
Dynamic Deadlock Analysis of
Multi-Threaded Programs

Saddek Bensalem1 and Klaus Havelund2

1 Université Joseph Fourier, Verimag, Grenoble, France
2 Kestrel Technology, Palo Alto, California USA

Abstract. This paper presents a dynamic program analysis algorithm
that can detect deadlock potentials in a multi-threaded program by ex-
amining a single execution trace, obtained by running an instrumented
version of the program. The algorithm is interesting because it can iden-
tify deadlock potentials even though no deadlocks occur in the examined
execution, and therefore it scales very well in contrast to more formal
approaches to deadlock detection. It is an improvement of an existing al-
gorithm in that it reduces the number of false positives (false warnings).
The paper describes an implementation and an application to three case
studies.

1 Introduction

The Java programming language [2] explicitly supports concurrent programming
through a selection of concurrency language concepts, such as threads and mon-
itors. Threads execute in parallel, and communicate via shared objects that can
be locked using synchronized access to achieve mutual exclusion. However, with
concurrent programming comes a new set of problems that can hamper the qual-
ity of the software. Deadlocks form such a problem category. That deadlocks pose
a common problem is emphasized by the following statement in [23]: ”Among
the most central and subtle liveness failures is deadlock. Without care, just about
any design using synchronization on multiple cooperating objects can contain the
possibility of deadlock”.

In this paper we present a dynamic program analysis algorithm that can detect
the potential for deadlocks in a program by analyzing a trace (log file) gener-
ated from a successful deadlock free execution of the program. The algorithm is
interesting because it catches existing deadlock potentials with very high prob-
ability even when no actual deadlocks occur during test runs. A basic version
of this algorithm has previously been implemented in the commercial tool Vi-
sual Threads [16]. This basic algorithm, however, can give false positives (as
well as false negatives), putting a burden on the user to refute such. Our goal is
to reduce the amount of false positives reported by the algorithm, and for that

2

purpose we have modified it as reported in this paper. Detection of errors in con-
current programs by analysis of successful runs was first suggested for low-level
data races in [26]. Other forms of data races have later shown to be detectable
using related forms of analysis, such as high-level data races [4] and atomicity
violations [5].

Two types of deadlocks have been discussed in the literature [27] [22]: resource
deadlocks and communication deadlocks. In resource deadlocks, a process which
requests resources must wait until it acquires all the requested resources before
it can proceed with its computation. A set of processes is resource deadlocked
if each process in the set requests a resource held by another process in the
set, forming a cycle of lock requests. In communication deadlocks, messages are
the resources for which processes wait. In this paper we focus only on resource
deadlocks. In Java, threads can communicate via shared objects by for example
calling methods on those objects. In order to avoid data races in these situations
(where several threads access a shared object simultaneously), objects can be
locked using the synchronized statement, or by declaring methods on the shared
objects synchronized, which is equivalent. For example, a thread t can obtain
a lock on an object A and then execute a statement S while having that lock by
executing the following statement: synchronized(A){S}. During the execution
of S, no other thread can obtain a lock on A. The lock is released when the scope
of the synchronized statement is left; that is, when execution passes the curly
bracket: ’}’. Java also provides the wait and notify primitives in support for
user controlled interleaving between threads. While the synchronized primitive
is the main source for resource deadlocks in Java, the wait and notify primitives
are the main source for communication deadlocks. Since this paper focuses on
resource deadlocks, we shall in the following focus on Java’s capability of creating
and executing threads and on the synchronized statement.

The difficulty in detecting deadlocks comes from the fact that concurrent pro-
grams typically are non-deterministic: several executions of the same program
on the same input may yield different behaviors due to slight differences in the
way threads are scheduled. Various technologies have been developed by the
formal methods community to circumvent this problem, such as static analy-
sis and model checking. Static analysis, such as performed by tools like JLint
[3], PolySpace [25] and ESC [11], analyze the source code without executing
it. These techniques are very efficient, but they often yield many false positives
(false warnings) and additionally cannot well analyze programs where the object
structure is very dynamic. Model checking has been applied directly to software
(in contrast to only designs), for example in the Java PathFinder system (JPF)
developed by NASA [18, 29], and in similar systems [14, 21, 10, 6, 28, 24, 12]. A
model checker explores all possible execution paths of the program, and will
therefore theoretically eventually expose a potential deadlock. This process is,
however, quite resource demanding, in memory consumption as well in execution
time, especially for large realistic programs.

3

Static analysis and model checking are both typically complete (no false nega-
tives), and model checking in addition is typically sound (no false positives). The
algorithm presented in this paper is neither sound nor complete, but it scales
and it is very effective: it finds bugs with high probability and it yields few false
positives. The technique is based on trace analysis: a program is instrumented
to log synchronization events when executed. The algorithm then examines the
log file, building a lock graph, which reveals deadlock potentials by containing
cycles. The algorithm has been implemented in the Java PathExplorer tool [20],
which in addition analyzes Java programs for various forms of data races [26, 4]
and conformance with temporal logic properties [7]. Although the implementa-
tion is Java specific, the principles and theory presented are universal and apply
in full to multi-threaded programs written in languages like C and C++ as well.
In fact, two of the case studies involve C++ programs. In this case the programs
must currently be manually instrumented. The algorithm was first described in
[8].

Some additional closely related work specifically requires mentioning. In earlier
work we presented the GoodLock algorithm [17] which attempts to improve
the basic lock graph algorithm presented in [16] by reducing false positives in
the presence of gate locks (a common lock taken first by involved threads).
This algorithm was based on building acyclic lock trees (rather than cyclic lock
graphs as in [16]) but it could only detect deadlocks between pairs of threads. The
algorithm presented in this paper also tries to reduce false positives in presence
of gate locks, but can detect deadlocks between any number of threads, and
builds directly on the cyclic graph model in [16]. In addition, the algorithm also
reduces false positives arising from code segments that cannot possibly execute
concurrently. In parallel work [1], included in these proceedings, an algorithm
extending the GoodLock algorithm is suggested for reducing false positives, also
in presence of gate locks. This algorithm uses a combination of acyclic lock
trees and cyclic lock graphs to represent locking patterns in a program run.
In that work a framework is furthermore suggested for using static analysis in
combination with dynamic analysis to detect deadlocks. In these pieces of work a
single execution trace is used as a basis for the dynamic analysis. Also presented
at PADTAD’05 was work by IBM [13] where several execution traces, generated
from several runs of the program being tested, are used to create a single locking
model that is then analyzed. This approach is useful to reduce false negatives
(missed errors).

The paper is organized as follows. Section 2 introduces preliminary concepts and
notation used throughout the rest of the paper. Section 3 introduces an example
that illustrates the notion of deadlock and the different forms of false positives
that are possible. Section 4 presents the basic algorithm suggested in [16] (the
algorithm is only explained in few words in [16]). The subsequent two sections
5 and 6 suggest modifications, each reducing false positives. Section 7 shortly
describes the implementation of the algorithm and presents the results of three
case studies. Finally, Section 8 concludes the paper.

4

2 Preliminaries

A directed graph is a pair G = (S, R) of sets satisfying R ⊆ S × S. The set
R is called the edge set of G, and its elements are called edges. A path p is
a non-empty graph G = (S, R) of the form S = {x1, x2, . . . , xk} and R =
{(x1, x2), (x2, x3), . . . , (xk−1, xk)}, where the xi are all distinct, except that xk

may be equal to x1, in which case the path is a cycle. The nodes x0 and xk are
linked by p; we often refer to a path by the natural sequence of its nodes, writing,
say, p = x1, x2, . . . , xk and calling p a path from x1 to xk. In case where the edges
are labeled with elements in W , G is triplet (S, W, R) and called a labeled graph
with R ⊆ S × W × S. A labeled path, respectively cycle, is a labeled graph
with the obvious meaning. Given a sequence σ = x1, x2, . . . , xn, we refer to an
element at position i in σ by σ[i] and the length of σ by |σ|. We let <> denote the
empty sequence, and the concatenation of two sequences σ1 and σ2 is denoted
by σ1 _ σ2. We denote by σi the prefix x1, . . . , xi. Let M : [A m−→ B] be a
finite domain mapping from elements in A to elements in B (the m−→ operator
generates the set of finite domain mappings from A to B, hence partial functions
on A). We let M † [a 7→ b] denote the mapping M overridden with a mapping
to b. That is, the † operator represents map overriding, and [a 7→ b] represents
a map that maps a to b. Looking up the value mapped to by a in M is denoted
by M [a]. We denote the empty mapping by [].

3 An Example

We shall with an example illustrate the three categories of false positives that
the basic algorithm reports, but which the improved algorithm will not report.
The first category, single threaded cycles, refers to cycles that are created by
one single thread. Guarded cycles refer to cycles that are guarded by a gate lock
”taken higher” up by all involved threads. Finally, thread segmented cycles refer
to cycles between thread segments that cannot possibly execute concurrently.
The program in Figure 1 illustrates these three situations, and a true positive.
The real deadlock potential exists between threads T2 and T3, corresponding
to a cycle on L1 and L2. The single threaded cycle within T1 clearly does not
represent a deadlock. The guarded cycle between T1 and T2 does not represent
a deadlock since both threads must acquire the gate lock G first. Finally, the
thread segmented cycle between T1 and T3 does not represent a deadlock since
T3 will execute before T1 executes its last two synchronization statements.

When analyzing such a program for deadlock potentials, we are interested in
observing all lock acquisitions and releases, and all thread starts and joins. The
program can be instrumented to emit such events. A lock trace σ = e1, e2, . . . , en

is a finite sequence of lock and unlock events and start and join events. Let Eσ

denote the set of events occurring in σ. Let Tσ denote the set of threads occur-
ring in Eσ, and let Lσ denote the set of locks occurring in Eσ. We assume for
convenience that the trace is reentrant free in the sense that an already acquired

5

Main :

01: new T1().start();
02: new T2().start();

T1 :

03: synchronized(G){
04: synchronized(L1){
05: synchronized(L2){}
06: }
07: };
08: t3 = new T3();
09: t3.start();
10: t3.join();
11: synchronized(L2){
12: synchronized(L1){}
13: }

T2 :

14: synchronized(G){
15: synchronized(L2){
16: synchronized(L1){}
17: }
18: }

T3 :

19: synchronized(L1){
20: synchronized(L2){}
21: }

Fig. 1. Example containing four lock cycles

lock is never re-acquired by the same thread (or any other thread of course) be-
fore being released. Note that Java supports reentrant locks by allowing a lock
to be re-taken by a thread that already has the lock. However, the instrumen-
tation can generate reentrant free traces if it is recorded how many times a lock
has been acquired nested by a thread. Normally a counter is introduced that is
incremented for each lock operation and decremented for each unlock operation.
A lock operation is now only reported if the counter is zero (it is free before
being taken), and an unlock operation is only reported if the counter is 0 again
after the unlock (it becomes free again).
For illustration purposes we shall assume a non-deadlocking execution trace σ
for this program. It doesn’t matter which one since all non-deadlocking traces
will reveal all four cycles in the program using the basic algorithm. We shall
assume the following trace of line numbered events (the line number is the first
argument), which first, after having started T1 and T2 from the Main thread,
executes T1 until the join statement, then executes T2 to the end, then T3 to
the end, and then continues with T1 after it has joined on T3’s termination.
The line numbers are given for illustration purposes, and are actually recorded
in the implementation in order to provide the user with useful error messages.
In addition to the lock and unlock events l(lno, t, o) and u(lno, t, o) for line
numbers lno, threads t and locks o, the trace also contains events for thread
start, s(lno, t1, t2) and thread join, j(lno, t1, t2), meaning respectively that t1
starts or joins t2 in line number lno.

σ =
s(1, Main, T1), s(2, Main, T2),
l(3, T1, G), l(4, T1, L1), l(5, T1, L2), u(5, T1, L2), u(6, T1, L1), u(7, T1, G), s(9, T1, T3),
l(14, T2, G), l(15, T2, L2), l(16, T2, L1), u(16, T2, L1), u(17, T2, L2), u(18, T2, G),
l(19, T3, L1), l(20, T3, L2), u(20, T3, L2), u(21, T3, L1),
j(10, T1, T3), l(11, T1, L2), l(12, T1, L1), u(12, T1, L1), u(13, T1, L2)

Occasionally line numbers will be left out when referring to events.

6

4 Basic Cycle Detection Algorithm

In essence, the detection algorithm consists of finding cycles in a lock graph. In the
context of multi-threaded programs, the basic algorithm sketched in [16] works
as follows. The multi-threaded program under observation is executed, while just
lock and unlock events are observed. A graph of locks is built, with edges between
locks symbolizing locking orders. Any cycle in the graph signifies a potential for a
deadlock. Hence, we shall initially restrict ourselves to traces including only lock
and unlock events (no start or join events). In order to define the lock graph, we
introduce a notion that we call a lock context of a trace σ in position i, denoted
by CL(σ, i). It is a mapping from each thread to the set of locks owned by that
thread at that position. Formally, for a thread t ∈ Tσ we have the following:
CL(σ, i)(t) = {o | ∃j : j ≤ i ∧ σ[j] = l(t, o) ∧ ¬∃k : j < k ≤ i ∧ σ[k] = u(t, o)}.
Bellow we give a definition that allows to build the lock graph GL with respect
to an execution trace σ. An edge in GL between two locks l1 and l2 means that
there exists a thread t which owns the object l1 while taking the object l2.

Definition 1 (Lock graph) Given an execution trace σ = e1, e2, . . . , en. We
say that the lock graph of σ is the minimal directed graph GL = (L,R) such that :
L is the set of locks Lσ, and R ⊆ L×L is defined by (l1, l2) ∈ R if there exists a
thread t ∈ Tσ and a position i ≥ 2 in σ s. t. σ[i] = l(t, l2) and l1 ∈ CL(σ, i−1)(t).

In Figure 2 we give an algorithm for constructing the lock graph from a lock
trace. In this algorithm, we also use the context CL which is exactly the same
as in the definition 1. The only difference is that we don’t need to explicitly
use the two parameters σ and i. The set of cycles in the graph GL, denoted
by cylces(GL), represents the potential deadlock situations in the program. The
lock graph for the example in Figure 1 is also shown in Figure 2. The numbers
indicate line numbers where source respectively target locks are taken.

5 Eliminating Single Threaded and Guarded Cycles

In this section we present a solution that removes false positives stemming from
single threaded cycles and guarded cycles. In [17] we suggested a solution, the
GoodLock algorithm, based on building synchronization trees. However, this
solution could only detect deadlocks between pairs of threads. The algorithm to
be presented here is not limited in this sense. The solution is to extend the lock
graph by labeling each edge between locks with information about which thread
causes the addition of the edge and what gate locks were held by that thread
when the target lock was taken. A definition of valid cycles will then include this
information to filter out false positives. First, we define the extended lock graph.

Definition 2 (Guarded lock graph) Given a trace σ = e1, e2, . . . , en. We
say that the guarded lock graph of σ is the minimal directed labeled graph GL =

7

Input: An execution trace σ
GL is a graph;
CL : [Tσ → 2Lσ] is a lock context;
for(i = 1 .. |σ|) do

case σ[i] of
l(t, o) →

GL := GL

⋃
{(o′, o) | o′ ∈ CL(t)};

CL := CL † [t 7→ CL(t)
⋃
{o}];

u(t, o) →
CL := CL † [t 7→ CL(t)\{o}]

end;
for each c in cycles(GL) do

print (”deadlock potential:”,c);

L1 L2

G
14

16

3

4

3

54 5 15

19 20

16 15

14

1112

Fig. 2. The basic algorithm and the lock graph

(L,W,R) such that: L is the set of locks Lσ, W ⊆ Tσ × 2L is the set of labels,
each containing a thread id and a lock set, and R ⊆ L × W × L is defined by
(l1, (t, g), l2) ∈ R if there exists a thread t ∈ Tσ and a position i ≥ 2 in σ s.t.
σ[i] = l(t, l2) and l1 ∈ CL(σ, i− 1)(t) and g = CL(σ, i− 1)(t).

Each edge (l1, (t, g), l2) in R is labeled with the thread t that took the locks l1
and l2, and a lock set g, indicating what locks t owned when taking l2. In order
for a cycle to be valid, and hence regarded as a true positive, the threads and
guard sets occurring in labels of the cycle must be valid in the following sense.

Definition 3 (Valid threads and guards) Let GL be a guarded lock graph of
some execution trace and c = (L,W,R) a cycle in cycles(GL), we say that:

– threads of c are valid if: forall e, e′ ∈ R e 6= e′ ⇒ thread(e) 6= thread(e′)
– guards of c are valid if: forall e, e′ ∈ R e 6= e′ ⇒ guards(e) ∩ guards(e′) = ∅

where, for an edge e ∈ R, thread(e), resp. guards(e), gives the first, resp. second,
component of the label (t, g) of e = (l1, (t, g), l2).

For a cycle to be valid, the threads involved must differ. This eliminates single
threaded cycles. Furthermore, the lock sets on the edges in the cycle must not
overlap. This eliminates cycles that are guarded by the same lock taken ”higher
up” by at least two of the threads involved in the cycle. Assume namely that
such a gate lock exists, then it will belong to the lock sets of several edges in
the cycle, and hence they will overlap at least on this lock. This corresponds to
the fact that a deadlock cannot happen in this situation. Valid cycles are now
defined as follows:

8

Definition 4 (Unguarded cycles) Let σ be an execution trace and GL its
guarded lock graph. We say that a cycle c ∈ cycles(GL) is an unguarded cycle if
the guards of c are valid and threads of c are also valid. We denote by cyclesg(GL)
the set of unguarded cycles in cycles(GL).

We shall in this section not present an explicit algorithm for constructing this
graph, since its concerns a relatively simple modification to the basic algorithm
– the statement that updates the lock graph becomes:

GL := GL

⋃
{(o′, (t, CL(t)), o) | o′ ∈ CL(t)}

adding the labels (t, CL(t)) to the edges. Furthermore, cycles to be reported
should be drawn from: cyclesg(GL).

Let us illustrate the algorithm with an example. We consider again the execution
trace σ from Section 3. The guarded graph for this trace is shown in Figure 3.
The graph contains the same number of edges as the basic graph in Figure 2.
However, now edges are labeled with a thread and a guard set. In particular, we
notice that the gate lock G occurs in the guard set of edges (4, 5) and (15, 16).
This prevents this guarded cycle from being included in the set of valid cycles
since it is not guard valid: the guard sets overlap in G. Also the single threaded
cycle (4, 5) ↔ (11, 12) is eliminated because it is not thread valid: the same
thread T1 occurs on both edges.

L1 L2

G
14

16

3

4

3

54 5 15

20

16 15

14

T1,{L1,G}T1,{G}

T2,{G,L2} T2,{G}

T1,{G,L1}

T3,{L1}

T1,{L2}

T2,{G,L2}

11

19

12

Fig. 3. Guarded lock graph

6 Eliminating Segmented Cycles

In the previous section we saw the specification of an algorithm that removes
false positives stemming from single threaded cycles and guarded cycles. In this
section we present the full algorithm that in addition removes false positives
stemming from segmented cycles. We assume that traces now also contain start

9

and join events. Recall the example in Figure 1 and that the basic algorithm
reports a cycle between threads T1 (line 11-12) and T3 (line 19-20) on locks L1

and L2. However, a deadlock is impossible since thread T3 is joined on by T1 in
line 10. Hence, the two code segments: line 11-12 and line 19-20 can never run
in parallel. The algorithm to be presented will prevent such cycles from being
reported by formally introducing such a notion of segments that cannot execute
in parallel. A new directed segmentation graph will record which segments exe-
cute before others. The lock graph is then extended with extra label information,
that specifies what segments locks are acquired in, and the validity of a cycle
now incorporates a check that the lock acquisitions are really occurring in paral-
lel executing segments. The idea of using segmentation in runtime analysis was
initially suggested in [16] to reduce the amount of false positives in data race
analysis using the Eraser algorithm [26]. We use it in a similar manner here to
reduce false positives in deadlock detection.

More specifically, the solution is during execution to associate segment identifiers
(natural numbers, starting from 0) to segments of the code that are separated by
statements that start or join other threads. For example, if a thread t1 currently
is in segment s and starts another thread t2, and the next free segment is n + 1,
then t1 will continue in segment n + 1 and t2 will start in segment n + 2. From
then on the next free segment will be n + 3. It is furthermore recorded in the
segmentation graph that segment s executes before n+1 as well as before n+2.
In a similar way, if a thread t1 currently is in segment s1 and joins another
thread t2 that is in segment s2, and the next free segment is n + 1, then t1 will
continue in segment n+1, t2 will be terminated, and from then on the next free
segment will be n + 2. It is recorded that s1 as well as s2 execute before n + 1.
Figure 5 illustrates the segmentation graph for the program example in Figure 1.
In order to give a formal definition of the segmentation we need to define two
functions. The first one, CS(σ), segmentation context of the trace σ, gives for
each position i of the execution trace σ, the current segment of each thread t
at that position. Formally, CS(σ) is the mapping with type: [N 7→ [Tσ 7→ N]],
associated to trace σ, that maps each position into another mapping that maps
each thread id to its current segment in that position. It is defined as follows.
Let Cinit

S = [0 7→ [main 7→ 0]], mapping position 0 to the mapping that maps
the main thread to segment 0. Then CS(σ) is defined by the use of the auxiliary
function f0 : Trace× Context× Position× Current Segment → Context:

CS(σ) = f0(σ, Cinit
S , 1, 0), where the function f0 is defined by left-to-right recursion over

the trace σ as follows:

10

f0(e _ σ, CS , i, n) =

f0(σ, CS , i + 1, n)
if e ∈ {l(t,o),u(t,o)},

f0(σ, CS†[i 7→ CS [i− 1]†
[

t1 7→ n + 1
t2 7→ n + 2

]
, i + 1, n + 2)

if e = s(t1, t2),

f0(σ, CS†[i 7→ CS [i− 1]†[t1 7→ n + 1], i + 1, n + 1)
if e = j(t1, t2).

f0(<>, CS , i, n) = CS

The second function needed, #alloc, gives the number of segments allocated in
position i of σ. This function is used to calculate what is the next segment
to be assigned to a new execution block, and is dependent on the number of
start events s(t1, t2) and join events j(t1, t2) that occur in the trace up and
until position i, recalling that each start event causes two new segments to be
allocated. Formally we define it as follows : #alloc(σ, i) = |σi ↓s | ∗ 2 + |σi ↓j |.
We can now define the notion of a directed segmentation graph, which defines an
ordering between segments. Informally, assume that in trace position i a thread
t1, being in segment s1 = CS(σ)(i− 1)(t1), executes a start of a thread t2. Then
t1 continues in segment n = #alloc(σ, i − 1) + 1 and t2 continues in segment
n + 1. Consequently, (s1, n) as well as (s1, n + 1) belongs to the graph, meaning
that s1 executes before n as well as before n+1. Similarly, assume that a thread
t1 in position i, being in segment s1 = CS(σ)(i − 1)(t1), executes a join of a
thread t2, being in segment s2 = CS(σ)(i− 1)(t2). Then t1 continues in segment
n = #alloc(σ, i−1)+1 while t2 terminates. Consequently (s1, n) as well as (s2, n)
belongs to the graph, meaning that s1 as well as s2 executes before n. The formal
definition of the segmentation graph is as follows.

Definition 5 (Segmentation graph) Given an execution trace
σ = e1, . . . , en. We say that a segmentation graph of σ is the directed graph
GS = (N , R) where: N = {n | 0 ≤ n ≤ #alloc(σ, |σ|)} is the set of segments,
and R ⊆ N × N is the relation given by (s1, s2) ∈ R if there exists a position
i ≥ 1 s.t. σ[i] = s(t1, t2)∧ s1 = CS(σ)(i−1)(t1)∧ (s2 = #alloc(σ, i−1)+1∨ s2 =
#alloc(σ, i− 1) + 2), or σ[i] = j(t1, t2) ∧ (s1 = CS(σ)(i− 1)(t1) ∨ s1 = CS(σ)(i−
1)(t2)) ∧ s2 = #alloc(σ, i− 1) + 1.

The following relation happens-before reflects how the segments are related in
time during execution.

Definition 6 (Happens-Before relation) Let GS = (N , R) be a segmenta-
tion graph, and G∗

S = (N , R∗) its transitive closure. Then given two segments
s1 and s2, we say that s1 happens before s2, denoted by s1 . s2, if (s1, s2) ∈ R∗.

11

Note that for two given segments s1 and s2, if neither s1 . s2 nor s2 . s1, then
we say that s1 happens in parallel with s2. Before we can finally define what is
a lock graph with segment information, we need to redefine the notion of lock
context, CL(σ, i), of a trace σ and a position i, that was defined on page 6. In the
previous definition it was a mapping from each thread to the set of locks owned
by that thread at that position. Now we add information about what segment
each lock was taken in. Formally, for a thread t ∈ Tσ we have the following :

CL(σ, i)(t) =
{(o, s) | ∃j : j ≤ i ∧ σ[j] = l(t, o) ∧

¬(∃k : j < k ≤ i ∧ σ[k] = u(t, o)) ∧ CS(σ)(j)(t) = s}

An edge in GL between two locks l1 and l2 means, as before, that there exists
a thread t which owns an object l1 while taking the object l2. The edge is as
before labeled with t as well as the set of (gate) locks. In addition, the edge is
now further labeled with the segments s1 and s2 in which the locks l1 and l2
were taken by t.

Definition 7 (Segmented and guarded lock graph) Given an execution trace
σ = e1, e2, . . . , en. We say that the segmented and guarded lock graph of σ is the
minimal directed graph GL = (Lσ,W,R) such that:

– W ⊆ N × (Tσ × 2Lσ)×N is the set of labels (s1, (t, g), s2), each containing
the segment s1 that the source lock was taken in, a thread id t, a lock set g
(these two being the labels of the guarded lock graph in the previous section),
and the segment s2 that the target lock was taken in,

– R ⊆ Lσ × W × Lσ is defined by (l1, (s1, (t, g), s2), l2) ∈ R if there exists a
thread t ∈ Tσ and a position i ≥ 2 in σ such that: σ[i] = l(t, l2) and (l1, s1) ∈
CL(σ)(i−1)(t) and g = {l′ | (l′, s) ∈ CL(σ)(i−1)(t)} and s2 = CS(σ)(i−1)(t)

Each edge (l1, (s1, (t, g), s2), l2) in R is labeled with the thread t that took the
locks l1 and l2, and a lock set g, indicating what locks t owned when taking l2.
The segments s1 and s2 indicate in which segments respectively l1 and l2 were
taken.

In order for a cycle to be valid, and hence regarded as a true positive, the
threads and guard sets occurring in labels of the cycle must be valid as before.
In addition, the segments in which locks are taken must now allow for a deadlock
to actually happen. Consider for example a cycle between two threads t1 and t2
on two locks l1 and l2. Assume further that t1 takes l1 in segment x1 and then
l2 in segment x2 while t2 takes them in opposite order, in segments y1 and y2

respectively. Then it must be possible for t1 and t2 to each take their first lock
in order for a deadlock to occur. In other words, x2 must not happen before y1

and y2 must not happen before x1. This is expressed in the following definition,
which repeats the definitions from Definition 3.

12

Definition 8 (Valid threads, guards and segments) Let GL be a segmented
and guarded lock graph of some execution trace and c = (L,W,R) a cycle in
cycles(GL), we say that:

– threads of c are valid if: forall e, e′ ∈ R, e 6= e′ ⇒ thread(e) 6= thread(e′)
– guards of c are valid if: forall e, e′ ∈ R, e 6= e′ ⇒ guards(e)∩ guards(e′) = ∅
– segments of c are valid if: forall e, e′ ∈ R, e 6= e′ ⇒ ¬ (seg2(e1) . seg1(e2))

where, for an edge e = (l1, (s1, (t, g), s2), l2) ∈ R, thread(e) = t, guards(e) = g,
seg1(e) = s1 and seg2(e) = s2.

Valid cycles are now defined as follows.

Definition 9 (Unsegmented and unguarded cycles) Let σ be an execution
trace and GL its segmented and guarded lock graph. We say that a cycle c ∈
cycles(GL) is an unsegmented and unguarded cycle if the guards of c are valid,
the threads of c are valid, and the segments of c are valid. We denote by cycless(GL)
the set of unsegmented and unguarded cycles in cycles(GL).

Figure 4 presents an algorithm for constructing the segmentation graph and
lock graph from an execution trace. The set of cycles in the graph GL, denoted
by cylcess(GL), see Definition 9, represents the potential deadlock situations
in the program. The segmentation graph (GS) and lock graph (GL) have the
structure as outlined in Definition 5 and Definition 7 respectively. The lock
context (CL) maps each thread to the set of locks owned by that thread at any
point in time. Associated with each such lock is the segment in which it was
acquired. The segment context (CS) maps each thread to the segment in which
it is currently executing. The algorithm should after this explanation and the
previously given abstract definitions be self explanatory. Consider again the trace
σ from Section 3. The segmented and guarded lock graph and the segmentation
graph for this trace are both shown in Figure 5. The segmentation graph is for
illustrative purposes augmented with the statements that caused the graph to
be updated. We see in particular that segment 6 of thread T3 executes before
segment 7 of thread T1, written as 6 . 7. Segment 6 is the one in which T3

executes lines 19 and 20, while segment 7 is the one in which T1 executes lines
11 and 12. The lock graph contains the same number of edges as the guarded
graph in Figure 3, and the same (thread,guard set) labels. However, now edges
are additionally labeled with the segments in which locks are taken. This makes
the cycle (19, 20) ↔ (11, 12) segment invalid since the target segment of the first
edge (6) executes before the source segment of the second edge (7).

7 Implementation and Experimentation

The algorithm presented in the previous section has been implemented in the
Java PathExplorer (JPaX) tool [20]. JPaX consists of two main modules, an

13

Input: An execution trace σ
GL is a lock graph;
GS is a segmentation graph;
CL : [Tσ → 2Lσ×nat] is a lock context;
CS : [Tσ → nat] is a segment context;
n : nat = 1 next available segment;
for(i = 1 .. |σ|) do

case σ[i] of
l(t, o) →

GL := GL

⋃
{(o′, (s1, (t, g), s2), o) |

(o′, s1) ∈ CL(t) ∧
g = {o′′ | (o′′, s) ∈ CL(t)} ∧
s2 = CS(t)};

CL := CL † [t 7→ CL(t)
⋃

{(o, CS(t))}];
u(t, o) →

CL := CL † [t 7→ CL(t)\{(o, ∗)}];
s(t1, t2) →

GS := GS

⋃
{(CS(t1), n), (CS(t1), n + 1)};

CS := CS † [t1 7→ n, t2 7→ n + 1];
n := n + 2;

j(t1, t2) →
GS := GS

⋃
{(CS(t1), n), (CS(t2), n)};

CS := CS † [t1 7→ n];
n := n + 1;

end;
for each c in cycless(GL) do

print (”deadlock potential:”,c);

Fig. 4. The final algorithm

instrumentation module and an observer module. The instrumentation module
automatically instruments the bytecode class files of a compiled program by
adding new instructions that when executed generate the execution trace con-
sisting of the events needed for the analysis. The observer module reads the event
stream and dispatches this to a set of observer rules, each rule performing a par-
ticular analysis that has been requested, such as deadlock analysis, data race
analysis and temporal logic analysis. This modular rule based design allows a
user to easily implement new runtime verification algorithms. The Java bytecode
instrumentation is performed using the jSpy instrumentation package [15] that
is part of Java PathExplorer. jSpy’s input is an instrumentation specification,
which consists of a collection of rules, where a rule is a predicate/action pair.
The predicate is a conjunction of syntactic constraints on a Java statement, and
the action is a description of logging information to be inserted in the bytecode
corresponding to the statement. As already mentioned, this form of analysis is
not complete and hence may yield false negatives by missing to report synchro-

14

L1 L2

G
14

16

3

4

3

54 5 15

19 20

16 15

14

2,(T1,{G}),2 2,(T1,{L1,G}),2

4,(T2,{G}),4

2,(T1,{G,L1}),2

6,(T3,{L1}),6

7,(T1,{L2}),7

4,(T2,{G,L2}),4

1112

4,(T2,{G,L2}),4

Main

T1

T3

T2

0 1

2

3

5 7

6

4

new T1().start new T2.start()

j3.start() j3.join()

Fig. 5. Segmented lock graph (above) and segmentation graph (below)

nization problems. A synchronization problem can most obviously be missed if
one or more of the synchronization statements involved in the problem do not
get executed. To avoid being entirely in the dark in these situations, we added
a coverage module to the system that records what lock-related instructions are
instrumented and which of these that are actually executed.

JPaX’s deadlock analyzer has been applied to three NASA case studies: a plan-
etary rover controller for a rover named K9 programmed in 35 thousand lines of
C++; a 7,5 thousand line Java version of the K9 rover controller used as part
of an attempt to evaluate Java verification tools; and a planner named Europa
programmed in approximately 5-10 thousand lines of C++. In the C++ scenar-
ios ASCII log files were generated which were then read and analyzed by the
tool. The Java version of the K9 controller was in particular created to evaluate
a range of program verification technologies, among them JPaX, as described
in [9]; the other technologies included static analysis and model checking. In
this Java experiment JPaX generally came out well in the comparison with the
other tools, as being fast and effective. Errors were seeded by a control team and
the study groups had as task to detect the errors with the different tools. The
deadlock analysis tool found the seeded deadlocks usually during the first run
of the tool. In the C++ version of the K9 rover controller the tool found a real
deadlock potential that was unknown to the programmer. Also the first time
the tool was run. This experiment was performed by hand instrumenting lock
and unlock operations in the program, whereas the observer module could be

15

used unmodified. In the planner Europa, the tool similarly found a real deadlock
potential that was unknown to the programming team, also in the first run of
the tool. This result caused the team to request an integration of the observer
part into their development suite for future use.

The presented algorithm can miss (and hence not report) true positives in some
rare cases, where for example a particular execution path causes a gate lock
to prevent an error message from being issued, but where another path might
contain a deadlock based on the same cycle. Furthermore, it might be argued
that cyclic lock patterns represent bad programming style. For this reason, the
best application of the algorithm might be to augment warnings given by the
basic algorithm with additional information.

8 Conclusions and Future Work

An algorithm has been presented for detecting deadlock potentials in concur-
rent programs by analyzing execution traces. The algorithm extends an existing
algorithm by reducing the amount of false positives reported, and has been im-
plemented in the JPaX tool. Although JPaX analyzes Java programs, it can be
applied to applications written in other languages by replacing the instrumenta-
tion module. The advantage of trace analysis is that it scales well, in contrast to
more formal methods, and in addition can detect errors that for example static
analysis cannot properly detect. In current work, we further approach the prob-
lem of false positives by developing a framework for generating test cases from
warnings issued by this tool. Such test cases will then directly expose the possi-
ble deadlocks. An experiment in this direction is described in [17] where a model
checker is used to “investigate” deadlock and data race warnings identified using
dynamic analysis. Additional current work attempts to extend the capabilities
of JPaX with new algorithms for detecting other kinds of concurrency errors,
such as various forms of data races and communication deadlocks.

Acknowledgments We would like to thank the following people for their
contribution to the case studies: Chuck Fry (NASA Ames Research Center/QSS
Group Inc.) instrumented and detected the deadlock in the Europa planner. Rich
Washington (NASA Ames Reserach Center/RIACS, now Google) instrumented
and detected the deadlock in the C++ version of the K9 rover controller. Summer
intern Flavio Lerda (Carnegie Mellon University) and Masoud Mansouri-Samani
(NASA Ames Research Center/CSC) applied the tool to the Java version of the
K9 rover controller during the controlled experiment described in [9].

References

1. R. Agarwal, L. Wang, and S. D. Stoller. Detecting Potential Deadlocks with Static
Analysis and Run-Time Monitoring. In Proceedings of the Parallel and Distributed

16

Systems: Testing and Debugging (PADTAD) track of the 2005 IBM Verification
Conference, Haifa, Israel. Springer-Verlag, November 2005. These proceedings.

2. K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley,
1996.

3. C. Artho and A. Biere. Applying Static Analysis to Large-Scale, Multi-threaded
Java Programs. In D. Grant, editor, 13th Australien Software Engineering Con-
ference, pages 68–75. IEEE Computer Society, August 2001.

4. C. Artho, K. Havelund, and A. Biere. High-level Data Races. Software Testing,
Verification and Reliability (STVR), 13(4), December 2003.

5. C. Artho, K. Havelund, and A. Biere. Using Block-Local Atomicity to Detect
Stale-Value Concurrency Errors. In 2nd International Symposium on Automated
Technology for Verification and Analysis, Taiwan, October–November 2004.

6. T. Ball, A. Podelski, and S. Rajamani. Boolean and Cartesian Abstractions for
Model Checking C Programs. In Proceedings of TACAS’01: Tools and Algorithms
for the Construction and Analysis of Systems, LNCS, Genova, Italy, April 2001.

7. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-Based Runtime Verifica-
tion. In Proceedings of Fifth International VMCAI conference: Verification, Model
Checking and Abstract Interpretation, volume 2937 of LNCS. Springer, January
2004.

8. S. Bensalem and K. Havelund. Reducing False Positives in Runtime Analysis of
Deadlocks. Internal report, NASA Ames Research Center, October 2002.

9. G. Brat, D. Drusinsky, D. Giannakopoulou, A. Goldberg, K. Havelund, M. Lowry,
C. Pasareanu, W. Visser, and R. Washington. Experimental Evaluation of Verifica-
tion and Validation Tools on Martian Rover Software. Formal Methods in System
Design, 25(2), 2004.

10. J. Corbett, M. B. Dwyer, J. Hatcliff, C. S. Pasareanu, Robby, S. Laubach, and
H. Zheng. Bandera : Extracting Finite-state Models from Java Source Code.
In Proceedings of the 22nd International Conference on Software Engineering,
Limerich, Ireland, June 2000. ACM Press.

11. D. L. Detlefs, K. Rustan M. Leino, G. Nelson, and J. B. Saxe. Extended Static
Checking. Technical Report 159, Compaq Systems Research Center, Palo Alto,
California, USA, 1998.

12. O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur. Multithreaded Java Program
Test Generation. Software Testing and Verification, 41(1), 2002.

13. E. Farchi, Y. Nir-Buchbinder, and S. Ur. A Cross-Run Lock Discipline Checker
for Java. Tool presented at the Parallel and Distributed Systems: Testing and
Debugging (PADTAD) track of the 2005 IBM Verification Conference, Haifa, Israel.
Tool is available at http://alphaworks.ibm.com/tech/contest, November 2005.

14. P. Godefroid. Model Checking for Programming Languages using VeriSoft. In
Proceedings of the 24th ACM Symposium on Principles of Programming Languages,
pages 174–186, Paris, France, January 1997.

15. A. Goldberg and K. Havelund. Instrumentation of Java Bytecode for Runtime
Analysis. In Proc. Formal Techniques for Java-like Programs, volume 408 of Tech-
nical Reports from ETH Zurich, Switzerland, 2003. ETH Zurich.

16. J. Harrow. Runtime Checking of Multithreaded Applications with Visual Threads.
In SPIN Model Checking and Software Verification, volume 1885 of LNCS, pages
331–342. Springer, 2000.

17. K. Havelund. Using Runtime Analysis to Guide Model Checking of Java Programs.
In SPIN Model Checking and Software Verification, volume 1885 of LNCS, pages
245–264. Springer, 2000.

17

18. K. Havelund and T. Pressburger. Model Checking Java Programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer,
2(4):366–381, April 2000. Special issue of STTT containing selected submissions
to the 4th SPIN workshop, Paris, France, 1998.

19. K. Havelund and G. Roşu. Monitoring Java Programs with Java PathExplorer. In
Proceedings of the First International Workshop on Runtime Verification (RV’01),
volume 55 of Electronic Notes in Theoretical Computer Science, pages 97–114,
Paris, France, July 2001. Elsevier Science.

20. K. Havelund and G. Roşu. An Overview of the Runtime Verification Tool Java
PathExplorer. Formal Methods in System Design, 24(2), March 2004. Extended
version of [19].

21. G. J. Holzmann and M. H. Smith. A Practical Method for Verifying Event-Driven
Software. In Proceedings of ICSE’99, International Conference on Software Engi-
neering, Los Angeles, California, USA, May 1999. IEEE/ACM.

22. E. Knapp. Deadlock Detection in Distributed Database Systems. ACM Computing
Surveys, pages 303–328, Dec. 1987.

23. D. Lea. Concurrent Programming in Java, Design Principles and Patterns.
Addison-Wesley, 1997.

24. D. Park, U. Stern, J. Skakkebaek, and D. Dill. Java Model Checking. In Proceedings
of the 15th IEEE International Conference on Automated Software Engineering,
pages 253–256, September 2000.

25. PolySpace. An Automatic Run-Time Error Detection Tool.
http://www.polyspace.com.

26. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A
Dynamic Data Race Detector for Multithreaded Programs. ACM Transactions on
Computer Systems, 15(4):391–411, November 1997.

27. M. Singhal. Deadlock Detection in Distributed Systems. IEEE Computer, pages
37–48, Nov. 1989.

28. S. D. Stoller. Model-Checking Multi-threaded Distributed Java Programs. In SPIN
Model Checking and Software Verification, volume 1885 of LNCS, pages 224–244.
Springer, 2000.

29. W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model Checking Programs.
Automated Software Engineering, 10(2), April 2003.

