
Aspect-Oriented Race Detection in Java
Eric Bodden and Klaus Havelund

Abstract—In the past, researchers have developed specialized programs to aid programmers in detecting concurrent programming

errors such as deadlocks, livelocks, starvation, and data races. In this work, we propose a language extension to the aspect-oriented

programming language AspectJ, in the form of three new pointcuts, lock(), unlock(), and maybeShared(). These pointcuts allow

programmers to monitor program events where locks are granted or handed back, and where values are accessed that may be shared

among multiple Java threads. We decide thread locality using a static thread-local-objects analysis developed by others. Using the

three new primitive pointcuts, researchers can directly implement efficient monitoring algorithms to detect concurrent-programming

errors online. As an example, we describe a new algorithm which we call RACER, an adaption of the well-known ERASER algorithm to

the memory model of Java. We implemented the new pointcuts as an extension to the AspectBench Compiler, implemented the

RACER algorithm using this language extension, and then applied the algorithm to the NASA K9 Rover Executive and two smaller

programs. Our experiments demonstrate that our implementation is effective in finding subtle data races. In the Rover Executive,

RACER finds 12 data races, with no false warnings. Only one of these races was previously known.

Index Terms—Race detection, runtime verification, aspect-oriented programming, semantic pointcuts, static analysis.

Ç

1 INTRODUCTION

PROGRAMMING errors occur frequently in software sys-
tems, and therefore, researchers have spent much effort

on developing methods to detect and remove such errors as
easily and early as possible in the development process.
Concurrent programs are even more likely to suffer from
programming errors as concurrent programming adds
potential sources of failure. In a concurrent program, a
programmer has to make sure to avoid deadlocks, to
properly protect shared state from data races, and to protect
single threads or processes from starvation. Researchers
have developed specialized static and dynamic analyses to
aid programmers with these tasks [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10].

All of these approaches share one common concern.
They identify events of interest, such as the acquisition and
release of locks or the access to shared state. Static
approaches analyze the program source, while dynamic
approaches analyze a trace or abstract-state representation
generated by executing the program. Up to now, most
existing dynamic approaches have used some form of low-
level bytecode instrumentation library to transform the
analyzed program into one that generates those events.
However, such libraries, for example, BCEL [11], are
difficult to use and distract efforts from focusing on the
more interesting algorithmic aspects of the analyses.

Researchers have recognized aspect-oriented program-
ming as a convenient tool to declare instrumentation at a

high level of abstraction [12], [13], [14], [15], [16]. Aspect-
oriented programming allows programmers to use pre-
dicates, called pointcuts, to intercept certain events of
interest at runtime. Unfortunately, in all of the current
Java-based aspect-oriented programming languages, pro-
grammers can only intercept events such as method calls,
field accesses, and exception handling. In particular, none
of these languages allows programmers to intercept
events that regard the acquisition and release of locks.
This precludes programmers from implementing algo-
rithms in AspectJ that are meant to find concurrency-
related programming errors such as data races. In this
work, we hence propose a novel extension to the aspect-
oriented programming language AspectJ. The language
extension that we propose enhances AspectJ with three
new pointcuts, to make available to the programmer three
additional kinds of events: 1) the acquisition of a lock,
2) the release of a lock, and 3) the event of reading from
or writing to a field that may be shared among threads.

For instance, the following pointcut captures the event of
locking on object l: lock() && args(l). A programmer can
capture the converse event of unlocking l by simply writing
unlock() && args(l). Setting a potentially shared field on an
object o is captured via the pointcut set(! static *) && target(o)
&& maybeShared().

Matching the first two pointcuts against a given
program is decidable. The problem of matching the
maybeShared() pointcut is, however, generally undecid-
able. We therefore compute a sound overapproximation
using a static thread-local-objects analysis [17]. The
approximation assures that the pointcut matches every
access to a field that is indeed shared. Because of the
overapproximation, the pointcut may, however, also match
accesses to fields that are not actually shared, i.e., fields that
only a single thread accesses.

Using these three novel pointcuts, programmers can easily
implement bug-finding algorithms that detect errors related
to concurrency. The lock() and unlock() pointcuts allow a
programmer to uniformly act on any acquisition and release

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010 509

. E. Bodden is with the Software Technology Group, Technical University
Darmstadt, Hochschulstr. 10, S2|02 A209, 64289 Darmstadt, Germany.
E-mail: eric@bodden.de.

. K. Havelund is with the Jet Propulsion Laboratory, California Institute of
Technology, M/S 301-285, 4800 Oak Grove Dr., Pasadena, CA 91109.
E-mail: klaus.havelund@jpl.nasa.gov.

Manuscript received 30 Dec. 2008; revised 12 May 2009; accepted 13 July
2009; published online 27 Jan. 2010.
Recommended for acceptance by B. Ryder and A. Zeller.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-2008-12-0412.
Digital Object Identifier no. 10.1109/TSE.2010.25.

0098-5589/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

of a lock using synchronized blocks and methods in any Java

program. The programmer can use the maybeShared()

pointcut to gain runtime efficiency by monitoring accesses

to only those fields that may be shared among threads.
To demonstrate the feasibility of the approach, we

implemented the three novel pointcuts as an extension to

the AspectBench Compiler [18]. To show how programmers

can use this language extension, we adapted the ERASER race-

detection algorithm [19] to Java, and implemented it using the

new pointcuts. The new algorithm is named RACER. Both

ERASER and RACER detect program executions which reveal

potential for data races in the executed application.
We presented [20] a first version of the RACER algorithm

at ISSTA 2008. However, we subsequently noted1 that a large

number of potential data races that this version of RACER

reported were unfortunately false warnings. The initial

version of RACER reported these false warnings because it

ignored calls to Thread.start(). The improved version of

RACER that we present in this paper takes such calls into

account and therefore avoids reporting these false positives.
We applied the aspects implementing the RACER

algorithm to a plan execution program for the NASA K9
rover and two other multithreaded programs written by
computer science researchers. Our results show that the
algorithm is effective in finding data races. In the NASA
code, RACER found 12 races, 11 of which were previously
unknown, although extensive studies had been performed
on the K9 rover code before. In the other two programs, we
found no races, which was expected because we strongly
believe that these programs are race-free. RACER reported
only one false warning on these three benchmarks.

As we will show, beyond data race detection, the
extension is able to support most (if not all) other
concurrency analysis algorithms, which typically analyze
properties of synchronization and field accesses. Our
extension of AspectJ can capture all of Java’s synchroniza-
tion primitives, and AspectJ already provides pointcuts for
accessing those entities intended to be protected by
synchronization, namely, field reads and writes. The exten-
sion, for example, will be able to support algorithms for
deadlock detection [21], high-level data race detection [6],
and stale-value detection [7]. Researchers have previously
implemented all of these algorithms using the low-level
BCEL bytecode instrumentation library [11]. Programmers
could implement such bug-detection tools much easier using
AspectJ. The main contributions of this work are:

. a description of three novel AspectJ pointcuts,
lock(), unlock(), and maybeShared(),

. an implementation of these pointcuts in the Aspect-
Bench Compiler in the case of the maybeShared()
pointcut through a static whole-program analysis,

. an algorithm for race detection in Java, coined RACER,
that improves on ERASER, and an implementation
using the three novel AspectJ pointcuts, and

. an experiment showing that our implementation is
effective in finding data races in a plan execution
program for the NASA K9 rover.

2 EXAMPLE PROGRAM

In Fig. 1, we show an example program that contains a data

race. The classTaskholds static fieldsshared andshared_

protected, as well as an instance field not_shared.

Within its run method, each task prints the value of each

field, incrementing its value. The programmer protected

access to the field shared_protected by synchronizing on

the objectTask.class. The program’smainmethod creates

two Task objects and runs each of them in a separate thread.
Both threads execute concurrently without any syn-

chronization. The program accesses the field shared_

protected correctly because the programmer protected

accesses to this field by consistently locking on the

Task.class object. Accesses to not_shared may occur

unprotected because every thread accesses the field of a

different Task instance and therefore accesses a memory

location different from the one that the other thread

accesses. However, the program accesses the field shared

through both threads thread1 and thread2 without

proper synchronization—a data race.
Algorithms that wish to detect such data races or similar

programming errors in concurrent programs generally need

to capture two types of events: 1) locking and unlocking a

particular object and 2) accesses to fields, particularly fields

that are accessed through different threads. Traditionally,

bug-detection tools would instrument the program under

test (e.g., the one from Fig. 1) with a bytecode instrumenta-

tion package such as BCEL [11] to emit these events at

runtime. A special runtime environment would then

monitor the events and report a programming error as the

error is detected. Programming the bytecode instrumenta-

tion packages is a tedious and time-consuming task. We

propose using aspect-oriented programming instead.

510 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

1. We wish to thank Bill Pugh (University of Maryland) for pointing out
these false positives at the ISSTA conference.

Fig. 1. Example program containing a data race.

3 ASPECTJ LANGUAGE EXTENSION

Aspect-oriented programming is a programming style
that allows programmers to implement special “cross-
cutting concerns” in a modular way and then combine
these concerns with a base program through a process
called weaving.

One particularly popular aspect-oriented programming
language is AspectJ [22]. AspectJ is a backward compatible
language extension to Java. It allows programmers to define
a set of aspects, where an aspect itself is similar to a normal
Java class. However, unlike the case for normal Java classes,
programmers do not usually invoke the methods of an
aspect explicitly. Instead, the AspectJ runtime invokes these
methods (programmers frequently call the methods “pieces
of advice” or just “advice”) implicitly, at a set of well-defined
points in the program’s execution, so-called joinpoints.

In AspectJ, programmers can define a piece of advice to
execute at one of the following program events (see [23]
for details):

. method call,

. method execution,

. constructor call,

. constructor execution,

. static-initializer execution,

. object preinitialization,

. field read,

. field write,

. exception handler execution,

. advice execution.

Programmers can use special predicates, called pointcuts, to
define the set of joinpoints at which each piece of advice
should execute. Fig. 2 shows part of an aspect that we use in
our own implementation of the RACER algorithm. In lines 2-3,
the aspect defines a pointcut scope. This pointcut selects
from all joinpoints that we mentioned in the list above those
that do not occur within the lexical scope of any class within
the package ca.mcgill.sable.racer. Programmers
frequently use such pointcuts to prevent their aspects from
applying to themselves. The pointcut fieldSet in lines 5-6
matches any joinpoint at which the program assigns a value
to a nonstatic field of any type and name (as denoted by
the wildcard *). At the same time, the pointcut binds the
variable owner to the target object, i.e., the object whose
field it is assigned to. The advice in lines 9-12 declares that it

executes before any joinpoint described by the pointcut
fieldSet and by the pointcut scope, i.e., before any
assignment to a nonstatic field that happens within a
method body that is outside of the lexical scope of any class
in the package ca.mcgill.sable.racer.

Researchers have identified [12], [13], [14], [15], [16] long
ago that runtime monitoring for bug detection is a
crosscutting concern, and aspects resemble a convenient
abstraction for implementing runtime monitors. Some bug-
detection tools nowadays therefore instrument programs
by generating aspects in an aspect-oriented programming
language, for instance, AspectJ for Java-based programs or
AspectC for programs written in C. The bug-detection tools
then weave these aspects into the program, using a
standard compiler.

Up until now it was, however, not possible to develop bug-
detection tools based on aspects that would detect program-
ming errors related to concurrency in Java programs. This is
because, traditionally, AspectJ did not allow a programmer to
detect lock and unlock events caused by synchronized
regions in their programs. Therefore, many bug-detection
tools for concurrent programming resort to low-level
bytecode instrumentation libraries that are relatively cum-
bersome to use. In this section, we describe how we extended
AspectJ to eliminate this shortcoming. Further, we describe
how to implement and use another language extension, the
maybeShared() pointcut. This pointcut allows program-
mers to match on accesses to fields that are potentially shared
among threads. This may, in most cases, be more efficient
than monitoring accesses to all fields in a program.

3.1 The Pointcuts lock() and unlock()

When writing a concurrent Java program, a programmer
nowadays has multiple ways to implement a locking
policy. For example, with Java 5, Sun introduced the new
library java.util.concurrent, which offers classes like
ReentrantLock. Fig. 3 shows a code stub taken from
Sun’s documentation of this class. As one can see,
programmers acquire locks explicitly using this class, by
calling the lock() method. They can release a lock by
calling unlock().

In Fig. 4, we show standard AspectJ pointcuts that
programmers can use to capture these events. The pointcut
definition in lines 1-2 matches all calls to the lock()

method and binds the target object of the call to variable l.
The pointcut definition in lines 3-4 does the same for
unlock(). Researchers can easily construct bug-detection

BODDEN AND HAVELUND: ASPECT-ORIENTED RACE DETECTION IN JAVA 511

Fig. 2. Example pointcut and advice.

Fig. 3. Use of class ReentrantLock.

algorithms using such pointcuts if the concurrent program
under test only uses the class ReentrantLock for locking.

In general, another locking style is, however, much more
pervasive: the use of synchronized blocks and methods.
As we showed in lines 9-12 of Fig. 1, programmers can use
synchronized blocks to protect a region of code with a certain
object that serves as a lock. Program control only enters this
region when it can successfully acquire a lock on the given
object (in Fig. 1 on Task.class). The virtual machine
automatically releases the lock when control leaves the block
(either by throwing an exception or by normal flow). This
way, lock and unlock operations are balanced at runtime.

For convenience, programmers can also flag methods
with the synchronized modifier. A method declaration

synchronized void foo() f = � code � = g
is semantically equivalent to the declaration

void foo(){ synchronized(this) f = � code � = g }

and a declaration

static synchronized void foo() f = � code � = g
within a class C is semantically equivalent to:

static void foo() {

synchronized(C.class) f = � code � = g }

Using regular AspectJ, programmers can write pointcuts
to match on method modifiers and therefore can pick out
calls to synchronized methods. However, it is not possible to
match on the acquisition and release of locks using
synchronized blocks. This prevents researchers from using
AspectJ to implement bug-detection algorithms for con-
current programs. Our proposed lock() and unlock()

pointcuts overcome this shortcoming.

3.1.1 Syntax and Semantics

The programmer can use both pointcuts directly within any
pointcut declaration. The pointcut lock() matches when-
ever the program acquires a lock, by entering either a
synchronized block or method. The pointcut unlock()

matches whenever control flow leaves such a block or
method. A programmer can access the object that is locked,
respectively, unlocked, by conjoining the lock(), respec-
tively, unlock() pointcut with an args(..) pointcut.
Further, the programmer can attach pieces of advice to
these pointcuts. An advice then executes whenever its
pointcut matches. Fig. 5 shows two example advices
attached to lock() pointcuts that execute before, respec-
tively, after successful acquisition of a lock. The pointcut
args(l) binds the variable l to the object that it is locked
on. Note that the declared type of l is TaskQueue. Because
of that, the pieces of advice do not execute if a lock is
claimed that is not of type TaskQueue. Our implementa-
tion does not even insert instrumentation into those places

of the program at all. If the programmer instead wishes to
match on any lock that is acquired or released, regardless of
the lock’s type, she can use the declared type Object as
this is the supertype of all reference types.

3.1.2 Implementation for Synchronized Blocks

For synchronized blocks, the implementation of lock()

and unlock() pointcuts is relatively straightforward, by
the way that a Java compiler generates bytecode for
synchronized blocks. The compiler translates a synchro-
nized block synchronized(x) f= � code � =g to Java bytecode
of the following form:

1: monitorenter(x);

2: = � code � =
. . .

n: monitorexit(x);

. . .

m:monitorexit(x);

trap Throwable from 1 to n with m

In other words, monitorenter and monitorexit byte-
codes surround the protected region. A virtual machine
trap handles the case where the protected region throws an
exception. On any exception (Throwable is the common
ancestor of any exception type in Java) occurring between
lines 1 and n, the trap jumps to line m, where the program
then releases the lock on x by executing monitorexit(x).

We implemented lock() and unlock() pointcuts using
the AspectBench Compiler (abc) [18]. abc performs the
weaving process on an internal three-address-code repre-
sentation. This representation exposes monitorenter and
monitorexit bytecodes as shown above. We therefore
implemented the lock() pointcut by matching on mon-

itorenter and the unlock() pointcut by matching on
monitorexit, respectively. The programmer can conjoin
any of the two pointcuts with an args(x) pointcut. The
compiler then extracts the locked object from the monitor-
enter or monitorexit bytecode and binds this object to x.

3.1.3 Implementation for Synchronized Methods

The approach for synchronized methods is not quite as
straightforward. The crucial question to answer is where
instrumentation code within synchronized methods should
be woven. As an example consider the first advice definition
in Fig. 5 (lines 1-4). The programmer stated that lines 2-3 are
to be executed before the lock is acquired. Assume that our
implementation simply wove this advice by inserting lines
2-3 at the beginning of the declaration of each synchronized

512 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

Fig. 5. Logging lock acquisition with our AspectJ language extension.

Fig. 4. Pointcuts matching on calls to ReentrantLock.

method. This would give us the wrong semantics. Accord-
ing to the Java language specification [24], the method body
is executed after the lock has been acquired.

To work around this problem, we transform synchro-
nized methods to unsynchronized methods holding syn-
chronized blocks, as we showed in Section 3.1. We
implemented this transformation in the AspectBench
Compiler. After the compiler has applied the transforma-
tion, we know that synchronization can only occur through
synchronized blocks, not methods, and we can, therefore,
apply the weaving strategy from Section 3.1.2.

3.2 The Pointcut maybeShared()

We named the third and last pointcut of our AspectJ extension
maybeShared(). This is because it matches all field accesses
(reading or writing) that may be shared, i.e., accesses to fields
which more than one thread could potentially write to. The
word “may” here suggests that the semantic definition of this
pointcut is somewhat fuzzy. This is, however, not the case.
We can rigorously define the semantics of this pointcut
through the following two invariants:

1. The pointcut maybeShared() matches only field-
read or write statements.

2. If a statement reads from a field or writes to a field
and multiple threads do write to or read from this
field (through this and/or other statements), then
maybeShared() matches this statement.

Note that the second invariant is unidirectional. In other
words, maybeShared() is required to match accesses that
are indeed shared, but it may also match other field
accesses. The crucial point is that this overapproximating
definition enables sound optimizations for many algorithms
that attempt to find programming errors in concurrent
programs at runtime.

By the definition of maybeShared(), one sound
implementation of this pointcut would be to match all field
read or write statements in the entire program. Algorithms
that use maybeShared() should take this into account and
therefore not rely on certain statements not being matched.
Our RACER algorithm, for example (Section 4), works
correctly with such an implementation. However, the
purpose of the maybeShared() pointcut is, of course, to
make it match only as many statements as necessary but as
few statements as possible. For instance, in our running
example (Fig. 1), we would like to match the field accesses
in lines 8 and 11 but not 13, because the field in line 13 is not
shared among different threads. With such an implementa-
tion, a programmer can conjoin maybeShared() with
other pointcuts to gain an implementation that is auto-
matically optimized by focusing on shared field accesses.
For instance, the following pointcut, taken from our RACER

implementation, is guaranteed to match all statements
where a shared static field is set. It could further match
some write accesses to static fields that are not shared, i.e.,
which only one thread accesses.

pointcut staticFieldSet ():

set (static � �) && maybeShared ();

In the following, we describe an efficient implementation of
the maybeShared() pointcut that uses a static whole-
program analysis to make it match fewer unshared field
accesses than the unoptimized implementation.

3.2.1 Implementation Overview

Our implementation of maybeShared() uses a compiler
feature called reweaving. Fig. 6 explains this feature. First,
we use the compiler to weave our RACER implementation
(and/or any other aspects present), containing the
maybeShared() pointcuts, into the program under test.
To prepare the weaving, abc first matches all pointcuts
against all statements in the program and so generates a
“weaving plan,” containing instructions about which aspect
code to weave where. Then, abc performs the actual
weaving according to this plan. In a next step, we analyze
all field access statements in this weaving plan using a
thread-local-objects analysis of the entire woven program.2

The thread-local-objects analysis tells us which objects are
definitely thread-local, i.e., not read from or written to by
multiple threads. We then alter the weaving plan to not
match the maybeShared() pointcut at statements which
read from or write to such thread-local objects. In a last step,
we undo the initial weaving procedure, i.e., we unweave
the woven program to restore its original code, and then
reweave the program using the optimized weaving plan. As
a result, maybeShared() does not match any field access
where the thread-local-objects analysis was precise enough
to prove the accessed field thread-local.

3.2.2 Thread-Local-Objects Analysis

We use a thread-local-objects analysis that Halpert et al.

originally developed for component-based lock allocation. In

their paper [17], the authors describe the approach in detail

(Section 3 there). We here only outline the analysis process.

BODDEN AND HAVELUND: ASPECT-ORIENTED RACE DETECTION IN JAVA 513

2. In our particular setting, it would be equally possible to apply the
thread-local-objects analysis to the unwoven Java program. However, by
applying it to the woven program instead, we allow programmers to apply
their bug-detection algorithms not only to Java programs but to AspectJ
programs as well: After weaving, the compiler has reduced the AspectJ
program to a plain Java program, which our analysis can handle.

Fig. 6. Weaving process for maybeShared pointcut.

The thread-local-objects analysis is a flow-insensitive
context-sensitive whole-program analysis, but unlike many
other context-sensitive static analyses, it considers thread-
creation sites as context, not method-call sites. The thread-
local-objects analysis runs in different stages. First, the
analysis builds a call graph for the entire program. It also
uses the flow-insensitive points-to analysis in Spark [25] to
build points-to sets. An analysis can use points-to sets to
statically estimate whether two variables may point to the
same objects.

In a second stage, the analysis creates information flow
summaries for every reachable method in the program. The
summaries describe how data, in particular objects, may
flow from a method’s parameters to its return value or to
other methods.

The actual thread-local-objects analysis (TLOs) then
executes as a third stage. To quote Halpert et al.,

TLO classifies all fields as either thread-local or thread-
shared, where any field that may be accessed by more than
one thread is thread-shared and all others are thread-local.

The analysis inspects one thread creation site t at a time.
First, the analysis enumerates all methods methodsðtÞ that
may be executed through t. Then, the analysis flags as
thread-shared every field accessed by a method not in
methodsðtÞ. The analysis classifies all other fields as thread-
local. A similar classification applies to method parameters.
If a method outside t calls a method m, then the analysis
considers m’s parameters as thread-shared; otherwise, it
considers the parameters as thread-local.

In a next step, the thread-local-objects analysis uses the
information flow analysis to propagate information about
shared fields through methods. Whenever the information
flow analysis indicates that a shared value may flow to a
field that, until now, was classified as thread-local, the
analysis changes this classification to thread-shared. The
process is then repeated with the new classification until
the analysis reaches a fixed point.

Last, an interprocedural stage propagates this informa-
tion along method calls, again until a fixed point is reached.
This stage also combines the information for all of the
different threads to a common data structure. As a result,
when the programmer asks the thread-local-objects analysis
for information on a field f , the analysis reports this field as
thread-local only if it has not classified the field as thread-
shared for some thread.

The thread-local-objects analysis is demand-driven, i.e.,
it computes for every field f separately whether or not f
may be shared. Hence, we can decrease the analysis time by
asking the analysis for information only about exactly those
fields f for which this piece of information (whether or not
f may be shared) actually matters. We ask the analysis for
information about any field access that is matched by a
maybeShared() pointcut, but only after the rest of the
pointcut matching has completed. For instance, the pointcut

set(static � �) && maybeShared()

matches only writes to static fields. If the programmer applies
this pointcut to the example program from Fig. 1, then we
only query the thread-local-objects analysis for the fields
shared and shared_protected because not_ shared is

nonstatic, and therefore, the value of maybeShared() does
not matter. This “lazy querying” makes the approach
relatively efficient, as the thread-local-objects analysis may
be queried comparatively sparsely.

4 RACER ALGORITHM

To demonstrate how to use our AspectJ language extension,
we implemented a novel algorithm called RACER, a variant
of the ERASER algorithm for data race detection by Savage
et al. [19]. RACER aims at detecting potential data races at
runtime, just as ERASER does. Therefore, RACER has some
parts in common with the ERASER algorithm. However,
RACER’s semantics is closer to Java’s memory model [26]
and, as we will see, RACER can, therefore, detect data races
in Java programs that ERASER would miss.

When we presented RACER at the 2008 International
Symposium on Software Testing and Analysis (ISSTA), Bill
Pugh, one of the creators of the current version of the Java
Memory Model [26], pointed out to us that some of the race
warnings that RACER issued were actually false warnings.
The initial version of RACER caused these false positives
because it ignored calls to Thread.start(). According to
the Java Memory Model, such calls create a happens-before
edge, and therefore, allow for a safe handover of values
from the caller thread to the started thread. For this paper,
we therefore created an enhanced version of RACER, which
takes calls to Thread.start() into account in order to
avoid false positives.

We next explain the basic principles underlying both the
ERASER and our RACER algorithm, and then explain how
RACER differs from ERASER.

4.1 Lock Sets

Both algorithms keep lock sets as follows: The idea is to
maintain for each field f a set of candidate locks LðfÞ. At
each point of a program execution, the set LðfÞ contains the
lock objects that all threads could agree on using when
accessing the field f so far. We qualify a field by its owner.
For a static field f of a class C, we maintain a lock set LðC:fÞ,
for an instance field f of an object o, we maintain the set
Lðo:fÞ. We maintain the set using a chain of maps. A map
ownerToFieldToLocks associates an owner o with a map
fieldToLocks, which then maps from f to Lðo:fÞ. For the
map ownerToFieldToLocks, we use a weak identity hash
map. Such a map compares keys on object-reference identity
(as opposed to equality). Further, weak maps automatically
dispose of entries whose key collected garbage. This practice
prevents our implementation from causing memory leaks.
Weak maps register with a special reference queue that the
garbage collector maintains. When collecting an object o, the
garbage collector notifies the map, and the map, in turn,
discards its mapping for o (if any such mapping is present).
The same holds for class objects C. However, the garbage
collector does not collect a class C before it can also collect
C’s class loader. This, in turn, is commonly the case only
when the virtual machine shuts down. Therefore, using
weak hash maps will normally not save any memory for
mappings for class objects C. Note that this form of memory
management is sound. After the garbage collector has
collected object o (or class C), no thread can access its fields

514 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

any more. Therefore, no field of o (or C) can be part of a race

on the remainder of the execution.
As the program under test starts up, we assume that lock

sets hold the locks of all possible objects. As there is no way

to enumerate all of those objects, we use a special marker set

to implement this semantics. Furthermore, we maintain one

lock set LT ðtÞ for each thread t. At any time, it holds the

locks currently owned by t. One AspectJ aspect, Locking,

keeps track of these lock sets using a thread-local variable,

as shown in Fig. 7. Because Java’s locks are reentrant, we

use a bag instead of a set. In lines 3-7, we declare the thread-

local variable locksHeld and initialize it to an empty bag.

Then, whenever the program claims a lock l, we add this

lock to the bag of the current thread (lines 9-13). Whenever

the program releases a lock l, we remove it from the bag

(lines 15-20). (The conjunction “&& Racer.scope()”

prevents the pointcuts from matching within our own

RACER implementation, and therefore avoids potentially

infinite recursion.) As the reader can see, this way of

implementation is very direct. No additional instrumenta-

tion phase is necessary, as the AspectJ weaver takes care of

the entire weaving process.
An additional advantage of using AspectJ is that we

could easily modify the Locking aspect to take other

locking styles into account. For instance, if Reentrant-

Locks were used (see Section 3), we could just extend the

pointcuts in Fig. 7 with an additional disjunct, e.g.,

replacing lines 9 and 10 by:

before(Object l):

(lock () && args (l) ||

call (void ReentrantLock.lock ()) && target (l))

&& Racer.scope () { . . .

This allows researchers and programmers to be very

flexible in the choice of locks and how they are acquired.
Whenever the program under test accesses a field, the

AspectJ runtime notifies a second aspect Racer. We show

the essential parts of this aspect in Fig. 8.

The aspect first declares four different pointcuts (lines 3-

12) that match writes to static fields and instance fields (the

first two pointcuts) and reads from static fields and instance

fields (the last two pointcuts). Note that we use the

maybeShared() pointcut because we are not interested

in accesses to fields that cannot possibly be shared among

threads.
Two pieces of advice follow. The first, in lines 14-22,

executes right before a static field is written to. The

advice first extracts the field’s name, the declaring class,

and the source location from the special constant

thisJoinPointStaticPart. The combination of de-

claring class and field name makes up our qualified field

name C:f . We use the source location to be able to tell the

programmer where a field was accessed, if this access is

part of a race.
The constant thisJoinPointStaticPart is gener-

ated by the AspectJ compiler and holds all statically

available information about the intercepted point in

program execution (the joinpoint). Because this information

is statically available, the compiler implements an opti-

mized compilation strategy to generate this constant. Any

use of thisJoinPointStaticPart is, therefore, very

efficient. Note how convenient it is to get access to an

event’s source location using thisJoinPointStatic-

Part. We believe that this particular AspectJ feature can be

very helpful for may online bug-detection algorithms.

BODDEN AND HAVELUND: ASPECT-ORIENTED RACE DETECTION IN JAVA 515

Fig. 7. Aspect bookkeeping thread local lock sets.

Fig. 8. Aspect updating per-field lock sets on field access.

In addition, we wish to note that, although we access
information about the monitored field, we never access the
field itself. Therefore, our own implementation cannot itself
cause a data race in the base program. Our RACER

implementation could, however, have data races within its
own code. We therefore used stratified aspects [27] to
validate that there were no races in our implementation.
Stratified aspects allow programmers to declare aspects on
a metalevel. Aspects on a metalevel cannot apply to aspects
on the same level (and hence, no to themselves), but they
can apply to aspects on a lower level. To check for races
within RACER, we declared two copies of RACER: 1) one
copy on the metalevel 1 (directly above the base code) and
2) one copy on the metalevel 2, directly above level 1. We
then ran the resulting woven program using our benchmark
set (see Section 5). In this setting, the aspects “(1)” would
report data races in metalevel 0 (the base program), while
the aspects “(2)” would report data races in metalevel 1,
which includes the aspects “(1).” In all cases, both copies
reported the same races, i.e., the aspects “(2)” reported no
races within our RACER implementation.

To conclude our description in Fig. 8, the advice then
calls the method fieldSet(..) to actually register the
field write event as follows: The Racer aspect asks the
Locking aspect for the lock set LT ðtÞ of the currently
executing thread. Then, Racer refines the lock set LðC:fÞ of
the field with LT ðtÞ:

LðC:fÞ :¼ LðC:fÞ \ LT ðtÞ:

The variable is regarded as safely protected as long as
LðC:fÞ never goes empty. This is because, if the program-
mer uses a lock consistently to protect the field C:f , this
lock will remain in LðC:fÞ during all refinements. The
potential for a data race may, on the other hand, exists if
LðC:fÞ becomes empty at some point (and C:f is shared
among threads).

The second piece of advice in lines 24-31 of Fig. 8
performs the same update, for instance, fields, this time
with the owner as the field’s qualifier instead of the
declaring class. The aspect furthermore contains two other
pieces of advice that register reading field accesses in the
very same manner, with the same updates to the fields’ lock
sets (not shown).

4.2 State Machine

The updates to lock sets presented so far are identical to the
updates that Savage et al. described in the ERASER

algorithm [19]. As Savage et al. point out, however, this
simple locking discipline is too strict. For instance, 1) it
should be okay for a variable v’s lock set to become empty if
this variable is only ever accessed by one thread. Further-
more, 2) one should not report potential for read-read races,
as such races can never lead to inconsistent visible data.
Because the ERASER algorithm was originally developed for
C programs, it even dealt with another idiom, 3) where
variables are frequently initialized without holding a lock
(and in C, it is commonly safe to do so).

Savage et al. took care of these constraints by framing the
state machine shown in Fig. 9a around the lock-set
refinement algorithm from Section 4.1. One stores one
instance of this state machine for every monitored variable.
Each variable initially starts in a Virgin state. Once the
variable is initialized by a thread t, the variable’s state
changes to Exclusive-Modified(t).3 This signifies that t is
initializing the variable, and thus only t should access the
variable, while it is in this state. While in this state, the
variable is considered in 3) its initialization phase—t may
write to and read from the variable. RACER does not refine
lock sets before another thread t0 accesses the variable,
entering the state Shared, respectively, SharedModified, an
indication that property 1), single-threaded access, does not

516 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

3. This state was called Exclusive in [19] but the name Exclusive-
Modified(t) suits our comparison to RACER better.

Fig. 9. ERASER and RACER state machines: Dashed states do no lock refinement; double-lined states report race potential when the lock set
becomes empty. (a) ERASER state machine. (b) RACER state machine.

hold. To avoid 2) reporting potential for read-read races,
ERASER only signals potential for a race if a lock set becomes
empty while in state SharedModified, not in Shared.

4.3 Safe versus Unsafe Initialization in Java

As noted above, ERASER grants an explicit initialization
phase for each variable—a phase which is assumed safe.
This may cause Eraser to miss data races when they occur
during an object’s initialization phase. The same holds in a
Java-based setting. In Fig. 10, we give a subtle example of
unsafe unsynchronized field accesses even during object
initialization. We adapted the example from Goetz’s book
on Java concurrency [28]. Assume a system in which
different threads, for instance, the main thread, add events
to an event queue. Also, the main thread starts an event-
processing thread at the beginning of the program, which
removes these events from the queue and sends the events
to registered event listeners. This causes these listeners to
process the event in this event-processing thread. The
constructor in Fig. 10 creates an object of an anonymous
inner class which it then registers as an event listener. The
problem is that the event-processing thread may execute the
doSomething() method as soon as this registration has
happened. The method has access to its parent ThisEs-
cape object, via an implicit this reference. The event-
processing thread runs concurrently to the constructor of
ThisEscape, i.e., according to the revised Java Memory
Model [26], the constructor execution neither happens
before nor happens after the execution of onEvent(..).
As a result, the value of 42 for the field i is not visible to this
listener, and if the listener were to access the field i, it
would not be clear which value it would read, 0 or 42. We
have just witnessed a very subtle data race. Mature listener-
based frameworks like Sun’s Abstract Window Toolkit
(AWT) therefore safeguard against such races through
additional synchronization code. We believe that such
subtle races are particularly hard to find, and therefore,
our tool should report such races just as any other race.
Because many tools for Java imitate C-based algorithms like
ERASER in some Java programs such races went undetected
for years. The ERASER algorithm would miss the data race
in Fig. 10 because the write to i followed by the read from i

lead to the state Shared. ERASER does not report a race in
this state even when the lock set becomes empty.

For RACER, although we would still like to refrain from
reporting variables that are 1) accessed by a single thread
only or 2) expose only potential for read-read races; we
would, following the Java Memory Model, want to weaken
property 3): RACER only assumes a variable’s initialization
as safe in one certain special situation.

We show an example of this “safe” situation in Fig. 11. The
main thread assigns the value 42 to variable t1.var, and
then starts the thread t1. From there onward, only t1

accesses the variable var. In this case, t1 may access var
without locking because the Java Memory Model assures that
the initialization in the main thread happens before any
potential access by t1: According to Section 17.4.4 of the Java
Language specification [24], it holds that “[an] action that
starts a thread synchronizes with the first action in the thread
it starts.”4 Fig. 12 shows a sequence diagram for this program.

Note how this situation is different from the one that is
shown in Fig. 13. This figure is based on a modified version
of the code in Fig. 11 in which the assignment that is
commented out at line 9 gets executed. In this case, there is
still no race between the first assignment by the Main
thread and the read in Thread1, but there is a race between
the read in Thread1 and the second assignment in the main
thread. This is because there is not a happens-before edge
between any code of the main thread that follows the spawn
of Thread1 and the code of Thread1 itself. In order to make
the assignment in line 9 visible to Thread1, both threads
would have to agree on a common lock which they would
then have to synchronize on.

When we compare the situation in Fig. 12 with the one in
Fig. 13, it becomes clear that while the updates performed
by the Main thread that happened in the period marked as
(Main, 0) are visible to Thread1, any accesses in the period
marked as (Main, 1) are not visible to Thread1. This is
because of a data race, as indicated by a missing happens-
before relationship. To make visible to Thread1 all writes
performed by the Main thread that happened after
spawning Thread1, the programmer must extend Thread1
to use a locking discipline that is consistent with the locking

BODDEN AND HAVELUND: ASPECT-ORIENTED RACE DETECTION IN JAVA 517

Fig. 10. Constructor letting an implicit reference to this escape to an
event-processing thread; c.f. [28, page 41].

Fig. 11. Example code starting a new thread.

4. Our initial RACER implementation presented at ISSTA did not treat
these kinds of situations precisely.

discipline that the Main thread uses. In a nutshell, we can

therefore conclude that in Java, a thread t may access an

object without locking only if it initialized this object itself,

or if a parent thread initialized the object prior to starting t.
In order to decide whether an object’s initialization took

place prior to starting the child thread or not, RACER

divides each thread’s lifetime into multiple access periods,

just as we see in Figs. 12 and 13.

4.4 Access Periods

When a thread t spawns a thread t0, then t0 can safely access

all values that twrote before the event of spawning t0 (without

holding a lock); however, t0 may not access such values that t

wrote after spawning t0 (without holding a lock). RACER

hence has to have a means to distinguish writes before a call

to Thread.start() from writes after such a call.
RACER therefore associates with every field f in its state

machine not just the last Thread t that accessed f , but
instead an access period ðt; itÞ, where it 2 IN identifies a
period in time. This period is nothing other than a thread-
local counter. When a thread t is started, its counter it has
value 0, and we say that “t is in period 0.” We increment it
every time t spawns another thread. Whenever t accesses a
field f , then we associate with f the access period ðt; itÞ.
This then allows us to identify later on whether this access
happened before the spawning of a particular thread or
after. To keep track of which access periods are visible to
other access periods, RACER needs to keep track of
spawned threads and when they are spawned.

4.5 Keeping Track of Spawned Threads

In general, RACER needs to keep track of which thread t
spawned a thread t0 and during which period. Let p ¼ ðt; itÞ
be an access period which is terminated by t spawning a
thread t0. As this call to t0.start() occurs, RACER stores a
spawning relationship between p and the period ðt0; 0Þ,
effectively expressing the information that thread t0 can
(in period 0 and onward) safely access fields that were
assigned by thread t in its period it or earlier. Based on this
information, we next define a visibility relation that
expresses which values a spawned thread t0 can safely
access from its parent thread t.

4.5.1 Visibility Relation

The visibility relation � is the smallest relation among

access periods such that for all periods ðt; itÞ, ðt0; it0 Þ, and

ðt00; it00 Þ, and for all i; j 2 IN, it holds that

t spawned t0 in period it ! ðt0; 0Þ � ðt; itÞ;
j > i! ðt; jÞ � ðt; iÞ:

We define � to be the reflexive and transitive closure of � .
Based on this relationship, a thread t0 may safely access a
value v in period it0 without locking if v is associated with a
last access period ðt; itÞ for which ðt0; it0 Þ � ðt; itÞ holds.

Note that this definition of the visibility relation only
takes into account the spawning of threads. In particular, it
ignores other Java synchronization primitives, such as calls
to Thread.join() and accesses to volatile fields, or uses of
specialized atomic classes as they exist in the package
java.util.concurrent.atomic. Generally, this can
lead to false positives when analyzing a program with
RACER because RACER may miss happens-before relation-
ships that these other synchronization primitives establish.
Researchers could extend RACER to handle such primitives
as well. For instance, Harrow [1] handles the C-equivalent to
a call to t.join() in Java by transferring t’s lock set to the
thread that performs the join() call. For now, we decided
not to implement support for such additional primitives
because the false-positive rate that we observed for RACER

was already low enough on our benchmarks and would not
have improved for this benchmark set even if we had
implemented such support. Also, note that calls to Ob-

ject.wait() and Object.notify() are not additional
synchronization primitives: A thread may only call either of
these methods on an object o when this thread already owns
the lock of o. Hence, the lock refinement that RACER

implements handles such cases implicitly and precisely.
Fig. 9b shows our state machine for the RACER

algorithm. As can be seen, the right-hand side of this state
machine is equivalent to the one that ERASER uses (Fig. 9a).
However, RACER offers a more fine-grained treatment of
initialization. In particular, ERASER only contains a single
ExclusiveModified state: Initial read operations on a
variable let this variable reside in the Virgin state. RACER,
on the other hand, distinguishes reads and writes right from
the beginning. This difference will prove crucial in the
example that follows below.

A second difference is that ERASER parameterizes the
ExclusiveModified state with a thread t only. In RACER, on
the other hand, the Exclusive and ExclusiveModified states
are parameterized with an access period. This additional
information lets RACER compute different outgoing

518 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

Fig. 12. Access periods in code of Fig. 11.

Fig. 13. Access periods in case with data race.

transitions for these states, based on whether or not the

previous read or write that lead into this state is visible to

the current read or write.
Let us consider both cases, starting with the case where

the read or write that leads into the Exclusive(Modified)

state is invisible to the currently observed read or write, i.e.,

where ðt0; i0Þ 6� ðt; iÞ holds. In this case, we transition just as

in ERASER: A write will lead to SharedModified and a read

will lead to Shared. If we reach SharedModified due to a

write and the refined lock set happens to be empty, a race is

reported between this write and the preceding operation on

this variable.
In the second case, the read or write that leads into the

Exclusive(Modified) state is visible to the observed read or

write, i.e., where ðt0; i0Þ � ðt; iÞ holds. In this case, thread t0 is

allowed to access the variable without a lock. Moreover,

RACER assumes that the programmer meant to hand over

the variable’s value to t0: Just before processing the read or

write by t0, RACER resets the variable’s state to Virgin. This

reassigns the full lock set to the variable. Then, RACER

immediately and atomically processes the read or write,

leading back into either Exclusive or ExclusiveModified

(depending on whether a read or write was observed), but

this time parameterized with the new access period ðt0; i0Þ.
From this point on, t0 “owns” the variable. Another

thread t00 can only access its value if it is started by t0

(which again allows a safe handover to t00) or if it uses a

locking discipline that is consistent with the one that t0 uses.

4.6 Detailed Example

As an example, consider again the sequence diagram in

Fig. 13. As noted earlier, this example does contain a data

race. For this sequence of events, RACER will perform the

following transitions for the field var:

1. On the write var ¼ 42, the state will switch from
Virgin to ExclusiveModified(Main,0). The lock set
for var will be refined from the full set to the empty
set because Main holds no lock during the write.

2. On spawning Thread1 from Main, RACER will record
the visibility relationship between (Thread1,0) (and
following) and (Main,0). Just afterward, it will then
increment the access period for thread Main from
(Main,0) to (Main,1).

3. Just before the read in println(var), the imple-
mentation will switch from state ExclusiveModi-
fied(Main,0) to Virgin, because the read occurs in
period (Thread1,0) and (Thread1,0) � (Main,0)
holds. RACER resets the lock set for var to the full
set. Then, instantly (and atomically), the implemen-
tation will process the read and switch to a new state
Exclusive(Thread1,0). RACER refines the lock set
during this process, yielding the empty set again.
The value var was effectively handed over from
thread Main to thread Thread1.

4. On the write var ¼ 23, we move from Exclusive
(Thread1,0) to SharedModified because the write
occurs in period (Main,1) and (Main,1) 6� (Thread1,0)
holds. When we reach the state SharedModified, we
instantly report a race because the lock set is empty.

Note that resetting a value to its Virgin state also allows
us to report precisely the right line number information for
data races. In the above example, we only report the
accesses (and their line numbers) that occurred after the
Virgin state has been left again: Moving back to Virgin not
only resets the lock sets but also the access information. In
particular, we do not report the original write of value 42 as
part of the race.

4.7 No Missed Races

It is important to note that unlike the ERASER algorithm, the
RACER algorithm cannot miss any races: If a program run
causes a data race, then the RACER algorithm will detect
this race. Consider again the example from Fig. 10. As we
explained, this figure shows a situation in which a data race
can arise that ERASER would miss because it would only
move to state Shared for this example. The RACER

algorithm would instead move to SharedModified for the
same example, hence reporting the data race. In general,
when a thread t reads a variable v, and a thread t0 then
writes to v, or the other way around, and the first operation
is not visible to the second one (according to the visibility
relation), and t and t0 do not hold a common lock during
these two operations, then RACER will report a race. While
the conditions mentioned in the last sentence are not
sufficient for proving that a data race has really occurred
(e.g., the threads could have synchronized by other means
that RACER does not capture), the conditions are necessary
for a data race to occur.

4.8 Implementation

The implementation of RACER is essentially as described in
Section 4.1. It contains two aspects: Locking and Racer.
While Locking keeps track of lock sets (or rather bags), the
Racer aspect maintains a mapping from fields (qualified by
their owning object) to a state and updates the state according
to Fig. 9b. The transition logic in Fig. 9b is implemented within
two methods, fieldSet and fieldGet, in the Racer

aspect (see Fig. 8). In addition, theRaceraspect keeps track of
invocations of Thread.start(), storing a mapping be-
tween the started and the starting thread. This allows us to
decide the visibility relationship�. (One cannot simply store
a thread t’s parent thread in a thread-local variable of t
because the information about the parent thread may need to
be accessed by a thread different from t, but only t itself can
get access to its own thread-local variables.)

4.9 Implementing Other Algorithms for Finding
Concurrency-Related Bugs at Runtime

We are confident that our AspectJ language extension is able
to support, beyond algorithms for data race detection, most (if
not all) other dynamic concurrency-related analysis algo-
rithms, which typically analyze properties of synchroniza-
tion and field accesses. In particular, our AspectJ extension
can capture all of Java’s synchronization primitives. RACER

only uses events acquiring and releasing locks, as well as calls
to Thread.start(). However, researchers can easily use
AspectJ to also handle calls to Thread.isAlive() or
Thread.join(), or accesses to volatile variables. The only
other cases that introduce happens-before relationships in
Java are cases in which a thread t1 is interrupted and another
thread t2 detects the fact that t1 was interrupted. Thread t2 can

BODDEN AND HAVELUND: ASPECT-ORIENTED RACE DETECTION IN JAVA 519

detect this fact by checking the results of Thread.inter-
rupted() or t1.isInterrupted(), or by catching an
InterruptedException. Researchers can intercept all
three classes of events using plain AspectJ. Further, AspectJ
already provides pointcuts for accessing those entities
intended to be protected by synchronization, namely, field
reads and writes. In fact, the only frequently requested
missing AspectJ pointcut that we are aware of is a pointcut
that would capture assignments to local variables. It may be
useful to monitor such events for bug detection in general.
However, local variables play no role in concurrency-
related errors, as they are thread-local.

The AspectJ language extension that we present here is
therefore able to support algorithms for deadlock detection
[21], high-level data race detection [6], and stale-value
detection [7]. All of these algorithms have previously been
implemented using the low-level BCEL bytecode instru-
mentation library [11]. Programmers could implement such
bug-detection tools more easily using AspectJ.

In particular, we see the following advantages of using
AspectJ over instrumenting a program manually, using a
bytecode instrumentation package, a debugging interface or
similar means. First, the AspectJ code is declarative. This
has the advantage that the researcher can easily validate
that the instrumented program will expose the right events,
just by looking at the appropriate pointcut definitions. Due
to a large user base, the available AspectJ compilers have by
now become very mature, and we consider it safe to assume
that, given a correct pointcut definition, the compiler will
produce correctly instrumented code. It is also easy to
convert existing bug-finding algorithms to use our AspectJ
language extension for instrumentation. The researcher just
has to define an aspect that calls the right methods of the
bug-finding algorithm when the appropriate events occur at
runtime. The implementation of the bug-finding algorithm
itself does not need to change. Another advantage is that
researchers can easily use advanced features of AspectJ,
such as the exposure of context information via the this,
target and args pointcuts or the reflective thisJoin-

Point and thisJoinPointStaticPart objects. While
one can also expose such information using manual
instrumentation, this appears more cumbersome than just
using the AspectJ primitives mentioned above.

Another advantage is that users can easily lower the
runtime overhead of the bug-finding code by refining
pointcuts to scope the instrumentation so that it applies
only to certain packages or classes. To minimize the
required changes to the aspect code, researchers can
provide their implementation as a set of abstract AspectJ
aspects. An abstract aspect can have abstract pointcut
definitions. The researchers can then define their bug-
finding algorithm completely in terms of these abstract
pointcuts. Users who wish to apply this algorithm to a
program then only need to instantiate a concrete subaspect
that defines the abstract pointcuts. For instance, in RACER,
we could define the Racer aspect as abstract and define the
scope() pointcut as:

abstract pointcut scope();

Users of RACER could then restrict the bug-checking to a
packagecheck.me by simply providing the following
concrete aspect:

aspect MyRacer extends Racer {
pointcut scope(): within(check.me.�);

}

To the best of our knowledge, it would be hard to reach the
same degree of flexibility when using a manual instrumen-
tation approach.

As we showed in this work, even when using AspectJ,
one can still have access to sophisticated program analysis
techniques, for instance, techniques that determine poten-
tially shared fields. Even better, aspects allow researchers to
query and encapsulate such analyses in a declarative way,
by providing pointcuts such as maybeShared(). The fact
that the aspect references the analysis simply by the name
of the pointcut decouples the analysis itself from the
analysis client (the bug-finding algorithm). Therefore, in
the future, researchers could implement improvements to
the thread-local-objects analysis that determines maybe-

Shared(), and any client code that uses the maybe-

Shared() pointcut could automatically take advantage of
this improved analysis without having to change any of
their program code. Indeed, the idea of exposing analyses to
a user in the form of pointcuts seems useful not only with
respect to bug-finding algorithms for concurrency-related
programming errors but also seems useful in general [29].

5 CASE STUDY

We applied RACER to an experimental planetary rover
controller, named the K9 Executive, for a rover named K9
developed at the NASA Ames Research Center. In the
following, we briefly introduce this application, followed by
the results of applying RACER.

5.1 The K9 Rover and Executive

The K9 Rover is an experimental hardware platform for
autonomous wheeled rovers, targeted for the exploration of
a planetary surface such as Mars. K9 was specifically used
to experiment with new autonomy software. Rovers are
traditionally controlled by low-level commands uploaded
from Earth. The K9 Executive, a software module, provides
a more flexible means of commanding a rover through the
use of high-level plans in a domain-specific programming
language. High-level plans can, for example, be generated
by an on-board AI-based planner. The Executive is
essentially an interpreter for the plan language.

The Executive is multithreaded. In Fig. 14, we show the
threads relevant for the presentation in this paper as boxes
drawn with full lines. Boxes with dashed lines (the lower part
of the figure) represent objects that these threads access. For
every object, we show in an attached box the variables on
which RACER detects a data race. A main class Main starts all
of the threads in the program. The RuntimeExecutive

thread is responsible for the overall execution of plans.
The interpretation of a primitive plan element, a task, causes
the RuntimeExecutive to ask the ActionExecution

thread to command the vehicle to perform the task’s action.
The ActionExecution thread subsequently commands
the vehicle and reports back the status. The RuntimeEx-

ecutive issues tasks according to their planned execution
time. For this purpose, tasks are stored in a queue. The
ExecTimer thread then takes the tasks out of the queue and

520 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

executes them when their planned time is reached. The
objects in the lower part of the figure represent time points,
names of tasks (symbols), and variable bindings. The
ActionExecution thread updates a database whenever
the status of a vehicle component changes. The ExecCond-
Checker (composed of two separate threads) monitors
changes in the database (DbMonitor), prioritizes the
changes, and signals back the RuntimeExecutive through
Filter.

The K9 Executive consists of almost 7,000 lines of Java and
is an abstracted version of 35,000 lines of C++ code that

originally controlled the rover and were also developed at

the NASA Ames Research Center. Of the 35 Kloc C++ code,
9.6 Kloc are related to core functionality and the rest is for

data structure manipulation (modules for specific rovers
and science instruments) and research-related extensions. In

this work, we focus on the core functionality. Researchers at

the NASA Ames Research Center developed this code
specifically to evaluate [30] a set of Java verification tools.
These tools included the Java PathExplorer [5], which
contained an earlier implementation of the ERASER algo-
rithm for Java. Researchers further used this code to evaluate
the Java PathFinder model checker [31], which also con-
tained a version of ERASER; a static analysis tool for C (for a
C version of the code), and temporal logic specification
monitoring. To evaluate these tools, a control team seeded
errors in the code, and researchers then tasked different
groups of people with detecting the errors using different
tools. After this experiment, researchers augmented the code
with additional code to evaluate a deadlock analysis tool.
From [30], we can cite: “A total of 12 bugs were extracted from
the CVS logs, of which five were deadlocks, two were data races,
and five were plan-related. One of the deadlock bugs was given as
an example during training on the tools, and one of the data races

BODDEN AND HAVELUND: ASPECT-ORIENTED RACE DETECTION IN JAVA 521

Fig. 14. The K9 Executive and its 12 unprotected fields.

was unreachable in the code that was eventually analyzed—thus
leaving only 10 seeded errors.” This suggests that the code
contains one data race.

5.2 Application of Racer

At first, we were therefore surprised to see that running
RACER on the K9 Executive revealed 12 data races. We
categorized these races into three classes:

. One known data race on ActionExecution.

status.
. Two data races on variables syncNum and sync-

NumOpt in Main, which had been just recently
introduced.

. Nine data races that occurred because the program-
mers made wrong assumptions with respect to the
initialization of variables.

5.2.1 The Race on ActionExecution.status

To indicate a data race on a variable status in class
ActionExectution, RACER issues the message shown in
Fig. 15. The ActionExecution thread and the Runtime

Executive thread cause this race because they both access
status without both first acquiring a common lock. This is
exactly the error planted in the code during the original
verification experiment [30].

5.2.2 The Races on syncNum and syncNumOpt

To be brief, we will not show the error messages from
RACER for the remaining data races. The two data races
mentioned in this section stem from an experiment
performed with the K9 Executive (after the case study from
[30]) in order to determine how effectively a static analysis
algorithm could reduce the number of locking operations
that needed to be monitored to detect a deadlock. For
this purpose, researchers added two integer counters to the
Main class: numSync (number of synchronizations exe-
cuted in total) and numSyncOpt (number of synchroniza-
tions executed after optimization). It turned out that
multiple threads updated these counters without protecting
the updates with a lock.

5.2.3 The Races between the RuntimeExecutive, the

ExecTimer, and ExecCondChecker

In Fig. 16, we show the situation between the two threads
RuntimeExecutive and ExecTimer that cause another
seven data races which RACER reported on the K9
Executive. The Main thread starts both these threads, one
right after the other. The RuntimeExecutive then

initializes certain data structures, like timers, for example,
which the ExecTimer then accesses periodically. Because
none of RuntimeExecutive or ExecTimer is a parent
thread of the other, such accesses are only safe when
using a consistent locking discipline. This is, however, not
the case in the K9 executive: RuntimeExecutive locks
on itself, while ExecTimer locks on itself too, but they
never both attempt to acquire the same lock. The locking
discipline is hence inconsistent. RACER found seven races
on seven different fields that all fall into this same
category. RACER found two additional races between the
RuntimeExecutive and the ExecCondChecker. Also,
here, the RuntimeExecutive initializes data structures,
which the ExecCondChecker then accesses without
holding an appropriate lock.

5.2.4 Observations

Researchers analyzed the code of the K9 Executive earlier
[30] but detected only the seeded data race described in
Section 5.2.1. The errors described in Section 5.2.2 were
introduced at a later point, which explains why researchers
were unable to find these races at the time of the
experiment. Nevertheless, the researchers could have
detected the nine other races, but missed them instead.
The version of RACER presented in this paper reported no
false warnings on the K9 Executive. It is important to note
that our initial implementation presented at ISSTA 2008 did
report 58 more potential data races that we subsequently
identified as false warnings. The crucial difference between
the two algorithms is that the new algorithm tracks access
periods instead of just threads, and can select transitions
based on the visibility relation �. This treatment handles
calls to Thread.start() precisely, which was not the
case in the ISSTA version of this algorithm.

6 FURTHER EXPERIMENTS

In addition to our in-depth case study, we further applied
RACER to two more smaller benchmarks taken from [17].
This was to find out whether the results gained from our
case study can be generalized to other programs as well.
The two benchmarks are roller and bank. The benchmark
roller simulates a roller coaster where “7 passenger threads

522 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

Fig. 15. A race reported by RACER.

Fig. 16. Access periods in races between threads Executive and
ExecTimer.

compete for seven seats in one roller-coaster thread” [17]. This
benchmark exposes very high contention. bank is a little
banking application by Lea [32]. It starts eight threads
which each make a random transaction from one account to
another and then call Thread.yield(). Both benchmarks
were written by researchers in the field of concurrent
programming and hence we did not expect to find any data
races in these benchmarks. Nevertheless, we wanted to see
whether RACER would report for these benchmarks
similarly few false positives as it reported for the rover
case study.

Table 1 shows our experimental results for these two
benchmarks and, to make the picture complete, additional
numbers for our rover case study. Of each benchmark, we
present two versions: one without optimization of the
maybeShared() pointcut and one where these optimiza-
tions are enabled.

We compiled the benchmarks on a Java HotSpot 64-Bit
Server VM (version 1.6.0_05, mixed mode, 1 GB heap space),
but linked the benchmarks to Sun’s JDK version 1.4.2_12,
which we also used to run the benchmarks (with default
heap space). Our machine used an AMD Athlon 64 X2 Dual
Core Processor 3800+.

6.1 Compilation Time

The compilation time is low without optimization, generally
below 2 minutes. The static whole-program optimization
adds about one and a half minutes of compilation time to
our smaller benchmarks. In the case of the K9 rover,
however, compilation takes almost 3 hours to complete
with optimizations enabled. We conjecture that this is partly
due to Halpert et al.’s unoptimized implementation of the
thread-local-objects analysis.

The next section of Table 1 shows the runtimes for the
different configurations. In the case of the two small bench-
marks, our instrumentation adds around 13-fold (roller) and
28-fold (bank) overhead. Through profiling, we determined
that much of this slowdown is caused by contention. Both
benchmarks spend around 70 percent of their time waiting on
a lock. When our instrumentation monitors a field access
through a thread t and this field access is within a
synchronized region, then this forces t to reside longer in
this region to execute the instrumentation code. In the
meantime, all other threads have to wait for t to finish. This
naturally increases the overall wait time. The code of the K9
rover does not show such high contention, and indeed, in this
benchmark, we could perceive no overhead. The table further
shows that in all three benchmarks, RACER reported all races
within the first second of execution (we only report each race
once). This suggests that even when the runtime overhead is

quite high, this overhead might not actually cause any
problems in practice. In addition, the programmer can opt to
restrict instrumentation caused by RACER, simply by mod-
ifying the scope() pointcut used in Figs. 7 and 8, e.g., to:

pointcut scope(): !within(package.with.no.monitoring.�);
Even though we believe that the slowdown caused by our

Racer implementation is acceptable, it may still cause an
effectiveness problem with respect to so-called Heisenbugs
[33]. Named after the Heisenberg Uncertainty Principle, a
Heisenbug is a computer bug which becomes invisible when
one attempts to investigate it. In our particular setting, the
instrumentation that the RACER implementation inserts has
to use locks in order to maintain consistent data structures
during the course of the program evaluation. These addi-
tional locks introduce additional lock contention, and
generally, reduce the amount of concurrency that the
uninstrumented program may have allowed. As a conse-
quence, certain interleavings may become more unlikely
than they would have been in the uninstrumented program,
and hence, some bugs may be hard to detect. Nevertheless,
this is a problem that the most dynamic approach to finding
concurrency-related problems faces. The only way to avoid
this problem would be to control the thread scheduler, which
is certainly out of the scope of our current research.

Next, we comment on the number of instrumented
fields. The purpose of optimizing the maybeShared()

pointcut was to reduce the number of instrumented fields
by restricting the instrumentation only to fields that may be
shared among threads. In roller and bank, this was not very
effective since, in both benchmarks, all but one field are
indeed shared. Therefore, the optimization was ineffective
and the runtime did not improve. In the case of the rover
code, the static analysis detected about one third of the
260 fields as thread-local, and hence, removed all instru-
mentation for these fields in the optimized version.
However, since the rover code already finished execution
after 2 seconds, there was no perceivable improvement in
runtime either.

In roller, the RACER algorithm reported one data race,
which turned out to be a false warning. In this benchmark,
each passenger thread constantly reads a counter rideNo
that holds the global number of rides performed so far. When
performing this read on rideNo, the passenger thread locks
on the roller-coaster thread object. The roller-coaster thread
updates rideNo after each ride, and while doing so, it also
locks on the same object as the passenger threads. However,
the roller-coaster thread also reads from the field rideNo,
and this read is performed outside of the locked region. This
does not cause a race because the roller-coaster thread is the

BODDEN AND HAVELUND: ASPECT-ORIENTED RACE DETECTION IN JAVA 523

TABLE 1
Experimental Results

only thread ever updating rideNo, and these updates
are implicitly visible to the roller-coaster thread itself. The
updates are also visible to the passenger threads because
they follow a consistent locking discipline. The RACER

algorithm issues a false warning for this benchmark because
it reaches the SharedModified state with an empty lock set
due to the fact that the roller-coaster thread reads the field
without holding any lock.

In the bank benchmark, RACER reports no races, and
indeed, we believe that this code is race-free. In Section 5,
we already commented on the races in the Rover Executive.

7 RELATED WORK

In the following, we compare RACER to other algorithms for
detecting concurrency-related programming errors, com-
pare our AspectJ-based instrumentation approach to other
approaches for instrumenting Java bytecode, and discuss
related work in the field of aspect-oriented programming.

7.1 Detecting Concurrent Programming Errors

7.1.1 Eraser

Savage et al. proposed the original ERASER algorithm [19]
for detecting potential for data races. ERASER was an
important contribution to the field; many researchers have
since based their own race-detection algorithms on ERASER.
As we showed, ERASER is, however, very forgiving to the
programmer in an object’s initialization phase, and there-
fore, can miss important race conditions that occur during
an object’s initialization. As our experimental results show,
such races are not uncommon in Java programs. RACER, on
the other hand, guarantees to find a data race when this race
occurs on a monitored program run. Unfortunately,
ERASER not only misses an important class of data races,
it can also yield many false warnings. The prototype version
of RACER that we published at ISSTA 2008 parameterized
states with threads instead of access periods, just like
ERASER does, and led to many false warnings. Access
periods are important because they allow RACER to gain
precision when the variables are accessed through child
threads. According to the Java Memory Model, such an
access is safe without locking, and a race-detection
algorithm for Java should take this into account.

7.1.2 Visual Threads

The idea of using access periods is not new. Harrow
implemented an extension to ERASER in Compaq’s Visual
Threads tool [1] that uses access periods (called “thread
segments” in Harrow’s paper) to model lock-free handover
of objects between child and parent threads. Unlike our
implementation of RACER, Harrow’s implementation still
uses the original ERASER state machine, and therefore,
Harrow’s implementation misses the same initialization-
related data races that the original ERASER misses.
Programmers can use Visual Threads with any application
that uses a POSIX threads library, which includes common
implementations of Java. Visual Threads analyzes multi-
threaded applications for potential logic and performance
problems. The tool visualizes state changes and provides
automated dynamic analysis algorithms to diagnose com-
mon problems associated with multithreading, including
deadlock, data protection, performance, and programming
errors. Visual Threads uses the object code instrumentation
tool ATOM [34].

7.1.3 Hybrid Dynamic Race Detection

Other researchers have tried to improve the accuracy of the
ERASER algorithm. O’Callahan and Choi [2] use vector clocks
[35] to explicitly keep track of a subset of the happens-before
relationship of the program under test. The authors then
refine an Eraser-like lock-set-based race-detection algorithm
using this happens-before graph to reduce the amount of
false warnings that the purely lock-set-based algorithm
would otherwise yield. The happens-before graph that
O’Callahan and Choi use contains happens-before edges at
calls to Thread.start(), Thread.join(), Object.

wait(), and Object.notify(). Like our RACER algo-
rithm, O’Callahan and Choi’s algorithm does not grant any
special initialization phase, and therefore, should be able to
detect the initialization-based races that ERASER misses, e.g.,
the one from Fig. 10. As a result, O’Callahan and Choi’s
algorithm should be similar in precision to RACER, in fact,
even more precise in case the program under test uses join,
wait, or notify. Because O’Callahan and Choi treat wait
and notify, their algorithm should also be more precise
than Harrow’s extended version of ERASER for programs
that use these methods. The only other difference between
O’Callahan and Choi’s algorithm and Harrow’s algorithm
seems to be that Harrow treats initialization like ERASER

does, while O’Callahan and Choi treat it as in RACER.
O’Callahan and Choi modify a program’s bytecode to add
instrumentation, but they do not say whether they do so
using some special bytecode instrumentation toolkit.

7.1.4 Goldilocks

Elmas et al. present the GOLDILOCKS algorithm [36]. Unlike
the other race-detection algorithms that we presented
above, GOLDILOCKS constructs at runtime the complete
happens-before relationship of a program run. This enables
the GOLDILOCKS runtime to detect a data race if and only if
this race actually occurs. Keeping track of the entire
happens-before graph at runtime is challenging and
requires sophisticated data structures to be efficient. Lock-
set-based algorithms like the ones based on ERASER can be
implemented more efficiently but will usually have to allow
for some amount of false warnings.

7.1.5 Object Race Detection

Von Praun and Gross [3] formulate data races as properties of
objects instead of variables. This is because the authors
further propose using a static escape analysis to detect objects
that are accessed by multiple threads, and this escape
analysis, too, reasons about objects rather than variables.
The escape analysis that Praun and Gross describe therefore
has similar intent to Halpert et al.’s thread-local-objects
analysis [17], which we use in this paper. Unfortunately, the
authors provide insufficient detail about their static analysis
to determine how much exactly it differs from Halpert et al.’s
analysis. Praun and Gross further describe an ownership
model that allows a thread t to hand over access permissions
for an object o to another thread t0, thereby allowing t0 to
access o instead t for the remainder of the program. When t
has terminated by the time of the handover, then the
handover can happen implicitly. However, if t is still active,
then t0 has to explicitly ask t to hand over the permissions to t0.
The thread t0 blocks until t grants the permissions, thereby
making t0 the “second owner” of o. In our understanding, any
object o can only have two owners. This precludes programs

524 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

from having a thread t hand over objects to a thread t0, which
then, in turn, hands this object to another thread t00 (unless t
has terminated at this point in time). RACER always hands
over variables to child threads implicitly. The child thread t0

then becomes the only thread holding read and write
permissions for this variable, as signified by the states
Exclusive(t) and ExclusiveModified(t). In RACER, this hand-
over can happen again when t0 starts a third thread t00, which
then accesses the same variable. There is, therefore, no limit
to the number of handovers. Praun and Gross instrument the
program under test through by transforming Java bytecode
into customized X86 native code.

7.1.6 Proving That Races Exist

In [4], we describe our first implementation of the ERASER

algorithm for Java, guiding the Java PathFinder (JPF) model
checker [31] to confirm the warnings discovered by the
much faster potential analysis. We instrumented the
programs under test by modifying the Java Virtual
Machine of JPF. Havelund and Roşu later reimplemented
and elaborated the algorithm in the Java PathExplorer
(JpaX) tool [5]. This tool used the Jtrek bytecode instru-
mentation tool [37] and later the BCEL bytecode instru-
mentation tool [11]. With the AspectJ language extension
proposed in this paper, researchers can define their
instrumentation in a declarative way instead, and do not
have to resort to Jtrek or BCEL.

7.1.7 Detecting Potential for Other Concurrency-Related

Errors

Researchers have developed other kinds of dynamic race
analysis tools, all of which detect potential for errors, like
the ERASER algorithm, rather than directly detecting the
occurrence of errors. Artho et al. proposed a high-level data
race algorithm [6] which detects inconsistencies in which
collections of variables are access protected by locks. If, for
example, one part of a program accesses two variables x
and y in one single synchronized block and another
program part accesses the same variables in separate
synchronized blocks, then the algorithm considers this an
inconsistent use and issues a warning suggesting that the
latter use is potentially unsafe. The algorithm is also called
the view-consistency algorithm since it attempts to detect
view inconsistencies during runtime. Even in the absence of
low-level and high-level data races, programs can still
contain other concurrency errors. Related to high-level data,
races are atomicity violations as detected by the tools in [7],
[8], [9]. An example is a thread that reads a shared variable
into a local variable, updates the local variable, and then
writes back to the shared variable. The local variable may at
some point become “stale” (out of date) if some other thread
updates the shared variable. Chen et al.’s jPredictor [10]
extracts a causality relation from the execution trace, sliced
using static analysis, and refined with lock-atomicity
information. The authors investigate two common types
of errors: data races and atomicity violations. jPredictor’s
program instrumentor is built on top of the Soot [38] Java
bytecode engineering package. The AspectBench Compiler
used for our language extension uses Soot internally to
conduct the weaving process. However, the language
extension hides these internals from the programmer
behind an appealing syntax.

Programmers can also effectively use dynamic analyses to
find potential for deadlocks. As mentioned, the Visual

Threads tool detects potential for deadlocks, essentially by
detecting cycles in a lock graph. Bensalem and Havelund [21]
and Agrawal et al. [39] improved this algorithm to reduce
false positives. Agrawal et al. further suggest the use of
deadlock types during a static analysis phase to reduce
overhead during dynamic deadlock analysis by identifying
synchronizations that can be regarded safe, and hence, do not
need to be monitored/recorded. This is similar to our static
optimization of maybeShared() in that it tries to remove
unnecessary monitoring overhead through an analysis at
compile time. Concurrent programs may be modified by
including wait statements or by modifying schedulers so that
programs will exhibit a fuller range of nondeterministic
behaviors during testing. Researchers have combined such
modifications with predictive analysis [40], [41].

7.1.8 Specification-Based Approaches

All algorithms mentioned above work without requiring
the user to provide a specification. Several systems have
been developed to monitor program executions against
user-provided formal specifications. The runtime verifica-
tion community is concerned with program correctness. An
example of such a system is Eagle [42]. Tracematches’s [16]
answer provides an efficient implementation of runtime
monitoring with object bindings as a language extension to
AspectJ. Bodden et al. [43], [44] used trace matches to prove
Java and AspectJ programs partially correct. Trace matches
can directly use the three novel pointcuts proposed here.

7.2 Tools for Instrumenting Bytecode

Apart from trace matches, however, in the case of Java,
researchers usually use bytecode instrumentation tools
when building the bug detectors that we mentioned.
Examples are Jtrek [37], BCEL [11], Soot [38], and ASM
[45]. Similar tools for other languages include Valgrind [46],
ATOM [34], and the C source code instrumentation and
analysis tool CIL [47]. Programmers can, however, further
instrument programs through debugging interfaces, mod-
ification of the runtime system or virtual machine (as in the
case of the Java PathFinder), or through operating system or
middleware services. Researchers have proposed higher
level libraries on top of the low-level instrumentation
packages. In previous work, for example, we developed
the jSpy tool [48], which instruments Java bytecode, but
using a higher level of primitives compared to what the
low-level bytecode instrumentation tools offer. A jSpy
instrumentation specification consists of a set of rules, each
of which consists of a condition on bytecode and an
instrumentation action stating what to report when by-
tecodes satisfying the condition executes. Monitors then
pick up the reported events and check for various user-
provided properties. The tool is oriented toward monitoring
rather than modifying functionality. Another high-level
instrumentation tool is Sofya [49].

The main observation is that most, if not all, of the
dynamic analysis tools described above use low-level
instrumentation tools that are more or less difficult to use.
An aspect-oriented programming language with synchroni-
zation pointcuts makes this part of the work much simpler.

7.3 Aspect-Oriented Programming

For quite a while now, the community around aspect-
oriented programming has been calling for more “semantic
pointcuts” (e.g., [50], [51]), which allow programmers not to
match on a program’s structure like a call to a method

BODDEN AND HAVELUND: ASPECT-ORIENTED RACE DETECTION IN JAVA 525

foo(), but on more semantic properties. We generally
agree with this point of view, and therefore, implemented
the maybeShared() pointcut as an answer to that call.
However, an implementation of such pointcuts that is
efficient for arbitrary base programs is still out of sight, and
therefore, we encourage further research in this area.

8 CONCLUSION AND FUTURE WORK

In this work, we have proposed a language extension to the
aspect-oriented programming language AspectJ. We extend
AspectJ with three new pointcuts lock(), unlock(), and
maybeShared(). These pointcuts allow researchers to
easily implement bug-finding algorithms for errors related
to concurrency. As an example, we have implemented
RACER, an adaption of the ERASER race-detection algorithm
to the Java memory model. We found that, using our AspectJ
extension, we were able to implement RACER very easily, in
just two aspects with a small set of supporting classes.

The RACER algorithm is different from C-based race-
detection algorithms like ERASER in the way that it treats
object initialization. ERASER is very forgiving to program-
mers in an object’s initialization phase. RACER, on the other
hand, detects and also reports races that comprise the
initialization of an object. This revealed 12 data races in
program code of the NASA K9 Rover Executive, 11 of which
went previously undetected, although extensive studies of
this code had already been performed at a time when nine
of these undetected races were already present.

ACKNOWLEDGMENTS

The authors thank Clark Verbrugge for helping them
validate some of the data races they found in the K9
rover executive. Also, they are grateful to him, Richard
Halpert, and Chris Pickett for making their thread-local-
objects analysis and their benchmarks available to them.
They thank Stefan Savage for providing clarifications on
ERASER. Bill Pugh pointed out an important shortcoming
of their original RACER implementation. They also wish
to thank the anonymous reviewers of TSE for their
helpful comments on this paper. Part of the work
described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the US National Aeronautics and
Space Administration. Eric Bodden wishes to thank his
supervisor, Laurie Hendren, for all her support during
his graduate studies at McGill. The RACER implementa-
tion is available online at http://www.bodden.de/tools/
raceraj/. The AspectBench Compiler can be download at
http://www.aspectbench.org/. Since version 1.3.0, it
contains the authors’ implementation of the pointcuts
lock(), unlock(), and maybeShared() in the exten-
sion abc.eaj.

REFERENCES

[1] J. Harrow, “Runtime Checking of Multithreaded Applications
with Visual Threads,” SPIN Model Checking and Software Verifica-
tion, K. Havelund, J. Penix, and W. Visser, eds., pp. 331-342,
Springer, 2000.

[2] R. O’Callahan and J.-D. Choi, “Hybrid Dynamic Data Race
Detection,” Proc. ACM SIGPLAN Symp. Principles and Practice of
Parallel Programming, pp. 167-178, 2003.

[3] C. von Praun and T.R. Gross, “Object Race Detection,” Proc. Ann.
ACM SIGPLAN Conf. Object-Oriented Programming, Systems,
Languages, and Applications, pp. 70-82, 2001.

[4] K. Havelund, “Using Runtime Analysis to Guide Model Checking
of Java Programs,” SPIN Model Checking and Software Verification,
pp. 245-264, Springer, 2000.

[5] K. Havelund and G. Roşu, “An Overview of the Runtime
Verification Tool Java PathExplorer,” Formal Methods in System
Design, vol. 24, no. 2, pp. 189-215, 2004.

[6] C. Artho, K. Havelund, and A. Biere, “High-Level Data Races,”
Software Testing, Verification and Reliability, vol. 13, no. 4, pp. 207-
227, 2003.

[7] C. Artho, K. Havelund, and A. Biere, “Using Block-Local Atom-
icity to Detect Stale-Value Concurrency Errors,” Automated
Technology for Verification and Analysis, F. Wang, ed., pp. 150-164,
Springer, 2004.

[8] C. Flanagan and S.N. Freund, “Atomizer: A Dynamic Atomicity
Checker for Multithreaded Programs,” Proc. 31st ACM SIGPLAN-
SIGACT Symp. Principles of Programming Languages, pp. 256-267,
2004.

[9] L. Wang and S.D. Stoller, “Run-Time Analysis for Atomicity,”
Electronic Notes in Theoretical Computer Science, vol. 89, no. 2, 2003.

[10] F. Chen, T.F. Serbanuta, and G. Roşu, “jPredictor: A Predictive
Runtime Analysis Tool for Java,” Proc. 30th Int’l Conf. Software
Eng., pp. 221-230, 2008.

[11] M. Dahm, “BCEL,” http://jakarta.apache.org/bcel, 2010.
[12] E. Bodden, “J-LO—A Tool for Runtime-Checking Temporal

Assertions,” master’s thesis, RWTH Aachen Univ., http://
www.bodden.de/publications/, Nov. 2005.

[13] M. d’Amorim and K. Havelund, “Event-Based Runtime Verifica-
tion of Java Programs,” Proc. Third Int’l Workshop Dynamic
Analysis, pp. 1-7, 2005.

[14] V. Stolz and E. Bodden, “Temporal Assertions Using AspectJ,”
Electronic Notes in Theoretical Computer Science, vol. 144, no. 4,
pp. 109-124, 2006.

[15] F. Chen and G. Roşu, “MOP: An Efficient and Generic
Runtime Verification Framework,” Proc. Ann. ACM SIGPLAN
Conf. Object-Oriented Programming, Systems, Languages, and
Applications, R.P. Gabriel, D.F. Bacon, C.V. Lopes, J. Guy, and
L. Steele, eds., pp. 569-588, 2007.

[16] C. Allan, P. Avgustinov, A.S. Christensen, L.J. Hendren, S.
Kuzins, O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and
J. Tibble, “Adding Trace Matching with Free Variables to
AspectJ,” Proc. Ann. ACM SIGPLAN Conf. Object-Oriented
Programming, Systems, Languages, and Applications, R. Johnson
and R.P. Gabriel, eds., pp. 345-364, 2005.

[17] R.L. Halpert, C.J.F. Pickett, and C. Verbrugge, “Component-Based
Lock Allocation,” Proc. 16th Int’l Conf. Parallel Architectures and
Compilation Techniques, pp. 353-364, 2007.

[18] P. Avgustinov, A.S. Christensen, L. Hendren, S. Kuzins, J. Lhoták,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble,
“abc: An Extensible AspectJ Compiler,” Proc. Int’l Conf. Aspect-
Oriented Software Development, pp. 87-98, 2005.

[19] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A Dynamic Data Race Detector for Multithreaded
Programs,” ACM Trans. Computer Systems, vol. 15, no. 4, pp. 391-
411, 1997.

[20] E. Bodden and K. Havelund, “Racer: Effective Race Detection
Using AspectJ,“ Proc. Int’l Symp. Software Testing and Analysis,
pp. 155-165, July 2008.

[21] S. Bensalem and K. Havelund, “Dynamic Deadlock Analysis of
Multi-Threaded Programs,” Proc. Haifa Verification Conf., S. Ur,
E. Bin, and Y. Wolfsthal, eds., pp. 208-223, 2005.

[22] “The AspectJ Home Page,” http://eclipse.org/aspectj/, 2010.
[23] “The AspectJ Programming Guide,” http://www.eclipse.org/

aspectj, 2010.
[24] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java(TM) Language

Specification, third ed. Addison-Wesley Professional, 2005.
[25] O. Lhoták and L. Hendren, “Scaling Java Points-to Analysis Using

Spark,” Proc. 12th Int’l Conf. Compiler Construction, G. Hedin, ed.,
pp. 153-169, Apr. 2003.

[26] J. Manson, W. Pugh, and S.V. Adve, “The Java Memory Model,”
Proc. 32nd ACM SIGPLAN-SIGACT Symp. Principles of Program-
ming Languages, pp. 378-391, 2005.

526 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

[27] E. Bodden, F. Forster, and F. Steimann, “Avoiding Infinite
Recursion with Stratified Aspects,” Proc. Int’l Conf. Grid Service
Eng. and Management, R. Hirschfeld, A. Polze, and R. Kowalczyk,
eds., pp. 49-64, 2006.

[28] B. Goetz, Java Concurrency in Practice. Addison Wesley, 2006.
[29] T. Aotani and H. Masuhara, “SCoPE: An AspectJ Compiler for

Supporting User-Defined Analysis-Based Pointcuts,” Proc. Int’l
Conf. Aspect-Oriented Software Development, pp. 161-172, 2007.

[30] G.P. Brat, D. Drusinsky, D. Giannakopoulou, A. Goldberg, K.
Havelund, M.R. Lowry, C.S. Pasareanu, A. Venet, W. Visser, and
R. Washington, “Experimental Evaluation of Verification and
Validation Tools on Martian Rover Software,” Formal Methods in
System Design, vol. 25, nos. 2/3, pp. 167-198, 2004.

[31] W. Visser, K. Havelund, G.P. Brat, S. Park, and F. Lerda, “Model
Checking Programs,” Proc. 15th IEEE Int’l Conf. Automated Software
Eng., pp. 203-232, 2003.

[32] D. Lea, Concurrent Programming in Java: Design Principles and
Patterns. Addison-Wesley Longman Publishing Co., Inc., 1996.

[33] J. Gray, “Why Do Computers Stop and What Can Be Done about
It?” Proc. Fifth Symp. Reliability in Distributed Software and Database
Systems, pp. 3-12, 1986.

[34] A. Eustace and A. Srivastava, “ATOM: A Flexible Interface for
Building High Performance Program Analysis Tools,” Proc.
USENIX Winter ’95 Technical Conf., p. 25, 1995.

[35] L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” Comm. ACM, vol. 21, no. 7, pp. 558-565, 1978.

[36] T. Elmas, S. Qadeer, and S. Tasiran, “Goldilocks: A Race and
Transaction-Aware Java Runtime,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation, pp. 245-255,
2007.

[37] S. Cohen, “Jtrek,” Compaq, no longer maintained.
[38] “Soot Website,” http://www.sable.mcgill.ca/soot/, 2010.
[39] R. Agarwal, L. Wang, and S.D. Stoller, “Detecting Potential

Deadlocks with Static Analysis and Run-Time Monitoring,”
Proc. Haifa Verification Conf., S. Ur, E. Bin, and Y. Wolfsthal,
eds., pp. 191-207, 2005.

[40] S. Bensalem, J.-C. Fernandez, K. Havelund, and L. Mounier,
“Confirmation of Deadlock Potentials Detected by Runtime
Analysis,” Proc. 2006 Workshop Parallel and Distributed Systems:
Testing and Debugging, pp. 41-50, 2006.

[41] Y. Eytani, K. Havelund, S.D. Stoller, and S. Ur, “Towards a
Framework and a Benchmark for Testing Tools for Multi-
Threaded Programs: Research Articles,” Concurrency and Computa-
tion: Practice and Experience, vol. 19, no. 3, pp. 267-279, 2007.

[42] H. Barringer, A. Goldberg, K. Havelund, and K. Sen, “Rule-Based
Runtime Verification,” Proc. Int’l Conf. Verification, Model Checking,
and Abstract Interpretation, B. Steffen and G. Levi, eds., pp. 44-57,
2004.

[43] E. Bodden, L.J. Hendren, and O. Lhoták, “A Staged Static
Program Analysis to Improve the Performance of Runtime
Monitoring,” Proc. European Conf. Object-Oriented Programming,
E. Ernst, ed., pp. 525-549, 2007.

[44] E. Bodden, P. Lam, and L. Hendren, “Static Analysis Techniques
for Evaluating Runtime Monitoring Properties Ahead-of-Time,”
Technical Report abc-2007-6, http://www.aspectbench.org/,
2007.

[45] E. Bruneton, R. Lenglet, and T. Coupaye, “ASM: A Code
Manipulation Tool to Implement Adaptable Systems,” Adaptable
and Extensible Component Systems, http://asm.objectweb.org/,
Nov. 2002.

[46] “Valgrind,” http://valgrind.org/, 2010.
[47] G.C. Necula, S. McPeak, S.P. Rahul, and W. Weimer, “CIL:

Intermediate Language and Tools for Analysis and Transforma-
tion of C Programs,” Proc. Int’l Conf. Compiler Construction,
R.N. Horspool, ed., pp. 213-228, 2002.

[48] A. Goldberg and K. Havelund, “Instrumentation of Java Bytecode
for Runtime Analysis,” Proc. Fifth ECOOP Workshop Formal
Techniques for Java-Like Programs, July 2003.

[49] A. Kinneer, M.B. Dwyer, and G. Rothermel, “Sofya: Supporting
Rapid Development of Dynamic Program Analyses for Java,”
Companion to the Proc. 29th Int’l Conf. Software Eng., pp. 51-52, 2007.

[50] M. Eichberg, M. Mezini, and K. Ostermann, “Pointcuts as
Functional Queries,” Proc. Second ASIAN Symp. Programming
Languages and Systems, W.-N. Chin, ed., pp. 366-381, 2004.

[51] T. Aotani and H. Masuhara, “Compiling Conditional Pointcuts for
User-Level Semantic Pointcuts,” Proc. Software-Eng. Properties of
Languages and Aspect Technologies Workshop, Mar. 2005.

[52] Hardware and Software Verification and Testing, S. Ur, E. Bin,
and Y. Wolfsthal, eds. Springer, 2006.

Eric Bodden received the diploma from
RWTH Aachen University, Germany, in 2005.
Having completed his doctoral dissertation in
the Sable Research Group at McGill University,
Montréal, Canada, he now continues his
research as a postdoctoral fellow at the
Technical University Darmstadt, Germany. His
research interests include static and dynamic
analyses that allow programmers to reason
about large-scale object-oriented programs.

For his dissertation, he developed CLARA, a framework for evaluating
finite-state runtime monitors at compile time. He seeks applied
solutions, combining compilation and sound static program analysis
techniques with unsound and incomplete techniques from Software
Engineering. Early on, he recognized the potential of aspect-oriented
programming as a convenient abstraction for program analysis and
verification.

Klaus Havelund received the PhD degree in
computer science from the University of
Copenhagen, Denmark, in 1994 (executed at
the Ecole Normale Supérieure, Paris, France).
He is a senior research scientist at the
Laboratory for Reliable Software, Jet Propul-
sion Laboratory, California Institute of Tech-
nology. His research interests include
verification of software, in particular using
runtime verification techniques such as speci-

fication-based monitoring and dynamic concurrency analysis. He
developed the first prototype of the Java PathFinder model checker,
capable of model checking Java programs, and has subsequently
developed dynamic analysis tools for detection of data races and
deadlocks in Java programs.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BODDEN AND HAVELUND: ASPECT-ORIENTED RACE DETECTION IN JAVA 527

