
Formal Methods in System Design manuscript No.
(will be inserted by the editor)

Inferring Event Stream Abstractions

Sean Kauffman · Klaus Havelund · Rajeev Joshi ·
Sebastian Fischmeister

Received: date / Accepted: date

Abstract We propose a formalism for specifying event stream abstractions for use in space-
craft telemetry processing. Our work is motivated by the need to quickly process streams
with millions of events generated e.g. by the Curiosity rover on Mars. The approach builds a
hierarchy of event abstractions for telemetry visualization and querying to aid human com-
prehension. Such abstractions can also be used as input to other runtime verification tools.
Our notation is inspired by Allen’s Temporal Logic, and provides a rule-based declarative
way to express event abstractions. We present an algorithm for applying specifications to
an event stream and explore modifications to improve the algorithm’s asymptotic complex-
ity. The system is implemented in both Scala and C, with the specification language imple-
mented as internal as well as external DSLs. We illustrate the solution with several examples,
a performance evaluation, and a real telemetry analysis scenario.

Keywords telemetry comprehension · event stream processing · Allen logic · temporal
logic · runtime verification

The research performed by K. Havelund and R. Joshi and part of the research performed by S. Kauffman
was carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. The research performed by K. Havelund was furthermore
supported by AFOSR Grant FA9550-14-1-0261.

S. Kauffman
University of Waterloo, Waterloo, Canada
E-mail: skauffma@uwaterloo.ca

K. Havelund
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
E-mail: klaus.havelund@jpl.nasa.gov

R. Joshi
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
E-mail: rajeev.joshi@jpl.nasa.gov

S. Fischmeister
University of Waterloo, Waterloo, Canada
E-mail: sfischme@uwaterloo.ca

2 Sean Kauffman et al.

1 Introduction

A key challenge in operating remote spacecraft is that human operators must rely on re-
ceived telemetry to assess the status of the spacecraft. Telemetry can be thought of as an
execution trace: a stream consisting of discrete events, each having a name, a time stamp,
and carrying data. Telemetry streams can contain millions of events and can therefore be
difficult to comprehend by humans, as well as interpret against the higher-level execution
plans submitted to the spacecraft. The current approach to analyzing spacecraft telemetry for
missions like the Mars Science Laboratory (MSL), and specifically from its Curiosity rover,
relies on ad-hoc scripts that are labor intensive to write and maintain. We propose a formal-
ism for specifying interval abstractions of event streams, with a semantics that produces a
set of intervals from a trace. Such abstractions can be useful for telemetry visualization1 and
querying to aid human comprehension. Our formalism is inspired by interval logics, specif-
ically Allen’s Temporal Logic [2], commonly used in the planning and artificial intelligence
(AI) domains. We extend a variation of this logic with a rule-based declarative formalism,
named nfer, for expressing event abstractions.

The nfer formalism and implementation has commonalities with classical rule-based
systems known from AI. Our early work on the trace abstraction problem was effectively
done using a rule-based system, as documented in [37, 36]. However, we learned that a
rule system does not represent meta-level constraints well, i.e., properties that hold on the
collection of all facts produced by the rule system. An example of a meta-level constraint is
the notion of minimality: do not create an interval if an interval has already been generated
with the same name in the same time period. Such meta-constraints and, in particular, the
minimality constraint, turn out to be crucial to reduce the complexity of trace analysis. A
similar observation can be made about Prolog. As an experiment, we formulated the article’s
guiding example in LogFire [35], our homegrown rule-based system used in [37, 36]; and
in Prolog, and compared them to the Scala and C versions of nfer. The four systems were
applied to an event trace of 10,000 randomly generated events. LogFire had to be aborted
after running more than a week. Prolog took 64 hours to finish. The Scala version and C
version, both of which implement minimality, finished in 1.8 and 0.05 seconds, respectively.

Our system differs from traditional runtime verification (RV) systems, in which a pro-
gram execution trace is checked against a user-provided specification. RV usually results
in a binary decision (true/false) as to whether the execution trace satisfies the specification,
although variations on this theme have been developed, including 3-valued logics [15] and
4-valued logics [12]. In contrast, the result of running nfer on an event stream is a set of
named and timed intervals carrying data collected from the trace, representing abstractions
of the trace. Such abstractions can be visualized to support trace comprehension, or can be
considered as input to further analysis.

This article extends a previously published conference version of the work [40]. The ear-
lier version focused on the semantics and derived forms of inclusive rules (rules that produce
intervals based on the existence of other intervals), the internal Scala DSL, and a case study
on MSL. The work presented here expands on the semantics of inclusive rules, introduces
exclusive rules (rules that produce intervals based on the non-existence as well as existence
of other intervals), and provides a precise definition and implementation of minimality. In
contrast to the prior version, this article introduces an external DSL with implementations in
both Scala and C. We also propose an algorithm for applying nfer specifications to a trace,

1 Visualization of information is e.g. at JPL considered an important approach to aid humans in daily
spacecraft operations.

Inferring Event Stream Abstractions 3

study its complexity, evaluate its performance, and suggest modifications that can be used
to better scale the approach. The case study on MSL is included in this work, along with
performance results from it and two other datasets.

The remaining contents of the article are as follows. Section 2 introduces preliminary
notation. Section 3 provides the problem statement and motivation for this work. Section 4
defines the nfer formalism. Section 5 presents an algorithm for applying an nfer specifi-
cation to an event stream. Section 6 describes the implementation of the system, including
the external DSL. Section 7 illustrates the application of nfer to a scenario from the Mars
Science Laboratory. Section 8 introduces modifications to the nfer algorithm to improve
its execution time, including an experimental evaluation of their performance. Section 9
discusses related work. Finally, Section 10 concludes the article.

2 Preliminary Notation

By B we denote the set of Boolean values {true, false}. By N we denote the set of natural
numbers {0,1,2, . . .} and by R we denote the set of real numbers. For readability, we use
the type C = R to represent clock time stamps measured in continuous (or dense) time.
By A×B we denote the cross product of types A and B. By A→ B we denote the set of
total functions from A to B. Functions in A→ B can be denoted by lambda terms: λx.e. A
function of type A→ B is referred to as a predicate. Predicates with the same domain type
can be composed with Boolean operators. For example, given f : A→B and g : A→B, then
(f ∧g)(x) = f (x)∧g(x). Given a set S, 2S denotes the power set of S containing as elements
all subsets of S. S∗ denotes the set of finite sequences over S where each sequence element
is of type S. A sequence σ of length N is a function of type: {n ∈ N|n < N} → S. The i’th
element of a sequence is denoted σ(i). We say that a value v is in σ , denoted by v ∈ σ iff
∃ i ∈ N such that σ(i) = v. Given a set S, by Sn for a given n ∈ N (n ≥ 2) we denote the
tuple type: S × S × . . . × S (n times). Let N be a set of names (identifiers), and let V be
a set of values, including strings, integers, and floating point numbers2. A map is a partial
function from names to values with a finite domain, that is, a function of type N

m→ V . We
use M to denote the type of all maps. The empty map is denoted by []. We denote by M⊥
the extension of M with a bottom element: M⊥ =M ∪ {⊥}. Here ⊥ represents a “no map”
value. An event is a timestamped named tuple of the type E= N × C × M. An element
(id, t,M) of type E is written as id(t,M). A trace is a sequence of events. The type of traces
is denoted by T and is defined by T= E∗. In our context a trace corresponds to a telemetry
stream.

3 Problem Statement

In this section, we briefly outline the requirements for our specification formalism. We first
illustrate a concrete problem with an example. Subsequently, we outline the requirements.
Consider the trace (telemetry stream) shown on the left part of Figure 1, that we assume
has been generated by a spacecraft3. The trace consists of a sequence of events, or EVent
Reports (EVRs) as they are named in space mission operations, each with a name, a time
stamp, and a list of parameters. The events in this particular trace represent activities such

2 V can be any set of values that are part of monitored events.
3 The trace is artificially constructed to have no resemblance to real artifacts.

4 Sean Kauffman et al.

as a boot process starting, a boot process ending, downlink of data to ground, and operating
the antenna and radio. Our goal is to produce higher level views of this trace, which will
make it easier to understand the meaning of its contents. One particular concern in this case
is whether there is a downlink operation during a 5-minute time interval where the flight
computer reboots twice. This scenario could cause a potential loss of downlink information.
Notice the use of the term interval. We suggest imposing a structure on the trace, where such
intervals are named and highlighted, as shown on the right part of Figure 1. Specifically, we
want to identify the following intervals: A BOOT represents an interval where the flight com-
puter is rebooting. A DBOOT (double boot) represents an interval where the flight computer
reboots twice within a 5-minute timeframe. A RISK represents an interval where the flight
computer reboots twice while the downlink software is also attempting to send data to Earth.
Our objective now is to formalize the definition of these intervals in a specification. In this
case, we need a formalism for defining the following three intervals:

DOWNLINK 10 size -> 430

BOOT_S 42 count -> 3

TURN_ANTENNA 80

START_RADIO 90

DOWNLINK 100 size -> 420

BOOT_E 160

STOP_RADIO 205

BOOT_S 255 count -> 4

START_RADIO 286

BOOT_E 312

TURN_ANTENNA 412

RISK

NAME TIME PARAMS

BOOT

BOOT

DBOOT

Fig. 1 An event trace and its abstractions

1. A BOOT interval starts with a BOOT S (boot start) event and ends with a BOOT E (boot
end) event.

2. A DBOOT (double boot) interval consists of two consecutive BOOT intervals, with no
more than 5-minutes from the start of the first BOOT interval to the end of the second
BOOT interval.

3. A RISK interval is a DBOOT interval during which a DOWNLINK occurs.

The specification formalism should allow a user to:

1. Define intervals as a composition of other intervals/events. For example to define the
label BOOT as an interval delimited by the events BOOT S and BOOT E, or to define a
DBOOT to be composed sequentially of two BOOT intervals;

2. Refer to time stamps associated with events, as well as specify start and end times of
generated intervals. It should be possible to define complex time constraints; and

3. Refer to data associated with events, as well as generate and later read data of generated
intervals using a rich expression language. For example, a generated interval may have
a datum value defined as the sum of two lower-level interval data.

We have found that Allen’s Temporal Logic (ATL) [2], specifically its operators for ex-
pressing temporal constraints on time intervals, is a useful starting point. In ATL, a time
interval represents an action or a system state taking place over a period. A time interval has

Inferring Event Stream Abstractions 5

a name, a start time, and an end time. ATL offers 13 mutually exclusive binary relations.
Examples include: Before(i, j) which holds iff interval i ends before interval j starts, and
During(i, j) which holds iff i starts strictly after j starts and ends before or when j ends, or
i starts when or after j starts and ends strictly before j ends. An ATL formula is a conjunc-
tion4 of such relationships, for example, Before(i, j) ∧ During(j,k). A model is a set of
intervals satisfying such a conjunction of constraints. ATL is typically used in planning for
generating a plan (effectively a model) from a formula, but ATL can also be used for check-
ing a model against a formula, as described in [55]. Our objective is different from planning
and verification. Given a trace, we want to generate a set of intervals, guided by a specifi-
cation that we provide. Each interval represents an abstraction of the original trace, either
of low-level events, or of other lower-level intervals. As such, the set of resulting intervals
represents a hierarchical abstraction of the original trace, useful for human comprehension
and further automated processing.

4 The nfer Formalism

This section describes the semantic foundations of nfer. The syntax given in this section
forms part of the theory of nfer, in contrast to the domain-specific language (DSL) in-
troduced in Section 6.1 that is intended for practical use. We first introduce the notion of
intervals, the fundamental data structure processed by nfer specifications. Subsequently
the core formalism is introduced including syntax and semantics, followed by derived forms
which map to the core form. Finally, we present an example.

4.1 Intervals

As already mentioned in Section 2, a telemetry stream (for example received from a space-
craft) is a sequence of events, also referred to as a trace. In contrast to most runtime verifi-
cation systems, however, the nfer formalism does not directly operate on such traces from
a semantics point of view. Instead, it operates on a set of intervals (defined below). We will
provide the definition and intuition behind intervals, and how a trace is converted into an
initial set of intervals, on which nfer operates.

An interval represents a named section of a trace, spanning a certain time period. An
interval can carry data as well, using a map. Concretely, an interval is a 4-tuple of the form
(η , t1, t2,M), where η ∈N is an interval name, t1, t2 ∈ C are time stamps5 representing the
start and end time of the interval, satisfying the condition t1 ≤ t2, and M is a map in M, the
data that the interval carries. The type of all intervals is denoted by I.

A pool is a set of intervals, that is, an element of type P= 2I. A trace τ is converted into
an initial pool by a function init of type T → P :

init(τ) = { (η , t, t,M) | η(t,M) ∈ τ }

The nfer system subsequently transforms this initial pool of intervals to a pool also contain-
ing the abstractions defined by the specification. We say that we are annotating the original
trace with labels (interval names). In the following section, we illustrate how such specifi-
cations are written.

4 A limited form of disjunction is also allowed but not described here.
5 Time stamps have no specified units and their interpretation depends on the specification.

6 Sean Kauffman et al.

4.2 Syntax of the nfer Formalism

An nfer specification consists of a list of declarative labeling rules taking two forms: in-
clusive and exclusive. The application of a rule results in a set of intervals, which is the set
of all possible intervals filtered to include only those that match the constraints specified by
the rule.

4.2.1 Inclusive rules

The first form of labeling rule, called an inclusive rule, defines a new interval by the presence
of two existing intervals:

η ← η1 ⊕ η2 map Φ (1)

where, η ,η1,η2 ∈N are identifiers, ⊕ : C6 → B is a clock predicate on six time stamps
(two for each of η ,η1, and η2), and Φ : M×M→M⊥ is a map function taking two maps
and returning a map or returning ⊥, which represents non-satisfaction of a constraint on the
maps. The syntax presented here contains mathematical functions to simplify the presenta-
tion.

The informal interpretation of an inclusive rule is as follows. Given a pool π , the rule
generates a set of new intervals (a pool), each of the form (η ,s,e,M), provided that in π

there exist two intervals (η1,s1,e1,M1) and (η2,s2,e2,M2), such that the time constraint
defined by ⊕ is satisfied: ⊕(s1,e1,s2,e2,s,e), and such that the map function Φ produces a
well-defined map as a function of the maps of the two input intervals: M = Φ(M1,M2) 6=⊥.
Note that the ⊕ time constraint defines the start time s and end time e of the result interval
as well. Hence, one can control the time values of the generated interval.

The time constraint can, for example, express that one interval ends before the other
interval starts (e1 < s2), which corresponds to one of the Allen operators. Likewise, the
map function can check whether the input maps M1 and M2 satisfy certain conditions: if
they do not, the map function returns ⊥, but if they do, it returns a new map that is part of
the generated interval. The time constraint must evaluate to true and the result of the map
function must not be ⊥ for the rule to apply.

As an example, the following rule generates an abstraction interval named BOOT from a
BOOT S (boot start) interval that occurs before a BOOT E (boot end) interval, and further-
more carries the boot count contained in the BOOT S interval:

BOOT← BOOT S ⊕ BOOT E map Φ

where the two functions ⊕ and Φ are defined as follows:

⊕(s1,e1,s2,e2,s,e) = e1 < s2∧ s = s1∧ e = e2
Φ(m1,m2) = [count 7→ m1(count)]

Note how the resulting interval’s start time s is constrained to be the start time of the BOOT S

event, and likewise the end time e is constrained to be the end time of the BOOT E event. In
Section 4.4, we introduce a pre-defined set of candidate functions for ⊕ inspired by Allen
logic to make specifications easier to write, allowing us instead to write this rule as follows
(with the same Φ function and before denoting the ⊕ function above):

BOOT← BOOT S before BOOT E map Φ

Inferring Event Stream Abstractions 7

4.2.2 Exclusive rules

The second form of labeling rule, called an exclusive rule, defines an interval by the presence
of one interval and the absence of a second:

η ← η1 unless 	 η2 map Φ (2)

where, η ,η1,η2 ∈N are identifiers, 	 : C4→ B is a clock predicate on four time stamps
(two for each of η1 and η2, while η is constrained implicitly), and Φ : M×M→M⊥ is a
map function taking two maps and returning a map or ⊥.

The informal interpretation of an exclusive rule is as follows: Given a pool π , the rule
generates a set of new intervals (a pool), each of the form (η ,s1,e1,M1), provided that in π

there exists an interval (η1,s1,e1,M1), and there does not exist an interval (η2,s2,e2,M2),
such that (i) the time constraint defined by 	 is satisfied: 	(s1,e1,s2,e2), (ii) the map func-
tion Φ produces a well-defined map as a function of the maps of the two input intervals:
M = Φ(M1,M2) 6=⊥, and (iii) the second interval ends before the first ends (e2 < e1).

For example, the time constraint can express that the first interval begins at the same
time the second interval ends (s1 = e2). Likewise, the map function can check whether the
input maps M1 and M2 satisfy conditions, and return ⊥ if not. If an η1 interval exists, and
no η2 interval exists for which both the time constraint is true and the map function is not
⊥, then a new η interval is generated. Unlike the first form, the start and end times and the
map of the new interval cannot be controlled by the labeling rule, but are copied from the
existing η1 interval. Also unlike the first rule, the second interval must end before the first
interval ends. This constraint ensures that exclusive rules are monotone – produced facts
will not later be retracted.

As an example, the following rule generates an abstraction interval named BOOT OK

from a BOOT interval, if no interval named FAILURE with the same value of the map key
bootId exists, that starts after the BOOT begins and ends before the BOOT ends:

BOOT OK← BOOT unless 	 FAILURE map Φ

where the two functions 	 and Φ are defined as follows:

	(s1,e1,s2,e2) = s1 ≤ s2∧ e2 ≤ e1
Φ(m1,m2) = if m1(bootId) = m2(bootId) then [] else ⊥

Like in the first form, we introduce a pre-defined set of candidate functions for 	 which
make specifications easier to write. The above rule could be rewritten with the pre-defined
function contain denoting the 	 function above, and the same Φ function:

BOOT OK← BOOT unless contain FAILURE map Φ

4.3 Semantics of the nfer Formalism

The semantics of the core form is defined in three steps: the semantics R of individual rules
on pools, the semantics S of a specification (a list of rules) on pools, and finally the seman-
tics T of a specification on traces. We first define the semantics of labeling rules with the
interpretation function R℘, with the following type and definition. This function is param-
eterized with a selection function ℘ : P×P→ P, which will be explained below. Briefly
stated: the Function ℘ is used, for example, to express the minimality constraint mentioned

8 Sean Kauffman et al.

earlier, which helps to reduce the complexity of the algorithm introduced in Section 5. Let ∆

be the type of rules. Semantic functions are defined using the brackets [[]] around syntax
being given semantics.

R℘[[]] : ∆ → P → P
R℘[[η← η1 ⊕ η2 map Φ]] π =

let π ′ =
{ (η ,s ,e ,M) ∈ I |

∃ s1 ,e1 , s2 ,e2 ∈ C • ∃ J ,K ∈ M •
(η1 ,s1 ,e1 ,J) ∈ π ∧ (η2 ,s2 ,e2 ,K) ∈ π ∧
⊕ (s1 ,e1 , s2 ,e2 , s ,e) ∧ M= Φ (J ,K) 6= ⊥ }

in ℘(π ′ , π)

The above definition, which defines the semantics of inclusive rules, reads as follows: Given
an inclusive rule δ ∈ ∆ and a pool π , R℘[[δ]]π first produces a pool π ′ containing intervals
(η ,s,e,M), where there exist two intervals in π , with names η1 and η2, where the time con-
straint is satisfied, and the map resulting from applying Φ to the respective sub-maps is not
⊥. Subsequently the selection function℘selects from (potentially modifies) π ′, informed by
π as well. The selection function is said to be idempotent iff ℘(π ′,π) = π ′, and a refinement
iff ℘(π ′,π)⊆ π ′. The following definition gives semantics to exclusive rules:

R℘[[η← η1 unless 	 η2 map Φ]] π =
let π ′ =
{ (η ,s1 ,e1 ,J) ∈ I |

(η1 ,s1 ,e1 ,J) ∈ π ∧
¬ (∃ s2 ,e2 ∈ C • ∃ K ∈ M •

e2 < e1 ∧ (η2 ,s2 ,e2 ,K) ∈ π ∧
	 (s1 ,e1 , s2 ,e2) ∧ Φ (J ,K) 6= ⊥) }

in ℘(π ′ , π)

The above definition, which defines the semantics of exclusive rules, reads as follows: Given
an exclusive rule δ ∈ ∆ and a pool π , R℘[[δ]]π first produces a pool π ′ containing intervals
(η ,s1,e1,J), where there exists an interval with the name η1 in π with the same time stamps
and same data, and there does not exist a second “older” (e2 < e1) interval with the name
η2 in π , where the time constraint is satisfied, and the map resulting from applying Φ to
the respective sub-maps is not ⊥. As with inclusive rules, the selection function ℘ is then
applied and may modify π ′.

Next, we define the semantics of a list of rules, also referred to as a specification. For this
we define the following one-step interpretation function S, which, given a set of rules and a
pool, returns a new pool extending the input pool with added abstraction intervals resulting
from taking the union of the pools generated by each rule:

S [[]] : ∆ ∗→ P → P
S [[δ1 . . . δn]] π = π ∪ R℘[[δ1]] π ∪ . . . ∪ R℘[[δn]] π

That is, given a specification δ1 . . .δn and a pool π , a new pool is returned by: S[[δ1, . . . ,δn]]π .
Finally, we define the semantics of a specification applied to a trace (a sequence of events).

Inferring Event Stream Abstractions 9

For this we define the interpretation function T , which, given a list of rules and a trace,
returns a pool containing abstraction intervals:

T [[]] : ∆ ∗→ T → P
T [[δ1 . . . δn]] τ =

least π ∈ P such that init(τ) ⊆ π ∧ π = S [[δ1 . . . δn]] (π)

That is, given a specification δ1 . . .δn and a trace τ , a pool of abstractions is returned by:
T [[δ1, . . . ,δn]] τ . The resulting pool is defined as the least fixed-point of S[[δ1 . . .δn]] : P→ P
that includes init(τ), corresponding to repeatedly applying S[[δ1 . . .δn]] , starting with init(τ),
and until no new intervals are generated. Note that the least fixed-point exists since the
semantic functions are monotonic. However, our simple iterative algorithm may not reach
the least fixed-point if it is an infinite set.

4.4 Derived Forms

As hinted at the end of Section 4.2, a collection of ⊕ functions and 	 functions have been
pre-defined, along with symbols (operators) denoting them. The symbols denoting ⊕ func-
tions are shown in Table 1 together with their definitions. Note that s1 and e1 are the start and
end times for the left-hand interval, s2 and e2 are the start and end times for the right-hand
interval, and s and e are the start and end times for the resulting interval. For all operators,
except the slice operator, the start and end times of the resulting interval are the earliest and
latest time stamps of the involved intervals, respectively. For the slice operator, the result-
ing time span denotes the overlapping section of two intervals. Note that the definitions of
these operators differ from those of the Allen logic operators in [2], which are defined to be
mutually exclusive, whereas nfer’s operators are not.

Table 1 nfer ⊕ operators

Operator ⊕ ⊕(s1,e1,s2,e2,s,e)

before e1 < s2 ∧ s = s1 ∧ e = e2
meet e1 = s2 ∧ s = s1 ∧ e = e2

during s1 > s2 ∧ e1 6 e2 ∧ s = s2 ∧ e = e2
coincide s = s1 = s2 ∧ e = e1 = e2

start s = s1 = s2 ∧ e = max(e1,e2)
finish s = min(s1,s2)∧ e = e1 = e2

overlap s1 < e2 ∧ s2 < e1 ∧ s = min(s1,s2)∧ e = max(e1,e2)
slice s1 < e2 ∧ s2 < e1 ∧ s = max(s1,s2)∧ e = min(e1,e2)

The informal explanation of the ⊕ operators is as follows: A before B: A ends before B
starts; A meet B: A ends where B starts; A during B: all of A occurs during B; A coincide B:
A and B occur at the exact same time; A start B: A starts at the same time as B; A finish B:
A finishes at the same time as B; A overlap B: A and B overlap in time; A slice B: A and B
overlap in time, and only the overlapping time span is returned.

The symbols denoting 	 functions are shown in Table 2 together with their definitions.
Note that s1 and e1 are the start and end times for the left-hand interval, and s2 and e2 are
the start and end times for the right-hand interval. Unlike the ⊕ operators, the 	 operators
do not affect the start and end times of the resulting interval. The informal explanation of

10 Sean Kauffman et al.

the 	 operators is as follows: A unless after B: A starts after B ends; A unless follow B: A
starts where B ends; A unless contain B: all of B occurs during A. These operators are the
dual of before, meet, and during, respectively.

Table 2 nfer 	 operators

Operator 	 	(s1,e1,s2,e2)

after s1 > e2
follow s1 = e2

contain s1 6 s2 ∧ e2 6 e1

The next abbreviation concerns further time constraints a user may want to impose. The
core rule notation (see Section 4.2) allows for any time constraints to be expressed. Possible
constraints include the just introduced relational operators, but also time spans, such as stat-
ing that an event B should follow an event A within 10 time units. We present the following
shorthand for allowing the specification of additional time constraints in addition to the just
introduced operators. Let�∈ {before,meet,during,coincide,start,finish,overlap,slice},
and let �p denote the corresponding clock predicate. The following derived rule form:

η ← η1 � η2 within Θ map Φ

where Θ : C6→ B is a predicate on six time stamps, is synonymous with:

η ← η1 (�p∧Θ) η2 map Φ

We shall allow the time constraint (within) and/or map transformation (map) to be left out,
in which case they assume the default function values respectively λ s1,e1,s2,e2,s,e. true
and λm1,m2. [].

So far rules can only be defined that refer to one operator and one additional clock
predicate as shown above. This format presents a simple notation with a clean semantics.
However, further convenient syntax allows rules containing more than one operator, for
example: A ← (B before C) overlap D. Such rules are mapped into multiple rules in the
core form (in this case two). The external DSL described in Section 6.1 allows such enriched
rules.

4.5 Example

As an example, we will formalize the three rules that were informally stated in Section 3.
The specification similarly consists of three rules:

BOOT← BOOT S before BOOT E map (λ m1,m2 . [count 7→ m1(count)])

DBOOT← BOOT before BOOT within (λ s1,e1,s2,e2,s,e . e−s 6 300) map snd

RISK← DOWNLINK during DBOOT map snd

Inferring Event Stream Abstractions 11

The rules should be mostly self-explanatory (time is assumed measured in seconds). The
first rule creates from the two sub-maps m1 and m2 a new map, mapping count to the same
value as in m1. The function snd selects m2 from a binary tuple (m1,m2).

Let us illustrate how this specification is evaluated on the trace in Figure 1. This trace
is first converted into an initial pool. The semantic S function on (page 8) will go through
three iterations when applied to this initial pool before a fixed-point is reached. The added
intervals in each iteration are as follows, assuming the selection function is idempotent:

1 : { (BOOT, 42, 160, [count 7→ 3]),
(BOOT, 255, 312, [count 7→ 4]),
(BOOT, 42, 312, [count 7→ 3]) }

2 : { (DBOOT, 42, 312, [count 7→ 4]) }
3 : { (RISK, 42, 312, [count 7→ 4]) }

Note that the third interval in step one, (BOOT, 42, 312, [count 7→ 3]) , is irrelevant, since
it spans other BOOT intervals. In the next section, we will define the concept of minimality
to restrict the generated intervals to only those in which we are interested.

5 Algorithm

The semantics given in Section 4 is expressed using an interpretation function R℘[[δ]] π

that operates on a finite pool, built from a finite, known trace. However, in online telemetry
stream analysis, the stream of incoming events is, in theory, infinite, since we do not know
when it ends. Therefore, constructing a pool from such a trace is not practical. To interpret
an nfer specification with respect to a live telemetry stream (online), events in the stream
must be converted to intervals and processed one at a time as they arrive. Algorithm 1 ex-
presses a simple procedure for interpreting one interval at a time, either coming from the
trace, or produced by the algorithm. The algorithm is defined as a function, calling itself
recursively with newly produced intervals. An informal explanation of Algorithm 1 follows
with a detailed example in Section 5.1.

Rules are assumed to be in a simplified binary form only referring to one temporal
operator. Any specification can be rewritten into a semantically equivalent one consisting
only of such binary rules, and it simplifies the algorithm. In a rule of the form η ← η1 ⊕
η2 map Φ we refer to η as the rule head, and to η1 ⊕ η2 map Φ as the rule body, or
the rule expression. In such a rule body, we refer η1 as the left-hand label, and η2 as the
right-hand label. We refer to the head, body, and left and right labels of exclusive rules in
the same way. For each rule, the algorithm keeps track of three sets of already produced
intervals relevant for that rule: rule.LeftCache holds the intervals which have been produced
and matched the left-hand label of the rule, rule.RightCache holds the intervals which have
been produced and matched the right-hand label of the rule, and finally rule.Produced holds
the intervals which have been produced by the rule itself. In addition, the algorithm uses a
variable Subscribers, which maps interval names to those rules that subscribe to intervals
with those names.

Each rule also has methods that behave according to the operators ⊕ and 	, and map
function Φ . Method rule.testInclusion checks that the time operator ⊕ is true and that the
map function Φ does not return ⊥. Method rule.testExclusion checks that the time operator
	 is true and that the map function Φ does not return⊥. Finally, method rule.createInterval
generates a new interval using the time operator and map function.

12 Sean Kauffman et al.

Algorithm 1 Basic nfer Processing Algorithm
1: procedure PROCESS(interval)
2: for rule ∈ Subscribers[interval.name] do
3: New←∅
4: if interval.name = rule.leftLabel then
5: if rule is exclusive then
6: exclude← false
7: for rightIntv ∈ rule.RightCache do
8: exclude← exclude ∨ rule.testExclusion(interval, rightIntv)
9: if ¬ exclude then

10: New← New ∪ {rule.createInterval(interval)}
11: else
12: for rightIntv ∈ rule.RightCache do
13: if rule.testInclusion(interval, rightIntv) then
14: New← New ∪ {rule.createInterval(interval, rightIntv)}
15: if interval.name = rule.rightLabel ∧ rule is inclusive then
16: for leftIntv ∈ rule.LeftCache do
17: if rule.testInclusion(leftIntv, interval) then
18: New← New ∪ {rule.createInterval(leftIntv, interval)}
19: if interval.name = rule.leftLabel then
20: rule.LeftCache← rule.LeftCache ∪ {interval}
21: if interval.name = rule.rightLabel then
22: rule.RightCache← rule.RightCache ∪ {interval}
23: for new ∈ select(New, rule.Produced) do
24: rule.Produced← rule.Produced ∪ {new}
25: process(new)

An informal explanation of Algorithm 1 follows. On Line 2, the procedure accesses the
map Subscribers that associates interval names with rules. The rules that subscribe to the
submitted interval’s name are then iterated over.

Between lines 4 and 14, the algorithm handles the case where the passed interval name
matches the left-hand label of the rule. If the rule is an exclusive rule (see Section 4.2.2),
then rule.RightCache is iterated over looking for any intervals for which rule.testExclusion
is true. If no such interval is found, then a new interval is generated and added to the set
New. If the rule is an inclusive rule (see Section 4.2.1), then rule.RightCache is iterated over
looking for any intervals for which rule.testInclusion is true. If such an interval is found,
then a new interval is generated and added to the set New.

Between lines 15 and 18, the algorithm handles the case where the submitted interval
name matches the right-hand label of the rule, and the rule is inclusive. In such a case,
rule.LeftCache is iterated over looking for any intervals for which rule.testInclusion is true.
If such an interval is found, then a new interval is generated and added to the set New. No
work is required if the rule is exclusive, other than adding the interval to rule.RightCache.

Between lines 19 and 22, the algorithm adds the submitted interval to either or both
caches, depending on which labels the interval name matches. It is necessary to wait to
add the interval to the caches until after all of the condition tests are performed so that the
interval cannot be matched against itself.

On Line 23 the selection function (℘ in the semantics in Section 4.3) is applied and its
results are iterated over. Each interval in the selected set is added to the rule.Produced set,
and the PROCESS function is called on the interval recursively.

Inferring Event Stream Abstractions 13

5.1 Example

This section presents an example illustrating an execution of Algorithm 1. Assume the fol-
lowing rule: BOOT← BOOT S before BOOT E. We will trace the processing of two intervals:
(BOOT S,10,10, []) and (BOOT E,20,20, []).

First, PROCESS((BOOT S,10,10, [])) is called. The above rule is found to be a subscriber
to this interval on Line 2 because its label (BOOT S) is referenced in the rule’s expression.
The condition on Line 4 is true because BOOT S is used on the left side of the before
operator in the rule expression. The rule is inclusive, so the condition on line 5 is false.
Since the condition was false, execution continues on Line 12 by iterating over the rule’s
RightCache, which is empty. The condition on Line 15 is false, since the interval’s name
(BOOT S) does not appear on the right side of the before operator. Execution continues on
Line 19, where the condition is met and so the interval is added to the rule’s LeftCache. The
condition on Line 21 is not met, so execution continues on Line 23. The select function is
called on (∅,∅), and the results are iterated over. If the select function is a refinement (see
Section 4.3), then the returned set will also be empty, and the procedure returns.

Next, PROCESS((BOOT E,20,20, [])) is called. The same rule is found to be a subscriber
because BOOT E is referenced in the rule’s expression. Since BOOT E appears on the
right side of the before operator, the condition on Line 4 is false, but the condition on Line
15 is true and execution continues on Line 16. The rule’s LeftCache contains the BOOT S
interval from above, so rule.testInclusion is called on the two intervals. The testInclusion
method returns true, since the conditions of the before operator are met and there is no
map function, so a new interval is created and added to the New set. The condition on
Line 19 is false, but the condition on Line 21 is true, so the interval is added to the rule’s
RightCache. Next, the select function is called on two arguments: New, which contains the
created interval; and the set of the rule’s previously produced intervals, which is empty. If
the select function returns a set containing the created interval, then that interval is added to
the Produced set and then PROCESS is called on it recursively.

5.2 Complexity

In this section, we analyze the asymptotic complexity of Algorithm 1 and find that it is O(n3)
in the length of the trace. We assume that the methods associated with a rule (testInclusion,
testExclusion, createInterval) are constant time expressions. Given the number r of rules in a
specification, and the number n of intervals in a trace, we can find the complexity as follows,
with nx referring to n’s value (nx = n, where x differentiates its use in the algorithm).

ntrace× r×max

nright + s+(1×nrecurse)︸ ︷︷ ︸
exclusive

, nright +nleft + s+((nleft +nright)×2nrecurse)︸ ︷︷ ︸
inclusive

For each interval in the trace (ntrace) (Line 1), for each rule (r) (Line 2), we calculate the
maximum of the two cases of: an exclusive rule versus an inclusive rule. Assume first that
the rule is exclusive. If the submitted interval name matches the left-hand label of the rule,
check all the intervals in the right cache (nright), and generate at most one interval (Line
7). Call the selection function (s) (Line 23), and for each interval returned by the selection
function, call PROCESS recursively (Line 25). If the selection function is a refinement, then

14 Sean Kauffman et al.

the number of iterations in the loop on Line 23 is bounded by the cardinality of the set New,
which in this case is 1 (if the selection function is not a refinement, then the complexity
of Algorithm 1 is unbounded). On the other hand, if the submitted interval name matches
the right-hand label of the rule the interval is just stored (not included in the complexity
calculation).

Assume next that the rule is inclusive. If the submitted interval name matches the left-
hand label of the rule, for all the intervals in the right cache (nright), generate an interval
(Line 12). Symmetrically, if the submitted interval name matches the right-hand label of the
rule, for all the intervals in the left cache (nleft), generate an interval (Line 16). Subsequently
the selection function is called (s). The cardinality of New is at most n+n since an interval
may be created for each pairing of the newly submitted interval with all the intervals in both
the left and right cache. For each interval returned by the selection function, call PROCESS

recursively (Line 25).
The complexity of the algorithm is in part determined by the complexity of the selection

function and the cardinality of the set it returns. In the case of an idempotent selection
function, its complexity should be constant and the cardinality of the returned set should
be at most 2n. As long as the complexity of the selection function is not super-linear, the
complexity of the processing function is O(n3) in the length of the trace, which appears
impractical.

5.3 Minimality

This complexity is largely related to the number of new intervals returned by the selection
function. Limiting the size of this set is therefore desirable as long as it is consistent with
pragmatic needs. In practice, it is typically not desirable to use an idempotent selection func-
tion and return every matching interval. This is similar to how practical implementations of
regular expressions use greedy matching instead of complete matching [41]. In the example
in Section 4.5, three BOOT intervals are generated, but only two of them are relevant. The in-
terval that begins at time 42 and ends at time 312 does not represent an intended abstraction,
i.e. a period when the spacecraft is continuously booting. Instead, it contains two smaller
BOOT intervals with a gap between where there is no boot taking place.

We observe that the property that differentiates relevant intervals from others is their
minimality. An interval is defined as minimal if no other interval with the same label occurs
during it. That is, given a pool π ∈ P and an interval (η ,s,e,M),

minimal(η ,s,e,M)(π) ← @ (η ′,s′,e′,M′) ∈π • η = η ′∧ s ≤ s′ ∧ e′ ≤ e

The following selection function implements the minimality constraint. The function is a
refinement and has a complexity determined by the cardinality of the New and Prior sets. In
Section 8 we explore methods to limit the size of these sets.

Minimal Selection Function
1: procedure SELECT(New, Prior)
2: {i ∈ New | @ j ∈ Prior ∪ New−{i} | i.name = j.name ∧ i.start ≤ j.start ∧ j.end ≤ i.end}

Inferring Event Stream Abstractions 15

6 Implementation

The nfer logic has been implemented as a shallow, internal DSL (iDSL - essentially a
library where functions on data are coded as functions in the implementation language), as
well as an external DSL (eDSL - a stand-alone domain-specific language) in both Scala and
C. The Scala iDSL was described in detail in the conference version [40] of this article. This
section provides an overview of the eDSL as well as its implementation in both Scala and C.
The C implementation is available to the public under the terms of the Gnu Public License
version 3 (GPLv3) at http://nfer.io. The C iDSL is, furthermore, used to support an R
language [52] interface.

Each kind of DSL (internal and external) has advantages and disadvantages. The advan-
tages of the iDSL are ease of implementation and modification, ease of use in already ex-
isting programming environments (like IDEs), as well as a maximally expressive formalism
for writing arbitrary data processing functions to be called in specifications. The disadvan-
tages include the requirement that the user must be a programmer in the host language (Scala
or C), generally a somewhat poorer syntax compared to an external DSL, and difficulty in
analyzing specifications (in the case of a shallow internal DSL, where the host language
forms a fundamental part of the DSL). Due to these negative iDSL properties, we chose to
implement an eDSL. The choice of iDSL versus eDSL in a practical situation depends on
the value given to the advantages and disadvantages mentioned just above.

In addition to these textual languages, we have experimented with visual entering of
rules. A prototype GUI has been designed and implemented6 for visual entering of rules
based on an initial visualization of a trace. That is, the user is in this system presented a
linear visualization of a trace, and can interact with this by selecting events of importance
(point-and-click), thereby informing the system of the event patterns forming the body of
a rule. The rationale behind this approach is the acknowledgement that it can be difficult
for users to write rules without some guidance based on the format of actual traces. This
prototype forms a basis for future work, and is not elaborated on further in this paper.

This section first introduces the eDSL syntax, then gives an overview of the actor-based
Scala implementation, and finally describes the C implementation.

6.1 The External DSL

This section introduces the external DSL (eDSL) for writing nfer specifications. Consider
the double boot example written in the nfer notation in Section 4.5. This example can be
written as follows in the external DSL:

BOOT :− BOOT S before BOOT E map {count → BOOT S.count}

DBOOT :− b1:BOOT before b2:BOOT
where b2.end − b1.begin ≤ 300 map {count → b1.count}

RISK :− DOWNLINK during DBOOT map {count → DBOOT.count}

The syntax should be self explanatory except for a few details. The first rule creates a BOOT
interval containing a data map, which maps count to the count value of the BOOT S

6 The GUI was designed and implemented by Nathaniel Guy (JPL).

16 Sean Kauffman et al.

interval. This illustrates how data of particular intervals can be referenced. In cases where a
rule body contains more than one occurrence of the same interval, as BOOT in the second
rule, these can be labelled (here b1 and b2) to enable reference to their data and begin and
end time points. The second rule illustrates a where-clause expressing a constraint on time
values7. Such constraints can also refer to data. An expression language covering Boolean
expressions involving arithmetic operations and comparisons (integers and real numbers) as
well as string comparisons is built in.

〈spec〉 ::= 〈rule〉* | 〈module〉*

〈module〉 ::= module 〈id〉 ‘{’ [import 〈id〉*, ‘;’] 〈rule〉* ‘}’

〈rule〉 ::= 〈id〉 ‘:-’ 〈interval〉 [〈whereExp〉] [〈mapExp〉] [〈endPoints〉]

〈interval〉 ::= 〈intervalPrim〉 (〈op〉 〈intervalPrim〉)*

〈intervalPrim〉 ::= [〈id〉 ‘:’] 〈id〉 | ‘(’ 〈interval〉 ‘)’

〈whereExp〉 ::= where 〈exp〉

〈mapExp〉 ::= map ‘{’ (〈id〉 ‘→’ 〈exp〉)*, ‘}’

〈endPoints〉 ::= begin 〈exp〉 end 〈exp〉

〈op〉 ::= also | before | meet | during | coincide | start | finish | overlap | slice | 〈exclude〉

〈exclude〉 ::= unless (after | follow | contain)

〈exp〉 ::= ... | 〈id〉 ‘.’ (〈id〉 | begin | end) | 〈id〉 ‘(’ 〈exp〉+, ‘)’ | ...

Fig. 2 Grammar for external nfer DSL

A grammar for the eDSL is shown in Figure 2. A specification is either a list of rules or
a list of modules. Modules are useful for conceptually grouping a large number of rules. A
module can import other modules and contains rules. The last occurring is the main mod-
ule. A rule body is defined by an interval expression (interval), and three optional items: a
where-constraint, a map, and a definition of the end points begin and end, in case the default
generated time points are not desired. An interval (expression) is a composition of primary
intervals separated by the temporal operators. A primary interval consist of an optional la-
bel, and an interval name. Alternatively a primary interval can be an interval in parentheses.
Value expressions are standard and only specified partially here, focusing on the syntax for
referring to data fields, and begin and end times of intervals; as well as function calls. Func-
tion calls are calls to user-defined functions in a programming language, registered to the
monitor. This allows a user to call a function in, for example, Python or Scala, achieving
the full expressiveness of a real programming language. Among the temporal operators is
one that has not mentioned before: also, representing the lack of any constraints at all. This
operator allows for time constraints defined purely using the where clause.

7 Note that the eDSL uses begin to denote the start time of an interval, in contrast to the notation in Section
4 where it was referred to as start (time).

Inferring Event Stream Abstractions 17

6.2 Scala Implementation

The Scala implementation is based on Akka actors communicating via asynchronous mes-
sage passing through a publish/subscribe model built with Apache Kafka [42]. Each rule
in an nfer specification results in an actor, which subscribes to intervals referenced by
name in the body of the rule, and publishes the interval mentioned in the rule head (head,
in head :− body) to the shared bus. This means that rule actors are only passed intervals
which are pertinent to their execution. Figure 3 shows the nfer implementation’s internal
configuration corresponding to the double boot example in Section 6.1. The Kafka publish/-
subscribe framework is represented in the center by the Shared Telemetry Bus. Each actor is
represented by a circle, with arrows showing the messages that are passed to the actor (those
it subscribes to), as well as the messages the actor publishes back.

For example, the RISK actor subscribes to both DBOOT and DOWNLINK intervals, and
publishes back RISK intervals. A special actor receives messages from the spacecraft and
publishes them to the bus. When a rule actor publishes an interval, any subscribers will be
notified and can build on this interval to create yet new intervals. The nfer formalism is
declarative and the order in which rules are declared is unimportant. Likewise, the order in
which actors execute is also unimportant, since the results of one actor cannot inhibit the
behavior of any other actor.

Shared

Telemetry

Bus

BOOT

Actor
DBOOT

Actor

RISK

Actor

Event

Stream

BOOT_S

BOOT_E

BOOT

BOOT

DBOOT

DBOOT
DOWNLINK

RISK

BOOT

Event

Publisher

Fig. 3 Actor network corresponding to double boot example in Section 6.1

The implementation can process events online, as they come down to the ground from
the spacecraft, or it can process a log of events stored on a file system. When processing logs,
ground operators are usually only interested in recent events. However, there can be a need to
analyze the telemetry stream from earlier points in time stored as multiple logs, e.g. from the
start of the mission. In this case, it is not expedient to process all events in the full telemetry
stream from the start of the mission whenever the nfer system is activated. Instead, nfer
can be used to incrementally create intervals from older logs, which can then be stored for
later use as an abstraction of those logs. In other words: stored intervals produced by nfer

represent abstractions of the past.

18 Sean Kauffman et al.

6.2.1 Internal Representation of Rules in Scala

As already mentioned, each rule is implemented as an actor receiving and publishing events
to the event bus. The rule inside an actor is represented by a tree structure closely corre-
sponding to the abstract syntax tree obtained by parsing the body of the rule. Each node in
the tree corresponds to a temporal operator, or a leaf node representing intervals to which the
actor subscribes. During execution, a node contains the intervals that have thus far matched
the corresponding sub-expression. To illustrate this tree structure, consider a slightly differ-
ent formulation of the last two rules DBOOT and RISK above, merging them into one:

RISK :− DOWNLINK during (b1:BOOT before b2:BOOT)
where b2.end − b1.begin ≤ 300 map {count → b1.count}

The body of this rule contains two temporal operators. This rule is represented as the tree
shown in Figure 4. Each node lists (in the top part of the box) a node number, a (possibly
auto-generated) name, and an indication of which temporal operator it represents, including
“Atomic” for the leaf nodes. The tree is shown after the following three intervals have been
submitted: (BOOT S, 100, 100, [count 7→1]), (BOOT E, 200, 200, []), and
(DOWNLINK, 300, 300, []). As can be seen, some of the nodes contain intervals, and
others do not yet. This reflects the step-wise evaluation of the rule as intervals arrive. An
interval is submitted to the appropriate atomic leaf nodes of the tree, and then ascends the
tree. It merges with other intervals according to the temporal operators, until the top node is
reached and an interval is generated and published on the bus if the constraint is satisfied.

4:RISK During

5:DOWNLINK Atomic

(DOWNLINK,300,300,[])

6:N_6 Before

7:b1 Atomic

(BOOT,100,200,[count:1])

8:b2 Atomic

(BOOT,100,200,[count:1])

Fig. 4 Tree structure representing rule RISK

An interesting observation is that this data structure resembles the Rete data structure
[30] used in rule-based systems, and explained in detail in [24]. In [35] we implemented
the Rete algorithm following [24], while augmenting it for runtime verification. For a men-
tion of other rule-based systems, the reader is referred to Section 9. In rule systems, rules
typically have the form c1, . . . ,cn → a, representing an action a to be executed when con-
ditions c1, . . . ,cn are true. Conditions and actions refer to facts stored in the Rete network,
similar to how intervals are stored in the rule trees. The Rete algorithm maintains a single
directed acyclic graph of nodes containing produced facts. The single graph represents all
the rules in the rule program, and allows rules to share parts of the graph, thus reducing the
amount of evaluations needed. In nfer, each rule is represented by its own tree, not shared
with other rules. Similar to the nfer algorithm, the Rete algorithm for each node handles
data coming up from a child node (left or right) by traversing the “other” child-node for
matches. Whereas the nfer tree structure consists of nodes all of the same kind, the Rete
data structure involves four kinds of different nodes.

Inferring Event Stream Abstractions 19

6.3 C Implementation

The C language implementation is single threaded and conforms closely to the algorithm in
Section 5. It encodes all rules as relations between two intervals8. Each rule subscribes to a
left and a right label. For example, the following rule subscribes to BOOT S as its left label
and BOOT E as its right label because of their position relative to the before operator:

BOOT :− BOOT S before BOOT E map {count → BOOT S.count}

The implementation keeps two linked lists of subscribers to every label, one for left labels
and one for right labels. When an interval is received, both lists of subscribers are iterated
over for that label. Separate left and right lists are necessary because each rule may subscribe
to two different labels, so it may appear in two different linked lists.

Nested rules are handled by adding anonymous, internal intervals to which other rules
subscribe. All rules must have a label for the intervals they create, so nested rules create
anonymous intervals with generated labels. Uniqueness is guaranteed for these labels by
using an augmented naming alphabet and they are omitted from the final output of the al-
gorithm. The parent rule that relies on the results of a nested rule then subscribes to this
generated label. For example, the nested rule in Section 6.2.1 becomes the following two
rules in the C implementation:

$BOOTBOOT1 :− b1:BOOT before b2:BOOT
where (b2.end − b1.begin ≤ 300)
map { $count1 → (b1.count) }

RISK :− DOWNLINK during $BOOTBOOT1
map { count → ($BOOTBOOT1.$count1) }

To ensure the correct behavior in where, map, begin, and end expressions, data items
must be renamed and passed between nested rules. The external DSL only allows such
expressions to be specified at the highest level, but they may refer the intervals in a nested
rule. In the example above, the RISK interval sets the map item “count” to be equal to the
value of the “count” data item of the left BOOT interval in the nested rule. The value is
copied to an intermediate map key, “$count1”, of the generated interval $BOOTBOOT1
so it can be accessed in the RISK rule.

Similarly, nested rules must inherit parts of where expressions that apply to them. This
is important due to the influence of selection functions on the result. In the example above,
the where expression is applied to the nested rule (b1:BOOT before b2:BOOT) because
it applies only to the intervals in that rule. If the nested rule does not contain the restriction
(b2.end − b1.begin ≤ 300), then the wrong intervals may be selected. If a subexpression
of a where restriction, with type B, concerns only a nested rule, the subexpression will be
applied to the nested rule and replaced in the original expression with a generated map value.

The C implementation includes some performance optimizations. Strings are interned in
dictionaries and expressions are stored and processed using Reverse Polish Notation (RPN).
It is meant as a reference implementation, but its execution time and memory requirements
are low enough to be used in an embedded setting.

8 The eDSL supports unary rules but we will avoid describing them here as they represent a special case.

20 Sean Kauffman et al.

7 Example Application to Warning Analysis

As noted earlier, the nfer tool has been applied to processing of telemetry from the Cu-
riosity rover. In this section, we briefly describe an application to a task that is traditionally
performed either manually or by ad-hoc scripts. We consider the problem of automatically
labeling warning messages that are anticipated due to known idiosyncrasies of the system,
and therefore can be ignored. Events (EVRs) produced by Curiosity are associated with a
severity level, which is used to distinguish between expected and unexpected behavior. One
of the severity levels is WARNING, which indicates potentially anomalous behavior. Unfor-
tunately, due to various idiosyncrasies of hardware and software, there are several situations
in which warning EVRs do not denote real anomalies (are false positives). As a result, one
of the roles of the ground operations team is to label those received warnings that are to
be ignored; this work needs to be completed before the next plan can be uplinked to the
spacecraft. To speed up analysis, we have implemented a set of rules that can label EVRs
corresponding to known idiosyncrasies. As a result, ground operators can limit their atten-
tion to only unlabeled warning EVRs. We describe some of these rules below.

The first pair of rules capture a known (benign) race condition in the software caused
when a thread servicing the radio is starved and generates the warning TLM TR ERROR

which indicates missing telemetry. This happens because the thread is preempted by higher-
priority threads that are processing one of two commands (either MOB PRM or ARM PRM)
that generate reports of current mobility and robotic arm parameter values. Because the er-
ror was discovered late in the mission, and the impact is benign, no code fix was deemed
necessary. The rule below looks for this known scenario by checking for an occurrence of
TLM TR ERROR during execution of either a MOB PRM or an ARM PRM command. A com-
mand execution interval itself is defined by a pair of CMD DISPATCH and CMD COMPLETE

events whose maps agree on the cmd key, which denotes the command name.

cmdExec :− CMD DISPATCH before CMD COMPLETE
where CMD DISPATCH.cmd = CMD COMPLETE.cmd
map {cmd → CMD DISPATCH.cmd}

okRace :− TLM TR ERROR during cmdExec
where cmdExec.cmd = "MOB_PRM" | cmdExec.cmd = "ARM_PRM"

The next rule involves a timing consideration. In this case, an instrument power-on command
fails and then recovers within 15 seconds. Since the behavior is predictable, and benign, the
two warnings about command failure and subsequent recovery are labeled as being expected.
The this keyword serves as a label for the interval that is generated.

okCmdFail :− INST PWR ON before
INST CMD FAIL before
INST RECOVER

where this.end − this.begin ≤ 15

The last set of rules label a situation in which a warning about task starvation is expected
whenever an activity (labeled vdp) which fetches data products from the cameras overlaps
with an Earth communication activity (labeled comm, and identified by an id field in its

Inferring Event Stream Abstractions 21

map). In this case, we use the slice operator to identify the interval of overlap between the
vdp and comm intervals:

comm :− COMM BEGIN before COMM END
map {id → COMM BEGIN.id}

vdp :− VDP START before VDP STOP

okStarvation :− TASK STARVATION during (vdp slice comm)
map {id → comm.id}

8 Performance Considerations

We saw in Section 5 that the complexity of the basic nfer processing algorithm with an
idempotent selection function is O(n3) with respect to the length of the trace. For many
cases, this is too high to be practical. The LogFire and Prolog experiments referred to in
Section 1 illustrate this. Introducing a selection function to only keep intervals which are
minimal reduces the complexity considerably, according to experiments, pushing the algo-
rithm into the realm of being practical. However, it can still be improved. In this section we
look for modifications which can improve the performance of the basic algorithm, anticipat-
ing, however, that such improvements may suffer from lack of soundness and completeness
compared to the basic algorithm. These modifications are shown as alterations to Algorithm
1. Three such modifications are given: one-use, most-recent, and rolling-window. Note that,
although they are given as modifications to the algorithm, their relationship to the semantics
of nfer may be understood as changes to the selection function. Each of these modifications
can be understood as a method to reduce the worst-case cardinality of the data structures over
which Algorithm 1 iterates, specifically limiting the size of the left and right caches.

8.1 Proposed Modifications

The one-use modification, shown as Algorithm 2 (changes are underlined), deletes input
intervals when they are used to create new intervals. In this way, any interval may only
be used to create one new interval per rule. The New variable is modified to hold triples
(ileft, iright, inew) for each new candidate interval inew included (before selection), where ileft
and iright are the intervals in the left and right caches, respectively, that inew is derived from.
This is needed to remove those intervals from the caches later if inew is selected (lines 25 and
26). The one-use modification reduces the maximum sizes of the left and right caches. This
also reduces the amortized worst-case cardinality of the New set to one. Note that, because
the worst-case cardinality of the Produced set is still linear in the size of the trace, the
complexity of the minimality selection function is also linear, so the worst-case complexity
of the nfer processing function is not changed.

The most-recent modification, shown as Algorithm 3, only stores the most recent in-
tervals instead of keeping a cache of all of the previously seen ones. This change reduces
the maximal cardinality of all caches to 1, except for the Produced cache. A cache’s single
element can be selected with the head function. The variable New holds at most one inter-
val in this solution. Because the Produced cache still has a worst-case cardinality of n− 1

22 Sean Kauffman et al.

Algorithm 2 One-use Modification
1: · · ·
4: if interval.name = rule.leftLabel then
5: · · ·
9: if ¬ exclude then

10: New← New ∪ {(interval, ε , rule.createInterval(interval))}
11: else
12: for rightIntv ∈ rule.RightCache do
13: if rule.testInclusion(interval, rightIntv) then
14: New← New ∪ {(interval, rightIntv, rule.createInterval(interval, rightIntv))}
15: if interval.name = rule.rightLabel ∧ rule is inclusive then
16: for leftIntv ∈ rule.LeftCache do
17: if rule.testInclusion(leftIntv, interval) then
18: New← New ∪ {(leftIntv, interval, rule.createInterval(leftIntv, interval))}
19: · · ·
23: for (left, right, new) ∈ select(New, rule.Produced) do
24: rule.Produced← rule.Produced ∪ {new}
25: rule.LeftCache← rule.LeftCache \ {left}
26: rule.RightCache← rule.RightCache \ {right}
27: process(new)

(suppose a rule A :− B before B, then an interval is created for each subsequent B after
the first), the worst-case complexity of the nfer processing algorithm is not reduced.

Algorithm 3 Most-recent Modification
18: · · ·
19: if interval.name = rule.leftLabel then
20: rule.LeftCache← {interval}
21: if interval.name = rule.rightLabel then
22: rule.RightCache← {interval}

The rolling-window modification, shown as Algorithm 4, only considers intervals in a
cache that occur within a time window. Intervals falling outside the window are deleted from
the caches. The time window is calculated as a fixed offset from the end of the last submit-
ted interval. The rolling-window modification does not change the maximum cardinality of
the caches (if all events occur within the window, then nothing is deleted), so it does not
change the complexity of the algorithm according to the formula. However, if the window
size is carefully chosen, the heuristic can have a drastic effect in the execution time of the
processing algorithm.

8.2 Experimental Setup

We conducted a series of screening experiments to explore possibilities for improving the
execution time of the nfer processing algorithm. We do not intend for this to be a compre-
hensive evaluation for choosing one algorithm over another. We implemented each algorithm
and used it to apply nfer specifications on three different test datasets. All algorithms were
tested using the minimality selection function discussed in Section 5.3. Both the C and Scala

Inferring Event Stream Abstractions 23

Algorithm 4 Rolling-window Modification
6: · · ·
7: for rightIntv ∈ rule.RightCache do

if rightIntv.end < interval.end - WINDOW then
rule.RightCache← rule.RightCache \ {rightIntv}

else
8: exclude← exclude ∨ rule.testExclusion(interval, rightIntv)
9: · · ·

12: for rightIntv ∈ rule.RightCache do
if rightIntv.end < interval.end - WINDOW then

rule.RightCache← rule.RightCache \ {rightIntv}
else

13: if rule.testInclusion(interval, rightIntv) then
14: New← New ∪ {rule.createInterval(interval, rightIntv)}
15: · · ·
16: for leftIntv ∈ rule.LeftCache do

if leftIntv.end < interval.end - WINDOW then
rule.LeftCache← rule.LeftCache \ {leftIntv}

else
17: if rule.testInclusion(leftIntv, interval) then
18: New← New ∪ {rule.createInterval(leftIntv, interval)}
19: · · ·
23: for new ∈ select(New, {p|p ∈ rule.Produced, p.end > interval.end - WINDOW}) do
24: rule.Produced← rule.Produced ∪ {new}
25: process(new)

implementations were used to run the experiments. This helped us to eliminate some imple-
mentation specific blocking factors that could affect the performance of an algorithm. The C
implementation experiments were performed in the Linux 4.9.6 operating system on an Intel
Core i5 running at 2.4 GHz with 16 GB of RAM. The Scala implementation experiments
were performed in the Mac OS X 10.10.5 operating system on an Intel Core i7 running at
2.8 GHz with 16 GB of RAM. The datasets are described in the following paragraphs.

The Sequential Sense-Process-Send (SSPS) dataset was generated by a system mimick-
ing an embedded data collection device. The device-under-test (DUT) was a first generation
BeagleBone with a 720 MHz ARM Cortex-A8 running version 6.6.0 of the QNX real-time
operating system [51]. Logs were collected using the QNX tracelogger utility. The tested
dataset contained 12,766 relevant events covering a collection period of approximately 26
hours.

The System Call Logs with Natural Random Faults (LANL) dataset was generated by
running a simulation of an automotive cruise-control application on a computer under high-
energy neutron bombardment [49]. The DUT was a Xilinx ZC706 featuring a XC7Z045 [57]
System-on-a-Chip (SoC) running version 6.6.0 of the QNX real-time operating system [51].
Faults in the dataset were generated by placing the SoC in the path of a high-energy neutron
beam at the Los Alamos Neutron Science Center (LANSCE) facility at the Los Alamos
National Laboratory (LANL) in New Mexico, USA. The tested dataset contained 50,000
relevant events covering a collection period of approximately 10 hours.

The Mars Science Laboratory (MSL) dataset was generated by checking the property
okRace described in Section 7 on telemetry logs received from the Curiosity rover. We
checked logs covering rover activities over around 60 days. For convenience, we first fil-
tered the rover logs to include only relevant EVRs. These EVRs are generated on board the

24 Sean Kauffman et al.

rover when the software executes command sequences as part of daily activity plans that are
uplinked to the rover from Earth. The test dataset contained 50,000 relevant EVRs.

8.3 Experimental Results

Table 3 shows the results from the experiments. The Impl column differentiates between the
C and Scala implementation (note that comparisons in timing and memory use should not be
made between the C and Scala implementations). The Algorithm column shows the version
of the processing algorithm under consideration, where Basic means Algorithm 1, One-use
means Algorithm 2, Most-recent means Algorithm 3, and Window means Algorithm 4. The
Window algorithm was applied with different window sizes indicated in seconds. The Data
column shows the dataset and specification used for the row. The Ex Time column shows the
clock time in seconds used by the program to reach a fixed-point, and the Memory column
shows the peak memory used during computation. The Precision and Recall columns show
the precision and recall of the algorithm where the “true” output is the result of running the
Original algorithm.

Precision is an indicator for soundness (wrt. the basic algorithm) and is defined as the
fraction of created intervals that are correct, and recall is an indicator for completeness (wrt.
the basic algorithm) and is defined as the fraction of all expected intervals that are generated.
More precisely, given the set of intervals B created by running the basic Algorithm 1 on
a dataset with a specification, and given the set of new intervals N created by running a
different algorithm on the same dataset and specification, precision and recall are defined
as:

precision =
|B∩N|
|N|

recall =
|B∩N|
|B|

For example, Line 4 of Table 3 shows the results from running the C implementation
of the rolling-window algorithm (with a window size of five seconds) on the SSPS dataset
with its nfer specification. It took 0.01 seconds to complete and used 11 megabytes of
memory at its peak. The number of intervals found by the basic algorithm for the dataset and
specification was 19,360, the number of intervals found by the rolling-window modification
(5 s) was 5,749, and the size of the intersection between the two results was 5,661. So, the
precision was 5661/5749 = 0.985 and the recall was 5661/19360 = 0.292.

In case of the MSL dataset, the recall number is followed by a number in parentheses.
This is the number of okRace intervals produced, which are the intervals in which we are
ultimately interested for this dataset. Four such intervals should be produced as shown for
the Basic algorithm. We observe that the Most-recent algorithm did not produce any of these,
and that the Window algorithm with a window of size 30 seconds (the smallest shown) only
produced two of these, whereas the remaining window sizes produced all four.

Table 3 shows evidence that the rolling-window modification has the most promise to
improve performance while still finding most or all of the relevant intervals. For each dataset,
a window size was found that enabled a precision and recall of exactly 1.0, while executing at
least an order of magnitude faster than the original algorithm. This ideal examined window
size was different for each dataset: it was 210 seconds for SSPS, 1,000 seconds for LANL,
and 41,000 seconds for MSL. For each new application, the window size must be tuned to
find this optimal number.

The one-use modification was interesting, in that it was able to return nearly the same
results as the basic algorithm but it did not show as much of a performance improvement as
the well-tuned rolling-window modification. For the LANL dataset, the results were exactly

Inferring Event Stream Abstractions 25

Table 3 Results from experiments

Impl Algorithm Data Ex Time Memory Precision Recall

C Basic SSPS 1.58 s 16 MB 1.0 1.0
C One-use SSPS 0.37 s 13 MB ∼ 1.0 0.999
C Most-recent SSPS 0.14 s 9 MB ∼ 1.0 0.997
C Window (5 s) SSPS 0.01 s 11 MB 0.985 0.292
C Window (15 s) SSPS 0.01 s 13 MB 0.999 0.699
C Window (30 s) SSPS 0.02 s 15 MB ∼ 1.0 0.966
C Window (60 s) SSPS 0.02 s 15 MB ∼ 1.0 ∼ 1.0
C Window (210 s) SSPS 0.03 s 15 MB 1.0 1.0
C Window (1,000 s) SSPS 0.06 s 15 MB 1.0 1.0

C Basic LANL 138.40 s 54 MB 1.0 1.0
C One-use LANL 26.93 s 42 MB 1.0 1.0
C Most-recent LANL 0.55 s 12 MB 1.0 0.613
C Window (1 s) LANL 0.18 s 49 MB 1.0 0.772
C Window (5 s) LANL 0.21 s 53 MB 1.0 0.986
C Window (30 s) LANL 0.30 s 52 MB 1.0 0.999
C Window (500 s) LANL 1.96 s 54 MB 1.0 ∼ 1.0
C Window (1,000 s) LANL 3.63 s 53 MB 1.0 1.0
C Window (10,000 s) LANL 41.59 s 53 MB 1.0 1.0

Scala Basic MSL 251.1 s 80 MB 1.0 1.0 (4)
Scala One-use MSL 196.9 s 70 MB ∼ 1.0 0.916 (4)
Scala Most-recent MSL 0.4 s 1 MB 0.997 0.454 (0)
Scala Window (30 s) MSL 2.9 s 1 MB ∼ 1.0 0.550 (2)
Scala Window (100 s) MSL 27.3 s 10 MB 0.976 0.913 (4)
Scala Window (2,000 s) MSL 24.7 s 50 MB 0.992 0.972 (4)
Scala Window (41,000 s) MSL 28.5 s 40 MB 1.0 1.0 (4)
Scala Window (500,000 s) MSL 89.6 s 70 MB 1.0 1.0 (4)
Scala Window (1,000,000 s) MSL 166.0 s 80 MB 1.0 1.0 (4)

the same as the basic algorithm. For the SSPS dataset 25 out of 19,360 intervals were missing
and three extra intervals were generated. For the MSL dataset around 9% of the expected
results were missing and one extra interval was generated. Performance varied from about a
32% improvement for MSL to about a 80% improvement for LANL, but this is in contrast
to the one or two order of magnitude improvements seen from the other methods.

The most-recent modification missed too many relevant intervals to be of much practical
use, although it was found to execute quickly and had good precision. Its recall of only
0.613 for the LANL dataset and 0.454 for the MSL dataset show that it found too few of the
expected results. The modification had nearly perfect results for the SSPS dataset, however,
so it may be usable in some circumstances.

9 Related Work

An earlier effort to develop a telemetry comprehension tool is described in [36], which pro-
vided a Scala DSL for writing a subset of the specifications shown in this article. That work
was based on a still earlier effort using the rule-based system LogFire [35] for analyzing
telemetry streams, as described in [37]. Although rule systems are strongly related to nfer,
they are not suited for expressing minimality constraints for optimization purposes, as dis-
cussed previously. Other rule systems include Drools [25], Clips [16], and Jess [39].

Interval logics are common in the planning domain. Allen formalized his algebra [2],
which has come to be known as ATL, for modeling time intervals. He argued that it was

26 Sean Kauffman et al.

necessary to model relative timing with significant imprecision, and proposed his algebra’s
use in planning systems [3]. Many other planning languages have been proposed which
rely on these same concepts, including PDDL [46] and ANMLite [14]. The concepts intro-
duced and formalized by these interval logics are useful for modeling telemetry data, but the
languages themselves have been principally designed for planning, not verification. Some
efforts have been made to adapt them to that role, however. An effort is described in [56],
where the suitability of the ANMLite system for verification was evaluated, with some pos-
itive results, but it was ultimately concluded that the solver techniques were not yet mature
enough to be useful. A translation from LTL to PDDL is described in [1] as a means to
leverage PDDL’s solver for verification. Conversely, [55] defines a translation of a modi-
fied ATL to LTL for monitoring. It is concluded, however, that this approach is impractical
since the generated monitoring automata become too large, even for small ATL formulas.
Instead, they introduce a simple algorithm for that purpose using a state machine for each
relationship. Other interval logics have been designed specifically for verification purposes,
such as Interval Temporal Logic (ITL) [48], the Duration Calculus (DC) [34], and Graphical
Interval Logic (GIL) [23].

Our work has strong similarities to data-flow (data streaming) languages. A recent exam-
ple is QRE [4], which is based on regular expressions, and offers a solution for computing
numeric results from traces. QRE allows the use of regular programming to break up the
stream for modular processing, but is limited in that the resulting sub-streams may only be
used for computing a single quantitative result, and only using a limited set of numeric op-
erations, such as sum, difference, minimum, maximum, and average, to achieve linear time
(in the length of the trace) performance. Our approach is based on Allen logic, and instead
of a numeric result produces a set of named intervals, useful for visualization (and thereby
systems comprehension). Furthermore, data arguments to intervals can be computed using
arbitrary functions.

Runtime verification [44, 28] can generally be defined as the discipline of constructing
monitors for analyzing systems executions. Assuming the type E of events, and some data
domain D, a monitor can abstractly be considered as a function that takes a set of traces as
an argument and returns a data value of type D. That is, M has the type M : 2E

∗ → D. In
most runtime verification systems a monitor processes a single trace. As such nfer can be
seen as a runtime verification tool, processing a single trace and returning a set of intervals:
D = 2I. Traditionally, however, runtime verification tools analyze traces in order to provide
a Boolean verdict (D = B), or some value in a simple extension of the Boolean domain [12],
indicating whether a trace satisfies a specification or not (or the result can be unknown).
Such systems include e.g. Eagle [7], MOP [47], Orchids [31], Ruler [8], TraceContract [6],
LTL3 [13], MarQ [54] (based on QEA - Quantified Event Automata [9]), LogFire [35],
Larva [17], RiTHM [50], JUnitRV [21], MMT [22], MonPoly [11], and DejaVu [38]. Run-
time verification systems have been developed which aggregate data as part of the verifi-
cation [29, 10]. A system such as LOLA [20] computes general data streams from input
data streams, and is in this sense more general than the Boolean verdict systems. Systems
such as Ruler and LogFire produce sets of facts from traces, which is also more general
than Boolean verdicts. Statistical model checking [43] is an approach collecting statisti-
cal information about the degree to which a specification is satisfied on multiple traces. In
specification mining [27, 53] the user provides no specification. Instead it is learned from a
collection of nominal executions.

The nfer system can be regarded as a form of Complex Event Processing (CEP) [45,
26]. Like nfer, the objective in CEP is to use rewrite rules to abstract higher level events
from lower level events for human comprehension and/or further processing. The initial ob-

Inferring Event Stream Abstractions 27

jective of CEP, however, was analysis and abstraction of distributed systems, whereas nfer
has been created for analyzing a single event stream generated by a single processor. In spite
of this difference, nfer shares with CEP the objective of rule-based event abstraction. Ex-
amples of CEP systems include BeepBeep [33, 32], STREAM [19, 5], and Gigascope [18].

10 Conclusion

We have introduced the nfer rule-based formalism and system for inferring event stream
abstractions. The problem has been inspired by actual planetary space mission operations,
specifically the Mars Curiosity rover. The result of applying an nfer specification to an
event stream is a set of intervals: named sections of the event stream, each including a
start time, an end time, and a map holding data. Intervals are formed from events and other
intervals, forming a hierarchy of abstractions. The result may be visualized or queried, and
can generally help engineers to better comprehend the contents of an event stream. The nfer
system is implemented in both Scala and C, with an external DSL for expressing rules, in
addition to internal Scala and C DSLs (APIs). The system has been shown to scale well,
aided by simple algorithmic enhancements without much loss of precision. Future work
includes handling missing and out-of-order telemetry; support for visual entering of rules
and visualization of results; and mining specifications from past event logs.

References

1. Albarghouthi A, Baier JA, McIlraith SA (2009) On the use of planning technology for
verification. In: Proc. of the ICAPS Workshop on Verification & Validation of Planning
& Scheduling Systems (VVPS), Citeseer

2. Allen JF (1983) Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11):832–843

3. Allen JF (1984) Towards a general theory of action and time. Artificial intelligence
23(2):123–154

4. Alur R, Fisman D, Raghothaman M (2016) Regular programming for quantitative prop-
erties of data streams. In: Programming Languages and Systems - 25th European Sym-
posium on Programming, ESOP 2016, Eindhoven, The Netherlands, Springer, LNCS,
vol 9632, pp 15–40

5. Arasu A, Babu S, Widom J (2006) The CQL continuous query language: semantic
foundations and query execution. The International Journal on Very Large Data Bases
15(2):121–142

6. Barringer H, Havelund K (2011) TraceContract: A Scala DSL for trace analysis. In:
Proc. of the 17th International Symposium on Formal Methods (FM’11), Springer,
LNCS, vol 6664, pp 57–72

7. Barringer H, Goldberg A, Havelund K, Sen K (2004) Rule-based runtime verification.
In: Int. Conf. on Verification, Model Checking, and Abstract Interpretation (VMCAI),
vol 2937, pp 44–57

8. Barringer H, Rydeheard D, Havelund K (2008) Rule systems for run-time monitoring:
from Eagle to RuleR. Journal of Logic and Computation 20(3):675–706

9. Barringer H, Falcone Y, Havelund K, Reger G, Rydeheard D (2012) Quantified event
automata: Towards expressive and efficient runtime monitors. In: Proc. of the 18th Int.

28 Sean Kauffman et al.

Symposium on Formal Methods (FM’12), Springer, pp 68–84, DOI 10.1007/978-3-
642-32759-9 9

10. Basin D, Harvan M, Klaedtke F, Zălinescu E (2011) MONPOLY: Monitoring usage-
control policies. In: 2nd Int. Conference on Runtime Verification (RV’11), Springer,
LNCS, vol 7186, pp 360–364

11. Basin D, Klaedtke F, Marinovic S, Zălinescu E (2015) Monitoring of temporal
first-order properties with aggregations. Formal Methods in System Design URL
http://link.springer.com/article/10.1007/s10703-015-0222-7

12. Bauer A, Leucker M, Schallhart C (2007) The good, the bad, and the ugly, but how ugly
is ugly? In: 7th Int. Workshop on Runtime Verification (RV’07), Springer, LNCS, vol
4839, pp 126–138

13. Bauer A, Leucker M, Schallhart C (2011) Runtime verification for LTL and TLTL.
ACM Transactions on Software Engineering and Methodology (TOSEM) 20(4):14

14. Butler RW, Siminiceanu RI, Muno C (2007) The ANMLite language and logic for spec-
ifying planning problems. Report 215088:23,681–2199

15. Chen F, Roşu G (2007) MOP: an efficient and generic runtime verification framework.
In: ACM SIGPLAN Notices, ACM, vol 42, pp 569–588

16. CLIPS (2017) Website. http://clipsrules.sourceforge.net, accessed: 2017-03-21
17. Colombo C, Pace GJ, Schneider G (2009) Larva — safer monitoring of real-time java

programs (tool paper). In: Proceedings of the 2009 Seventh IEEE International Confer-
ence on Software Engineering and Formal Methods, IEEE Computer Society, Washing-
ton, DC, USA, SEFM ’09, pp 33–37, DOI 10.1109/SEFM.2009.13

18. Cranor C, Johnson T, Spataschek O, Shkapenyuk V (2003) Gigascope: a stream
database for network applications. In: Proceedings of the 2003 ACM SIGMOD Inter-
national Conference on Management of Data, ACM, pp 647–651

19. Cugola G, Margara A (2012) Processing flows of information: From data stream to
complex event processing. ACM Computing Surveys (CSUR) 44(3):15

20. D’Angelo B, Sankaranarayanan S, Sánchez C, Robinson W, Finkbeiner B, Sipma HB,
Mehrotra S, Manna Z (2005) LOLA: Runtime monitoring of synchronous systems. In:
Proc. of the 12th Int. Symposium on Temporal Representation and Reasoning, IEEE
Computer Society, pp 166–174

21. Decker N, Leucker M, Thoma D (2013) jUnitRV—adding runtime verification to jUnit.
In: Brat G, Rungta N, Venet A (eds) NASA Formal Methods, 5th International Sympo-
sium, NFM 2013, Moffett Field, CA, USA, May 14-16, 2013. Proceedings, Springer,
Lecture Notes in Computer Science, vol 7871, pp 459–464, DOI 10.1007/978-3-642-
38088-4 34

22. Decker N, Leucker M, Thoma D (2016) Monitoring modulo theories. Int J Software
Tools for Technology Transfer 18(2):205–225, DOI 10.1007/s10009-015-0380-3

23. Dillon LK, Kutty G, Moser LE, Melliar-Smith PM, Ramakrishna YS (1994) A graphical
interval logic for specifying concurrent systems. ACM Trans Softw Eng Methodology
3:131–165

24. Doorenbos RB (1995) Production matching for large learning systems. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA

25. Drools (2017) Website. http://www.jboss.org/drools, accessed: 2017-03-21
26. Eckert M, Bry F (2009) Complex event processing (CEP). Informatik-Spektrum

32(2):163–167
27. Ernst MD, Perkins JH, Guo PJ, McCamant S, Pacheco C, Tschantz MS, Xiao C (2007)

The Daikon system for dynamic detection of likely invariants. Science of Computer
Programming 69(1):35–45

Inferring Event Stream Abstractions 29

28. Falcone Y, Havelund K, Reger G (2013) A tutorial on runtime verification. In: Engineer-
ing Dependable Software Systems, pp 141–175, DOI 10.3233/978-1-61499-207-3-141

29. Finkbeiner B, Sankaranarayanan S, Sipma H (2005) Collecting statistics over runtime
executions. Formal Methods in System Design 27(3):253–274

30. Forgy C (1982) Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence 19:17–37

31. Goubault-Larrecq J, Olivain J (2008) A smell of ORCHIDS. In: Proc. of the 8th Int.
Workshop on Runtime Verification (RV’08), Springer, LNCS, vol 5289, pp 1–20

32. Hallé S (2016) When RV Meets CEP. In: Runtime Verification: 16th International Con-
ference, RV 2016, Madrid, Spain, September 23–30, 2016, Proceedings, Springer, pp
68–91

33. Hallé S, Gaboury S, Bouchard B (2016) Activity Recognition Through Complex Event
Processing: First Findings. In: AAAI Workshop: Artificial Intelligence Applied to As-
sistive Technologies and Smart Environments

34. Hansen MR, Van Hung D (2007) A theory of duration calculus with application. In:
Domain modeling and the duration calculus, LNCS, vol 4710, Springer, pp 119–176

35. Havelund K (2015) Rule-based runtime verification revisited. Int J Software Tools for
Technology Transfer 17(2):143–170

36. Havelund K, Joshi R (2014) Comprehension of spacecraft telemetry using hierarchi-
cal specifications of behavior. In: Merz S, Pang J (eds) Formal Methods and Software
Engineering: 16th International Conference on Formal Engineering Methods, ICFEM
2014, Luxembourg, November 3-5, 2014. Proceedings, Springer International Publish-
ing, LNCS, vol 8829, pp 187–202

37. Havelund K, Joshi R (2015) Experience with rule-based analysis of spacecraft logs.
In: Artho C, Ölveczky CP (eds) Formal Techniques for Safety-Critical Systems: Third
International Workshop (FTSCS 2014), November 2014, Luxembourg, Springer Inter-
national Publishing, Communications in Computer and Information Science, vol 476,
pp 1–16

38. Havelund K, Peled D, Ulus D (2017) First order temporal logic monitoring with BDDs.
In: 17th Conference on Formal Methods in Computer-Aided Design (FMCAD 2017),
2-6 October, Vienna, Austria, IEEE Computer Society, pp 116–123

39. Jess (2017) Website. http://www.jessrules.com/jess, accessed: 2017-03-21
40. Kauffman S, Havelund K, Joshi R (2016) nfer – a notation and system for inferring

event stream abstractions. In: Falcone Y, Sánchez C (eds) Runtime Verification: 16th
International Conference, RV 2016, Madrid, Spain, September 23–30, 2016, Proceed-
ings, Springer, LNCS, vol 10012, pp 235–250

41. Kearns SM (1991) Extending regular expressions with context operators and
parse extraction. Software: Practice and Experience 21(8):787–804, DOI
10.1002/spe.4380210803

42. Kreps J, Narkhede N, Rao J (2011) Kafka: A distributed messaging system for
log processing. In: Proc. of the 6th Int. Workshop on Networking Meets Databases
(NetDB’11), ACM, pp 1–7

43. Legay A, Delahaye B, Bensalem S (2010) Statistical model checking: An overview. In:
1st Int. Conference on Runtime Verification (RV’10), Springer, LNCS, vol 6418

44. Leucker M, Schallhart C (2009) A brief account of runtime verification. The Journal of
Logic and Algebraic Programming 78(5):293–303, DOI 10.1016/j.jlap.2008.08.004

45. Luckham D (2002) The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley

30 Sean Kauffman et al.

46. Mcdermott D, Ghallab M, Howe A, Knoblock C, Ram A, Veloso M, Weld D, Wilkins
D (1998) PDDL - The Planning Domain Definition Language. Tech. rep., CVC TR-98-
003/DCS TR-1165, Yale Center for Computational Vision and Control

47. Meredith P, Jin D, Griffith D, Chen F, Roşu G (2011) An overview of the MOP runtime
verification framework. Int J Software Tools for Technology Transfer pp 1–41, DOI
10.1007/s10009-011-0198-6

48. Moszkowski BC (1985) A temporal logic for multilevel reasoning about hardware.
IEEE Computer 18:10–19

49. Narayan A, Kauffman S, Morgan J, Tchamgoue GM, Joshi Y, Hobbs C, Fischmeister
S (2017) System call logs with natural random faults: Experimental design and appli-
cation. In: SELSE-13: The 13th Workshop on Silicon Errors in Logic, System Effects,
Boston, MA, USA

50. Navabpour S, Joshi Y, Wu W, Berkovich S, Medhat R, Bonakdarpour B, Fischmeister S
(2013) RiTHM: a tool for enabling time-triggered runtime verification for C programs.
In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
ACM, pp 603–606

51. QNX (1997) QNX Operating System: system architecture. QNX Software Systems Ltd.
52. R Development Core Team (2008) R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-
project.org, ISBN 3-900051-07-0

53. Reger G (2014) Automata based monitoring and mining of execution traces. PhD thesis,
University of Manchester

54. Reger G, Cruz HC, Rydeheard D (2015) MarQ: monitoring at runtime with QEA. In:
Proceedings of the 21st International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’15)

55. Rosu G, Bensalem S (2006) Allen linear (interval) temporal logic - translation to
LTL and monitor synthesis. In: 18th Int. Conference on Computer Aided Verification
(CAV’06), Springer, LNCS, vol 4144, pp 263–277

56. Siminiceanu R, Butler RW, Muñoz CA (2009) Experimental evaluation of a planning
language suitable for formal verification. In: 5th Int. Workshop on Model Checking and
Artificial Intelligence (MoChArt’08), LNCS, vol 5348, Springer, pp 132–146

57. Xilinx (2017) Zynq-7000 all programmable soc zc706 evaluation kit.
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html, accessed: 2017-
03-13

