
Confirmation of Deadlock Potentials
Detected by Runtime Analysis

Saddek Bensalem
Verimag

2, Avenue de Vignate
Gieres, France

bensalem@imag.fr

Jean-Claude Fernandez
Verimag

2, Avenue de Vignate
Gieres, France

fernand@imag.fr

Klaus Havelund
Kestrel Technology

4984 El Camino Real
Los Altos, California, USA

havelund@gmail.com

Laurent Mounier
Verimag

2, Avenue de Vignate
Gieres, France

mounier@imag.fr

ABSTRACT
This paper presents a framework for confirming deadlock
potentials detected by runtime analysis of a single run of a
multi-threaded program. The multi-threaded program un-
der examination is instrumented to emit lock and unlock
events. When the instrumented program is executed, a trace
is generated consisting of the lock and unlock operations
performed during that specific run. A lock graph is con-
structed which can reveal deadlock potentials in the form
of cycles. The effectiveness of this analysis is caused by the
fact that successful non-deadlocking runs yield as good, and
normally better, information as deadlocking runs. Each cy-
cle is then used to construct an observer that can detect
the occurrence of the corresponding real deadlock, should it
occur during subsequent test runs; and a controller, which,
when composed with the program, determines the optimal
scheduling strategy that will maximize the probability for
the corresponding real deadlock to occur. The framework is
formalized in terms of transition systems and is implemented
in Java.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
monitors, testing tools, tracing ; D.3.2 [Programming Lan-
guages]: Language Classifications—concurrent languages,
Java; D.4.1 [Operating Systems]: Process Management—
concurrency, deadlocks, scheduling, synchronization, threads ;
F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—operational semantics, program
analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
0tiocoJuly 17–20, 2006, Portland, Maine, USA.
Copyright 2006 ACM 1-59593-263-1/06/0007 ...$5.00.

General Terms
Verification, Reliability, Algorithms, Theory.

Keywords
Deadlock detection, dynamic program analysis, false posi-
tives, Java, multi-threading, scheduler synthesis, testing.

1. INTRODUCTION

1.1 Background
Deadlocks form one of the important error categories of

concurrent computer systems. This paper presents a tech-
nique for detecting deadlock potentials and for confirming
the real deadlocks corresponding to these warnings. Nor-
mally one distinguishes between two kinds of deadlocks [19,
15]: resource deadlocks and communication deadlocks. A set
of processes, or threads, is resource deadlocked if each pro-
cess in the set requests a resource, a lock, held by another
process in the set, forming a cycle of lock requests. In com-
munication deadlocks, messages are the resources for which
processes wait. In this paper we focus only on resource dead-
locks, from now on referred to as deadlocks.

Locks are used to protect data against data races where
several threads access shared objects simultaneously. Data
races form the other problematic error category of concur-
rent systems and the avoidance of data races unfortunately
frequently causes deadlocks when the locking discipline used
results in cyclic lock acquisitions. The difficulty in detect-
ing deadlocks comes from the fact that concurrent programs
typically are non-deterministic: several executions of the
same program on the same input may yield different behav-
iors due to slight differences in the way threads are sched-
uled.

The presented work builds on the previous work presented
in [3], in which a very effective algorithm and a system
were described for detecting deadlock potentials in multi-
threaded Java programs. The algorithm described in [3]
fundamentally examines a single execution trace, or pro-
gram run, where lock and unlock events have been recorded,

for example in a log file. On the basis of these locking events
a lock graph is built, which with high probability will con-
tain cycles in case deadlock potentials are present. That is,
a cycle in the lock graph indicates that the program could
potentially deadlock. However, this is not known for sure,
which is also why the approach is unsound (a found error
potential does not need to reflect a real error) and incom-
plete (errors may be missed). In this paper we augment the
algorithm described in [3] with an extra phase that attempts
to force the real deadlocks to occur based on the potentials
identified. Although this still does not make the approach
sound (nor complete), it does contribute to the information
the programmer is given about the lock discipline of his/her
program.

1.2 Approach
The algorithm presented works as follows. The runtime

analysis algorithm described in [3] is first applied to a run
of the program, where lock and unlock events are examined
and recorded in a lock graph. Cycles in the lock graph rep-
resent deadlock potentials. Each such cycle, printed out in a
readable format or visualized, might be enough information
for the programmer to determine whether it represents a real
problem or not. However, the result may be doubted, and
we will then want to observe an actual deadlock correspond-
ing to the suggested potential. The augmentation described
in this paper does exactly that. The cycle forms the ba-
sis for constructing a test harness consisting of an observer
that detects when the program actually deadlocks, and a
controller that tries to steer the program into the deadlock
suggested by the cycle. The program is then instrumented
a second time, this time to interact with the observer and
the controller: the controller is asked for permission to per-
form lock and unlock operations, and the observer is told
which locks are locked and unlocked. The controller essen-
tially attempts to prioritize lock operations performed by
the threads involved in cycles in such a manner that the
probability of a deadlock situation is increased. The frame-
work is formalized in terms of transition systems and is im-
plemented in Java. However, the methodology is language
independent and can for example as well be applied to C
and C++ programs that use POSIX threads [16].

1.3 Related work

1.3.1 Detection of deadlock potentials
A basic version of the runtime analysis algorithm described

in [3] was previously implemented in the commercial tool
Visual Threads [13]. This basic algorithm constructs a lock
graph and detects cycles from a single non-deadlocking ex-
ecution run. However, the basic algorithm can give false
positives, putting a burden on the user to refute such. Our
work in [3] augmented this work by minimizing the false
positives in three cases: cycles within one thread, cycles un-
der gate locks (a common lock taken first by all involved
threads), and cycles between thread segments that cannot
possibly execute in parallel. In yet earlier work we presented
the GoodLock algorithm [10] which also attempts to improve
the basic lock graph algorithm presented in [13] by reducing
false positives in the presence of gate locks. This algorithm
was based on building acyclic lock trees (rather than cyclic
lock graphs as in [13]) but was limited to the detection of
deadlocks between pairs of threads, rather than between any

number of threads as in [3]. The latter and more recent so-
lution builds directly on the cyclic graph model in [13]. In
[21] is described an algorithm that extends the GoodLock
algorithm for reducing false positives in presence of gate
locks with the capability of detecting deadlock potentials
between any number of treads (and not just two). This al-
gorithm uses a combination of acyclic lock trees and cyclic
lock graphs to represent locking patterns in a program run.
In that work a framework is furthermore suggested for us-
ing static analysis in combination with dynamic analysis to
detect deadlocks.

In these pieces of work a single execution trace is used as
basis for the dynamic analysis. The ConTest tool [8] is able
to analyze several execution traces, generated from several
runs of the program being tested, creating a single locking
model that is then analyzed. This approach is useful to
reduce false negatives (missed errors).

Static analysis, such as performed by tools like [21], JLint
[1], PolySpace [18] and ESC [6], analyze the source code
without executing it. Static analysis can be very efficient
and is generally preferable to dynamic analysis and testing
techniques since one does not need to run the program, re-
ducing the burden to compile and establish test cases. How-
ever, static analysis yields even more false positives and ad-
ditionally cannot well analyze programs where the object
structure is very dynamic. As described in [21] the ideal so-
lution is a combination of static and dynamic analysis where
each part supports the other.

1.3.2 Confirmation of deadlock potentials
In [10] an approach is described to detect deadlock poten-

tials using runtime analysis and confirm them using model
checking. The runtime analysis as well as confirmation al-
gorithms were programmed as modifications to the Java
PathFinder software model checker [22]. The runtime analy-
sis would detect deadlock potentials and create a set of warn-
ings. This information was then used to focus the model
checker to only consider threads involved in the warnings,
or having direct influence on such threads, and all possible
interleavings would be tried for these involved threads. The
approach presented in this paper attempts to approach this
from a testing perspective, avoiding the need for a model
checker.

Model checking has generally recently been applied di-
rectly to software, including the Java PathFinder system
[11, 22] and other similar systems [9, 14, 4, 2, 20, 17, 7].
A model checker explores all possible execution paths of the
program, and will therefore theoretically eventually expose a
potential deadlock. This process is, however, quite resource
demanding, in memory consumption as well in execution
time, for large realistic programs.

The ConTest tool [8] attempts to expose deadlocks by
inserting sleep and yield statements at specific locations
in the code of the program under test. This is a technique to
try and influence the behavior of the scheduler and hence be
able to explore more execution scenarios, thereby increasing
the chance of detecting a deadlock. The tool does, however,
not use reports on deadlock potentials to steer the program
under test into corners with high probability of deadlocking.

1.4 Outline of paper
Section 2 outlines the methodology of the approach and

the involved components. Section 3 introduces preliminary

concepts and notation used throughout the rest of the paper.
Section 4 describes how from a cycle representing a deadlock
potential to construct an observer that can detect the oc-
currence of the corresponding real deadlock, should it occur
during test runs. Section 5 describes how to construct the
controller which acts as a scheduler, how to instrument the
program under test, and how to execute the instrumented
program, the observer and the controller together. Section
6 discusses implementation issues and experimental results,
while Section 7 concludes the paper.

2. METHODOLOGY

Instrumentation

JPaX

Deadlock Analysis

program

Lockgraph2Observer

Verdict

Observer

Lock graph

Controller

Implemented System

Under Test Instumented

Figure 1: Methodology

Our methodology is illustrated in figure 1. It consists of
the following phases:

1. Automatic detection of deadlock potentials in a multi-
threaded program, the system under test (SUT), by
examining a single execution trace.

2. Automatic generation of an observer for each cycle in
the resulting lock graph.

3. Instrumentation of the system under test for the pur-
pose of confirming deadlock potentials.

4. Search for “incorrect execution traces”, by performing
multiple “controlled runs”.

We now elaborate on each of the phases in what follows. The
first step is to detect deadlock potentials in the implemented
system under test. The Jpax deadlock analyser [3] consists
of two main modules, an instrumentation module and an ob-
server module. The instrumentation module automatically
instruments the bytecode class files of the multi-threaded
program under test by adding new instructions that when
executed generate the execution trace consisting of lock and
unlock events needed for the analysis. The observer module
reads the event stream and performs the deadlock analy-
sis. That is, the instrumented program under observation
is then executed, while the lock and unlock events are ob-
served. A graph of locks is built, with edges between locks
symbolizing locking orders. Any cycle in the graph signi-
fies a deadlock potential. Having obtained the lock graph,

the second step consists in generating automatically an ob-
server for each cycle in the lock graph. The observer is a
testing device. It observes the system under test. The last
step is to control the execution of the SUT. If this execution
is “accepted” by the observer, it means that it contains a
deadlock (acceptance here means error detection).

3. PRELIMINAIRIES

3.1 General notations
A Labelled Transition System (LTS for short) is a quadru-

plet M = (QM, AM, RM, qM
init) where QM is the finite set of

states, AM is a finite alphabet of actions, RM ⊆ QM ×AM ×
QM is the transition relation, and qM

init is the initial state.
We write p

a−→RM q iff (p, a, q) ∈ RM. A (finite) execution

sequence σ of M is a sequence qM
init

a1−→RM q1 . . .
an−→RM qn.

The sequence w = a1a2 . . . an of AM∗ is called the trace of
σ (w = trace(σ)), and state qn is called the ending state of
σ (qn = end(σ)). The set of all execution sequences of M is
denoted by Exec(M).

An LTS M is said to be deterministic when for all states
p and for all actions a, p

a−→RM q1 and p
a−→RM q2 implies

q1 = q2. It is said to be complete when for all states p and
for all actions a, there exists a state q such that p

a−→RM q.
For a set E, ~xn (or simply ~x when value n is clear from

the context) denotes a tuple (x1, x2, . . . xn) of En. For i in
[1, n], ~x(i) represents the value xi (the ith element of ~x), and
~x[i ← x′i] denotes the tuple (x1, x2, . . . x

′
i, . . . xn), obtained

from ~x by replacing its ith element by x′i. Finally, for any
element e of E, ~e represents the tuple (e, e, . . . , e).

3.2 Program models and observers
A Java program that we consider can be viewed as a pair

(T ,O), where T = {Ti | i ∈ {1, 2, · · · , n}} is a set of paral-
lel threads Ti, that synchronize on a set of shared resources
O = {Oj | j ∈ {1, 2, · · · , p}}. The behaviour of each thread

Ti can be expressed by an LTS STi = (QSTi , ASTi , RSTi , q
STi
init)

such that

ASTi = {L(Ti, Oj) | i ∈ {1, · · · , n} ∧ j ∈ {1, · · · , p}} ∪
{U(Ti, Oj) | i ∈ {1, · · · , n} ∧ j ∈ {1, · · · , p}} ∪
{τ}

Intuitively, action L(Ti, Oj) (resp. U(Ti, Oj)) denotes a lock
(resp. unlock) statement performed by Ti on resource Oj ,
and τ denotes any other action.

According to the semantics of lock and unlock actions,
the behaviour of a program P = (T ,O) can be expressed by
an LTS SP = (Q, A, R, qinit) such that: Q ⊆ ((QT1 × · · · ×
QTn)× (T ∪ {⊥})p) (the second component is a vector that
for each object O indicates the thread that holds this lock,
or ⊥ if no thread holds it), A ⊆ (AT1 ∪ · · · ∪ ATn), qinit =

(qT1
init, . . . , q

Tn
init,

~⊥), and R is the smallest set verifying the
following rules:

(~p, ~o) ∈ Q, ~p(i)
τ−→TTi qi

(~p, ~o)
τ−→R (~p[i ← qi], ~o)

[Rule 1]

(~p, ~o) ∈ Q, ~p(i)
L(Ti,Oj)−→ RTi qi, ~o(j) = ⊥

(~p, ~o)
L(Ti,Oj)−→ R (~p[i ← qi], ~o[j ← Ti])

[Rule 2]

(~p, ~o) ∈ Q, ~p(i)
U(Ti,Oj)−→ RTi qi, ~o(j) = Ti

(~p, ~o)
U(Ti,Oj)−→ R (~p[i ← qi], ~o[j ← ⊥])

[Rule 3]

A (partial) deadlock of P is a state p of SP in which a
subset of threads T are mutually waiting for a same set
of resources to be freed. It is formalized in the following
definition:

Definition 1 (Deadlock states). Let P be a program
and SP its associated LTS. P contains a deadlock state, de-
noted by deadlock(P), iff there exists a state p = (~p, ~o) of
SP such that:

∃X ⊆ {1, 2, . . . n} · ∀i ∈ X · ∃j ∈ {1, 2, . . . p} ·
~p(i)

L(Ti,Oj)−→ RTi qi ∧
∃k ∈ X · ~o(j) = k ∧
∀a 6= L(Ti, Oj) ·

¬∃q′i · ~p(i)
a−→RTk q′i

Finally, an observer is an LTS equiped with a set of dis-
tinguished states (its accepting states). Execution sequences
of the observer that end in an accepting state are said to be
accepted by the observer:

Definition 2 (Observers). An observer OBS is a pair
(Obs, Accept) where Obs is a deterministic and complete
LTS: Obs = (QObs, AObs, RObs, qObs

init), and Accept is a set of
distinguished states of Obs: Accept ⊆ QObs.

An observer OBS = (Obs, Accept) accepts an execution
sequence σ of a program P if and only if there exists an
execution sequence σo of Obs with the same trace as σ and
whose ending state belongs to Accept :

accept(Obs, σ) ≡def

∃σo ∈ Exec(Obs) ·
trace(σ) = trace(σo) ∧ end(σ) ∈ Accept

4. FROM DEADLOCK POTENTIALS
TO OBSERVERS

4.1 Deadlock detection
In Java, a thread can lock an object using the synchronized

statement, or by declaring methods on the shared object
synchronized, which is equivalent. For example, a thread t

can obtain a lock on an object A and then execute a state-
ment S while having that lock by executing the following
statement: synchronized(A){S}. During the execution of
S, no other thread can obtain a lock on A. The lock is un-
locked when the scope of the synchronized statement is left;
that is, when execution passes the curly bracket: ’}’.

The algorithm for detecting deadlock potentials we use,
extends an existing algorithm by reducing the amount of
false positives reported [3], and has been implemented in
the Java PathExplorer tool [12]. This algorithm is neither

Main :

01: new T1().start();
02: new T2().start();

T1 :

03: synchronized(G){
04: synchronized(L1){
05: synchronized(L2){}
06: }
07: };
08: t3 = new T3();
09: t3.start();
10: t3.join();
11: synchronized(L2){
12: synchronized(L1){}
13: }

T2 :

14: synchronized(G){
15: synchronized(L2){
16: synchronized(L1){}
17: }
18: }

T3 :

19: synchronized(L1){
20: synchronized(L2){}
21: }

Figure 2: Example containing four cycles, only one
of which represents a deadlock potential

sound nor complete, but it scales and it is very effective:
it finds bugs with high probability and it yields few false
positives. In essence, the algorithm for detecting deadlock
potentials works as follows. The multi-threaded program
under observation is executed, while just lock and unlock
events are observed. A graph of locks is built, with edges
between locks symbolizing locking orders. An edge, in the
lock graph, between two locks o1 and o2 and labelled by t,
means that t owns o1 while tacking o2. Any cycle in the
graph signifies a potential for a deadlock.

The main task performed by the detection algorithm is
to find cycles among transactions, illustrating the potential
for threads waiting for resources held by other threads in a
cyclic manner. The detection of cyclic locking acquisitions
can yield false positives that do not represent real dead-
locks. Three categories of false positives can be avoided by
the deadlock analyser in Jpax. The first category, single
threaded cycles, refer to cycles that are created by one single
thread. Guarded cycles refer to cycles that are guarded by a
gate lock “taken higher” up by all involved threads. Finally,
thread segmented cycles refer to cycles between thread seg-
ments that cannot possibly execute concurrently. For the
example in Figure 2, the deadlock analyser Jpax generates
only one real deadlock potential between threads T2 and T3,
corresponding to a cycle on L1 and L2 (see lock graph in
Figure 3). The three other cycles in this graph correspond
to false positives, and the detection algorithm eliminates
them. The single threaded cycle within T1 clearly does not
represent a deadlock. The guarded cycle between T1 and
T2 does not represent a deadlock since both threads must
acquire the gate lock G first. Finally, the thread segmented
cycle between T1 and T3 does not represent a deadlock since
T3 will execute before T1 executes its last synchronization
segment.

4.2 From lock graph cycles to observers
The idea here is to build an observer from a cycle in the

lock graph. The obtained observer will characterize all pos-
sible interleavings that lead to a deadlock state. This can

G
14 14

16
4 4 5 5 15

19 20

1112
1516

3 3

T1

T1

T1

T1

T2

T2

T2

T3

L1 L2

Figure 3: The lock graph of the example in Figure 2
(line numbers are added on the edges to make the
correspondance with the statements in the program
clear)

be done as follows. First, for each edge in a cycle of the
lock graph we associate an (atomic) observer with two tran-
sitions. Then the parallel composition of all these atomic
observers can be seen as the global observer that character-
izes the potential deadlock.

Definition 3 (Atomic observer). Let C be a cycle
in the lock graph and ek = (oi, T, oj) the kth edge in C. We
associate an atomic observer Ok = (Obsk, Acceptk) to the
edge ek, such that :

• Obsk = (Qk, Ak, Rk, qk
init), where :

1. Qk, the set of states, is {2k − 1, 2k},
2. Ak, the finite alphabet of actions, has two ele-

ments L(T, oj) and U(T, oj)

3. Rk has two transitions: 2k − 1
L(T,oj)−→ 2k and

2k
U(T,oj)−→ 2k − 1, and

4. qk
init, the initial state, is 2k − 1

• Acceptk has one distinguished state 2k

The product of the atomic observers associated to the all
edges of one cycle should represent all possible interleavings
of the lock/unlock events from different threads in this cycle,
respecting that locks can only be held by one thread at a
time. The composed observer is defined as follows.

Definition 4 (Observer associated to a Cycle).
Let C = e1, . . . , en be a cycle in the lock graph and Ok =
(Obsk, Acceptk) for k = 1, . . . , n be the atomic obervers as-
sociated with each edge ek in C, where Obsk is the quadruplet
(Qk, Ak, Rk, qk

init). We define the observer OC associated to
the cycle C by (ObsC, AcceptC), such that :

• ObsC = (QC , AC, RC, qCinit) is the composition of the la-
belled transition systems Obsk for k = 1, . . . n, denoted
by ‖n

k=1 (Qk, Ak, Rk, qk
init), where :

1. QC = Q1 ×Q2 × . . .×Qn,

2. AC =
⋃n

k=1 Ak,

3. RC ⊆ QC ×AC ×QC is defined by :

qi
a−→q′i

(q1, . . . , qi, . . . , qn)
a−→(q1, . . . , q′i, . . . , qn)

where a is an action denoting a lock L(Ti, oj) or
an unlock U(Ti, oj) statement.

4. qinit
C = (q1

init, q
2

init, . . . , q
n

init)

• The set AcceptC of distinguished states is Accept1 ×
Accept2 × . . .×Acceptn

Example 4.1. Let us consider the real deadlock potential
between threads T2 and T3 in the example in Figure 2, corre-
sponding to the cycle (L2, T2, L1), (L1, T3, L2). The atomic
observers associated with each edge in the cycle are respec-
tively :

(({1, 2}, {L(T2, L1), U(T2, L1)},
{(1, L(T2, L1), 2), (2, U(T2, L1), 1)}, 1), {2})

and
(({3, 4}, {L(T3, L2), U(T3, L2)},

{(3, L(T3, L2), 4), (4, U(T3, L2), 3)}, 3), {4})
For the cycle the observer is OC = (ObsC, {2, 4}), where

ObsC is the transition system in Figure 4.

(1,3)

(2,3) (1,4)

(2,4)

L(T2, L1)

L(T3, L2)L(T2, L1)

L(T3, L2)

U(T2, L1) U(T3, L2)

U(T2, L1)

U(T3, L2)

Figure 4: The transition system of observer OC

5. CONFIRMATION OF
DEADLOCK POTENTIALS

In the previous section we saw how each cycle of the lock
graph produced by Jpax can be turned into an observer, able
to reveal the corresponding real deadlock in the program un-
der verification, in case the potential is not a false positive
and has such a real manifestation. In particular, if an exe-
cution sequence of this program is accepted by this observer,
then this sequence contains a deadlock (i.e., a state in which
a group of threads are waiting for mutual unlock actions on
the same resource set).

5.1 Program execution guided by an observer
In this section we show how the program execution can

be guided by this observer to increase the chance of exhibit-
ing such a deadlock state. Instead of just monitoring the
program with the observer, we propose to control its execu-
tion in order to favour the execution sequences that make
progress towards an accepting state of the observer. This is
achieved in the following way:

Instrumentation phase
First, the program under test is modified:

• A new controller thread is added, in charge of
driving the program execution towards an ob-
server’s accepting state.

• Each program statement a (performed by a thread
T) which is monitored by the observer (a is a lock
or unlock instruction) is replaced by a two way

communication with the controller: Req(a), re-
quest from the thread T to perform action a, fol-
lowed by Grant(a), response from the controller
to grant this action. The thread T is blocked un-
til reception of this grant, and it executes action
a when it receives it (in an atomic way).

Execution phase
Then, this instrumented program is executed:

• The controller blocks all the requests it receives.

• When all monitored threads are blocked (or when
a timer expires, to avoid an infinite wait), it liber-
ates one of them to allow progress towards an ac-
cepting state. unlock requests are always granted
first corresponding to a “backtrack” in the ob-
server’s state space. Otherwise lock requests are
granted in such a manner as to give all threads
involved in a deadlock cycle their first lock before
any thread is granted permission to its second lock
(which it then cannot get).

This approach is formalised in the next paragraph.

5.2 Formalization
The instrumentation phase can be modelled as an LTS

transformation parameterized by an action set A, as ex-
plained in the definition below.

Definition 5 (Instrumented LTS).
Let M = (QM, AM, RM, qM

init) be an LTS. The instrumented
LTS M ′ of M with respect to the action set A, denoted by
instrument(M, A), is the LTS (QM’, AM’, RM’, qM’

init) defined

as follows. Let RA = {(p, a, q) | a ∈ A ∧ p
a−→RM q},

k = |RA|, and qA
1 , · · · qA

k be fresh names of states not in QM.
Then:

• QM’ = QM ∪ {qA
1 , · · · qA

k }
• AM’ = (AM\A)∪{Req(a) | a ∈ A}∪{Grant(a) | a ∈ A}
• We define p

α−→RM’ q :

– p
α−→RM’ q iff p

α−→RM q and α 6∈ A

– Let RA = {t1, · · · , tn}. For each ti : p
a−→RM q

of RA, using a fresh name qA
i, we have :

p
Req(a)−→ RM’ qi

A Grant(a)−→ RM’ q,

where (qA
i , Grant(a), q) is the unique outgoing tran-

sition of qA
i .

• qM’
init = qM

init

Let P = (T ,O) be a program, and Obs = (Obs, Accept)
an observer. In the following we denote by P ′ the instru-
mented program obtained by replacing each LTS STi by its
instrumented version S′Ti

= (QS’Ti , AS’Ti , RS’Ti , qinit
S’Ti)

with respect to the observer’s action set AObs. That is, we
have that S′Ti

= instrument(STi , A
Obs).

The execution phase consists in a program execution
guided by a Controller thread towards an accepting state
of the observer. Therefore the Controller thread should
maintain the current observer’s state (according to the ac-
tions executed so far by the program) and the status of the
threads monitored by this observer (i.e., are they currently
blocked on a lock or a unlock action). This status can be
modeled by two tuples:

• ~x = (x1, x2, . . . , xn), where xi ∈ AObs is the action
requested by thread Ti, or is equal to ε if Ti is not
currently blocked;

• ~b = (b1, b2, . . . , bn), where bi is a boolean value equal
to true if thread Ti is blocked and to false otherwise.

The Controller thread can be expressed by an LTS SCTR =
(QCTR, ACTR, RCTR, qCTR

init) such that:

• QCTR ⊆ QObs × (AObs ∪ {ε})n × Bn

• ACTR = AObs

• RCTR is the smallest set obtained by applying the rules
in Figure 5

• qCTR
init = (qObs

init, ~ε, ~false)

The resulting instrumented program behaviour during the
execution phase can then be modelled by an LTS SCTR

P =
(Q, A, R, qinit) such that:

• Q ⊆ ((QS’T1 × QS’T2 × · · · × QS’Tn) × (T ∪ {⊥})p ×
QCTR) ∪ {δ}

• A ⊆ (AS’T1 ∪AS’T2 ∪ · · · ∪AS’Tn)

• R is the smallest set obtained by applying the rules in
Figure 5,

• qinit = (qinit
S’T1 , . . . , qinit

S’Tn , ~⊥, qinit
CTR)

Intuitively the rules in Figure 5 can be interpreted as fol-
lows (an application example is presented in the next sec-
tion):

• Rule R4 states that if an accepting state of the con-
troller has been reached, then the current execution
sequence terminates in the special deadlock state δ.

• Rules R5 and R6 correspond to a request received from

thread Ti: this thread becomes blocked (~b(i) is set
to true), and the requested action is stored (~x(i) is
updated).

• Rules R7 and R8 correspond to a grant issued by the
Controller: when all the threads are currently blocked

(~b is equal to ~true), then if an unlock action can be per-
formed, it is granted (rule R8), otherwise a lock action
is granted (rule R7).

The rules are applied such that lock releases have highest
priority and lock requests that do not maximize the prob-
ability of a deadlock have lowest priority. Those are the
secondary lock requests that would block in a deadlock sit-
uation. The result will be that all threads take their first
lock first, and now cannot get their second lock.

Finally, it is easy to prove that whenever a deadlock state
is found during a guided execution, then it corresponds to a
real deadlock in the original program (since the Controller

only restricts the program behaviour):

Theorem 1. If the LTS SCTR
P contains an execution se-

quence that ends in the state δ, then program P contains a
deadlock state :

(∃σ ∈ Exec(SCTR
P) · end(σ) = δ) ⇒ deadlock(P)

pObs ∈ Accept

(~p, ~o, (pObs, ~x,~b))
τ−→T δ

[Rule 4]

~p(i)
Req(L(Ti,Oj))−→

R
S’Ti

qi

(~p, ~o, (pObs, ~x,~b))
Req(L(Ti,Oj))−→ R (~p[i ← qi], ~o, (pObs, ~x[i ← L(Ti, Oj)],~b[i ← true]))

[Rule 5]

~p(i)
Req(U(Ti,Oj))−→

R
S’Ti

qi

(~p, ~o, (pObs, ~x,~b))
Req(U(Ti,Oj))−→ R (~p[i ← qi], ~o, (pObs, ~x[i ← U(Ti, Oj)],~b[i ← true]))

[Rule 6]

∃i. ~x(i) = L(Ti, Oj), ~o(j) = ⊥, pObs L(Ti,Oj)−→ TObs qObs

(~p, ~o, (pObs, ~x, ~true))
Grant(L(Ti,Oj))−→ R (~p[i ← qi], ~o[j ← Ti], (qObs, ~x[i ← ε],~b[i ← false]))

[Rule 7]

∃i. ~x(i) = U(Ti, Oj), ~o(j) = Ti, pObs U(Ti,Oj)−→ TObs qObs

(~p, ~o, (pObs, ~x, ~true))
Grant(U(Ti,Oj))−→ R (~p[i ← qi], ~o[j ← ⊥], (qObs, ~x[i ← ε],~b[i ← false]))

[Rule 8]

Figure 5: Rules

6. IMPLEMENTATION ISSUES
The technique proposed in this paper to confirm the exis-

tence of potential deadlocks revealed by Jpax using guided
execution is currently under implementation. However, a
first prototype does exist, and its use has confirmed the util-
ity of this approach. We discuss in this section some of the
implementation issues, and give some experimental results
obtained with the tool.

6.1 Implementation issues
According to the methodology described in the previous

section, guiding a program towards the accepting state of
an observer requires two successive phases: instrumentation
of the original program (the program under test), and exe-
cution of this instrumented program in coordination with a
Controller thread.

Instrumentation
The program instrumentation is performed at the byte
code level using the Bcel byte code analysis and trans-
formation tool [5]. The instrumentation phase consists
of a traversal of the byte code program’s abstract syn-
tax tree while inserting the communications with the
Controller before each relevant instruction, accord-
ing to definition 5. Relevant instructions considered
so far are entry and exit points of synchronisation
blocks (monitorenter and monitorexit at the byte-
code level).

Communications between the instrumented threads and
the Controller are implemented by means of message
exchanges using sockets. This solution allows to run
the Controller thread on a remote machine, if neces-
sary (i.e., if the test architecture does not allow to run
it directly on the same platform as the program under
test). Messages sent by a thread Ti to the Controller

contains the following information: the thread id of Ti,
the request type (lock or unlock actions corresponding
to entry and exit of a synchronized block), and the

identity of the object to lock or unlock, that could be
either a method variable, a class variable or the object
of a method (when the synchronized block corresponds
to a synchronized method).

Execution with the Controller thread:
The Controller thread first reads as input an ob-
server description and then starts the program under
test and interacts with it. It maintains a set of data
structures allowing to implement the rules R4 to R8
described in figure 5: the current observer state, the

current set of locked threads (~b), and the current set
of requested actions (~x). The Controller implementa-
tion is then rather straightforward: it receives request
messages from the program under test, and behaves
according to rules R4 to R8. However, to avoid an in-
finite wait of the Controller (when the running thread
Ti will no longer perform any request action), a timer
is used to indicate to the Controller to “liberate”
another blocked thread (if any), applying rule R7 or
R8, increasing the chance to reach an accepting state.
Finally, the Controller can also store the current ex-
ecution sequence to issue a kind of “diagnostic trace”
if an accepting state of the observer is reached.

6.2 Some experimental results
In our experiments with this first prototype we only con-

sidered rather simple Java programs. Our purpose here was
only to identify some potential problems in our implemen-
tation, and to roughly evaluate its performance (in terms of
execution time, and ability to detect deadlocks). Checking
its scalability to larger examples would clearly require more
experiments.

The pseudo-Java code below describes a program with two
parallel threads T1 and T2 entering two nested synchroniza-
tion blocks (associated to variables a and b) depending on
the value of a static variable x.

class T implements Runnable {

static int x=0;

...

public void run() {

while (true) {

if (x == 0) {

x=1;

synchronized (a) {

synchronized (b) {

...

}

}

} else {

x=0;

synchronized (b) {

synchronized (a) {

...

}

}

}

}

}

}

public static void main(String[] args){

Thread T1 = new Thread(new T());

Thread T2 = new Thread(new T());

T1.start();

T2.start();

...

}

Executing this program may lead to a deadlock. Surpis-
ingly this deadlock happens to be difficult to observe in prac-
tice, even when running this program on several platforms,
or with several Java runtime environments. However it is
immediately found when this program is instrumented and
executed in conjunction with the Controller thread. A
possible guided execution is illustrated in Figure 6.

7. CONCLUSION
A framework has been presented for detecting deadlocks

in multi-threaded programs. The detection consists of two
phases: a deadlock potential identification phase, and a
deadlock potential confirmation phase. During the first phase
the program is instrumented to emit locking events to a run-
time analyzer, which builds a lock graph where cycles rep-
resent deadlock potentials. In the second phase the original
program is again instrumented, this time to communicate
with an observer that can detect the occurrence of real dead-
locks and a controller that can drive the application into the
deadlocks suggested by the cycles. The observer and the
controller are synthesized from the cycles produced during
the first phase. The framework has been formalized in terms
of transition systems and has been implemented in Java. A
small set of test cases have been performed, illustrating that
deadlocks are found efficiently and effectively due to the first
phase, and that true positives (real deadlocks) can be con-
firmed and demonstrated automatically. The approach is
attractive since it does not require user provided input (be-
yond the program) and since the technique seems to scale
very well. A combination with static analysis as described
in [21] together with a random scheduling framework as de-

R7

R4

δ

R5

R5

R5

~b

~b

~b

[true, true]

R5

~b

[true, true]

[true, false]

[false, false]

[false, true]

~b

T2

Req(L(T1, a))

Grant(L(T1,a))

Req(L(T1, b))

T1
Controller

Req(L(T2, b))

R7

~x

[ε, ε]

~x

[L(T1,a), ε]

~x

~x

~x

[L(T1,a), L(T2,b)]

[ε, L(T2,b)]

[L(T1,b), L(T2,b)]

~x

[L(T1,b), ε]

~b

[true, true]

~b~x

[L(T1,b), L(T2,a)]

[true, false]

Grant(L(T2,b))

Req(L(T2, a))

Figure 6: Example of guided execution

scribed in [8] would be a very strong defense against dead-
locks in realistically sized programs and will be pursued in
future work.

8. REFERENCES
[1] C. Artho and A. Biere. Applying Static Analysis to

Large-Scale, Multi-threaded Java Programs. In
D. Grant, editor, 13th Australien Software
Engineering Conference, pages 68–75. IEEE Computer
Society, August 2001.

[2] T. Ball, A. Podelski, and S. Rajamani. Boolean and
Cartesian Abstractions for Model Checking C
Programs. In Proceedings of TACAS’01: Tools and
Algorithms for the Construction and Analysis of
Systems, LNCS, Genova, Italy, April 2001.

[3] S. Bensalem and K. Havelund. Dynamic Deadlock
Analysis of Multi-threaded Programs. In Shmuel Ur,
Eyal Bin, and Yaron Wolfsthal, editors, Haifa
Verification Conference, volume 3875 of LNCS, pages
208–223. Springer, 2005.

[4] J. Corbett, M. B. Dwyer, J. Hatcliff, C. S. Pasareanu,
Robby, S. Laubach, and H. Zheng. Bandera :

Extracting Finite-state Models from Java Source
Code. In Proceedings of the 22nd International
Conference on Software Engineering, Limerich,
Ireland, June 2000. ACM Press.

[5] M. Dahm. BCEL. http://jakarta.apache.org/bcel.

[6] D. L. Detlefs, K. Rustan M. Leino, G. Nelson, and
J. B. Saxe. Extended Static Checking. Technical
Report 159, Compaq Systems Research Center, Palo
Alto, California, USA, 1998.

[7] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur.
Multithreaded Java Program Test Generation.
Software Testing and Verification, 41(1), 2002.

[8] E. Farchi, Y. Nir-Buchbinder, and S. Ur. A Cross-Run
Lock Discipline Checker for Java. Tool presented at
the Parallel and Distributed Systems: Testing and
Debugging (PADTAD) track of the 2005 IBM
Verification Conference, Haifa, Israel. Tool is available
at http://alphaworks.ibm.com/tech/contest,
November 2005.

[9] P. Godefroid. Model Checking for Programming
Languages using VeriSoft. In Proceedings of the 24th
ACM Symposium on Principles of Programming
Languages, pages 174–186, Paris, France, January
1997.

[10] K. Havelund. Using Runtime Analysis to Guide Model
Checking of Java Programs. In SPIN Model Checking
and Software Verification, volume 1885 of LNCS,
pages 245–264. Springer, 2000.

[11] K. Havelund and T. Pressburger. Model Checking
Java Programs using Java PathFinder. International
Journal on Software Tools for Technology Transfer,
2(4):366–381, April 2000. Special issue of STTT
containing selected submissions to the 4th SPIN
workshop, Paris, France, 1998.

[12] K. Havelund and G. Roşu. Monitoring Java Programs
with Java PathExplorer. Proceedings of the First
International Workshop on Runtime Verification
(RV’01), volume 55 of Electronic Notes in Theoretical
Computer Science, pages 97–114, Paris, France, July
2001. Elsevier Science.

[13] J. Harrow. Runtime Checking of Multithreaded
Applications with Visual Threads. In SPIN Model
Checking and Software Verification, volume 1885 of
LNCS, pages 331–342. Springer, 2000.

[14] G. J. Holzmann and M. H. Smith. A Practical Method
for Verifying Event-Driven Software. In Proceedings of
ICSE’99, International Conference on Software
Engineering, Los Angeles, California, USA, May 1999.
IEEE/ACM.

[15] E. Knapp. Deadlock Detection in Distributed
Database Systems. ACM Computing Surveys, pages
303–328, Dec. 1987.

[16] B. Nichols, D. Buttlar, and J. P. Farrell. Pthreads
Programming. O’Reilly, 1998.

[17] D. Park, U. Stern, J. Skakkebaek, and D. Dill. Java
Model Checking. In Proceedings of the 15th IEEE
International Conference on Automated Software
Engineering, pages 253–256, September 2000.

[18] PolySpace. An Automatic Run-Time Error Detection
Tool.
http://www.polyspace.com.

[19] M. Singhal. Deadlock Detection in Distributed
Systems. IEEE Computer, pages 37–48, Nov. 1989.

[20] S. D. Stoller. Model-Checking Multi-threaded
Distributed Java Programs. In SPIN Model Checking
and Software Verification, volume 1885 of LNCS,
pages 224–244. Springer, 2000.

[21] R. Agarwal, L. Wang, and S. D. Stoller. Detecting
Potential Deadlocks with Static Analysis and
Run-Time Monitoring. In Proceedings of the Parallel
and Distributed Systems: Testing and Debugging
(PADTAD) track of the 2005 IBM Verification
Conference, Haifa, Israel. Springer-Verlag, November
2005. These proceedings.

[22] W. Visser, K. Havelund, G. Brat, and S. Park. Model
Checking Programs. In Proceedings of ASE’00: The
15th IEEE International Conference on Automated
Software Engineering. IEEE CS Press, September
2000.

