
 1

Runtime Verification for
Autonomous Spacecraft Software

Allen Goldberg
Kestrel Technology

NASA Ames Research Center MS 269-1 T35B
Moffett Field, CA 94035

650-604-4858
goldberg@email.arc.nasa.gov

Klaus Havelund

Kestrel Technology / NASA Ames Research Center
havelund@email.arc.nasa.gov

Conor McGann

QSS Group, Inc. / NASA Ames Research Center
cmcgann@email.arc.nasa.gov

 0-7803-8870-4/05/$20.00© 2005 IEEE
IEEEAC paper #1215

Abstract -
Autonomous systems are systems that can operate without
human interference for extended periods of time in changing
environments, likely in remote locations. Software is
usually an essential part of such systems. However,
adaptation of autonomy software is limited by its
complexity and the difficulty of verifying and validating it.
We describe an approach named runtime verification for
testing autonomy software. Runtime verification is a
technique for generating test oracles from abstract
specifications of expected behavior. We describe its
application to the PLASMA planning system, used in the
recent Mars Exploration Rover missions. We furthermore
discuss alternative autonomy V&V approaches.

TABLE OF CONTENTS

1 INTRODUCTION ... 1
1 INTRODUCTION ... 1
2 V&V OF AUTONOMY SOFTWARE 2
3 RUNTIME VERIFICATION 3
4 PLASMA .. 5
5 RUNTIME VERIFICATION OF PLASMA 6
6 OTHER APPLICATIONS OF RV 7
7 RELATED WORK ... 7
8 CONCLUSIONS ... 8
9 REFERENCES ... 8

1 INTRODUCTION

The difficulty of verifying and validating (V&V) autonomy
software has limited its use on spacecraft. In this paper, we
overview new approaches to autonomy V&V and describe
an experiment with one of the approaches. Our experiment
involved regression testing for PLASMA, the next

generation of planning technology used to create MAPGEN
[4], which in turn was used to plan and schedule MER
Rover activities. Planners take as input a set of high level
goals to be achieved, such as driving a Rover to a distant
location, or taking a picture or measurement, and generate a
series of low-level commands that realize the goals, while
respecting the flight resource and safety constraints such as
not taking pictures while moving, or staying within power
budgets. PLASMA is a model-based planner generation
system. As shown in Figure 1, PLASMA takes as input a
domain model and “compiles” the domain model into a
planner specialized to that model. The resulting planner
solves planning problems, i.e. it takes as input a set of goals
and uses heuristic search to find efficient plans. A model is
a declarative description of a domain that defines domain
objects, such as cameras and wheels, constraints, and
actions such as turning on a camera. Because complex
planning problems, in general, are NP-complete, heuristic
search is required, since finding an optimal solution would
require an exponential time algorithm that will not scale to
the size of problems regularly solved by these systems.

When constructing a planner in this way, the key activities
are building the model and ensuring that the heuristic search
used by the planner is effective in finding good plans for the
goal sets of interest. A common development methodology
is to incrementally build, refine, and elaborate the domain
model, testing the model against a graded set of challenge
examples. However, small changes to the model or the
heuristics can have unexpected and dramatic changes in the
planner’s behavior. Test cases that prior to the modification
were solved by the planner may no longer be solvable, or
may be solved by a different plan that may or may not be
acceptable. Thus, comprehensive regression testing is
integral to this development methodology. However an

 2

oracle used with a regression test suite cannot simply check
that the identical plans are obtained, but rather must
determine that an acceptable plan is generated within an
acceptable time bound. To automatically execute a
regression suite, the acceptance criteria for each test case
must be realized as executable code. To do so we employed
runtime verification, a V&V technology that allows the
creation of test oracles that can check sophisticated
properties of a computation. We carried out this approach
by formulating, using a runtime verification system called
Eagle, both universal properties (true for any computation of
the planner) and problem-specific properties. We then
analyzed logs generated by the planner to check
conformance to these properties.

The rest of the paper is organized as follows. Section 2
describes the general problem of V&V of autonomy
software. Section 3 describes Runtime Verification, a
specific V&V technique that combines formal methods
tools with program testing. Section 4 describes PLASMA
and section 5 describes how it was tested using Eagle.
Section 6 describes other applications of runtime
verification to autonomy testing. In section 7 we describe
related work. Finally, section 8 states conclusions and
describes future work.

2 V&V OF AUTONOMY SOFTWARE

Autonomy software can both dramatically improve the
capability and robustness of spacecraft while reducing the
cost of operation. In this paper we consider model-based
autonomy software, particularly planning and scheduling
systems. This software can expand the capabilities of
unmanned missions, allow for greater utilization of
spacecraft resources, and significantly reduce the level of
ground support. The capabilities of autonomy software are
now being successfully demonstrated on a number of
deployed missions.

For example MAPGEN [4] is a ground-based tactical
activity planning system used each day for planning the
command sequences uplinked to the Mars MER Rovers,
that uses EUROPA [9], a precursor of PLASMA. Upwards
of 700 activities each day are planned by MAPGEN.

The EO-1 Autonomous Science Agent [5] is autonomy
software currently flying onboard the Earth Observing One
(EO-1) spacecraft. This software has been flying in a series
of tests since fall 2003, is scheduled to fly well into 2005
and may fly well into 2006. The highest level of EO-1
autonomy software is the CASPER planning system [6].
The CASPER planning system has been used in a wide
range of applications including but not limited to: spacecraft
control, deep space communications station control, rover
control, and as a single agent controller in multi-agent
testbeds. On the EO-1 the planner schedules observations,
communication activities, etc.

However, the difficulty of V&V has excluded use of
autonomy software on manned aircraft and restricts its use
on spacecraft. There are aspects of autonomy software that
make verification and validation both different and difficult.
Theoretically these problems are NP-complete. NP-complete
problems require, in the worst case, exponential time to
solve. Hence, achieving an exact solution within an
acceptable response time over all possible inputs is currently
impossible. Thus the software designer faces a complicated
design trade space of performance, accuracy, and constraints
on the input problems to be solved. This in turn implies that
there is no simple and “clean” characterization of the
elaborated software requirements. Previous work has
demonstrated that this design space can be successfully
negotiated, since systems capable of generating very good
results, often exceeding what can be done by humans, have
been built. But validating and verifying these systems raises
challenges. Are the approximate solutions produced by the
system adequate? Are the real time performance goals met?
Another characteristic of NP-complete problems is that of
discontinuity - a small change to an input can lead to
significant changes to the accuracy and performance of the
algorithm. This discontinuous behavior makes V&V more
difficult, because the central notion of testing is that by
testing “representative” inputs one can inductively infer that
similar inputs will also behave correctly.

The planning and scheduling software applications we
consider consist of a declarative model that defines
constraints, hierarchical goal structures, domain entities, etc.
and an “engine” that interprets problem solving tasks using
this model. This different structure calls into question the
direct applicability of traditional white box structural testing
methods and coverage criteria. The model-based approach
furthermore leads to a development methodology in which
the model is incrementally developed and validated, which
in turn requires a V&V methodology that can support such
frequent modifications. Empirical observation suggests that
it is more difficult for a human to understand the behavior
of model-based systems because of the seemingly
exponential number of possible interactions of model
elements. Because the engine is fairly stable (except for
changes to heuristics) and shared between different
applications, validating the model is the primary V&V
focus.

Finally, almost by definition, autonomy software is required
to react to a diverse set of conditions. A test approach based

PLASMA

Planner Goals Plan

Domain Model

Figure 1: Planning with PLASMA

 3

on testing a nominal scenario and off-nominal variants
cannot be applied. A larger operational profile must be
defined and tested against. Thus one can expect that for
autonomy software the test set is very large, and that
automated testing procedures will be very important.

In summary, autonomy is a high-stakes technology often
used at the highest level of commanding systems with high
cost and human risk. The V&V task is more difficult for
autonomy software because it

• has an input-output behavior that is difficult to
state and verify,

• responds to a wide variety of inputs and not just a
single “nominal” scenario, and

• has a declarative model-based architecture that
makes it difficult to predict “execution paths”.

In the following we shall investigate a particular V&V
technology, runtime verification, which can be used to
increase the reliability of model-based autonomy systems.

3 RUNTIME VERIFICATION

Runtime Verification

Formal methods hold out the promise for higher-quality
software verification by judicious application of
mathematical methods. Unfortunately formal methods have
not scaled to be routinely applied to production software
code. The challenges of autonomy software, described
above, exacerbate this problem making it unlikely that
formal methods can be usefully applied to autonomy
software in the near to mid term. However, emerging from
formal methods research are hybrid V&V methods that
apply the technological advances of formal methods to more
traditional V&V methods. Runtime verification is such a
hybrid approach.

In the rigorous approach of formal methods, precisely-
specified software properties are stated and mathematically
verified. The precision is obtained by stating properties in a
formal logic. A particularly relevant one for expressing
properties of software is temporal logic. Temporal logic is a
logic that enables succinct description of systems that
evolve over time, for example, the discrete computational
steps of a computer program. Temporal logic is appropriate
for programs that are reactive, i.e. those that execute
continuously by reacting to an environment, and do not
simply take an input at the start of the computation and
produce a single output at termination. Using temporal logic
properties like “if the reset signal is received then within 1
second the device is reset” are naturally stated. Furthermore,
V&V can be more effective if not just the inputs and outputs
of a program are examined but also the internals of the
computation. There again temporal logic is relevant.

Runtime verification applies temporal logic to program
testing. The software is tested for conformance to precisely
stated properties specified in the logic. The properties may
be universal properties that are expected true of all program
inputs, as with traditional formal verification, or can be
properties specific to a particular input. Runtime verification
acknowledges that proving non-trivial functional and
performance properties for all inputs for complex software
is beyond current capabilities, but that the specification of
those properties using a formal language such as temporal
logic is a great advantage in a testing context.

Runtime verification is used as part of writing/generating
test cases. A test case consists of a test input and an oracle.
The oracle is a predicate that determines if the behavior of
the program is the desired or correct behavior with respect
to the input. In an automated test suite the oracle must be
represented by code that performs the checking. If the
correct behavior of the program is described by a set of
temporal logic formulas then the oracle is a program for
checking those formulas. The value added by runtime
verification is the creation of tools to automatically generate
such oracles. The key technology is a compiler or interpreter
that translates temporal logic formulas into code that checks
if a program execution conforms to the property.

A runtime verification system can be architected so that the
checking is done independently of the system under test. In
this case the system under test is instrumented so that a
sequential log is generated. The log can be saved to a file for
offline analysis or examined in real time. Alternatively the
checking can be done as code that is integrated into the
system under test. There are advantages to both approaches.
The main advantage of the independent approach is that the
impact on the real time performance of the system under test
is minimized to creation of the log. The main advantage of
the integrated approach is that the checking can become part
of the system under test thus supporting an autonomic
computing or Integrated Vehicle Health Management
(IVHM) capability.

Figure 2 illustrates the offline architecture we used in this
runtime verification application.

 4

Figure 2: Offline Test Execution Architecture

Eagle

In this section we describe Eagle [2,3,1], the temporal logic
framework for runtime verification used in this work. Most
temporal logics were developed for use with model
checkers, and so had to trade expressiveness for efficient
model checking. In designing Eagle for runtime verification
we were able to include more features that improve
expressiveness because the computational efficiency is a
lesser, although still important, issue.

Eagle is a rule-based framework for defining temporal
logics. It allows the definition of new temporal operators
using a parameterized rule construct. With Eagle, in a few
lines of text, we are able to define past, future and interval
time temporal logics, real-time temporal logics, regular
expression logics, state machine notations, and more. Unlike
more common “propositional” temporal logics, the Eagle
user can define rules parameterized by data values (e.g. the
value of a program variable from the system under test).

The models of the logic are execution traces, where a trace
is a sequence of states, each state associating values with a
collection of variables. An execution trace can, for example,
represent the log file generated by executing the system
under test. Assume as an example the following trace
consisting of four states, each being a pair giving value to
two variables x and y:

(x=0,y=0) (x=1,y=0) (x=0,y=1) (x=1,y=1)

In the first state both x and y are 0. In the next state x is 1
while y is still 0, etc. Our logic allows us to state properties
about such a trace, properties that can be checked. Assume
for example that we want to state and check the (true)
property “P1: it is always the case that when x is positive
then eventually y becomes positive”. This sentence embeds
two temporal operators “always” and “eventually”, which
we will have to define. Note, once defined they can be
reused. The definition in Eagle of these two operators is as
follows:

 max Always(Form F) = F ∧ @ Always(F)

 min Even(Form F) = F ∨ @ Even(F)

The first definition introduces the temporal operator
Always, which as argument takes a formula F, and is
defined as: F holds now, and in the next state Always(F)
holds recursively. The operator @ points to the next state in
the trace, relative to a current position. This definition
corresponds to standard equations in classical text books.
Similarly, the second definition defines the Even
(eventually) operator: F holds now, or Even(F) holds in
the next state.

The keywords max and min (referring to the mathematical
semantics as a maximal versus minimal fix-point
interpretation) define the value of the respective formulas
Always(F) and Even(F) at the end of the trace, when
evaluation terminates: a maximal rule evaluates to true
while a minimal evaluates to false. This carries the natural
intuition that Always(F) is true at the end if it has been
true all along, while Even(F) is false at the end, since
apparently an obligation F did not occur that should have
occurred.

The monitor for property P1 can now be stated as follows:

 mon P1 = Always(x>0 → Even(y>0))

The defined monitor is composed of temporal operators and
of classical propositional logic operators, such as here
implication (→). The logic also allows for the definition of
past time operators, using the previous-state operator #. For
example, dual past time versions of the Always and Even
operators, which we name Sofar and Prev, are defined as
follows:

 max Sofar(Form F) = F ∧ # Sofar(F)

 min Prev(Form F) = F ∨ # Prev(F)

We have now seen examples of rules being parameterized
with formulas, useful for defining new temporal operators.
However, rules can also be parameterized with data such as
integers, floats, strings, etc. Consider for example that we
want to state and check the (false) property: “P2: whenever
x is positive with some value k, then sometime in the past y
had that value, and sometime in the future x is less than k”.
This property can be stated as follows, using an extra rule R
to capture the value k:

 min R(int k) = Prev(y=k) ∧ Even(x<k)

 mon M2 = Always(x>0 → R(x))

The rule R is here introduced to capture the value of x at
the moment where x>0, binding it to the formal parameter
k.

Test input

Goal set

properties

Planner log

Eagle

Accept/reject

 5

Eagle rules are converted into oracles that check the trace,
state by state, without storing the entire trace. This means
that very large traces can be examined on-the-fly while the
system under test is executing. This works by for each
monitor to maintain a “current formula” that represents the
value of the original formula on the so-far processed prefix
of the trace. Consider for example the monitor for P1 above.
After having processed the first state (x=0,y=0), the current
formula is unchanged since no triggering positive x was
detected. After processing the second state (x=1,y=0)
however, the formula now changes to:

 Always(x>0 → Even(y>0)) ∧ Even(y>0)

The crucial change is the addition of the conjunct
Even(y>0), which now is an obligation to be fulfilled. It
will be discharged at the third state (x=0,y=1), where after
the current formula will reduce to its original form again.
The fourth state (x=1,y=1) re-generates the Even(y>0)
obligation since x=1, but it is immediately discharged since
at the same time y=1>0.

4 PLASMA

In this section we describe PLASMA, a C++ library for
building planning systems, that was tested using Eagle.

MAPGEN is a ground-based tactical activity planning
system used on the ground each day for planning the
command sequences uplinked to the Mars Rovers. It is
based on EUROPA [9] which provided the core constraint-
based planning technology to the MAPGEN team.
PLASMA (PLAn State Management Architecture) is a
successor to EUROPA, developed to provide increased
performance, usability, and flexibility to this proven
planning paradigm. PLASMA is intended for use in off-
board and on-board planning and plan execution
applications arising in the domain of space exploration. In
addition to support of the development activities of
PLASMA itself, it is an important goal to provide
comprehensive verification and validation support for
engineering mission applications with PLASMA. In this
section we briefly present the underlying semantics of plans
and planning in PLASMA, and describe the components of
a typical application using PLASMA.

Plans and Planning in PLASMA

Consider the problem of controlling an imaging system on a
satellite. In this example, we are concerned with attitude
adjustment to position a camera, and control of the camera
to take pictures. One could imagine a planning system
which received input of initial attitude (i.e. initial state) and
a set of imaging requests (i.e. goals). The solution is a
sequence of states and actions reflecting the camera and
satellite attitude control over time to accomplish the given
requests (i.e. a plan). For simplicity, an imaging request is

given by a position, and attitude is controlled to point to a
position. Imaging requests are serviced by a Camera, and
attitude control is accomplished by an Attitude Controller.
These are two objects of the system whose behavior varies
over time. The notion of predicates applying over intervals
of time is fundamental to the description of object behavior
in the PLASMA planning paradigm. The interval of time
over which a predicate occurs is described using temporal
variables i.e. start, end and duration. Use of variables
provides flexibility in when a predicate might start or end. A
relationship exists between these variables, namely, start +
duration = end. This relationship is enforced via a
constraint such that the bounds of the variables are
automatically adjusted to eliminate illegal values from the
domain of each variable. The actions and states of this
domain are given by the following predicates which hold
true over said intervals of time:

• Camera::off() – this predicate is true when the
Camera is off.

• Camera::ready() – this predicate is true when the
Camera is ready to take a picture.

• Camera::takePic(Position p) – this predicate is
true when an action to take a picture at position p is
taking place. The parameter p is an additional
variable added to the built in temporal variables of
this predicate.

• Attitude::pointAt(Position p) – this predicate is
true when the Attitude Controller is pointing at
position p. The parameter p is an additional
variable added to the built in temporal variables of
this predicate.

• Attitude::turn(Position from, Position to) – this
predicate is true when an action to turn the satellite
from one attitude to another is occurring.
Parameters from and to are additional variables of
this predicate.

Constraints must be specified in the model. For example
there is the obvious constraint that a camera cannot be off
while it is taking a picture. A number of additional model
rules are indicated in Figure 3a. For example, the camera
must be ready before it is used to take a picture. Such a rule
is naturally enforced as a constraint equating the end time of
the ready predicate and the start time of the takePic
predicate. Furthermore, we see that relations exist between
parameter variables of predicate instances. For example, a
turn action must meet a pointing state such that the target
position of the turn is equal to the position to which we are
pointing.

 6

Figure 3: Plasma Planning

In PLASMA, planning is a process of elaboration of an
initial partial plan into a final complete plan. Initial problem
descriptions are specified in terms of predicate instances.
For example, we might initially be in a state at the
beginning of the mission where the Camera is off, the
Attitude Controller is pointing at position D, and there is a
goal to take a picture at position E. Model rules are used to
express the causal relationships between actions and states
in the problem domain. PLASMA uses these rules to
automatically infer additional actions and states which must
be introduced into the plan and to further introduce
constraints among predicate variables to enforce model
relationships. Figure 3(b) illustrates an interim stage of the
planning process where some causal rules have introduced
additional predicate instances (e.g. pointAt(E) and turn(?,
E)) and constraints. A constraint reasoning system is used
to propagate the relationships among variables in the plan,
removing illegal values proactively to avoid unnecessary
search. The planner is used to select values for variables and
to place predicate instances in sequence on objects. If all
values of a variable have been removed, the system is
inconsistent and the planner must backtrack and try an
alternative solution path. When all relevant variables have
values, and all required predicate instances have been placed
in the plan the planner will terminate.

PLASMA Architecture

PLASMA is a library for building constraint-based planning
applications. The key provisions of the PLASMA
architecture illustrated in Figure 4 are:

• A modeling language for describing the artifacts of
the problem domain (i.e. objects and predicates)
and the rules governing their interactions. Model
development is a critical engineering task in
deploying or developing an application in
PLASMA.

• A component for representing plan state. The
primary component for doing this is referred to as a
plan database. The plan database accepts
transactions to 1) create or delete objects; 2) create
or delete predicate instances; 3) create or delete
constraints; 4) restrict or relax variables. The plan
database uses a schema, populated from the model,
to enforce type restrictions.

• Inference and consistency management services.
Plan state management is coordinated by the plan
database but aided by both the rules engine and the
constraint engine. The former uses rules from the
model to create or delete predicate instances and
constraints based on changes in plan state. The
latter co-ordinates an extendible range of
specialized algorithms (e.g. resource envelope
calculations, temporal network propagation) for
propagating relationships among variables to prune
illegal values and detect inconsistencies.

• Search services. The problem of searching is
essentially one of deciding which of the available
open decisions should be made (or retracted) next,
and which choice to make for that decision.
Different applications will employ different search
strategies. PLASMA provides a baseline planner
using chronological backtracking. It further
provides facilities to track open decisions and
apply heuristics for decision ordering. Heuristics
can be scripted as part of application development
and/or deployment.

• Event publication for external integration.
PLASMA exposes a rich set of events for all
components of the system. Listeners can be
registered for these events for a variety of reasons.
Most relevant in the context of this work is the use
of a listener to log events to an event log which can
be monitored by a runtime verification system.

5 RUNTIME VERIFICATION OF PLASMA

In this section we describe the application of runtime
verification to regression testing.

When using model-based autonomy software for
applications such as planning and scheduling the major
development focus is construction of a model representing
the application domain. The model must be accurate and
effective, meaning that the model must reflect the physical
reality of the objects, and the model when linked to the
engine(s) and heuristics must be capable of generating
effective plans for the problem set of interest. Construction
of such a model is often done as an evolutionary process.

 7

First a simple model is constructed and tried on simple
examples. The model is then modified or enhanced.
Sometimes the search strategy or heuristics are modified.
Whenever any such change is made there is a significant
likelihood that the prior test cases will not execute exactly
as they did previously. While this situation is not essentially
different then any other regression test situation in which
retesting is required when the code is changed, there are
some significant new and different factors in the autonomy
case. First, regression testing is required to support the
central development activity – namely model construction.
Second, unlike traditional software, there is not a single
correct output with an easily specifiable oracle. Changes in
the model may yield plans that may differ dramatically but
still be acceptable. (Recall the “discontinuity” of autonomy
problems.) In other words, the acceptability criteria to be
represented in an oracle may be quite complex. Recalling
the first difference, that regression testing is part of a
development activity, it is appropriate and in fact crucial, to
frame the problem as building an oracle that determines if
the computation and not just the output of the computation
is acceptable. For example, a developer may wish to assert
that the planner should never need to backtrack on the
problem, or that the plan database have certain properties at
various points through the planning process. For these
reasons, the power of a runtime verification system such as
Eagle can be usefully leveraged.

Figure 4: PLASMA Architecture

As described above, offline runtime verification processes a
log containing the pertinent data for testing the asserted
properties. In this application, since PLASMA already
generates sufficiently detailed trace logs usable by Eagle
code instrumentation is not necessary. Instead the logs are
simply parsed and used to update the Eagle state. To date
we have prototyped this approach on a number of simple
examples and found it effective.

6 OTHER APPLICATIONS OF RUNTIME
VERIFICATION

Autonomy software differs in significant ways from more
traditional software and these differences have impact on
V&V. We describe some additional applications of runtime
verification to autonomy V&V that we have developed or
plan to do.

Planners produce a plan, and, of course, at some later stage
the plan is executed by an execution executive. Verification
of the execution executive requires checking that plans are
executed according to their intended meaning. This too can
be checked using runtime verification, by translating the
plan semantics into Eagle properties, logging the behavior
of the execution engine and monitoring that against the
properties. This was done as part of earlier work using a
test-case generation and runtime verification system called
X9 [1], which not only monitored plan executions but
combined that with a test case generator to generate test
plans.

In rich and complicated environments such as those
encountered by planetary rovers, plans often fail due to
differences between the actual encountered environment and
the assumed environment. This often leads to a re-planning
activity, and a tight integration of the planner and the
execution engine. Furthermore, these consideration leads to
an architecture in which planning occurs at multiple levels
with different time horizons. A planner may be used to
globally plan the day’s activity for a rover and a second,
reactive planner may be used to plan on the minute-or-less
time scale, taking into account execution failures. Should
the goal of the long time horizon planner fail to be achieved,
then re-planning at the higher level is initiated. Our future
work includes applying runtime verification to verify this
architecture. The approach is to translate the high level
planning model into Eagle and then monitor a trace of the
low-level execution against the model. This does not
validate the model but rather checks the consistency of the
multiple planners and execution executive against the model
semantics.

7 RELATED WORK

In essence, the focus of the work presented in this paper is
model-based planning systems, and specifically how
runtime verification can be used to observe the process of a
planner interpreting a model, with the purpose of analyzing
the quality of the model. There has been relatively little
work on V&V of autonomy software, and nothing to our
knowledge on such regression testing for autonomy model
validation.

A model can alternatively be analyzed in isolation, without
invoking a planner, for various properties, such as
completeness and soundness. In [13] and [11] are described

 8

two attempts to use model checking to analyze models.
Model checking is a technique for exploring all possible
paths through the model, using various techniques for
avoiding re-exploration of paths. The earliest work
described in [13] applies discrete state (without real-time
constraints) model checkers to the analysis of planning
models. A planning model is formulated in the input
notation of the model checker. Various goals can then be
stated and it can be determined for example whether a plan
exists for achieving a specific goal, whether there are initial
states where a plan cannot be generated for a specific goal,
etc. The approach described in [11] goes beyond this work
by using a real-time model checker, allowing to represent
more realistic models with time constraints. These attempts
demonstrate that inconsistencies and missing constraints can
be detected. However, the experiments with especially real-
time model checking show scalability issues for larger
models.

Model checking has also been used to analyze executives,
systems that execute plans. In [10] is described work
applying model checking to analyze part of the executive of
the Remote Agent planning and execution system that for a
small period controlled the Deep-Space 1 (DS-1) space craft
during flight in 1998. Although labor intensive, the analysis
demonstrated, before flight, serious concurrency problems,
problems that actually caused a deadlock during flight,
resulting in a system shut-down for several hours. The
errors found before flight were corrected but the deadlock
was re-introduced later.

In [7] Chien et.al. describe their efforts to validate autonomy
software on the EO-1 mission. This includes walkthroughs
for model validation, and test case generation. Safety
constraints were checkable against a lower level safety
monitor.

Feather and Smith [8] note that it is easier to check that a
plan is correct with respect to a model than it is to produce
the plan, and have applied this idea to the DS-1 Remote
Agent planner. They load a plan resulting from execution of
the planner into a database and then check the database
against constraints generated from the model. This is
intended to verify the planner but not to validate the model.

The Livingstone PathFinder (LPF) [12] is a system for
testing Livingstone models. Livingstone is a model-based
diagnosis system. LPF consists of a test driver that generates
a sequence consisting of either commands or injected faults,
a simulator of the modeled device and the Livingstone
Engine. The system checks whether the diagnosis system
can detect the faults injected into the input stream.

8 CONCLUSIONS

The difficulty of verification has slowed the incorporation
of autonomy software in flight systems in space and on

aircraft. However due to the advanced functionality and
significant cost savings autonomy provides, there is great
incentive to utilize autonomy. In this paper we demonstrated
new V&V capabilities that exploit the structure and needs of
autonomy software. In particular we addressed the problem
of V&V of model-based software by prototyping a new
capability that allows a developer to incrementally evolve a
domain model and an automated regression suite.
Constructing a domain model that is an accurately models
the domain and that is effective in solving planning
problems is the key development activity. Since there are
many acceptable solutions to a planning problem, defining
an oracle for a test is non-trivial. We showed that by use of
runtime verification called Eagle oracle can be constructed
that are based not just on the resulting plan but on the
computation of the planner to arrive at the plan, and that
rich temporal properties of the computation can be easily
stated..

REFERENCES

[1] Cyrille Artho, Howard Barringer, Allen Goldberg, Klaus
Havelund, Sarfraz Khurshid, Mike Lowry, Corina
Pasareanu, Grigore Rosu, Koushik Sen, Willem Visser
and Rich Washington, “Combining Test Case Generation
and Runtime Verification”, submitted to the journal
Theoretical Computer Science.

[2] Howard Barringer, Allen Goldberg, Klaus Havelund and
Koushik Sen, “Rule-Based Runtime Verification”, 5th
International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI’04),
LNCS 2937, Springer, pages 44-57, Editors B. Steffen
and G. Levi, Venice, Italy, January 2004.

[3] Howard Barringer, Allen Goldberg, Klaus Havelund and
Koushik Sen, “Program Monitoring with LTL in Eagle”,
Workshop on Parallel and Distributed Systems: Testing
and Debugging (PADTAD’04), IEEE Digital Library,
Santa Fe, New Mexico, USA, April 2004.

[4] John Bresina, Ari Jonsson, Paul Morris and Kanna Rajan,
“Constraint Maintenance with Preferences and
Underlying Flexible Solution”, Online-2003, Online
Constraint Solving: Handling Change and Uncertainty, A
CP2003 workshop, Kinsale, Co. Cork, Ireland, September
29th , 2003.

[5] Steve Chien, et.al. “Autonomous Science on the EO-1
Mission”, Proceedings of the International Symposium on
Artificial Intelligence Robotics and Automation in Space
(i-SAIRAS), Nara, Japan, May, 2003.

 9

[6] Steve Chien, Russell Knight, Andre Stechert, Rob
Sherwood and Gregg Rabideau, "Using Iterative Repair to
Increase the Responsiveness of Planning and Scheduling
for Autonomous Spacecraft”, IJCAI99 Workshop on
Scheduling and Planning meet Real-time Monitoring in a
Dynamic and Uncertain World, Stockholm, Sweden,
August 1999.

[7] Benjamin Cichy, Steve Chien, Steve Schaffer, Daniel
Tran, Gegg Rabideau and Rob Sherwood, “Validating the
Autonomous EO-1 Science Agent”, International
Workshop on Planning and Scheduling for Space (IWPSS
2004). Darmstadt, Germany, June 2004.

[8] Martin Feather and Ben Smith, “Automatic Generation of
Test 0rac1es - From Pilot Studies to Application”,
Automated Software Engineering, 8(1):31-61, January
2001.

[9] Jeremy Frank and Ari Jonsson, “Constraint-Based Interval
and Attribute Planning”, Journal of Constraints Special
Issue on Constraints and Planning. 2003.

[10] Klaus Havelund, Mike Lowry and John Penix, “Formal
Analysis of a Space Craft Controller using SPIN”, IEEE
Transactions on Software Engineering, Volume 27,
Number 8, August 2001.

[11] Lina Khatib, Nicola Muscettola and Klaus Havelund,
“Mapping Temporal Planning Constraints into Timed
Automata”, TIME’01 (IEEE Press), The 8th International
Symposium on Temporal Representation and Reasoning,
Cividale Del Friuli, Italy, 2001.

[12] Tony Lindsey and Charles Pecheur, “Simulation-Based
Verification of Autonomous Controllers with Livingstone
PathFinder”, Proceedings of the 10th International
Conference on Tools and Algorithms for the Construction
and Analysis Of Systems (TACAS'04), Barcelona, Spain,
March-April 2004, Lecture Notes in Computer Science,
vol. 2988, Springer Verlag.

 [13] John Penix, Charles Pecheur and Klaus Havelund,
“Using Model Checking to Validate AI Planner Domain
Models”, 23rd Annual Software Engineering Workshop,
1998.

BIOGRAPHY

Klaus Havelund, Kestrel Technology at
NASA Ames Research Center, received
his Ph.D. in Computer Science from
Copenhagen University, Denmark, in
1994 (carried out at Ecole Normale
Superieure in Paris, France). Havelund
conducts research in program
verification and testing techniques,

including runtime verification. He initiated and has
organized/steered a series of international workshops on
runtime verification (RV’01-04). Previous work has
included such subjects as specification language design,
concurrent language theory, theorem proving, model
checking, and dynamic program analysis. He co-developed
the formal specification language RSL, and wrote the
majority of the textbook "The RAISE Specification
Language", published in the BCS Practitioners Series,
Prentice Hall 1992. He conceptualized and constructed the
first prototype of the Java PathFinder model checker for
Java, a second version of which won the NASA TGIR
award in 2003.

Allen Goldberg, works for Kestrel
Technology at NASA Ames Research
Center. He received a Ph.D. in
Computer Science from Courant
Institute, at New York University. His
interests include runtime verification,
program testing, and program
transformation.

Dr. Conor McGann is a computer
scientist in the planning and
scheduling group at NASA Ames
Research Center. Dr. McGann's
research in Constraint-based
Planning has contributed essential
planning and scheduling capabilities
to a wide variety of research and
mission applications. He is the
architect of PLASMA, a constraint-

based planning system, and has been a member of the
MAPGEN development team for the Mars Exploration
Rover (MER) mission, which received a "Turning Goals
Into Reality" NASA Administrator's Award in 2004. Dr.
McGann received his doctorate in Computer Science (1995)
in the area of model-based reasoning and his undergraduate
degree in Computer Engineering (1990) from Trinity
College, Dublin. His principal research interest is in the
confluence of artificial intelligence, database and distributed
systems technologies to build robust intelligent systems.

 –

