
Rule systems for run-time monitoring: from

Eagle to RuleR

Howard Barringer1, David Rydeheard1, and Klaus Havelund2

1 School of Computer Science, University of Manchester, Oxford Road, Manchester,
M13 9PL, UK. email: {Howard.Barringer, David.Rydeheard}@manchester.ac.uk

2 Columbus Technologies, Laboratory for Reliable Software, NASA’s Jet Propulsion
Laboratory, Pasadena, CA 91109, USA. email: Klaus.Havelund@jpl.nasa.gov

Abstract. Eagle was introduced as a general purpose rule-based tem-
poral logic for specifying run-time monitors. A novel and relatively effi-
cient interpretative trace-checking scheme via stepwise transformation of
an Eagle monitoring formula was defined and implemented. However,
application in real-world examples has shown efficiency weaknesses, espe-
cially those associated with large-scale symbolic formula manipulation.
In this paper, after briefly reviewing Eagle, we introduce RuleR, a
primitive conditional rule-based system, which we claim can be more
efficiently implemented for run-time checking, and into which one can
compile various temporal logics used for run-time verification.

1 Introduction

A plethora of logics have been used for the specification of behavioural system
properties that can be dynamically checked either on-line throughout an execu-
tion of the system or off-line over an execution trace of the system. Some form of
linear-time temporal logic usually forms the basis for the specification logic. This
large variety of logics prompted the search for a small and general framework for
defining monitoring logics, which would be powerful enough to capture most of
the existing logics, thus supporting future and past time logics, interval logics,
extended regular expressions, state machines, real-time and data constraints,
and stochastic behaviour. The framework should support the definition of new
logics easily and the monitoring of programs with their complex program states.
Eagle [3] was the result.

The Eagle logic is a restricted first order, fixed-point, linear-time temporal
logic with chop (concatenation) over finite traces. As such, the logic is highly
expressive and, not surprisingly, Eagle’s satisfiability (validity) problem is un-
decidable; checking satisfiability in a given model, however, is decidable and
that is what’s required for run-time verification. The syntax and semantics of
Eagle is succinct. There are four primitive temporal operators: © — next,⊙

— previously, · — concatenation, and ; — chop (overlapping concatenation,
or sequential composition). Temporal equations can be used to define schema
for temporal formulae, where the temporal predicates may be parameterized by
data as well as by Eagle formulas. The usual boolean logical connectives exist.

For example, the linear-time , U and S temporal operators can be introduced
through the following equational definitions.

max Always(Form F) = F ∧©Always(F)
min Sometime(FormF) = F ∨©Sometime(F)
min Until(Form F1,Form F2) = F2 ∨ (F1 ∧©Until(F1, F2))
min Since(Form F1,Form F2) = (F2 ∨ (F1 ∧

J
Since(F1, F2)))

The qualifiers max and min indicate the positive and, respectively, negative
interpretation that is to be given to the associated temporal predicate at trace
boundaries — corresponding to maximal and minimal solutions to the equations.
Thus ©Always(p) is defined to be true in the last state of a given trace, whereas
©Until(p, q) is false in the last state. Thus the formula Always(p) will hold on
a finite sequence from, say index i, if and only if p holds in every state from
index i up to and including the final state. Whereas if Until(p, q) holds at index
i then q must be true at some state with index j ≥ i and p true on all states
from i up to but not including j.1

Even without data parametrization, the primitive concatenation temporal
operators together with the recursively defined temporal predicates take the
logic into the world of context-free expressivity. The classic example of matching
parentheses can be captured by Match(begin, end) where

min Match(Form B,Form E) =
B · Match(B,E) · E · Match(B,E) ∨ Empty()

with Empty() true just on the empty sequence. Parametrization of temporal
predicates by data values allows us to define real-time and stochastic logical op-
erators. To address real-time, for example, we assume that Eagle is monitoring
time-stamped states, where the state contains a variable clock holding the as-
sociated real time. Then it becomes straightforward to define real-time qualified
temporal operators such as happens before real time u.

min HappensBefore(Form F,double u) =
clock < u ∧ (F ∨ (¬F ∧©HappensBefore(F, u)))

It should be clear how more complex real-time and probabilistic temporal oper-
ators can be defined.

We still claim that Eagle presents a natural rule/equation based language
for defining, even programming, monitors for complex temporal behavioural pat-
terns. Eagle is, however, expressively rich and in general this comes with a po-
tentially high computational cost, practically speaking. So one might ask whether
Eagle presents the most appropriate set of primitive temporal operators for run-
time monitoring. The non-deterministic concatenation operator, as used above in
the matching parentheses example, requires considerable care in use. In order to
achieve the expected temporal behaviour pattern, the formulas passed to Match

should specify single state sequences. If that is not the case, the concatenation

1 Arguments for using other interpretations over finite traces have been put forward.
However, we have found that this simple interpretation has been good enough for
our monitoring purposes

operator may choose an arbitrary cut point, and therefore skip unmatched Bs or
Es in order to give a positive result. Later but currently unpublished work devel-
oped such arguments further and proposed a variety of deterministic versions of
temporal concatenation and chop for run-time monitoring, using different forms
of cut, e.g. left and right minimal, left and right maximal, etc..

With respect to the computational effectiveness of algorithms for Eagle

trace-checking, in [3] we showed how trace-checking of full Eagle can be un-
dertaken on a state-by-state basis, even though the logic has the same temporal
expressiveness over the past as over the future; basically, our published trace-
check algorithm maintains sufficient knowledge about the past in the evolving
monitor formulas. Furthermore, we have shown that for restricted subsets, we
can achieve close to optimal complexity bounds for monitoring; one such frag-
ment for which we computed complexity results was the LTL (past and future)
fragment of Eagle [4]. However, again considerable care must be taken with the
presence of data arguments in temporal predicates, for an explosion in the size
of the evolving monitor formula may occur.

What was clear to us at the time was that there were some practically useful
and efficiently executable subsets of Eagle. Despite the pleasing features of
Eagle, we still believed we should continue to search for a powerful and simpler
“core” logic, one that is easy and efficient to evaluate for monitoring purposes.
To that end, we present in the remainder of this paper a seemingly simpler,
lower-level, rule-based system RuleR. In section 2 we introduce RuleR and a
simple evaluation algorithm by example. Section 3 then provides a more formal
semantic treatment and indicates how propositional temporal logic (with past
and future operators) can be compiled into RuleR. In section 4, we then briefly
consider RuleR with rule parameters and then present brief conclusions and
indicate further work in section 5.

2 RuleR by example

Informally, a RuleR monitoring program comprises a collection of named rules.
A rule is formed from a condition part (antecedent) and a body part (conse-
quent). The rule’s condition may be a conjunctive set of literals, whereas the
body is a disjunctive set of conjunctive sets of literals, a literal being a positive
or negative occurrence of a rule name or an observation name. The idea is that
rules can be made active or inactive, and that the body of an active rule defines
what rules and observations must hold in the next observation state under the
condition part holding in the current observation. As a very simple example,
consider the rule named r below in the context of some observation named a.

r : −→◦ a, r

The rule has a vacuous condition. The rule’s body is the conjunctive set con-
taining observation a and rule name r. If we assume that r is active at the start
of monitoring, r’s body asserts that the observation a must hold in next obser-
vation state and the rule r must be active again, thus effectively asserting that

observation a must hold in all subsequent observation states. If, at some future
observation state, a fails to hold, then there will be a conflict between obligations
and actuality and, in this simple case, the rule will fail at that particular point.
Given the possibility of choice in the body part of a rule, rule failure may or
may not mean that the monitoring program, i.e. the rule set, fails on the trace.

Figure 1 outlines a basic algorithm for monitoring a sequence of observation
states with a set of named rules. To demonstrate this algorithm, we’ll consider

create an initial set of initial rule activation states

while observations exist do

obtain next observation state

merge observation state with the set of rule activation states

raise monitoring exception if there’s total conflict

for each of the current merged states,

apply activated rules to generate a successor set of activation state

union successor sets to form the new frontier of rule activation states

od

Fig. 1. The basic monitoring algorithm

a set of rules below that capture both past time conditions and future time
obligations. Let us assume we wish to monitor some temporal behaviour of a
system in terms of two observations, a and b. Thus, we arrange for the system to
be instrumented to produce an ordered sequence of observation states and that
the letters a and b denote particular propositions over an observation state. In
effect, we’ll treat an observation trace as a sequence of sets of literals2.

Example 1. We wish to monitor the constraint that whenever observation a
occurs both now and in the immediate previous state then b must occur as
a later real observation. We can characterise this by the linear time temporal
logic formula ((a ∧

⊙
a) ⇒ b) where is the strict eventually in the

future temporal operator, or using the Eagle temporal predicates defined in
Section 1 by the monitoring formula Always((a ∧

⊙
a) ⇒ ©Sometime(b)). In

RuleR the following set of rules characterise the required temporal behaviour

r0 : −→◦ r0, r1, r3 r1 : a −→◦ r2 r2 :
r3 : a, r2 −→◦ b | ¬b, r4 r4 : −→◦ b | ¬b, r4

assuming, however, that the monitoring algorithm starts with an initial set of rule
activation sets as {{r0, r1,¬r2, r3}}. Rule r0 acts as a generator rule; it ensures
persistent activity of itself together with r1 and r3, i.e. the three rules are always
to be active. The empty rule r2 is used to represent that the temporal constraint⊙
a holds (hence it is initially inactive). The rule r1 is then a generator for r2

2 We don’t allow both x and ¬x to occur in an observation state, for any x

and can be viewed as the temporal rule “if we have a today then tomorrow we
have yesterday a”. Rule r4 captures the obligation b, either b holds in the
next observation state or ¬b holds together with a continued obligation to b.

For the example observation trace in the table below, we see that in step 4,
both a and

⊙
a are true (in the merged state, both a and r2 are present) and

hence rule r3 yields two possibilities for step 5. The choice with b holding true
conflicts with the observation in step 5 and therefore is eliminated. Rule r4 is
thus active and remains activated until step 7 when b is observed to hold.

Step Obs. Rule Activations Merged States

0 {} {{r0, r1,¬r2, r3}} {{r0, r1,¬r2, r3}}

1 {a, b} {{r0, r1, r3}} {{a, b, r0, r1, r3}}

2 {¬a, b} {{r0, r1, r2, r3}} {{¬a, b, r0, r1, r2, r3}}

3 {a, b} {{r0, r1, r3}} {{a, b, r0, r1, r3}}

4 {a, b} {{r0, r1, r2, r3}} {{a, b, r0, r1, r2, r3}}

5 {¬a,¬b} {{b, r0, r1, r2, r3}, {¬b, r0, r1, r2, r3, r4}} {{¬a,¬b, r0, r1, r2, r3, r4}}

6 {a,¬b} {{b, r0, r1, r3}, {¬b, r0, r1, r3, r4}} {{a,¬b, r0, r1, r3, r4}}

7 {¬a, b} {{b, r0, r1, r2, r3}, {¬b, r0, r1, r2, r3, r4}} {{¬a, b, r0, r1, r2, r3}}

8 {¬a,¬b} {{r0, r1, r3}} {{¬a,¬b, r0, r1, r3}}

But how do we determine whether any generated temporal existential obliga-
tions, such as b, have indeed been satisfied? Essentially, we mark those rules
that correspond to such obligations and then, at the end of monitoring, check
whether the final merged state set contains states without those marked rules
active. If there are no such states, then the given (finite) observation trace fails
to satisfy the rule set. If there is at least one of the possible final states not
containing such marked rules, the observation trace satisfies the rule set. The
approach is exactly that of the minimal and maximal rule interpretations used
in Eagle. In the above, the final set of merged states has just one state that
does not contain rule r4 and hence the observation satisfies the given rule set.

The rule set used in fact contained an optimisation; the choices appearing in
rules r3 and r4 were made deterministic, either b or ¬b∧ The determinisation
thus reduced the number of possible successor states that are generated at any
one time. For example, if the rules r3 and r4 had been defined as

r3 : a, r2 −→◦ b | r4 r4 : −→◦ b | r4

the rule activations for step 7 would be {{b, r0, r1, r2, r3}, {r0, r1, r2, r3, r4}},
yielding merged states {{¬a, b, r0, r1, r2, r3}, {¬a, b, r0, r1, r2, r3, r4}}. Then, step
8 would have had {{r0, r1, r3}, {b, r0, r1, r3}, {r0, r1, r3, r4}} for rule activations
and {{¬a,¬b, r0, r1, r3}, {¬a,¬b, r0, r1, r3, r4}} for its merged states, one of which
does not contain the marked (minimal) rule r4 and so the observation trace, as
is to be expected, satisfies the rule set.

2.1 Inhibiting Rule Activation

The informal semantics we’ve used above has rules being activated in the next
step if they appear positively in some applied consequent of some currently

applicable rule. In particular, rules that are not mentioned in a consequent of
some rule can not be activated by that rule; however, some other rule may indeed
activate them. Consider, for example, the contrived (sub)set of rules below.

r0 : −→◦ r2|r3 r1 : −→◦ r3|r4

Assume at some stage that r0 and r1 are activated in the same step. Rule r0
therefore generates the partial successor states {r2} and {r3}. Rule r1 will then
extend these states to yield the possible (partial) states {r2, r3}, {r2, r4}, {r3}
and {r3, r4}. Suppose it was desired that rules r2 and r3 were mutually exclusive.
It would be necessary to modify the rules as below.

r0 : −→◦ r2,¬r3|r3,¬r2 r1 : −→◦ r3|r4

Assuming again both r0 and r1 active, the possible successor activation sets are
now {r2,¬r3, r4}, {¬r2, r3} and {¬r2, r3, r4} — since the potential rule activation
set {r2,¬r3, r3,¬r2} is clearly inconsistent. The negation of a rule should be
interpreted as a forced “non-activation” of the rule.

In the examples above, we indicated how various temporal conditions could
be translated into collections of these low level single-shot (or step?) rules. In
a certain sense, rule names can be viewed as propositions denoting temporal
subformulas. However, it is important to emphasise that a negated rule name
does not correspond to the negation of a subformula that the rule name may be
viewed as representing. More strictly, one should view a positive occurrence of a
rule name as meaning that the rule will be applied and in doing so will generate
possible traces that satisfy the associated subformula. A negative occurrence of
a rule name (in the rule activation state) simply means that the rule is NOT
applied and hence places no constraints on the generation of traces.

In summary, we can use rules to activate other rules (positive appearance
of a rule in a consequent), to not inhibit activation (no mention of a rule in
a consequent), and to inhibit activation (negative appearance of a rule in a
consequent).

3 Propositional RuleR trace semantics

We now present a formalization of propositional rule systems and an evaluation
semantics over traces of observations.

Preliminary definitions. Let X denote a set of atoms. We then use X− to denote
the set of negated atoms of X, i.e. {x̃ | x ∈ X}, and let X± denote the set of
literals of X, i.e. {x, x̃ | x ∈ X}. We use the term X-literal to refer to a member
of X±. A set of X-literals L is said to be self-consistent if and only for any x ∈ X
it is not the case that both x ∈ L and x̃ ∈ L. Let L−∗

X denote the negative closure

of L (with respect to the atoms X), i.e. the set L ∪ {l̃|l /∈ L, l ∈ X}. Given LS1

and LS2 as sets of self-consistent sets of literals, the product LS1 × LS2 is the
set {ls1 ∪ ls2 | ls1 ∈ LS1, ls2 ∈ LS2, and ls1 ∪ ls2 is self-consistent}.

Rule Systems. Given disjoint sets of rule names R and observations O, a rule ρ is
a pair 〈C,B〉 where C, the condition part, is a conjunctive set of (R∪O)-literals,
and B, the body part, is a disjunctive set of conjunctive sets of (R∪O)-literals.
A named rule is then an association r : ρ where r ∈ R is a rule name and ρ is a
rule. A rule system RS is a tuple 〈R,O, P, I, F 〉 where R and O are, respectively,
disjoint sets of rule names and observations, and P is a set of disjointly R-named
rules over R and O, I ⊆ R is an initial set of active rule names, and F ⊆ R
is a set of terminally excluded rule names. A configuration γ for a rule system
RS is a pair 〈A,Θ〉 where A is a consistent set of R-literals, called the activity
set, and Θ is a consistent set of O-literals, called the observation state. We also
write A(γ) to denote the activity set of a configuration γ, similarly Θ(γ) for the
observation state.

We next define the interpretation of a set of literals in a configuration. The
presence of a positively signed rule name r in the activity set means that the
rule ρ associated with r is active. On the other hand, the presence of a negatively
signed rule name r, or the absence of r, in the activity set means that the rule ρ
associated with r is not active. For observation atoms, however, undefinedness of
an O-literal o, i.e. the absence of o from the observation state of the configuration,
means that the observation literal o may be either true or false.

Modelling and step relation. Let RS = 〈R,O, P, I, F 〉 be a rule system. A self-
consistent set of literals L from RS holds in a configuration γ for RS, which is
denoted by γ |= L, if and only (i) the set of rule name literals mentioned in L
are contained in the negative closure of A(γ), i.e. (L − O±) ⊆ A(γ)−∗

R , and (ii)
observation literals within L are properly contained in the configuration’s set of

observations (L−R±) ⊆ Θ(γ). An r :ρ-step relation
r:ρ
−→ between configurations

is such that γ
r:ρ
−→ γ′ if and only if (i) r ∈ A(γ), (ii) γ |= C(ρ), and (iii) there

is a θ ∈ B(ρ) such that A(γ′) ∪ Θ(γ′) = θ. Then for a set of rule names R,
let Γ ′ be an R-indexed set of outcome configurations such that for each r ∈ R,

γ
r:ρ
−→ Γ ′

r. We then define the step relation −→ between configurations such that
γ −→ γ′ if and only γ′ is a consistent pairwise union of an (A(γ) ∩ R)-indexed
set of outcome configurations from γ. Note that an empty union set is treated
as being an inconsistent union.

The single step relation for the rule system can now be used to define the notion
of an accepting run of a rule system over a given observation trace. This requires
matching obligations against actual observations. Positive literals in obligations
must appear in an actual observation set, whereas negative literals in obligations
are taken to mean that occurrence of the literal’s atom must not occur in the
actual observation, i.e. a positive literal. Thus, the observation set {p, q} matches
the obligation set {p}, but it does not match the obligation set {p, q̃} — q must
not be present, whereas the observation set {p} does match the obligation set
{p, q̃}. We thus have the following.

Matching. An actual set of observation literals X is said to match an obligatory
set of literals Y if and only if any literal in the set Y −X is a negative literal.

Finally, we can define the language accepted by a rule system.

Language acceptance. An accepting run of a rule system RS = 〈R,O, P, I, F 〉 on
an observation trace τ = o1o2 . . . on is a sequence of configurations γ1γ2 . . . γnγn+1

such that (i) A(γ1) ∈ I, (ii) for all i ∈ 1..n the actual and obligated observa-
tions, oi and Θ(γi) respectively, match and 〈A(γi), Θ(γi)∪oi〉 −→ γi+1, and (iii)
A(γn+1)∩F = {}. Thus, the language accepted by a rule system RS, L(RS), is
the set of all finite observation traces τ accepted by RS. Furthermore, we say a
rule system RS is violated by an observation trace τ if RS has no accepting run
on τ , alternatively, τ /∈ L(RS).

We now claim that the monitoring algorithm of section 2 accepts an observation
trace τ for a rule system RS if and only if τ ∈ L(RS). The steps of the algorithm
closely reflect the semantic construction we have given.

3.1 Propositional linear temporal logic as a rule system

Having formally defined propositional rule systems, we are now in a position to
show how linear-time temporal logic formulas for monitoring over finite traces
can be encoded in RuleR. Our translation is based on the separation result of
Gabbay (originally 1981 but elaborated in [7]), which can then be used to show
that any mixed past, present and future linear-time temporal formula can be
translated into a collection of universal implications of the form non-strict past

formula implies pure future formula, a minor variation of the rule forms used in
the executable temporal logic MetateM [2]. Our starting point is thus to show
how such separated temporal implications can be represented in RuleR.3

The pure future part. We assume pure future linear time temporal formula
built from propositions, the boolean connectives and, or, and negation, ∧, ∨
and ¬, respectively, and a strict until and unless operator, U+ and W+. All
other standard future time operators are definable from this set. Without loss
of generality, we assume formulas are further transformed in negation normal
form (NNF), i.e. negation operators pushed inwards to propositional literals and
cancellations applied. LetWFF+ denote the set of well-formed strict future time
formulas in NNF and WFF denote the set of well-formed future time formulas
in NNF (which may include the present, i.e. propositions under no future time
operator).

3 Fisher’s SNF representation for temporal logic [5] is close to RuleR rule forms and
an alternative translation to a rule system could be given via SNF. However, we
believe our direct translation has interest in its own right and might lead to an
easier SNF translation.

We define a translation Tr : WFF → RuleSystem inductively over the
structure of the temporal formulas. Let φ and ψ denote arbitrary members of
WFF . The base cases of the translation are straightforward, e.g. for an atom
p, we have Tr(p) = 〈{}, {p}, {}, {{p}}, {}〉, indicating a rule system with an
atom p with an initial set of active rule names containing the singleton set
{p}. Negated atoms translate in a similar way. The propositional constant true

gives rise to the rule system 〈{}, {}, {}, {{}}, {}〉 whereas false translates to a
system with an empty set of initial states. As one might expect, the logical
conjunction (disjunction) of formulas φ and ψ translate to the obvious product
(union) operations that can be defined for rule systems. This leaves the most
interesting part of the translation, namely an until formula φU+ψ.

Tr(φU+ψ) = let 〈Rφ, Oφ, Pφ, Iφ, Fφ〉 = Tr(φ) and

〈Rψ, Oψ, Pψ, Iψ, Fψ〉 = Tr(ψ)
in 〈Rφ ∪Rψ ∪ {rφU+ψ},

Oφ ∪Oψ,
Pφ ∪ Pψ ∪ {rφU+ψ :−→◦ Iψ ∪ (Iφ × {{rφU+ψ}}),
{{rφU+ψ}},
Fφ ∪ Fψ ∪ {rφU+ψ}〉

For ease of understanding, we have subscripted the rule names by the subformu-
las they represent. As the until operator has a strong interpretation, requiring its
second argument to be satisfied, the associated rule name for the until formula
must be included in the F set of the rule system. As might be expected, the
translation of the unless formula differs from the until translation just in the
non-inclusion of the rule for the unless formula in the F set.

Example 2. Assume a, b, c and d are atomic propositions. The translation of
aU+b yields the rule system

〈{raU+b}, {a, b}, {raU+b : −→◦ b | a, raU+b}, {{raU+b}}, {raU+b}〉

Similarly, the translation of a ∧ (cW+d) yields the rule system

〈{rcW+d}, {a, c, d}, {rcW+d : −→◦ d | c, rcW+d}, {{a, rcW+d}}, {rcW+d}〉

Thus the translation of (aU+b)U+(a ∧ (cW+d)) yields the rule system

〈{r0, r1, r2}, {a, b, c, d},

8<: r0 : −→◦ b | a, r0
r1 : −→◦ d | c, r1
r2 : −→◦ a, r1 | r0, r2

9=; , {{r2}}, {r0, r2}〉

where
r0 = raU+b, r1 = rcW+d, r2 = r(aU+b)U+(a∧(cW+d))

Past time temporal queries. The pure past time fragment of linear-time tem-
poral logic is constructed in a mirror fashion to the pure future part, i.e. from
propositions, the boolean connectives (∧, ∨ and ¬), and just the temporal op-
erators S− (the strict since, false at the beginning of time) and its weak version

Z− (true at the beginning of time). As before without loss of generality, we as-
sume that past time temporal formulas have negations pushed inwards to atomic
propositions (or literals) and double negations are cancelled. Let us first consider
the translation of pure past time temporal queries. The temporal equivalence
φS−ψ ⇔

⊙
ψ ∨

⊙
φ ∧

⊙
(φS−ψ) should serve as a reminder of the semantics

that needs to be captured by the translation. The basic idea for handling the
past is an old one, namely, we use the translation rules to calculate the value
of the temporal query as we proceed in time (rather than evaluating the query
over the history). We will use the presence of the rule name rφS−ψ in the rule
activation state to denote whether the temporal formula φS−ψ held in the pre-
vious moment (similarly for rφ and rψ). We then use a rule, named rψ:ψS−φ?, to
calculate whether rφS−ψ should be made active because ψ held in the previous
moment (similarly for the other possible way for ψS−φ to hold). These query
rules must be universally active in order to determine truth values for the next
moment. Thus we use a rule, named say rg.φS−ψ?, to act as a generator (hence
the “g” in its name) for a pair of (sets of) rules that determine the truth of
φS−ψ based on the previous values of its subformulas.

rψ.φS−ψ? : rψ −→◦ rφS−ψ rφ.φS−ψ? : rφ, rφS−ψ −→◦ rφS−ψ

rg.φS−ψ? : −→◦ rg.φS−ψ?, rφ.φS−ψ?, rψ.φS−ψ?

Naturally, our translation must take into account the fact that the subformulas
ψ and φ may be boolean combinations of pure past time temporal formulas
(represented by rule names) and/or literals. Let WFF− denote the set of pure
past temporal formulas and WFF−0 the set of present and pure past time
temporal formulas. We thus define a translation Tq : WFF−0 → RuleSystem
that will translate a past time temporal formula into a rule system whose initial
activation set, as a disjunctive set of conjunctive sets of rule names and/or
literals, is to be viewed as representing the given temporal query. We assume
that φ and ψ are arbitrary members of WFF−0. However, we use the F set of
the rule system to represent the initial values of rules, e.g. a formula φS−ψ must
be false initially and so the rule name ¬rφS−ψ would be included in the set F . As
with the future time translation the base cases are clear, as is conjunction and
disjunction. Figure 2 shows the translation for the interesting case of the strict
since operator.

Separated temporal implicative forms. We can now bring together the
above two translations Tr and Tq to generate a rule system corresponding to
the MetateM-like rule form φpast ⇒ ©ψfuture which are of universal nature,
i.e. globally hold. Assuming both φpast and ψfuture are in a negation normal form,
then, in the context of

〈Rpast, Opast, Ppast, Ipast, Fpast〉 = Tq(φpast)

〈Rfuture, Ofuture, Pfuture, Ifuture, Ffuture〉 = Tr(ψfuture)

in which we assume without loss of generality the rule name sets are disjoint,
the rule system below will represent the translation of the separated implicative
form, i.e. Ti(φpast ⇒ ©ψfuture).

Tq(φS−ψ) =
let 〈Rφ, Oφ, Pφ, Iφ, Fφ〉 = Tq(φ) and

〈Rψ, Oψ, Pψ, Iψ, Fψ〉 = Tq(ψ)
in 〈Rφ ∪Rψ ∪ {rφS−ψ, rg.φS−ψ?} ∪ {rφS−ψ?x | x ∈ Iφ} ∪ {rφS−ψ?x | x ∈ Iψ},

Oφ ∪Oψ,
Pφ ∪ Pψ ∪
{rg.φS−ψ? : −→◦ {rg.φS−ψ?} ∪ {rφS−ψ?x | x ∈ Iφ} ∪ {rφS−ψ?x | x ∈ Iψ}} ∪
{rφS−ψ?x : x −→◦ rφS−ψ | x ∈ Iψ} ∪
{rφS−ψ?x : x, rφS−ψ −→◦ rφS−ψ | x ∈ Iφ},

{{rφS−ψ, rg.φS−ψ?}},
Fφ ∪ Fψ ∪ {¬rφS−ψ}〉

Fig. 2. Translation of φS−ψ

RS = 〈Rpast ∪Rfuture ∪ {rg.φpast⇒ψfuture
} ∪ {rx⇒ψfuture

| x ∈ Ipast},

Opast ∪Ofuture,

Ppast ∪ Pfuture ∪
{rg.φpast⇒ψfuture

: −→◦ {rg.φpast⇒ψfuture
} ∪ {rx⇒ψfuture

| x ∈ Ipast}},

{rx⇒ψfuture
: x −→◦ Ifuture | x ∈ Ipast},

{{rg.φpast⇒ψfuture
, rx⇒ψfuture

| x ∈ Ipast} ∪ Fpast},

Ffuture 〉

Example 3. Assuming a, b, c, p and q denote propositions, we give the RuleR

translation of the universal separated temporal implication

c ∧ (bS−a) ⇒ ©(♦p ∧♦q).

Recall that ♦p will be translated as p∨ p, i.e. p∨ trueU+p, similarly for ♦q.
Using the following abbreviations

r0 = rg.bS−a? r1 = rbS−a?b r2 = rbS−a?a r3 = rbS−a

r4 = rtrueU+p r5 = rtrueU+q r6 = rg.c∧(bS−a)⇒©((p∨trueU+p)∧(q∨trueU+q))

r7 = rc∧(bS−a)⇒©((p∨trueU+p)∧(q∨trueU+q))

the rule system will thus have rules

r0 : −→◦ r0, r1, r2 r1 : b, r3 −→◦ r3 r2 : a −→◦ r3
r3 : r4 : −→◦ p | r4 r5 : −→◦ q | r5
r6 : −→◦ r6, r7 r7 : c, r3 −→◦ p, q | p, r5 | r4, q | r4, r5

with an initial rule activation set as {{¬r3, r0, r1, r2, r6, r7}} and the forbidden
rule set as {r4, r5}.

The correctness of our translation scheme for propositional LTL over finite
traces with respect to the given semantics for RuleR follows from the correct-
ness of separation, then an inductive proof establishing the correctness of the
translation of the universal separated implicative temporal forms.

4 Parameterized RuleR

The propositional RuleR system corresponds to regular-based languages, which
are a subclass of propositional Eagle. Here, we extend RuleR to include rule
definitions parameterized by rules. The evaluation strategy used on this seem-
ingly small extension increases the formal expressivity of RuleR to be beyond
context-free languages. Consider the following rule definition, indeed schema,
that has been extended to include formal rule arguments.

r(ρ) : a −→◦ b, ρ | c, r(ρ)

Suppose that the rule r is active with the propositional rule r0 substituted for
ρ, i.e. r(r0) is active. Informally, the evaluation of r(r0) will first determine the
truth of the condition part a, then, assuming it holds, continue to create a set
of activation states for the next step corresponding to {{b, r0}, {c, r(r0)}}. Let
us give a few examples that show how the expressivity of rule parameterized
RuleR jumps into the context sensitive languages.

Example 4. Consider a rule system with two rules

rb(ρ) : −→◦ b,¬a, ρ rab(ρ) : −→◦ b,¬a, ρ | a,¬b, rab(rb(ρ))

together with an initial rule activation set as {{a, rab()}} and the final rule
activation set {rab} (meaning that no occurrence of rule rab may appear as
an obligation in a final rule activation state). All accepted observation traces
will match against a trace of n occurrences of a followed by n occurrences of b.
Essentially, barring the first a, the rule rab represents the non-terminal S of the
context free grammar S = ab | aSb in which rab’s actual argument represents
the continuation string for concatenation to the string of a’s generated. It is thus
relatively easy to establish that the class of context free languages are a subset
of parameterized RuleR. We extend the above example to represent traces of
the form anbncm, for n,m ≥ 1. Take the rule set

rb(ρ) : −→◦ b,¬a,¬c, ρ
rab(ρ) : −→◦ b,¬a,¬c, ρ | a,¬b,¬c, rab(rb(ρ))
rc : −→◦ c¬a,¬b | c¬a,¬b, rc

together with an initial activation set as {{a, rab(rc)}} and the final rule ac-
tivation set {rab, rc} This system will clearly accept traces of the form anbn

(represented by the rab rule) followed by one or more c’s (determined by the
rc argument to the initial rule activation rab). Now we can encode the intersec-
tion of the languages anbncm and ambncn (n,m ≥ 1), thus yielding the context
sensitive language containing words of the form anbncn.

rb(ρ) : −→◦ b,¬a,¬c, ρ

rab(ρ) : −→◦ b,¬a,¬c, ρ | a,¬b,¬c, rab(rb(ρ))

rc : −→◦ c¬a,¬b | c¬a,¬b, rc

ra(ρ) : −→◦ a, ρ | a, ra(ρ)

rbc(ρ) : −→◦ c,¬a,¬b, ρ | b,¬a,¬c, rbc(rc1(ρ))

rc1(ρ) : −→◦ c,¬a,¬b, ρ

where the rule system then has an initial rule activation set {a, rab(rc), ra(rbc())}
and forbidden final rule activation set {rab, rc, ra, rbc}.

5 Conclusions

We have introduced a low-level rule system RuleR as a kind of “byte-code”
for run-time monitoring logics. A basic monitoring algorithm was described for
the propositional subset of RuleR. Having presented formally the semantics
of the propositional subset, we demonstrated how linear time temporal logic
with both past and future operators can translate to such rule systems, and
then briefly, and informally, presented RuleR where rules are parameterized by
rule names. On the face of it, the propositional subset of RuleR looks rather
like a grammatical representation of the transition relation of an alternating
automaton, i.e. with conjunctive and disjunctive branching, see for example [6].
However, RuleR, even the propositional subset, has more to it; the rules have
the capability to switch other rules on or off as an evaluation of a rule system
over a trace proceeds. We are referring to such systems as reactive rule systems /
grammars / Kripke structures [8]. Whilst regular grammars are closed under this
notion of reactivity, it can easily be shown that reactive context free grammars
take us beyond context free. Some relationship with state-alternating context-
free [9] is clear, however, a more detailed study of reactive grammars and their
place in the complexity hierarchy is work in progress. A feature we haven’t
yet mentioned is rule priority in RuleR. Given the ability to switch rules on
and off, conflicts may occur. Sometimes the conflicts may be desired, but in
other situations we may wish one rule to override another, as is the case in
defeasible reasoning. Of course, this changes the nature of the logics expressible
quite considerably. In addition to rule parameters, RuleR has data parameters,
just as in Eagle. The semantic details are not difficult and we adopt an approach
similar to that in first-order MetateM [1], but, just as in Eagle, some care
needs to be taken to avoid “rule activation state set” explosion in practice.

A prototype Java implementation of the monitoring algorithm for proposi-
tional RuleR has been developed, as a proof of concept. We are, however, not
yet at the stage where we can properly evaluate the practical effectiveness of
RuleR, which requires the fully parameterized version of RuleR. We hope to
report on this in the near future.

References

1. H. Barringer, M. Fisher, D. Gabbay, R. Owens and M. Reynolds. The Imperative

Future: Principles of Executable Temporal Logic. Research Studies Press. 1996.
2. H. Barringer, M. Fisher, D. Gabbay, G. Gough and R. Owens. MetateM: An

Introduction. Formal Aspects of Computing, Vol. 7, No. 5, pp533-549, Springer
London, 1995.

3. H. Barringer, A. Goldberg, K. Havelund and K. Sen. Rule-Based Runtime Verifica-
tion. Proc. of the VMCAI’04, 5th International Conference on Verification, Model

Checking and Abstract interpretation, Venice. Vol. 2937, LNCS, Springer-Verlag,
2004. 2004.

4. H. Barringer, A. Goldberg, K. Havelund and K. Sen. Run-time Monitoring in
Eagle. Proc. of PADTAD ’04, Santa Fe, New Mexico, IEEE Computer Society,
IDPDS’04, Vol. 17, No. 17, pp264b, 2004.

5. M.D. Fisher. A Normal Form for Temporal Logics and its Applications in Theorem-
Proving and Execution. Journal of Logic and Computation, Vol. 7, No. 4, pp429–
456, 1997.

6. B. Finkbeiner and H. Sipma. Checking Finite Traces Using Alternating Automata.
Formal Methods in System Design, Vol. 24, No. 2, pp101–127, Springer Nether-
lands, 2004.

7. D.M. Gabbay. Declarative past and imperative future: Executable temporal logic
for interactive systems. Proc. of Coll. on Temporal Logic in Specification, Altrin-

cham, Vol. 398, LNCS, pp67–89, Springer-Verlag, 1989.
8. D.M. Gabbay. Introducing Reactive Kripke Semantics and Arc Accessibility. To

appear in Festschrift in Honour of Boaz Traktenbrot, 2007
9. E. Moriya, D. Hofbauer, M. Huber and F. Otto. On state-alternating context-free

grammars. Theoretical Computer Science, Vol. 337, No. 11, pp183–216, 2005.

