

Requirements Capture with RCAT

Margaret H. Smith
Klaus Havelund

Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109, USA

margaret@jpl.nasa.gov
klaus.havelund@jpl.nasa.gov

Abstract
NASA spends millions designing and building
spacecraft for its missions. The dependence on
software is growing as spacecraft become more
complex. With the increasing dependence on software
comes the risk that bugs can lead to the loss of a
mission. At NASA’s Jet Propulsion Laboratory new
tools are being developed to address this problem.
Logic model checking [9] and runtime verification [5]
can increase the confidence in a design or an
implementation. A barrier to the application of such
property-based checks is the difficulty in mastering the
requirements notations that are currently available.
For these techniques to be easily usable, a simple but
expressive requirement specification method is
essential. This paper describes a requirements capture
notation and supporting tool that graphically captures
formal requirements and converts them into automata
that can be used in model checking and for runtime
verification.

1. Introduction

Defects can be introduced in all phases of software
development, from requirements to software
maintenance. It is desirable to intercept defects as
early as possible in the development process, well
before traditional software testing begins. The reliance
on informal statements of requirements leaves the
software development process vulnerable to a large
class of potential defects caused by ambiguity and
incompleteness in requirements. Consequently,

current methods of software testing provide relatively
poor coverage of the original requirements and
provide little control over what is tested.

In the current development process of robotic
space missions at NASA’s Jet Propulsion Laboratory
(JPL), usually the set of requirements for a project are
developed and maintained informally in the form of
Word documents. The result of this lack of formality
is a set of requirements that can have significant gaps
and ambiguities. Furthermore, the relation between
requirements and testing becomes informal. Informal
text does not support test case generation, nor
monitoring of requirements during system execution.

Part of the process for development of complex
software at JPL is to create abstract designs in the
modeling language Promela of the SPIN model
checker [9], and check that these models satisfy
various temporal requirements, usually referred to as
properties [7]. Such properties of the Promela models
are typically either stated in Linear Temporal Logic
(LTL) [12], or as Büchi automata [3]. Büchi automata
(never claims) form the foundation of property
specification in SPIN in the sense that LTL is
translated to these. However, neither LTL nor Büchi
automata are specifically user-friendly notations for
writing complex properties. To address this, JPL has
developed a tool called the Requirements Capture and
Analysis Tool (RCAT). The tool is mainly intended to
support specification of behavioral requirements of
Promela design models. An RCAT model can be
automatically converted into a Büchi automaton for
use by SPIN, and can hence be used to state a property
about a Promela design model. Furthermore, monitors
can be generated from RCAT that can be fed into the

RMOR monitoring tool [6], which can perform
monitoring of C programs against the properties
during execution.

The RCAT graphical notation is based on state

machines, with additional notation for expressing
liveness properties (that some event must eventually
happen), which are used frequently in model checking.
An important objective for the RCAT tool is that it
should require minimal training so that it will be easy
for both systems engineers as well as software
engineers to use it. The notation offers a total of only
7 graphical symbols. The tool interface closely
resembles a Powerpoint chart but with a smaller
palette of drawing features. RCAT utilizes state
machines which form a common reference of
understanding across educational boundaries. Note,
however, that state machines here are used for
expressing requirements and not designs. As will be
outlined, the design of RCAT is responsive to
experiences with and reflections on building or
applying other requirements capture notations at JPL,
such as the timeline editor [14], and the already
mentioned LTL, and Büchi automata.

2. Notation Design Principles

Logic model checking tools commonly use a
temporal logic to express requirements, which include
concepts of temporal ordering, allowed, required and
prohibited behaviors. The SPIN model checker, as
already mentioned, uses LTL and Büchi automata.

Such notations can be convenient in certain cases,
but are generally hard to master by non-experts. Subtle
errors in logic expressions may also be hard to identify
and may lead to false positives and false negatives
during verification and testing. This observation lead
(prior to RCAT) to the design of the Timeedit tool
[14], shown in Figure 1, where the fundamental
concept is that of a time line upon which events are
laid out. A timeline is a graphical depiction of a
progression in time, stating behavior requirements that
can be used to create formal properties for the SPIN
model checker.

In the telecommunications domain for which the
notation was designed, timelines are able to express
many properties of interest. In this domain most
properties include an event preamble (a sequence of
events that must happen before a response is required),
a trigger event, a response, and a set of constraints that
if not met, will discharge the property. In addition to
the benefits of the timeline notation for expressing
properties in the telecommunications domain, it has
these general advantages:

• Simple – the notation is easy to learn and use.
• Intuitive semantics – there is an obvious

relationship between a timeline and its
corresponding Büchi automaton.

While timelines have advantages, they are,

however, not sufficient for the following reasons:

• Expressiveness – timelines cannot express

iterative behaviors, and generally do not have
the same expressive power as LTL, which in
turn is less expressive than Büchi automata.

• Cohesiveness A single timeline can only
express one requirement. It cannot express a
collection of requirements. This is not a
problem with expressiveness since several
timelines can be used, but it causes a
proliferation of timeline diagrams, resulting
in very large specification documents.

The RCAT tool aims to combine the graphical

intuition of an event timeline with additional
expressiveness, to produce a tool that is still easy to
use by non-experts in formal verification, yet can
express a useful range of verifiable software design
requirements.

Figure 1. Time line notation of the Timeedit
tool

RCAT supports a “two-dimensional” time line
notation, allowing the time line to branch out in a tree-
like format. Consider for example the property: “in
case an event e1 occurs, then either e2 and e3 must
occur, in that order, or e4 and e5 must occur, in any
order.” This type of property cannot be expressed in
the timeline notation. To capture a sufficiently broad
range of design requirements we must be able to
express the following:

• the temporal ordering of events
• general Boolean constraints on executions,

e.g. to limit the domain of interest to only
specific types of executions that satisfy the
constraints

• failure (error) events
• optional events that do not have to occur, but

if they occur they may lead to other
requirements that other events must occur

• required events that must eventually occur

• immediate events that must occur in the next
execution step

• branching: choices between alternative event
sequences

A solution would be to use Büchi automata directly to
write requirements. However, Büchi automata are
usually regarded as non-intuitive and complicated to
write. Even experts can have problems writing such
automata and getting them right. As it turns out, a
slight modification of the Büchi automata notation
yields a very practical yet simple and intuitive
notation, which is the RCAT notation.

3. The RCAT Notation

RCAT is fundamentally a state machine notation
with five different state symbols and two transition
symbols, shown in Figure 2. The state symbols, which
can be thought of as nodes in a (possibly cyclic) graph,
are connected by directed edges: transitions. A
transition may have a text label, defining an

Figure 2. RCAT notation

observable event in a system execution. An event can
be a system action or the truth of a Boolean expression
on system state variables. If the event or satisfying
system state occurs, the transition is enabled and
control can pass to its destination node. Each RCAT
specification has a single initial transition. The initial
transition has no origin node. Its destination node is
called the initial node. Any node type, except a super
node (to be defined below) and the fail node, can be
designated as the initial node of an RCAT
specification. There are five types of nodes in RCAT
(Figure 2): optional, required, next, fail and super
nodes.

Optional node An optional node is drawn as a
rounded box with a text label. Execution can wait in
an optional node, awaiting one of the events on the
outgoing transitions. It is not an error to wait in an
optional node indefinitely. Text inside the box has no
formal semantics: it is a comment only that can be
used to increase the understandability of the diagram.

Required node A required node is drawn as a
rectangle with a pointed side. Execution waits in a
required node, awaiting one of the events on the
outgoing transitions. It is an error if one of these
events does not occur eventually.

Next node A next node is drawn as a rectangle with a
black triangle on one side. Execution cannot wait in a
next node. If the immediately next event within the
scope of the RCAT specification matches one of the
outgoing transitions, execution moves to the matching
destination node. It is an error if the next event does
not match one of the outgoing transitions.

Fail node A fail (or error) node is represented by an
‘X’. It is always an error to enter a fail node. It is not
possible to leave a fail node once it is entered.

Super node A super node, or group node, is drawn as
a rounded box with a dashed line. The main purpose
for the super node is to define a constraint on the
behavior that is captured by the nodes that are
enclosed. The constraint, designated in Figure 2.g. as
c1, indicates that the events and states in the super
node are only relevant while constraint c1 evaluates to
true. The constraint applies to all transitions that have
their source node inside the super node. In the
example in Figure 2.g., e1 and e2 are constrained by
c1. If for an execution under consideration the
constraint ceases to be true, it is not an error. On the
contrary, the execution is no longer of interest because

failure of the constraint to hold means that the
execution cannot contain an error. A super node can
also be used to anchor a group exit, such as transition
e3 on Figure 2.g. A group exit is used to indicate that
while execution is pending in any of the nodes within
the super node, if the matching event e3 occurs, the e3
transition will be taken. A constraint, if present, will
also constrain any group exit transitions.

Semantics of initial node The final element of the
RCAT notation determines the semantics of the initial
node. The user can select once or everytime semantics
(in the graphical editor tool menu). A Once semantics
defines a single check for the first occurrence of any
one of the events on transitions that leave the initial
node. An Everytime semantics defines a check for
every occurrence of any one of the events on the
transitions that leave the initial node, defining a
stronger check. An example of a requirement where
everytime semantics would be appropriate is

Figure 3. A property in the RCAT notation and
the correponding Büchi automaton

“whenever
communication with
ground is requested the
rover should eventually
stop”. An example of a
requirement where once
semantics could be used
is: “once the spacecraft
has entered the
atmosphere, the main
parachute is deployed”.
The latter is only
expected to occur once,
while communication
with ground is a
repeated activity, and
each time the rover
should stop (yielding
power resources to
communication).

A simple RCAT
property is depicted in
the upper half of Figure
3. This RCAT model
captures the property we
considered earlier: “in case an event e1 occurs, then
either e2 and e3 must occur, in that order, or e4 and e5
must occur, in any order”. Following the initial
transition the initial node, informally labeled “start,” is
entered. Since this node is an optional node, we can
stay in this node indefinitely without it being
considered an error. However, once event e1 is
detected, control may be passed to required node A. It
is an error to remain in node A indefinitely, meaning
that it is an error if one of e2, e4 or e5 is not eventually
received. Similarly, since node B is a required node it
is an error if e3 does not eventually occur. Similar
logic applies to required nodes C and D. Once control
is passed to optional node “done” no further errors can
potentially be detected and the verifier will stop
checking the execution.

RCAT is meant to be a specification language for
the SPIN model checker, in which properties about
Promela models can be stated. In order for SPIN to
verify that a Promela model satisfies a temporal
property, the property must be represented as a so-
called never claim, essentially a Büchi automaton. The
RCAT tool offers a translator from the RCAT notation
to Büchi automata. The lower half of Figure 3 shows
the Büchi automaton generated from the just described
RCAT automaton. For the reader not familiar with
Büchi automata, the following brief explanation
should suffice. The language of a Büchi automaton is

a set of infinite traces, each trace corresponding to a
path through the automaton making transition
conditions over events evaluate to true. A Büchi
automaton has two kinds of states: normal states
(drawn as a single circle) and acceptance states (a
double circle). An infinite trace is in the language of a
Büchi automaton (is accepted by the automaton) if it
visits an acceptance state infinitely often. It is implied
that precisely one transition must be taken within the
automaton at each model execution step. At a given
automaton state, if there is no matching transition that
can be taken, then the current execution is not matched
by the automaton and the remainder of the execution is
considered to fall outside the scope of the automaton
(is not accepted by the automaton). Checking a
property of a Promela model in SPIN conceptually
corresponds to checking that the language denoted by
the model forms a subset of the language denoted by
the property. This is, however, in practice done by
checking that the intersection of the language denoted
by the model with the complement of the language
denoted by the property, namely the language of bad
traces, is empty. Hence, in SPIN, a Büchi automaton
used for verification, also referred to as a never claim,
must accept all bad traces.

Figure 4. Conversion of RCAT specifications to Büchi automata

4. Conversion to Büchi Automata

The first step in generation of a Büchi automaton
from an RCAT automaton is to convert every
transition leaving a super node, to the individual
transitions from sub-nodes that the super node
transition represents. Each node in the RCAT
specification is subsequently converted into a Büchi
automaton state, with the exception of the super
nodes. The automaton states generated for optional
and required nodes are respectively normal states and
acceptance states. The following description will focus
on the optional node o1 in Figure 4. The self-loop on
the corresponding automaton state s1 is labeled with
the conjunction of the negation of all transition labels
sourcing node o1 and all constraints on super nodes
that overlap any transition sourcing o1. A transition
that sources the automaton state s1 is created for each
transition sourcing o1. A label for each transition
sourcing the automaton state is derived from the
corresponding RCAT model transition label and the
conjunction of the super node constraints that overlap
the source of the RCAT model transition.

For the optional node, as long as we do not receive
one of the events that originates at the node and all
constraints hold true, we can follow the self-loop
transition on the state s1. s1 is a non-accepting state so
it is not an error to take the self-loop infinitely often.
Nor is it an error for a constraint to become false. In
this case the execution is discarded because it is no
longer of interest (cannot potentially contain errors).

For the required node, execution also remains in the
state s1 until one of the events that originates at the
node occurs. However, since s1 is now accepting, it is
an error if we take the self-loop on s1 infinitely often.

The automaton state corresponding to a next node
has no self-loop, meaning that it is not possible to stay
in this state for more than one step. For each transition
sourcing next node n1, a transition is created sourcing
the corresponding automaton state s1 and labeled with
the transition’s event label and the conjunction of any
overlapping constraints from super nodes. These
transitions represent the desired next events and are
the only means of escape from the state. A single
additional transition sources the node s1 to reach a

state s2 in the case where
none of the required events
occur in the next execution
step. This transition is labeled
with the conjunction of the
negated labels of each
transition sourcing the next
node n1 and the conjunction
of any overlapping super node
constraints.

For each fail node in the
RCAT specification, an
accepting state with a self-
loop labeled true is created in
the automaton. For each
incoming transition to the
RCAT fail node, an incoming
transition with the same label
is created to this
corresponding accepting state.

The labels that appear in
the RCAT specification can

Figure 5. Mapping Büchi automata to RCAT and back

Figure 6. Negation of <>[]p as Büchi
automaton and RCAT automaton

be linked to Promela
Boolean expressions in the
RCAT dictionary. That is,
in the automaton that is
generated by RCAT, a
symbol is generated for
each such label, and the
connection between the
symbol and a Boolean
expression is established by
a SPIN macro definition.

5. Expressiveness

The timeline notation is
strictly less expressive than
LTL, which again is strictly
less expressive than Büchi
automata. RCAT, however,
has the same expressive
power as Büchi automata
for infinite traces, and
hence consequently allows
to state any property that
can be stated in the timeline notation or in LTL, as
well as in Büchi automata. Convenience is another
matter, which we shall return to.

To show that RCAT has the same expressive
power as Büchi automata, we have to show that (i) for
every RCAT automaton there exists a Büchi
automaton that accepts the same language, and (ii) for
every Büchi automaton there exists an RCAT
automaton that accepts the same language. Direction
(i) is obvious since RCAT (in this paper) is given
semantics by translation into Büchi automata.
Direction (ii) is somewhat obvious, but requires a little
explanation. What needs to be proved is that for every
Büchi automaton B, there exists an RCAT automaton
R that denotes (translates into) a Büchi automaton B’
that is equivalent to the original Büchi automaton B
(accepts the same language). The argument for (ii) is
outlined informally by showing that for each single
arbitrary Büchi automaton state (normal or
acceptance) with an exiting transition, there is an
RCAT state with “equivalent semantics”.

A normal Büchi state and an acceptance Büchi
state are illustrated by Figure 5, fields 1 and 4.
Consider the normal state in field 1. It illustrates a
state in which the property p has to be true in the next
step, otherwise the automaton that contains this state
will block (unless there are other transitions enabled).
A corresponding RCAT automaton is shown in field 2,
which in turn is translated into the Büchi automaton in

field 3. The latter is equivalent to the automaton in
field 1. This is because transitions that are false or
which end in states with no exit transitions can be
eliminated in a Büchi automaton, while preserving the
semantics. The same reasoning holds for acceptance
states, see fields 4, 5 and 6. Note that this theoretical
argument may give the impression that RCAT is more
verbose than Büchi automata (requiring more
symbols). However, it is generally the other way
around for practical purposes.

The equivalence of Büchi automata and RCAT can
be illustrated by the LTL property “<>[]p”, which
states that eventually (<>) a state must be reached,
where the property p becomes stable always ([]) true.

To check this property against a Promela model in
SPIN we have to convert its negation “!<>[]p” into a
Büchi automaton, and analyze the product of this
negation with the Promela model. The negated
automaton will then “accept” any infinite trace that
violates the original property “<>[]p” by visiting an
acceptance state infinitely often. The negated formula
“!<>[]p” translates into the Büchi automaton shown at
the top of Figure 6. This automaton accepts any word
where !p is true infinitely often, which essentially
means that p never becomes stable (always true). The
equivalent RCAT automaton is also shown at the
bottom of Figure 6, generated using the principles
outlined in Figure 5. The idea is that in case of an
infinite trace that violates “<>[]p”, it will hold that !p

Figure 7. Dual string arbitration requirements specified in RCAT

is true infinitely often, which again means that state r1
in the RCAT automaton is visited infinitely often,
which signals an error since it is mapped to an
acceptance state. In this case the RCAT automaton
becomes almost identical to the Büchi automaton.

The example illustrates how loops involving
required states in RCAT can be used to express
certain properties. Note, that this effect of loops
involving required states may come as a surprise to
users familiar with normal state machines as found for
example in UML, where looping is the normal way of
modeling iteration. The normal use of RCAT should
be to create non-looping state machines.

Another example of a class of properties that
become difficult to express in RCAT (although
possible) are fairness properties, such as for example
the following LTL property:

([]<>p) -> [](q -> <>r)

It states that if p is true infinitely often, then it holds
that any occurrence of q eventually results in an
occurrence of r. Each of the
two component properties of
the outer implication
operator, hence “[]<>p” and
“[](q -> <>r)”, can easily be
stated as RCAT automata
individually, but the
combination cannot be easily
stated, although it can be
stated since RCAT is as
expressve as Büchi automata.
Unfortunately, the generation
of Büchi automata from LTL
is not compositional and
therefore the automaton for
the formula above cannot be
generated from the automata
from the components.

Note that RCAT’s
required node corresponds to
LTL’s until operator, and
RCAT’s next node
corresponds to LTL’s next
operator. LTL’s next operator
is normally regarded as
dangerous and it is usually
recommended to avoid the
use of this operator. The next
node can, however, be
considered useful when there
is a need for specifying what

should happen for each event in a finite set of events,
where it is part of the requirement that no other event
can happen.

6. Application of RCAT

A prototype version of the RCAT tool was
implemented in approximately 6,000 lines of Tcl/Tk
[11]. The following example illustrates the application
of RCAT to a flight hardware redundancy algorithm,
referred to as the dual-string algorithm, developed at
JPL in a recent spacecraft development project. The
dual string arbitration algorithm is heritage from the
Cassini spacecraft [13], but has been re-engineered to
utilize the current generation avionics platform.
Because of the large number of signal and state
combinations to be tested in this system, model
checking was selected to perform an exhaustive
coverage of the design space. The algorithm was
modeled in Promela, and the properties were verified
in SPIN.

Hardware redundancy is a strategy used to ensure

Figure 8. Büchi automaton for the dual string arbitration requirements

uninterrupted operation of a spacecraft in the face of
unrecoverable hardware faults. A compute unit
(referred to as a string) and its associated boards is
“cross-strapped” to an identical copy across a dual-
redundant spacecraft bus. In operating mode, one
compute unit is in control, or is prime while the other
waits in a quiescent state known as backup. State
information passes from the prime to the backup at
each real time interval (RTI) to update the state of the
backup.

When the spacecraft is initially powered on, an
arbitration algorithm executing on both compute units
is used to negotiate which compute unit takes the
prime role and which becomes the backup. The
compute unit playing the prime role controls the
spacecraft radio and has access to the prime spacecraft
bus for issuing commands to non-redudant
components such as instruments and the power
system. Cross-string signal connections exist between
the two compute units to permit direct monitoring by
one compute unit of the prime or backup state that is
being asserted by the other unit. If a fatal fault occurs
on the compute unit that is in the prime role, it de-
asserts primeness on its outgoing cross-string signals,
and the redundant compute unit then has an
opportunity to advance to the prime role.

This brief introduction to the dual-string
arbitration algorithm omits many essential details that
add complexity and make verification non-trivial. For
instance, extra states in addition to prime and backup
are supported as well as redundancy in individual
cross-string signals. Also, there are command-
controlled switches that allow the ground operations
team to intervene by enabling and disabling specific
arbitration behaviors. A test harness encompassing all
combinations of compute unit states, cross-string
signal states, and command control states would
consist of millions of test cases and would not be
feasible to conduct on flight hardware. The Promela
model attempts to explore the state space of an
abstraction of this system. To perform the verification,

the following key requirements
were formalized, orignally
using LTL and Promela inline
assertions:

“When the spacecraft is
initially powered on, one
compute unit must
become prime.”

“Under the assumption
that the spacecraft is in
a healthy state, no more

than one compute unit should ever control the
spacecraft, hence be in the prime state.”

“In the case of a single fault in a compute unit,
the other compute unit should enter prime state
in less than 3 RTIs.”

Assuming that the compute units are identified in
hardware as “A” and “B,” an RCAT model
corresponding to these requirements is shown in
Figure 7. An everytime-semantics is selected for this
chart, meaning that the properties specified in this
chart must be satisfied whenever the exit conditions of
the start node are matched. A graphical depiction of
the generated Büchi automaton is shown in Figure 8.
The formulation of this property in LTL is shown in
Figure 9. In the LTL version, the three requirements
are composed by conjunction. The first two
requirements have a fairly straightforward
representations in LTL. The third requirement
demonstrates that LTL does not provide a simple form
for capturing properties containing sequences of
events.

Using the SPIN model checker, the formalized
RCAT requirement can be verified against the
Promela model. Several important close calls and a
single design flaw were identified by SPIN during the
initial verification effort. One of these design flaws
was a confirmation of a hardware design flaw that
resulted in a hardware re-design. Details of this work
are presented in [7].

7. Related Work

RCAT is an improvement of the Timeedit tool, in
the sense that it adds conditional branching, cycles and
a next node. RCAT has the same expressive power as
Büchi automata, and can alternatively be seen as a
user-friendly version of Büchi automata, focusing on a
particular set of properties which become natural to
express in this notation. The main difference from
Büchi automata is the lack of need for defining self-

[](init -> <>(A_or_B_becomes_prime | !at_least_1_string_healthy))
 &
[]!(A_is_prime & B_is_prime)
 &
[](A_or_B_becomes_prime & <>A_or_B_leaves_prime) ->
 (!A_or_B_leaves_prime U X (A_or_B_leaves_prime &
 ((!rti U (A_or_B_becomes_prime | !at_least_1_string_healthy)) |
 ((!A_or_B_becomes_prime & at_least_1_string_healthy) U
 (rti & X ((!rti U (A_or_B_becomes_prime | !at_least_1_string_healthy)) |
 ((!A_or_B_becomes_prime & at_least_1_string_healthy) U
 (rti & X (!rti U (A_or_B_becomes_prime | !at_least_1_string_healthy))))))))))

Figure 9. LTL formula for dual-string arbitration requirements

loops in many practical cases. RCAT is essentially
state machines, with the notion of “liveness” states,
which have to be left once entered. One can imagine
an extension of UML statecharts with this notion of
liveness, and in fact we are considering defining
RCAT as a UML profile. This would have the
advantage that all of UML’s infrastructure would
become available. Visual Timed Event Scenarios
(VTS) [2], which also builds on Timeedit, permits
conditional branching, cycles and annotation of
diagrams with timing constraints for real-time model
checking, but omits constructs for expressing next and
fail events. RCAT is suited for specifying many of the
specification patterns defined in [1]. These patterns
express properties that must hold in scopes, such as
“the property P should become true between Q and
R”. The property of the dual string algorithm is an
example of such a property, the LTL equivalent of
which is rather complicated.

8. Conclusions

The RCAT tool was developed to fill a gap in the
area of formalizing behavioral design requirements for
mission critical software applications. The goal of this
tool is to preserve the simplicity of notation and ease
of use of the predecessor tool, Timeedit, while
providing some essential improvements in
expressiveness and convenience. The RCAT tool is
currently being studied at JPL for infusion into
mainstream use. RCAT appears sufficient for
expressing properties of Promela models. For runtime
verification of executing code the notation needs to be
further augmented with data values to be fully
effective. Further work includes defining the RCAT
notation as a Unified Modeling Language profile.

Acknowledgements

RCAT was developed at JPL, California Institute
of Technology, under the Reliable Software Systems
Development project, using National Aeronautics and
Space Administration (NASA) funds administered
through the NASA Exploration Systems Missions
Directorate. JPL employees Martin Feather, Rajeev
Joshi, Alex Groce, Gerard Holzmann, and Nicolas
Rouquette provided valuable input.

References

[1] H. Alavi, G. Avrunin, J. Corbett, L. Dillon, M. Dwyer,
and C. Pasareanu, Specification Patterns. SAnToS

Laboratory, Kansas State University,
http://patterns.projects.cis.ksu.edu.

[2] A. Alfonso, V. Braberman, and N. Kicillof, Visual
Timed Event Scenarios, Proc. 26th Int’l Conf. on
Software Engineering (ICSE’04), May 23-28, 2004,
Edinburgh, Scotland, pp. 168-177.

[3] J. R. Büchi, On a Decision Method in Restricted Second
Order Arithmetic. Proceedings of the International
Congress on Logic, Methodology and Philosophy of
Science, Stanford, pages 1-11, Stanford Univ. Press,
1960.

[4] D. Drusinsky, Modeling and Verification using UML
Statecharts. Elsevier, 400 pages, ISBN-13: 978-0-7506-
7949-7, 2006.

[5] K. Havelund and G. Rosu, Synthesizing Monitors for
Safety Properties, Tools and Algorithms for
Construction and Analysis of Systems, TACAS 2002,
April 6-14, 2002, Grenoble, France, Vol. 2280, pp. 342-
356.

[6] K. Havelund, Runtime Verification of C Programs. In
Proc. of the 20th IFIP Conf. on Testing of Software and
Communicating Systems (TESTCOM / FATES’08),
LNCS 5047, pp. 7-23, Springer. Tokyo, Japan, June
2008.

[7] K. Havelund, G. Holzmann, and M. Smith. Verification
of a String Arbitration Algorithm. Jet Propulsion
Laboratory, internal report. October 2007.

[8] K. Havelund, M. Lowry, and J. Penix, Formal Analysis
of a Space Craft Controller using SPIN, IEEE Trans. on
Software Engineering, Vol. 27, No. 8, August, 2001.

[9] G. Holzmann, The Model Checker Spin, IEEE Trans. on
Software Engineering, Vol. 23, No. 5, May 1997, pp.
279-297.

[10] G. Holzmann, The SPIN Model Checker: Primer and
Reference Manual, Addison-Wesley Professional,
September, 2003. ISBN 0321228626.

[11] J. K. Ousterhout, Tcl and the Tk Toolkit, Addison-
Wesley Professional; 1st edition, March 31, 1994. ISBN
020163337X.

[12] A. Pnueli, The Temporal Logic of Programs.
Proceedings of the 18th IEEE Symposium on
Foundations of Computer Science, pages 46-77, 1977.

[13] F. Schneider, S. M. Easterbrook, J. R. Callahan, and G.
J. Holzmann, Validating Requirements for Fault
Tolerant Systems using Modeling Checking, Proc. int.
Conf. on Requirements Engineering (ICRE), pp. 4-14,
IEEE, Colorado Springs, CO. USA, April 1998.

[14] M. Smith, G. Holzmann, and K. Ettessami, Events and
Constraints: a Graphical Editor for Capturing Logic
Properties of Programs, 5th Int’l Sym. on Requirements
Engineering, pp 14-22, Toronto, Canada. August 2001.

