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Abstract 
NASA spends millions designing and building 
spacecraft for its missions. The dependence on 
software is growing as spacecraft  become more 
complex. With the increasing dependence on software 
comes the risk that bugs can lead to the loss of a 
mission. At NASA’s Jet Propulsion Laboratory new 
tools are being developed to address this problem. 
Logic model checking [9] and runtime verification [5] 
can increase the confidence in a design or  an 
implementation. A barrier to the application of such 
property-based checks is the difficulty in mastering the 
requirements notations that are currently available. 
For these techniques to be easily usable, a simple but 
expressive requirement specification method is 
essential. This paper describes a requirements capture 
notation and supporting tool that graphically captures 
formal requirements and converts them into automata 
that can be used in model checking and for runtime 
verification. 

1.  Introduction 

Defects can be introduced in all phases of software 
development, from requirements to software 
maintenance. It is desirable to intercept defects as 
early as possible in the development process, well 
before traditional software testing begins. The reliance 
on informal statements of requirements leaves the 
software development process vulnerable to a large 
class of potential defects caused by ambiguity and 
incompleteness in requirements. Consequently, 

current methods of software testing provide relatively 
poor coverage of the original requirements and 
provide little control over what is tested. 

In the current development process of robotic 
space missions at NASA’s Jet Propulsion Laboratory 
(JPL), usually the set of  requirements for a project are 
developed and maintained informally in the form of 
Word documents. The result of this lack of formality 
is a set of requirements that can have significant gaps 
and ambiguities. Furthermore, the relation between 
requirements and testing becomes informal. Informal 
text does not support test case generation, nor 
monitoring of requirements during system execution. 

Part of the process for development of complex 
software at JPL is to create abstract designs in the 
modeling language Promela of the SPIN model 
checker [9], and check that these models satisfy 
various temporal requirements, usually referred to as 
properties [7]. Such properties of the Promela models 
are typically either stated in Linear Temporal Logic 
(LTL) [12], or as Büchi automata [3]. Büchi automata 
(never claims) form the foundation of property 
specification in SPIN in the sense that LTL is 
translated to these. However, neither LTL nor Büchi 
automata are specifically user-friendly notations for 
writing complex properties. To address this, JPL has 
developed a tool called the Requirements Capture and 
Analysis Tool (RCAT). The tool is mainly intended to 
support specification of behavioral requirements of 
Promela design models. An RCAT model can be 
automatically converted into a Büchi automaton for 
use by SPIN, and can hence be used to state a property 
about a Promela design model. Furthermore, monitors 
can be generated from RCAT that can be fed into the 



 

RMOR monitoring tool [6], which can perform 
monitoring of C programs against the properties 
during execution. 

 
The RCAT graphical notation is based on state 

machines, with additional notation for expressing 
liveness properties (that some event must eventually 
happen), which are used frequently in model checking. 
An important objective for the RCAT tool is that it 
should require minimal training so that it will be easy 
for both systems engineers as well as software 
engineers to use it. The notation offers a total of only 
7 graphical symbols. The tool interface closely 
resembles a Powerpoint chart but with a smaller 
palette of drawing features. RCAT utilizes state 
machines which form a common reference of 
understanding across educational boundaries. Note, 
however, that state machines here are used for 
expressing requirements and not designs. As will be 
outlined, the design of RCAT is responsive to 
experiences with and reflections on building or 
applying other requirements capture notations at JPL, 
such as the timeline editor [14], and the already 
mentioned LTL,  and Büchi automata. 

2. Notation Design Principles 

Logic model checking tools commonly use a 
temporal logic to express requirements, which include 
concepts of temporal ordering, allowed, required and 
prohibited behaviors. The SPIN model checker, as 
already mentioned, uses LTL and Büchi automata.  

Such notations can be convenient in certain cases, 
but are generally hard to master by non-experts. Subtle 
errors in logic expressions may also be hard to identify 
and may lead to false positives and false negatives 
during verification and testing. This observation lead 
(prior to RCAT) to the design of the Timeedit tool 
[14], shown in Figure 1, where the fundamental 
concept is that of a time line upon which events are 
laid out. A timeline is a graphical depiction of a 
progression in time, stating behavior requirements that 
can be used to create formal properties for the SPIN 
model checker. 

In the telecommunications domain for which the 
notation was designed, timelines are able to express 
many properties of interest. In this domain most 
properties include an event preamble (a sequence of 
events that must happen before a response is required), 
a trigger event, a response, and a set of constraints that 
if not met, will discharge the property. In addition to 
the benefits of the timeline notation for expressing 
properties in the telecommunications domain, it has 
these general advantages: 

 
• Simple – the notation is easy to learn and use. 
• Intuitive semantics – there is an obvious 

relationship between a timeline and its 
corresponding Büchi automaton. 

 
While timelines have advantages, they are, 

however, not sufficient for the following reasons: 
 
• Expressiveness – timelines cannot express 

iterative behaviors, and generally do not have 
the same expressive power as LTL, which in 
turn is less expressive than Büchi automata.  

• Cohesiveness  A single timeline can only 
express one requirement. It cannot  express a  
collection of requirements. This is not a 
problem with expressiveness since several 
timelines can be used, but it causes a 
proliferation of timeline diagrams, resulting 
in very large specification documents. 

 
The RCAT tool aims to combine the graphical 

intuition of an event timeline with additional 
expressiveness, to produce a tool that is still easy to 
use by non-experts in formal verification, yet can 
express a useful range of verifiable software design 
requirements. 

 

Figure 1.  Time line notation of the Timeedit 
tool 



 

RCAT supports a “two-dimensional” time line 
notation, allowing the time line to branch out in a tree-
like format. Consider for example the property: “in 
case an event e1 occurs, then either e2 and e3 must 
occur, in that order,  or e4 and e5 must occur, in any 
order.”  This type of property cannot be expressed in 
the timeline notation. To capture a sufficiently broad 
range of design requirements we must be able to 
express the following: 

• the temporal ordering of events  
• general Boolean constraints on executions, 

e.g. to limit the domain of interest to only 
specific types of executions that satisfy the 
constraints 

• failure (error) events 
• optional events that do not have to occur, but 

if they occur they may lead to other 
requirements that other events must occur 

• required events that must eventually occur 

• immediate events that must occur in the next 
execution step 

• branching: choices between alternative event 
sequences 

A solution would be to use Büchi automata directly to 
write requirements. However, Büchi automata are 
usually regarded as non-intuitive and complicated to 
write. Even experts can have problems writing such 
automata and getting them right. As it turns out, a 
slight modification of the Büchi automata notation 
yields a very practical yet simple and intuitive 
notation, which is the RCAT notation. 

3. The RCAT Notation 

RCAT is fundamentally a state machine notation 
with five different state symbols and two transition 
symbols, shown in Figure 2. The state symbols, which 
can be thought of as nodes in a (possibly cyclic) graph, 
are connected by directed edges: transitions. A 
transition may have a text label, defining an 

 

Figure 2.  RCAT notation 



 

observable event in a system execution. An event can 
be a system action or the truth of a Boolean expression 
on system state variables. If the event or satisfying 
system state occurs, the transition is enabled and 
control can pass to its destination node.  Each RCAT 
specification has a single initial transition. The initial 
transition has no origin node. Its destination node is 
called the initial node. Any node type, except a super 
node (to be defined below) and the fail node, can be 
designated as the initial node of an RCAT 
specification. There are five types of nodes in RCAT 
(Figure 2): optional, required, next, fail and super 
nodes. 
 
Optional node An optional node is drawn as a 
rounded box with a text label. Execution can wait in 
an optional node, awaiting one of the events on the 
outgoing transitions. It is not an error to wait in an 
optional node indefinitely. Text inside the box has no 
formal semantics: it is a comment only that can be 
used to increase the understandability of the diagram.  
 
Required node A required node is drawn as a 
rectangle with a pointed side. Execution waits in a 
required node, awaiting one of the events on the 
outgoing transitions. It is an error if one of these 
events does not occur eventually. 
 
Next node A next node is drawn as a rectangle with a 
black triangle on one side. Execution cannot wait in a 
next node. If the immediately next event within the 
scope of the RCAT specification matches one of the 
outgoing transitions, execution moves to the matching 
destination node. It is an error if the next event does 
not match one of the outgoing transitions.  
 
Fail node A fail (or error) node is represented by an 
‘X’. It is always an error to enter a fail node. It is not 
possible to leave a fail node once it is entered. 
 
Super node A super node, or group node, is drawn as 
a rounded box with a dashed line. The main purpose 
for the super node is to define a constraint on the 
behavior that is captured by the nodes that are 
enclosed. The constraint, designated in Figure 2.g. as 
c1, indicates that the events and states in the super 
node are only relevant while constraint c1 evaluates to 
true. The constraint applies to all transitions that have 
their source node inside the super node. In the 
example in Figure 2.g., e1 and e2 are constrained by 
c1. If for an execution under consideration the 
constraint ceases to be true, it is not an error. On the 
contrary, the execution is no longer of interest because 

failure of the constraint to hold means that the 
execution cannot contain an error. A super node can 
also be used to anchor a group exit, such as transition 
e3  on Figure 2.g. A group exit is used to indicate that 
while execution is pending in any of the nodes within 
the super node, if the matching event e3 occurs, the e3 
transition will be taken. A constraint, if present, will 
also constrain any group exit transitions. 
 
Semantics of initial node The final element of the 
RCAT notation determines the semantics of the initial 
node. The user can select once or everytime semantics 
(in the graphical editor tool menu). A Once semantics 
defines a single check for the first occurrence of any 
one of the events on transitions that leave the initial 
node. An Everytime semantics defines a check for 
every occurrence of any one of the events on the 
transitions that leave the initial node, defining a 
stronger check. An example of a requirement where 
everytime semantics would be appropriate is 

 
 

 

Figure 3. A property in the RCAT notation and 
the correponding Büchi automaton  



 

“whenever 
communication with 
ground is requested the 
rover should eventually 
stop”. An example of a 
requirement where once 
semantics could be used 
is: “once the spacecraft 
has entered the 
atmosphere, the main 
parachute is deployed”. 
The latter is only 
expected to occur once, 
while communication 
with ground is a 
repeated activity, and 
each time the rover 
should stop (yielding 
power resources to 
communication). 

A simple RCAT 
property is depicted in 
the upper half of Figure 
3. This RCAT model 
captures the property we 
considered earlier: “in case an event e1 occurs, then 
either e2 and e3 must occur, in that order,  or e4 and e5 
must occur, in any order”. Following the initial 
transition the initial node, informally labeled “start,” is 
entered. Since this node is an optional node, we can 
stay in this node indefinitely without it being 
considered an error. However, once event e1 is 
detected, control may be passed to required node A. It 
is an error to remain in node A indefinitely, meaning 
that it is an error if one of e2, e4 or e5 is not eventually 
received. Similarly, since node B is a required node it 
is an error if e3 does not eventually occur. Similar 
logic applies to required nodes C and D. Once control 
is passed to optional node “done” no further errors can 
potentially be detected and the verifier will stop 
checking the execution. 

RCAT is meant to be a specification language for 
the SPIN model checker, in which properties about 
Promela models can be stated. In order for SPIN to 
verify that a Promela model satisfies a temporal 
property, the property must be represented as a so-
called never claim, essentially a Büchi automaton. The 
RCAT tool offers a translator from the RCAT notation 
to Büchi automata. The lower half of Figure 3 shows 
the Büchi automaton generated from the just described 
RCAT automaton. For the reader not familiar with 
Büchi automata, the following brief explanation 
should suffice. The language of a Büchi automaton is 

a set of infinite traces, each trace corresponding to a 
path through the automaton making transition 
conditions over events evaluate to true. A Büchi 
automaton has two kinds of states: normal states 
(drawn as a single circle) and acceptance states (a 
double circle). An infinite trace is in the language of a 
Büchi automaton (is accepted by the automaton) if it 
visits an acceptance state infinitely often. It is implied 
that precisely one transition must be taken within the 
automaton at each model execution step. At a given 
automaton state, if there is no matching transition that 
can be taken, then the current execution is not matched 
by the automaton and the remainder of the execution is 
considered to fall outside the scope of the automaton 
(is not accepted by the automaton).  Checking a 
property of a Promela model in SPIN conceptually 
corresponds to checking that the language denoted by 
the model forms a subset of the language denoted by 
the property. This is, however, in practice done by 
checking that the intersection of the language denoted 
by the model with the complement of the language 
denoted by the property, namely the language of bad 
traces, is empty. Hence, in SPIN, a Büchi automaton 
used for verification, also referred to as a never claim, 
must accept all bad traces.  

 

 

Figure 4.  Conversion of RCAT specifications to Büchi automata 



 

4. Conversion to Büchi Automata 

The first step in generation of a Büchi automaton 
from an RCAT automaton is to convert every 
transition leaving a super node, to the individual 
transitions from sub-nodes that the super node 
transition represents. Each node in the RCAT 
specification is subsequently converted into a Büchi 
automaton state, with the exception of the super 
nodes. The automaton states generated for optional 
and required nodes are respectively normal states and 
acceptance states. The following description will focus 
on the optional node o1 in Figure 4. The self-loop on 
the corresponding automaton state s1 is labeled with 
the conjunction of the negation of all transition labels 
sourcing node o1 and all constraints on super nodes 
that overlap any transition sourcing o1. A transition 
that sources the automaton state s1 is created for each 
transition sourcing o1. A label for each transition 
sourcing the automaton state is derived from the 
corresponding RCAT model transition label and the 
conjunction of the super node constraints that overlap 
the source of the RCAT model transition. 

For the optional node, as long as we do not receive 
one of the events that originates at the node and all 
constraints hold true, we can follow the self-loop 
transition on the state s1. s1 is a non-accepting state so 
it is not an error to take the self-loop infinitely often. 
Nor is it an error for a constraint to become false. In 
this case the execution is discarded because it is no 
longer of interest (cannot potentially contain errors). 

For the required node, execution also remains in the 
state s1 until one of the events that originates at the 
node occurs. However, since s1 is now accepting, it is 
an error if we take the self-loop on s1 infinitely often. 

The automaton state corresponding to a next node 
has no self-loop, meaning that it is not possible to stay 
in this state for more than one step. For each transition 
sourcing next node n1, a transition is created sourcing 
the corresponding automaton state s1 and labeled with 
the transition’s event label and the conjunction of any 
overlapping constraints from super nodes. These 
transitions represent the desired next events and are 
the only means of escape from the state. A single 
additional transition sources the node s1 to reach a 

state s2 in the case where 
none of the required events 
occur in the next execution 
step. This transition is labeled 
with the conjunction of the 
negated labels of each 
transition sourcing the next 
node n1 and the conjunction 
of any overlapping super node 
constraints. 

For each fail node in the 
RCAT specification, an 
accepting state with a self-
loop labeled true is created in 
the automaton. For each 
incoming transition to the 
RCAT fail node, an incoming 
transition with the same label 
is created to this 
corresponding accepting state. 

The labels that appear in 
the RCAT specification can 

 

Figure 5.  Mapping Büchi automata to RCAT and back 

 

 

Figure 6. Negation of  <>[]p as Büchi 
automaton and RCAT automaton 



 

be linked to Promela 
Boolean expressions in the 
RCAT dictionary. That is, 
in the automaton that is 
generated by RCAT, a 
symbol is generated for 
each such label, and the 
connection between the 
symbol and a Boolean 
expression is established by 
a SPIN macro definition. 

5. Expressiveness  

The timeline notation is 
strictly less expressive than 
LTL, which again is strictly 
less expressive than Büchi 
automata. RCAT, however, 
has the same expressive 
power as Büchi automata 
for infinite traces, and 
hence consequently allows 
to state any property that 
can be stated in the timeline notation or in LTL, as 
well as in Büchi automata. Convenience is another 
matter, which we shall return to. 

To show that RCAT has the same expressive 
power as Büchi automata, we have to show that (i) for 
every RCAT automaton there exists a Büchi 
automaton that accepts the same language, and (ii) for 
every Büchi automaton there exists an RCAT 
automaton that accepts the same language. Direction 
(i) is obvious since RCAT (in this paper) is given 
semantics by translation into Büchi automata. 
Direction (ii) is somewhat obvious, but requires a little 
explanation. What needs to be proved is that for every 
Büchi automaton B, there exists an RCAT automaton 
R that denotes (translates into) a Büchi automaton B’ 
that is equivalent to the original Büchi automaton B 
(accepts the same language). The argument for (ii) is 
outlined informally by showing that for each single 
arbitrary Büchi automaton state (normal or 
acceptance) with an exiting transition, there is an 
RCAT state with “equivalent semantics”. 

A normal Büchi state and an acceptance Büchi 
state are illustrated by Figure 5, fields 1 and 4. 
Consider the normal state in field 1. It illustrates a 
state in which the property p has to be true in the next 
step, otherwise the automaton that contains this state 
will block (unless there are other transitions enabled). 
A corresponding RCAT automaton is shown in field 2, 
which in turn is translated into the Büchi automaton in 

field 3. The latter is equivalent to the automaton in 
field 1. This is because transitions that are false or 
which end in states with no exit transitions can be 
eliminated in a Büchi automaton, while preserving the 
semantics. The same reasoning holds for acceptance 
states, see fields 4, 5 and 6.  Note that this theoretical 
argument may give the impression that RCAT is more 
verbose than Büchi automata (requiring more 
symbols). However, it is generally the other way 
around for practical purposes. 

The equivalence of Büchi automata and RCAT can 
be illustrated by the LTL property “<>[]p”, which 
states that eventually (<>) a state must be reached, 
where the property p becomes stable always ([]) true. 

To check this property against a Promela model in 
SPIN we have to convert its negation “!<>[]p” into a 
Büchi automaton, and analyze the product of this 
negation with the Promela model. The negated 
automaton will then “accept” any infinite trace that 
violates the original property “<>[]p” by visiting an 
acceptance state infinitely often. The negated formula 
“!<>[]p” translates into the Büchi automaton shown at 
the top of Figure 6. This automaton accepts any word 
where !p is true infinitely often, which essentially 
means that p never becomes stable (always true). The 
equivalent RCAT automaton is also shown at the 
bottom of Figure 6, generated using the principles 
outlined in Figure 5. The idea is that in case of an 
infinite trace that violates “<>[]p”, it will hold that !p 

 

Figure 7.  Dual string arbitration requirements specified in RCAT 



 

is true infinitely often, which again means that state r1 
in the RCAT automaton is visited infinitely often, 
which signals an error since it is mapped to an 
acceptance state. In this case the RCAT automaton 
becomes almost identical to the Büchi automaton. 

The example illustrates how loops involving 
required states in RCAT can be used to express 
certain properties. Note, that this effect of loops 
involving required states may come as a surprise to 
users familiar with normal state machines as found for 
example in UML, where looping is the normal way of 
modeling iteration. The normal use of RCAT should 
be to create non-looping state machines. 

Another example of a class of properties that 
become difficult to express in RCAT (although 
possible) are fairness properties, such as for example 
the following LTL property: 
 

([]<>p) -> [](q -> <>r) 
 

It states that if p is true infinitely often, then it holds 
that any occurrence of q eventually results in an 
occurrence of r. Each of the 
two component properties of 
the outer implication 
operator, hence “[]<>p” and 
“[](q -> <>r)”, can easily be 
stated as RCAT automata 
individually, but the 
combination cannot be easily 
stated, although it can be 
stated since RCAT is as 
expressve as Büchi automata. 
Unfortunately, the generation 
of Büchi automata from LTL 
is not compositional and 
therefore the automaton for 
the formula above cannot be 
generated from the automata 
from the components.  

Note that RCAT’s 
required node corresponds to 
LTL’s until operator, and 
RCAT’s next node 
corresponds to LTL’s next 
operator. LTL’s next operator 
is normally regarded as 
dangerous and it is usually 
recommended to avoid the 
use of this operator. The next 
node can, however, be 
considered useful when there 
is a need for specifying what 

should happen for each event in a finite set of events, 
where it is part of the requirement that no other event 
can happen.  

6. Application of RCAT 

A prototype version of the RCAT tool was 
implemented in approximately 6,000 lines of Tcl/Tk 
[11]. The following example illustrates the application 
of RCAT to a flight hardware redundancy algorithm, 
referred to as the dual-string algorithm, developed at 
JPL in a recent spacecraft development project. The  
dual string arbitration algorithm is heritage from the 
Cassini spacecraft [13], but has been re-engineered to 
utilize the current generation avionics platform. 
Because of the large number of signal and state 
combinations to be tested in this system, model 
checking was selected to perform an exhaustive 
coverage of the design space. The algorithm was 
modeled in Promela, and the properties were verified 
in SPIN. 

Hardware redundancy is a strategy used to ensure 

 

 

Figure 8.  Büchi automaton for the dual string arbitration requirements 



 

uninterrupted operation of a spacecraft in the face of 
unrecoverable hardware faults. A compute unit 
(referred to as a string) and its associated boards is 
“cross-strapped” to an identical copy across a dual-
redundant spacecraft bus. In operating mode, one 
compute unit is in control, or is prime while the other 
waits in a quiescent state known as backup. State 
information passes from the prime to the backup at 
each real time interval (RTI) to update the state of the 
backup. 

When the spacecraft is initially powered on, an 
arbitration algorithm executing on both compute units 
is used to negotiate which compute unit takes the 
prime role and which becomes the backup. The 
compute unit playing the prime role controls the 
spacecraft radio and has access to the prime spacecraft 
bus for issuing commands to non-redudant 
components such as instruments and the power 
system. Cross-string signal connections exist between 
the two compute units to permit direct monitoring by 
one compute unit of the prime or backup state that is 
being asserted by the other unit. If a fatal fault occurs 
on the compute unit that is in the prime role, it de-
asserts primeness on its outgoing cross-string signals, 
and the redundant compute unit then has an 
opportunity to advance to the prime role. 

This brief introduction to the dual-string 
arbitration algorithm omits many essential details that 
add complexity and make verification non-trivial. For 
instance, extra states in addition to prime and backup 
are supported as well as redundancy in individual 
cross-string signals. Also, there are command-
controlled switches that allow the ground operations 
team to intervene by enabling and disabling specific 
arbitration behaviors. A test harness encompassing all 
combinations of compute unit states, cross-string 
signal states, and command control states would 
consist of millions of test cases and would not be 
feasible to conduct on flight hardware. The Promela 
model attempts to explore the state space of an 
abstraction of this system. To perform the verification, 

the following key requirements 
were formalized, orignally 
using LTL and Promela inline 
assertions: 

 
“When the spacecraft is 
initially powered on, one 
compute unit must 
become prime.” 
 
“Under the assumption 
that the spacecraft is in 
a healthy state, no more 

than one compute unit should ever control the 
spacecraft, hence be in the prime state.”  

 
“In the case of a single fault in a compute unit, 
the other compute unit should enter prime state 
in less than 3 RTIs.”  
 

Assuming that the compute units are identified in 
hardware as “A” and “B,” an RCAT model 
corresponding to these requirements is shown in 
Figure 7. An everytime-semantics is selected for this 
chart, meaning that the properties specified in this 
chart must be satisfied whenever the exit conditions of 
the start node are matched. A graphical depiction of 
the generated Büchi automaton is shown in Figure 8. 
The formulation of this property in LTL is shown in 
Figure 9. In the LTL version, the three requirements 
are composed by conjunction. The first two 
requirements have a fairly straightforward 
representations in LTL. The third requirement 
demonstrates that LTL does not provide a simple form 
for capturing properties containing sequences of 
events. 

Using the SPIN model checker, the formalized 
RCAT requirement can be verified against the 
Promela model. Several  important close calls and a 
single design flaw were identified by SPIN during the 
initial verification effort. One of these design flaws 
was a confirmation of a hardware design flaw that 
resulted in a hardware re-design. Details of this work 
are presented in [7]. 

7. Related Work 

RCAT is an improvement of the Timeedit tool, in 
the sense that it adds conditional branching, cycles and 
a next node. RCAT has the same expressive power as 
Büchi automata, and can alternatively be seen as a 
user-friendly version of Büchi automata, focusing on a 
particular set of properties which become natural to 
express in this notation. The main difference from 
Büchi automata is the lack of need for defining self-

[](init -> <>(A_or_B_becomes_prime | !at_least_1_string_healthy)) 
  & 
[]!(A_is_prime & B_is_prime) 
  & 
[](A_or_B_becomes_prime & <>A_or_B_leaves_prime) -> 
  (!A_or_B_leaves_prime U X (A_or_B_leaves_prime & 
    ((!rti U (A_or_B_becomes_prime | !at_least_1_string_healthy)) | 
      ((!A_or_B_becomes_prime & at_least_1_string_healthy) U 
        (rti & X ((!rti U (A_or_B_becomes_prime | !at_least_1_string_healthy)) | 
          ((!A_or_B_becomes_prime & at_least_1_string_healthy) U 
            (rti & X (!rti U (A_or_B_becomes_prime | !at_least_1_string_healthy)))))))))) 

Figure 9. LTL formula for dual-string arbitration requirements 



 

loops in many practical cases. RCAT is essentially 
state machines, with the notion of “liveness” states, 
which have to be left once entered. One can imagine 
an extension of UML statecharts with this notion of 
liveness, and in fact we are considering defining 
RCAT as a UML profile. This would have the 
advantage that all of UML’s infrastructure would 
become available. Visual Timed Event Scenarios 
(VTS) [2], which also builds on Timeedit, permits 
conditional branching, cycles and annotation of 
diagrams with timing constraints for real-time model 
checking, but omits constructs for expressing next and 
fail events. RCAT is suited for specifying many of the 
specification patterns defined in [1]. These patterns 
express properties that must hold in scopes, such as 
“the property P should become true between Q and 
R”. The property of the dual string algorithm is an 
example of such a property, the LTL equivalent of 
which is rather complicated. 

8. Conclusions 

The RCAT tool was developed to fill a gap in the 
area of formalizing behavioral design requirements for 
mission critical software applications. The goal of this 
tool is to preserve the simplicity of notation and ease 
of use of the predecessor tool, Timeedit, while 
providing some essential improvements in 
expressiveness and convenience. The RCAT tool is 
currently being studied at JPL for infusion into 
mainstream use. RCAT appears sufficient for 
expressing properties of Promela models. For runtime 
verification of executing code the notation needs to be 
further augmented with data values to be fully 
effective. Further work includes defining the RCAT 
notation as a Unified Modeling Language profile. 
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