
Rule systems for run-time monitoring: from Eagle to RuleR

Howard Barringer, David Rydeheard∗

email: {Howard.Barringer, David.Rydeheard}@manchester.ac.uk

Klaus Havelund†

email: Klaus.Havelund@jpl.nasa.gov

January 26, 2007

Summary

Eagle was introduced in [2] as a general purpose rule-

based temporal logic for specifying run-time monitors.

A novel and relatively efficient interpretative trace-

checking scheme via stepwise transformation of an Ea-

gle monitoring formula was defined and implemented.

However, application in real-world examples has shown

efficiency weaknesses, especially those associated with

large-scale symbolic formula manipulation. For this

presentation, first we reflect briefly on the strengths and

weaknesses of Eagle and then we introduce RuleR, a

primitive conditional rule-based system, which can be

more efficiently implemented for run-time checking, and

into which one can compile various temporal logics used

for run-time verification.

Background and motivation

A plethora of logics have been used for the specifica-
tion of behavioural system properties that can be
dynamically checked either on-line throughout an
execution of the system or off-line over an execu-
tion trace of the system. Some form of linear-time
temporal logic usually forms the basis for the speci-
fication logic. This large variety of logics prompted
the search for a small and general framework for
defining monitoring logics, which would be power-
ful enough to capture most of the existing logics,
thus supporting future and past time logics, inter-
val logics, extended regular expressions, state ma-
chines, real-time and data constraints, and stochas-
tic behaviour. The framework should support the
definition of new logics easily and should support
the monitoring of programs with their complex pro-
gram states. Eagle was the result.

The Eagle logic is a restricted first order, fixed-
point, linear-time temporal logic with chop (con-
catenation) over finite traces. As such, the logic
is highly expressive and, not surprisingly, Ea-

gle’s satisfiability (validity) problem is undecid-

∗School of Computer Science, University of Manchester,

Oxford Road, Manchester, M13 9PL, UK
†Columbus Technologies, Laboratory for Reliable Soft-

ware, NASA’s Jet Propulsion Laboratory, Pasadena, CA

91109, USA

able; checking satisfiability in a given model, how-
ever, is decidable and that is what’s required for
run-time verification. The syntax and semantics of
Eagle is succinct. There are four primitive tem-
poral operators: © — next,

⊙
— previously, ·

— concatenation, and ; — chop (overlapping con-
catenation, or sequential composition). Temporal
equations can be used to define schema for tempo-
ral formulae, where the temporal predicates may
be parameterized by data as well as by Eagle for-
mulas. The usual boolean logical connectives ex-
ist. For example, the linear-time , U and S
temporal operators can be introduced through the
following equational definitions.

max Always(Form F ) = F ∧©Always(F )

min Until(Form F1,Form F2) =
F2 ∨ (F1 ∧©Until(F1, F2))

min Since(Form F1,Form F2) =
(F2 ∨ (F1 ∧

J
Since(F1, F2)))

The qualifiers max and min indicate the posi-
tive and, respectively, negative interpretation that
is to be given to the associated temporal predi-
cate at trace boundaries — corresponding to max-
imal and minimal solutions to the equations. Thus
©Always(p) is defined to be true in the last state
of a given trace, whereas ©Until(p, q) is false in
the last state.

Even without data parametrization, the primi-
tive concatenation temporal operators in conjunc-
tion with the recursively defined temporal predi-
cates takes the logic into the world of context-free
expressivity. Parametrization of temporal predi-
cates by data values allows us to define real-time
and stochastic logical operators.

We will reflect on two related questions: Is Ea-

gle too expressive for run-time monitoring? If not,
is Eagle expressive enough? For example, there
are arguments to use deterministic versions of tem-
poral concatenation and chop for run-time moni-
toring — and there are several different forms of
deterministic cut, e.g. left minimal, left maximal,
right minimal, right maximal, etc..

What can be said about the computational effec-
tiveness of algorithms for Eagle trace-checking?
Firstly, trace-checking of full Eagle can be under-

1



taken on a state-by-state basis, even though the
logic has the same temporal expressiveness over the
past as over the future; basically, our published
trace-check algorithm maintains sufficient knowl-
edge about the past in the evolving monitor for-
mulas. Unfortunately, given the presence of data
arguments in temporal predicates, an explosion in
the size of the evolving monitor formula may occur.

What was clear to us at the time was that there
were some practically useful and efficiently exe-
cutable subsets of Eagle. One such fragment for
which we computed complexity results was the LTL
(past and future) fragment of Eagle [3]. Despite
the nice features of Eagle, we still believed we
should continue to search for a powerful and sim-
pler “core” logic, one that is easy and efficient to
evaluate for monitoring purposes.

Introducing RuleR

The Eagle trace-checking algorithm is essentially
interpretative. Given a monitor formula and an in-
put state, the trace-checker computes a new moni-
tor formula that will need to hold in the next state
for the original monitor formula to hold on the cur-
rent input; recursively defined temporal predicates
are replaced by their definitions and separated into
what has to hold now and in the future. Consid-
erable formula rewriting, i.e. data structure ma-
nipulation, is required. The question thus arises:
what compilation strategy might be possible in or-
der to optimize the interpretation process? Perhaps
some form of predicated automata can be compiled.
Similar issues arose when interpretation improve-
ments were being sought for the executable logic
MetateM [1]. Fisher’s separated normal form
was developed [4], leading to improved temporal
resolution-based theorem-proving techniques.

As an experiment, we have constructed a sim-
ple rule system into which one can compile vari-
ous forms of linear-time temporal logic. The rules
bear a strong resemblance to the step rules used
in graph-based temporal resolution. Let us give a
flavour for the propositional case of RuleR. Let
the letters a, b, c, etc., denote propositional atoms
that can be evaluated in a given input state, and
the letters r1, r2, r3, etc., denote rule names, which
in turn are associated with conditional monitoring
step rules. A rule name is also treated as a propo-
sitional atom. Rule definitions are of the form:

ruleName : antecedent −→◦ consequent

where the antecedent is a conjunctive list of atoms,
and the consequent is a disjunctive list of conjunc-
tive lists of atoms. Here’s an example of a set of
rules representing the temporal monitoring formula

((
⊙

(aS b)) ⇒ g(a ∨ gc)), assuming we have
r0, r1 and r3 initially active.

r0 : −→◦ r0, r1, r3 r3 : r2 −→◦ a |r4

r1 : b −→◦ r2 r4 : −→◦ c

r2 : a −→◦ r2

The evaluation of a rule name in a state determines
the associated rule’s activity status. Only active
rules are applied, and the consequent of a rule is ap-
plied only if the rule’s antecedent holds (an empty
antecedent is always true). Thus when the rule r0 is
applied, the next rule activation state must contain
rules r0, r1 and r3. The rule r1 requires, however,
that the atom b is true in order for the consequent
to apply in the next activation state. The rule r3

has an antecedent of r2, which means that r2 must
be a currently active rule in order for the conse-
quent of r3 to be applied. The latter gives a choice:
the next state must have atom a true or rule r4

must be active. Monitoring a sequence of states
with such rule sets proceeds as follows.

create an initial set of initial rule

activation states

while observations exist do

obtain next observation state

merge observation state with the set of

rule activation states

raise monitoring exception if there’s

total conflict

for each of the current merged states,

apply activated rules to generate a

successor set of activation states

union successor sets to form the new frontier

of rule activation states

od

The merge of observation state with the set of rule
activation states results in a set of consistent rule
activation sets. If no consistent sets results, we say
a total conflict with given rule set has occurred,
i.e. the observation trace has failed to satisfy the
given rule set. For rule set satisfaction, we need to
state which rule names are allowed to be active once
the whole observation trace has been monitored —
similar to max and min in Eagle. Whilst we
can’t show any details of this working, we assert
that this primitive rule system can be more effi-
ciently executed than the direct interpretation of
Eagle.

Naturally, our full paper will provide semantic
details for RuleR and translations from various
temporal logic subsets. In addition, we will discuss
other variations on these primitive rules, such as
universality (in the above example, rule r0 acted
as a generator for r1 and r3), interpretations for
negation of rules (forced non activation) and giving
rules priorities for use in conflict resolution.

2



A rather fuller bibliography will be provided in the full

paper!

References

[1] H. Barringer, M. Fisher, D. Gabbay, R. Owens and
M. Reynolds. The Imperative Future: Principles

of Executable Temporal Logic. Research Studies
Press. 1996.

[2] H. Barringer, A. Goldberg, K. Havelund and
K. Sen. Rule-Based Runtime Verification. Pro-
ceedings of the VMCAI’04, 5th International Con-

ference on Verification, Model Checking and Ab-

stract interpretation, Venice. Volume 2937, Lecture
Notes in Computer Science, Springer-Verlag, 2004.
2004.

[3] H. Barringer, A. Goldberg, K. Havelund and
K. Sen. Run-time Monitoring in Eagle. Proceed-
ings of PADTAD ’04, Santa Fe, New Mexico, IEEE
Computer Society, IDPDS’04, Volume 17, Number
17, pp 264b, 2004.

[4] M.D. Fisher. A Normal Form for Temporal Logics
and its Applications in Theorem-Proving and Exe-
cution. Journal of Logic and Computation, Volume
7, Number 4, pp 429-456, 1997.

3


