contained inside each monitor instance contains those call signs moni-
tored by this instance. Next, we explain the monitoring phase for each actor-based
monitoring system in more detail.

• monitor-indexing - the monitoring phase includes one actor with a single
monitor object of type sfdpsOrderMultiMonitor_indx that checks for all the
events in the input sequence (see Figure 4a). The monitor actor obtains event
objects from the channel events and feeds them to the underlying monitor
object by invoking its verify method. The monitor instance employs indexing
within the monitor. In a way, the monitoring phase of this system is equivalent
to directly using the Daut tool which processes the trace sequentially.

• dispatcher-indexing - the monitoring phase includes a dispatcher actor
(of type gov.nasa.mesa.dispatchers.IndexingDispatcher) which creates
monitor instances of type sfdpsOrderMultiMonitor on-the-fly, and feeds
them with incoming events. The dispatcher generates one monitor instance
per call sign (see Figure 4b). It stores the monitor instances in a hash map
(of type scala.collection.mutable.HashMap), using call signs as entries to
the hash map. Thus, in this system indexing is applied inside the dispatcher
actor, and not inside the monitor instances. The dispatcher obtains event ob-
jects from the channel events, and starting with an empty hash map, for each
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instant-replay    event-gen
monitor-actor

sfdps events

MI cs1…csn

(a) System 1: monitor-indexing

instant-replay    event-gen
indexing-dispatcher

sfdps events

M1 cs1 … Mn csn

(b) System 2: dispatcher-indexing

monitor-actor-1

……concurrent-
dispatcherinstant-replay    event-gen

sfdps events

monitor-actor-n

M1 cs1

Mn csn

(c) System 3: concurrent

monitor-actor-1

……instant-replay    event-gen

sfdps events MI1

monitor-actor-k

cs1…csi

MIk csj…csn

bounded-concurrent
dispatcher

(d) System 4: bounded-concurrent

Figure 4: Actor-based monitoring systems used in the experiment

new call sign, adds a new monitor instance to the hash map. Moreover, for
an event object with the call sign csi, the monitor actor invokes the verify

method of the monitor instance Mi.

• concurrent - the trace analysis is performed concurrently by employing one
monitor actor per call sign (see Figure 4c). Each monitor actor includes a
monitor instance of type sfdpsOrderMultiMonitor. The runtime verification
phase includes a dispatcher actor (of type gov.nasa.mesa.dispatchers.

ConcurrentDispatcher) that obtains the event objects from the channel
events, and for each new call sign, it generates a monitor actor on-the-fly.
The dispatcher actor uses indexing by storing the references of the monitor
actors in a hash map (of type scala.collection.mutable.HashMap) using
call signs as entries to the hash map. For an event object with the call sign
csi, the dispatcher then forwards the event object to the associated actor,
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monitor-actor-i, using the point-to-point communication paradigm. Then
the monitor actor invokes the verify method on its underlying monitor in-
stance. For an event object of type of TrackCompleted which indicates the
end of the flight, the dispatcher also sends a termination request to the mon-
itor actor.

• bounded-concurrent - the monitoring phase is similar to the monitoring
phase in the concurrent system, except there is a limit on the number
of monitor actors generated. Therefore, one monitor actor could be as-
sociated with more than one call sign. Moreover, monitor actors contain
instances of type sfdpsOrderMultiMonitor_indx which employs indexing
inside the monitor instance. This system also uses the dispatcher actor
of type gov.nasa.mesa.dispatchers.ConcurrentDispatcher with the key
actor-monitor-count set to the maximum number of monitor actors in the
configuration file.

Table 5 summarizes the main features of these monitoring systems which are
key to the experiment.

monitor indx dispatcher indx concurrency
monitor-indexing X × ×
dispatcher-indexing × X ×
concurrent × X X
bounded-concurrent X X X

Figure 5: The main features of the MESA monitoring systems presented in Figure 4

3.1 Configurations

In order to build the monitoring systems illustrated in Figure 4, one needs to spec-
ify the actors and the way they are connected in configuration files in the HOCON
format [15] which is a JSON dialect. MESA receives the configuration file as an in-
put and generates the actor-based system accordingly. As an example, see Figure
6 which shows the input configuration file used to build the bounded-concurrent

monitoring system. You can find the one-to-one correspondence between the ac-
tors specified within the actors block in the configuration file and the actors in
Figure 4d. The dispatcher type SfdpsConcurrentDispatcher extends the type
ConcurrentDispatcher towards SFDPS messages.

4 Performance Measurement of Actors

In the experiment, first, we measure the overall performance of MESA using dif-
ferent MESA monitoring systems. To investigate the underlying factors behind run
time results further, we also measure different performance parameters for individ-
ual dispatcher and monitor actors in the monitoring system. This section explains
how these parameters are measured.
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actors = [
{ name = ”instant−replay”

class = ”gov.nasa.mesa.dataAcquisition.InstantReplayActor”
write−to = ”sfdps”
reader = {

class = ”. archive.TextArchiveReader”
pathname = ${mesa.data}”/sfdps.xml.gz”
buffer−size = 32768
}
},

{ name = ”event−gen”
class = ”gov.nasa.race.actor.TranslatorActor”
read−from = ”sfdps”
write−to = ”events”
translator = {

class = ”gov.nasa.race.air. translator .FIXM2FlightObject”
}
},

{ name = ”bounded−concurrent−dispatcher”
class = ”gov.nasa.mesa.dispatchers.nextgen.SfdpsConcurrentDispatcher”
read−from = ”events”
actor−monitor−count = 250
monitor = {

name = ”sfdps−order−monitor”
monitor−actor−class = ”gov.nasa.mesa.core.MonitorActor”
monitor−object.class =

”gov.nasa.mesa.nextgen.monitors.sfdpsOrderMultiMonitor indx”
sub−monitor−count = 2000
}
}

]

Figure 6: The configuration file specifying the concurrent-bounded actor-based monitoring
system

The performance parameters that we consider are the average service time,
the average wait time for messages in the actor’s mailbox, and the average size of
actor’s mailbox queue obtained after enqueuing a message. Figure 7 illustrates the
relevant points at which we record data to measure the actors performance met-
rics. The interesting points are when a message is enqueued into and dequeued
from the mailbox queue, and when the actor starts processing and finishes pro-
cessing a message. The relevant data recorded at these points are stored in data
containers (See Figure 8) which are defined as case classes and published to the
Akka publish-subscribe EventStream channel. We also implement an actor called
stat-collector which is subscribed to EventStream, and collects MailboxStats

and MsgProcessingStats data containers and processes them into statistics. First,
we explain how the actors performance parameters are measured in MESA.
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service timewait time

enqueue 
msg

dequeue 
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process
msg
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completed

msg msg
mailbox receiveLive

Figure 7: The timeline for a message sent to the actor

case class MsgProcessingStats(self: ActorRef, sender: ActorRef, entryTime: Long,
exitTime: Long)

case class MsgEntryStats(queueSize: Int, receiver: ActorRef, entryTime: Long,
envelope: Envelope)

case class MailboxStats(queueSize: Int, receiver: ActorRef, sender: ActorRef,
entryTime: Long,

exitTime: Long)

Figure 8: Data containers used to store data processed by the stats-analyzer actor

4.1 Measuring Service Time

Extended from RACE actors, the default behavior of MESA actors is de-
fined by the method receiveLive which is of type of PartialFunction[Any,

Unit] and processes the incoming messages. To measure the service
time, we implement the type InstrumentedReceive, shown in Figure 9.
InstrumentedReceive extends PartialFunction[Any,Unit], and has construc-
tor parameters of type of PartialFunction[Any,Unit] (called delegatee) and
MesaActor. InstrumentedReceive overrides the apply method with an imple-
mentation that invokes delegatee on the incoming message and records the time
before and after invoking delegatee. It then creates a data container of type
MsgProcessingStats, and publishes it to the EventStream channel (by invoking
forwardStats on the given MesaActor). MsgProcessingStats objects which are
collected by stat-collector include the identity of the actor processing the mes-
sage and the sender actor, and the time before and after processing the message.

Every MESA actor has the boolean property stats.service which is false by
default. If set to true in the configuration file, when initializing the actor, MESA
replaces the receiveLive with a new instance of InstrumentedReceive using the
actor’s receiveLive object and reference as its constructor parameters.
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class InstrumentedReceive (val delegatee: PartialFunction[Any,Unit], val actor:
MesaActor)

extends PartialFunction[Any,Unit] {
override def apply(msg: Any): Unit = {

if (msg.isInstanceOf[RaceSystemMessage]) delegatee(msg)
else {

val start = System.currentTimeMillis
delegatee(msg)
val end = System.currentTimeMillis
val stats = MsgProcessingStats(actor.self, start , end)
actor.forwardStats(stats)
}
}

def isDefinedAt(x: Any): Boolean = delegatee.isDefinedAt(x)
}

Figure 9: InstrumentedReceive replaces the receiveLive function in MESA actors to
measure the service time

4.2 Measuring Mailbox Metrics

The approach that we used to collect mailbox data is similar to the one pro-
posed in Chapter 16 of [4]. To obtain information from actors mailboxes, we
implement a new mailbox that extends the default mailbox implementation in
Akka. Akka allows for specifying the actor’s mailbox in the configuration file. If
no mailbox is specified for an actor, the default mailbox is used. Creating a
new Akka mailbox requires a queue implementation of type MessageQueue, and
a factory class of type MailboxType to instantiate the queue for corresponding
actors. My mailbox implementation includes the class StatsQueue that extends
MessageQueue and implements the mailbox queue. It also includes the mailbox
factory class StatsMailboxType that extends MailboxType, and it is used to in-
stantiate StatsQueue.

The StatsQueue class has a final field queue of type java.util.concurrent.

ConcurrentLinkedQueue which stores the messages that are waiting in the mail-
box. The two key methods which are declared in MessageQueue and implemented
in StatsQueue are enqueue and dequeue. These methods are used to enqueue the
message into the actor mailbox and dequeue the next message from the mailbox
to be processed by the actor, respectively. The method enqueue creates a data
container of type MsgEntryStats, and adds it to the end of queue. MsgEntryStats
(see Figure 8) stores the original message, encapsulated by an Envelope object in
Akka, along with the size of the mailbox queue, the receiver actor identity, and the
message entry time into the queue.

The method dequeue obtains the next MsgEntryStats from queue, and cre-
ates a data container of type MailboxStats and publishes it to EventStream. It
also returns the original message of type Envelope to the actor for processing.
MailboxStats (see Figure 8) includes the size of the queue after the message
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entered the mailbox, the identities of the receiver and sender actors, and the mes-
sage entry time to and the exit time from the mailbox queue. Using this information
for every message in the actor’s mailbox, stat-collector computes the average
wait time for a message in the actor’s mailbox. It also computes the average of the
mailbox size recorded when enqueueing messages. Note that this does not exactly
reflect the average size of the mailbox since it does not take into account the mail-
box changes in between enqueues which can stay empty for a while. Therefore,
we refer to it as average sampled mailbox size.

The new mailbox type is defined in the configuration file by adding the following
lines in the configuration file.

stats−collector−mailbox {
mailbox−type = ”gov.nasa.mesa.reporting.stats.StatsMailboxType”
}

Every MESA actor has the boolean property stats.mailbox which is false by
default. If that is set to true in the configuration file, when creating the actor, MESA
uses StatsQueue for the actor’s mailbox implementation instead of the default one.

5 Akka Threading Model

Before presenting the experiment, we briefly explain the underlying threading
model in Akka. Scheduling actors in Akka is performed by dispatchers which are
low level components built into the Akka toolkit. Note that these dispatchers are
completely different from the dispatchers components implemented in MESA. To
avoid confusion, in some context, we refer to the ones implemented by Akka as
Akka dispatchers. Akka dispatchers are responsible for management of actors
mailboxes and the threading strategy. They push messages into actors mailboxes,
and associate threads from the thread pools to actors to process messages in their
mailboxes. Akka provides a fixed number of dispatchers to choose from. The user
can also assign a certain Akka dispatcher to a group of actors. The built-in dis-
patcher types in Akka are as follows.

• Dispatcher is the default Akka dispatcher which associates all the assigned
actors to one thread pool.

• PinnedDispatcher provides an actor with an exclusive access to a single
thread.

• BalancingDispatcher redistributes messages from busy actors to the ones
with empty mailboxes.

• CallingThreadDispatcher is only used for testing, and uses the current
thread to execute any actor.

Akka provides configuration parameters to tune dispatchers to specific needs. The
parameter throughput represents the maximum number of messages processed
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by the actor before the assigned thread is returned to the pool. The parameter
throughput-deadline-time represents the deadline for the actor to process mes-
sages each time it executes. One can also specify the underlying thread pool
implementation used in the Akka dispatcher by setting its executor component us-
ing the parameter executor. By default, Akka uses fork-join-executor which
relies on the work-stealing pattern where threads always try to find tasks from the
submitted tasks to the pool and the ones created by other running tasks. Akka
also includes thread-pool-executor which offers a dynamic thread pool that can
decrease or increase in size depending on how busy or idle the threads are. Akka
also allows users to implement their own customized executor.

The number of threads in the pool is another measure that can be tuned. With
too few threads which may cause low CPU utilization, the actors are not able to
keep up with the arrival of messages. With too many threads, the context switch
time between threads increases which leaves less time for processing the threads.
The Akka dispatcher configuration provides three parameters to specify the thread
pool size. The parameters parallelism-min and parallelism-max represent the
minimum and maximum number of threads, respectively, and parallelism-factor

is a factor to calculate the number of threads based on available processors. The
size of the thread pool is parallelism-factor multiplied by the number available
processors. The number available processors is the value returned by the method
java.lang.Runtime.availableProcessors() which gives the maximum number
of logical cores available to the virtual machine. If the calculated thread pool size
is smaller than parallelism-min or larger than parallelism-max then the thread
pool size becomes parallelism-min or parallelism-max, respectively. Moreover,
to set the thread pool size to a specific value, one could set both parallelism-min

and parallelism-max to that value.
We use the default Akka dispatcher setting in the experiment which is as fol-

lows. All actors use the Dispatcher implementation with the default value 5
for throughput, 0 for throughput-deadline-time which indicates no time limit,
and fork-join-executor for the executor. Moreover, parallelism-min and
parallelism-max are set to 8 and 64, and parallelism-factor is set to 3.

6 Experiment

The experiment is divided into two parts. The first part, presented in Section 6.2,
evaluates the overall performance of the different MESA actor-based systems pre-
sented in Section 3. The second part, presented in Section 4, evaluates the perfor-
mance of individual dispatcher and monitor actors.

6.1 Setup

The experiment is performed on an Ubuntu 18.04.3 LTS machine with 31.1 GB of
RAM and 10 Intel R©Xeon R©W-2155 processors with a base frequency of 3.30 GHz
and hyper-threading which provides 20 threads (2× number of cores). The initial
Java heap size and the maximum Java heap size, represented by the Xms and
Xmx JVM parameters, are set to 12 GB. Moreover, the time is measured using
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java.lang.System.nanoTime().
For all the runs in this experiment, we use an archive including recorded SFDPS

messages as an input. We evaluate the MESA systems against an input trace,
T, including 200,000 messages where each message corresponds to an event
of type FlightState or TrackCompleted. T includes data from 3215 different
flights. Therefore, the value of n in Figure 4) is 3215. The number of sub-monitors
in sfdpsOrderMultiMonitor and sfdpsOrderMultiMonitor_indx is set to 2000
in all the configurations. Moreover, the value returned by java.lang.Runtime.

availableProcessors() is 20 where with parallelism-factor set to 3, the size
of the thread pool for Dispatcher (the default Akka dispatcher) becomes 60.

6.2 System Performance

To evaluate the overall performance of the actor-based monitoring systems pre-
sented in Section 3, using a bash script, each system is executed 10 consecutive
times. The average time of the 10 runs used to process the input trace T for the
monitoring systems monitor-indexing, dispatcher-indexing, concurrent, and
bounded-concurrent are compared in Figure 10. Note that the legend bcon in the
graphs stands for bounded-concurrent followed by the number of monitors.

Considering the 3215 different call signs in T, monitor-indexing includes
one monitor actor which contains one monitor object that tracks all 3215 flights.
The dispatcher-indexing system creates one actor that contains a hash map
including 3215 monitor objects where each monitor object handles messages
from one flight. The concurrent monitoring system creates 3215 monitor ac-
tors on-the-fly where each monitor actors handles messages from one flight. The
bounded-concurrent monitoring system creates 250 monitor actors where each
monitor actor tracks 12 to 13 call signs.

The results show that monitor-indexing exhibits the worst performance fol-
lowed by the dispatcher-indexing monitoring system. The discrepancy between
the run time for these two monitoring systems reveals that applying indexing at the
dispatcher level is more efficient that indexing within the monitor. The results also
show that bounded-concurrent exhibits the best performance, being slightly faster
than the concurrent monitoring system. Table 1 includes ratios that compare the
run times for the input trace T.

monitor−indexing
dispatcher−indexing

dispatcher−indexing
concurrent

concurrent
bounded−concurrent

ratio 1.78 2.63 1.22

Table 1: Performance ratios comparing different MESA systems

To investigate the contributing factors behind different run times closer, we run
each MESA system in Figure 10 once along with VisualVM which is a Java pro-
filer that provides a visual interface to monitor CPU utilization, garbage collector
activities, memory usage, and heap data. Figure 11 shows the CPU usage which
represents the percentage of total computing resources in use during the run.

It can be seen that the CPU utilization for monitor-indexing is mostly un-
der 30%, and for dispatcher-indexing is mostly between 30% and 60%. These
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Figure 10: Comparing the run times of different MESA actor systems

(a) monitor-indexing (b) dispatcher-indexing

(c) concurrent (d) bounded-concurrent using 250 monitor

Figure 11: The CPU usage profiles obtained by VisualVM
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amounts are significantly lower than the CPU utilization for the concurrent and
bounded-concurrent monitoring systems which is mostly above 90%. The main
reason is that monitor-indexing and dispatcher-indexing use a single ac-
tor in the monitoring phase which processes messages sequentially and there-
fore, they do not take advantage of available cores. Whereas, concurrent and
bounded-concurrent use concurrent actors in the monitoring phase. In general,
increasing the number of concurrent monitor actors increases the CPU utilization
which can lead to a better performance. However, increasing the number of con-
current actors also comes with additional overhead including increase in context-
switching between actors which could slow down the system.

It can be seen that in Figure 11, the CPU utilization profile for all the systems
goes down before the system terminates. Once the input trace T is fully processed,
a termination request is sent to all the live actors in the system by the master actor.
The systems with higher number of actors could take longer to shutdown. The run
time reported in these experiments is from the start of the run to the point that the
system is processed the entire input trace, before the termination mechanism is
even triggered. Therefore, the termination process does not influence the results.

(a) monitor-indexing (b) dispatcher-indexing

(c) concurrent (d) bounded-concurrent (250 monitors)

Figure 12: The heap data profiles obtained by VisualVM
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Figure 12 shows the heap data for each system obtained from VisualVM. The
spikes in the profiles are indicative of short living objects collected during a garbage
collection cycle which are the messages exchanged between actors in these runs.
It can be seen that the heap data consumption for all the runs is below 10G.

Note that in a way the concurrent monitoring system can be seen as a spe-
cial case of bounded-concurrent where the maximum number of monitors to be
created is equal to the number of call signs. Figure 13 compares concurrent

with the bounded-concurrent where the maximum number of monitor actors is set
to 3215. It can be seen that the bounded-concurrent system is slower. That is
due to two reasons. The extra work that goes to maintaining the groups of moni-
tor actors in the case of bounded-concurrent can cause overhead. Moreover, in
bounded-concurrent, indexing is applied inside the monitor objects, and since only
one call sign is assigned to each monitor instance, the monitor indexing does not
improve the performance and causes additional overhead.
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Figure 13: concurrent versus bounded-concurrent

To see how the number of monitor actors impact the run time, we compare the
bounded-concurrent run times with different numbers of monitor actors, including
125, 250, 500, 1000, 2000, and 3215 actors. Note that increasing the number of
monitor actors imposes less load on each monitor actor. The number of flights
tracked by each monitor actors for the systems with 125, 250, 500, 1000, 2000,
and 3215 monitor actors is 25-26, 12-13, 6-7, 3-4, 1-2 (with majority 2), and 1
flight, respectively. The average of 10 runs for these systems are compared in
Table 2 and in Figure 14.

It can be seen that the system performs best with 250 monitor actors, and from
there as the number of monitor actors increases the run time increases. The results
also show that the system with 125 monitor actors is slightly slower than the system
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with 250 monitor actors. As mentioned earlier, increasing the number of monitor
actors decreases the load on individual monitor actors, however, it increases over-
heard from creating and maintaining more actors.

#monitors 125m 250m 500m 1000m 2000m 3215m
time (s) 169 161 167 169 183 208

Table 2: Comparing the run times of different MESA actor systems
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Figure 14: The bounded-concurrent run times with different number of monitor actors

Using VisualVM, we obtain the CPU utilization and the heap data profiles for the
MESA systems presented in Figure 14. Figure 15 illustrates the CPU utilization pro-
files for the same systems. It can be seen that in all cases the bounded-concurrent

system maintains a high CPU utilization which is mostly over 90%. Figure 16 illus-
trates the heap data profiles. It can be seen that there there are not many discrep-
ancies between the heap profiles as well.
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(a) bounded-concurrent (125 monitors) (b) bounded-concurrent (250 monitors)

(c) bounded-concurrent (500 monitors) (d) bounded-concurrent (1000 monitors)

(e) bounded-concurrent (2000 monitors) (f) bounded-concurrent (3215 monitors)

Figure 15: The CPU utilization profiles for bounded-concurrent
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(a) bounded-concurrent (125 monitors) (b) bounded-concurrent (250 monitors)

(c) bounded-concurrent (500 monitors) (d) bounded-concurrent (1000 monitors)

(e) bounded-concurrent (2000 monitors) (f) bounded-concurrent (3215 monitors)

Figure 16: The VisualVM heap data profiles for bounded-concurrent
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6.3 Actors Performance Analysis

This section shows the results for individual actors in the monitoring systems using
the features explained in Section 4, which are referred to as ASF (stands for actor
statistics features) from now on. To activate ASF, the properties stats.mailbox

and stats.service are set to true for dispatcher and monitor actors. Moreover,
the stat-collector actor is added to the actor system by adding the following
block to the configuration file. The experiment presented is this section is also

{
name = ”stat−collector”
class = ”gov.nasa.mesa.reporting.stats.StatCollector”
output−path = ”path/to/stat−collector/ results ”
}

conducted on the Ubuntu machine and uses the inputs and settings presented
in Section 6.1. Before presenting the results for individual actors, we show the
overhead from activating ASF.

6.3.1 ASF Overhead

Figure 17 compares the runtime of the different MESA systems with and without
ASF. Note that the postfix asf in all the graphs represents runs with ASF activated.
It can be seen that all the monitoring systems presented in Figure 17 slow down
with ASF activated. Moreover, comparing the overheads reveals that the monitor-

indexing system exhibits the largest overhead from activating ASF. Note that in
the monitor-indexing system, ASF is only activated for one monitor, whereas, for
concurrent and bounded-concurrent, ASF is activated for the dispatcher and all
the monitor actors. Therefore the overall overhead in these systems is larger since
there are more messages exchanged between the actors and stat-collector.

Figure 18 and 19 show the CPU usage and the heap data profiles for monitor-
indexing, dispatcher-indexing, concurrent, and bounded-concurrent using
250 monitors. The results in Figure 18 reveal that activating these features in-
creases the CPU utilization for monitor-indexing and dispatcher-indexing. The
reason is that these systems have a very few actors, and one additional runnable
actor, stat-collector, which always has messages in its mailbox can noticeably
lift the CPU utilization. Whereas, for concurrent and bounded-concurrent which
already have many actors with high CPU utilization, adding an additional actor does
not raise the CPU utilization noticeably.

It can be also seen from Figure 18 that the shutdown process which is the flat
part of the profile at the end becomes longer with ASF activated. The shutdown
request is sent from the master actor to all the actors in the system in the form of
a message that is placed in the actors mailboxes. The longer shutdown process
is due to the wait on the stat-collector actor to process the messages waiting
in its mailbox. Figure 19 shows that activating ASF leads to larger heap data in all
cases. This is due to the overhead from the messages placed in the mailbox of
stat-collector.
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Figure 17: Comparing MESA systems run times with and without ASF

(a) monitor-indexing with ASF (b) dispatcher-indexing with ASF

(c) concurrent with ASF (d) bounded-concurrent with ASF (250 mon-
itors)

Figure 18: The CPU utilization profiles for MESA systems with ASF activated
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(a) monitor-indexing with ASF (b) dispatcher-indexing with ASF

(c) concurrent with ASF (d) bounded-concurrent with ASF (250 mon-
itors)

Figure 19: The heap usage profiles for the MESA systems with ASF activated
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Figure 20: Comparing the bounded-concurrent runs with and without ASF
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Table 3 includes the run time and overhead for bounded-concurrent when ASF
is activated. Figure 20 compares the run times for the same MESA systems with
and without ASF. It can be seen that activating ASF slows down all the runs, and the
system with 250 monitor actors still gives the best performance. Moreover, Table
3 shows that in general, as the number of monitor actors increases, the overhead
from ASF increases as well.

#monitors 125m 250m 500m 1000m 2000m 3215m
time (s) 203 197 202 215 237 267
ASF overhead 20% 22.5% 21.1% 27.7% 29.4% 28.1%

Table 3: The run time and overhead for bounded-concurrent with ASF

Figure 21 illustrates the heap data profiles for bounded-concurrent with 125,
250, 500, 1000, 2000, and 3215 monitors with ASF activated. Comparing the
profiles with the ones illustrated in Figure 16 shows that activating ASF increases
the heap data usage for all these systems. Moreover, the CPU utilization profiles
for these systems show that the CPU usage stays above 90% in all cases, which is
similar to the CPU usage for runs without ASF illustrated in Figure 15.

6.3.2 Actors Performance Results

Next, we present the results for individual actors in the monitoring systems pre-
sented in this report. Figure 22 compares the dispatcher actors parameters for the
systems monitor-indexing, dispatcher-indexing. It shows the average service
time, the average wait time in the mailbox queue, and the average sampled mail-
box queue size for the dispatcher actor in each system. These parameters are
higher for the monitor-indexing system, which reveals that for this particular sys-
tem under observation, it is more efficient to apply indexing at the dispatcher level
than applying indexing at the monitor level when using one actor in the monitoring
phase. These results are also aligned with the results presented in Figure 17.

Figure 23 compares the dispatcher actors performance metrics for bounded-
concurrent with different numbers of monitor actors. It can be seen that the av-
erage service time increases as the number of actors increases. This is aligned
with the fact that using more monitor actors increases the load of the dispatcher
actor since it needs to generate more monitor actors. Moreover, starting from the
system with 250 monitors the average message wait time in the queue increases
as the number of actors increase. This implies the longer the service time in the
dispatcher actor, the longer the wait in the dispatcher mailbox. The figure shows
that the average sampled mailbox size for the dispatcher actors in all cases only
varies in a small range, where the queue is shorter for the dispatcher with smaller
service time.
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(a) bounded-concurrent with ASF (125 mon-
itors)

(b) bounded-concurrent with ASF (250 mon-
itors)

(c) bounded-concurrent with ASF (500 mon-
itors)

(d) bounded-concurrent with ASF (1000
monitors)

(e) bounded-concurrent with ASF (2000
monitors)

(f) bounded-concurrent with ASF (3215
monitors)

Figure 21: bounded-concurrent heap profiles with ASF activated
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Figure 22: Comparing the dispatcher performance metrics for the actor in the monitoring
step of monitor-indexing and dispatcher-indexing
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Figure 23: Comparing the dispatcher performance metrics for bounded-concurrent using
different numbers of monitor actors
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Figure 24: Comparing the monitors performance metrics for bounded-concurrent using
different numbers of monitor actors
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Figure 24 compares the monitor actors performance metrics for bounded-

concurrent with different numbers of monitor actors. It can be seen that starting
from the system with 250 monitor actors, the average service time for monitor ac-
tors increases as the number of monitor actors increases. Decreasing the number
of monitor actors increases the load on individual actors since each monitor actor
deals with higher number of flights. On the other hand, applying indexing within the
monitor actors helps with improving their performance, and for cases with a higher
number of monitor actors, indexing within the monitor can lead to overhead as also
shown in Figure 13.

The second bar graph in Figure 24 also shows that the systems with fewer
monitor actors have higher average wait time in the queue. This could be due
to the higher arrival rate of messages for these monitors. The last bar graph in
Figure 24 shows that the average sampled mailbox size for monitor actors in all the
systems is almost 1. That is, on average, every time a message is placed in the
monitor actor mailbox, there is no other messages in the queue in all cases. Note
that this measure does not reflect the arrival rate of messages since it does not
take into account the periods where the mailboxes are empty.

7 Discussion and Conclusion

Throughout the experiment, we observed various competing sources of overhead
in the MESA actor-based monitoring systems. These factors, which are as follows,
need to be taken into consideration when configuring values of the related param-
eters.

• Sequential processing of messages - limiting the number of concurrent mon-
itor actors on a multicore machine can lead to a low CPU utilization. On the
other hand, increasing concurrency can increase CPU utilization. Therefore,
distributing the input trace among multiple actors rather than using one single
monitor actor to process the entire trace sequentially can improve the perfor-
mance.

• Actor instantiation - there is a slight overhead associated with creating a new
actor. According to Akka documentation the actor base memory overhead is
roughly 300 bytes per instance.

• Runnable actors - runnable actors are those actors with non-empty mailbox
queues which need to be scheduled to run and process their messages. As-
signing actors to threads from the thread pool and context switching between
them impose overhead. Therefore, the more runnable actors, the more over-
head imposed.

• Size of mailbox queues - since MESA uses unbounded mailboxes, increase
in the number of messages waiting to be processed in the actor’s mailbox
increases the heap data, and depending on the JVM heap size this could
lead to more frequent garbage collector cycle. Garbage collection consumes
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CPU resources which can limit the CPU resources that go to running the
monitoring system and therefore, it slows it down.

The combination of these factors can make one MESA system perform bet-
ter than the other one. As shown earlier in Figure 10, the bounded-concurrent

system with 250 monitors performs the best. This shows that for this particular
system under observation, the competing factors outlined above lead to an optimal
performance when using 250 concurrent monitors.

Note there are various challenges associated with microbenchmarking on JVM
that can impact accuracy of the results when dealing with smaller time measures
such as service time and wait time for messages in the actor mailboxes. To ad-
dress this issue one could employ tools such as JMH to provide more accurate
benchmarking [16].

The main conclusion from the experiments is that concurrency can improve
the performance of a monitoring system considerably. Moreover, due to compet-
ing overhead sources, there is an optimal number of concurrent monitors. Given
the system under observation, there is no clear way to find the optimal number
of concurrent monitor actors upfront. What MESA provides is a platform that can
facilitate the processing of finding that optimal number. It provides building blocks
for monitoring systems which are highly configurable. One can easily tweak these
parameters in the configuration file to observe and study different runs. MESA can
be also used to determine the number of concurrent monitor actors dynamically.
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