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Abstract - 
Autonomous systems are systems that can operate without 
human interference for extended periods of time in changing 
environments, likely in remote locations. Software is 
usually an essential part of such systems. However, 
adaptation of autonomy software is limited by its 
complexity and the difficulty of verifying and validating it. 
We describe an approach named runtime verification for 
testing autonomy software. Runtime verification is a 
technique for generating test oracles from abstract 
specifications of expected behavior. We describe its 
application to the PLASMA planning system, used in the 
recent Mars Exploration Rover missions. We furthermore 
discuss alternative autonomy V&V approaches. 
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1 INTRODUCTION 

The difficulty of verifying and validating (V&V) autonomy 
software has limited its use on spacecraft. In this paper, we 
overview new approaches to autonomy V&V and describe 
an experiment with one of the approaches. Our experiment 
involved regression testing for PLASMA, the next 

generation of planning technology used to create MAPGEN 
[4], which in turn was used to plan and schedule MER 
Rover activities. Planners take as input a set of high level 
goals to be achieved, such as driving a Rover to a distant 
location, or taking a picture or measurement, and generate a 
series of low-level commands that realize the goals, while 
respecting the flight resource and safety constraints such as 
not taking pictures while moving, or staying within power 
budgets. PLASMA is a model-based planner generation 
system. As shown in Figure 1, PLASMA takes as input a 
domain model and “compiles” the domain model into a 
planner specialized to that model. The resulting planner 
solves planning problems, i.e. it takes as input a set of goals 
and uses heuristic search to find efficient plans. A model is 
a declarative description of a domain that defines domain 
objects, such as cameras and wheels, constraints, and 
actions such as turning on a camera. Because complex 
planning problems, in general, are NP-complete, heuristic 
search is required, since finding an optimal solution would 
require an exponential time algorithm that will not scale to 
the size of problems regularly solved by these systems.  

When constructing a planner in this way, the key activities 
are building the model and ensuring that the heuristic search 
used by the planner is effective in finding good plans for the 
goal sets of interest. A common development methodology 
is to incrementally build, refine, and elaborate the domain 
model, testing the model against a graded set of challenge 
examples. However, small changes to the model or the 
heuristics can have unexpected and dramatic changes in the 
planner’s behavior. Test cases that prior to the modification 
were solved by the planner may no longer be solvable, or 
may be solved by a different plan that may or may not be 
acceptable. Thus, comprehensive regression testing is 
integral to this development methodology. However an 
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oracle used with a regression test suite cannot simply check 
that the identical plans are obtained, but rather must 
determine that an acceptable plan is generated within an 
acceptable time bound. To automatically execute a 
regression suite, the acceptance criteria for each test case 
must be realized as executable code. To do so we employed 
runtime verification, a V&V technology that allows the 
creation of test oracles that can check sophisticated 
properties of a computation. We carried out this approach 
by formulating, using a runtime verification system called 
Eagle, both universal properties (true for any computation of 
the planner) and problem-specific properties. We then 
analyzed logs generated by the planner to check 
conformance to these properties. 

The rest of the paper is organized as follows. Section 2 
describes the general problem of V&V of autonomy 
software. Section 3 describes Runtime Verification, a 
specific V&V technique that combines formal methods 
tools with program testing. Section 4 describes PLASMA 
and section 5 describes how it was tested using Eagle. 
Section 6 describes other applications of runtime 
verification to autonomy testing. In section 7 we describe 
related work. Finally, section 8 states conclusions and 
describes future work. 

2 V&V OF AUTONOMY SOFTWARE 

Autonomy software can both dramatically improve the 
capability and robustness of spacecraft while reducing the 
cost of operation. In this paper we consider model-based 
autonomy software, particularly planning and scheduling 
systems. This software can expand the capabilities of 
unmanned missions, allow for greater utilization of 
spacecraft resources, and significantly reduce the level of 
ground support. The capabilities of autonomy software are 
now being successfully demonstrated on a number of 
deployed missions.  

For example MAPGEN [4] is a ground-based tactical 
activity planning system used each day for planning the 
command sequences uplinked to the Mars MER Rovers, 
that uses EUROPA [9], a precursor of PLASMA. Upwards 
of 700 activities each day are planned by MAPGEN. 

The EO-1 Autonomous Science Agent [5] is autonomy 
software currently flying onboard the Earth Observing One 
(EO-1) spacecraft. This software has been flying in a series 
of tests since fall 2003, is scheduled to fly well into 2005 
and may fly well into 2006. The highest level of EO-1 
autonomy software is the CASPER planning system [6]. 
The CASPER planning system has been used in a wide 
range of applications including but not limited to: spacecraft 
control, deep space communications station control, rover 
control, and as a single agent controller in multi-agent 
testbeds. On the EO-1 the planner schedules observations, 
communication activities, etc. 

However, the difficulty of V&V has excluded use of 
autonomy software on manned aircraft and restricts its use 
on spacecraft. There are aspects of autonomy software that 
make verification and validation both different and difficult. 
Theoretically these problems are NP-complete. NP-complete 
problems require, in the worst case, exponential time to 
solve. Hence, achieving an exact solution within an 
acceptable response time over all possible inputs is currently 
impossible. Thus the software designer faces a complicated 
design trade space of performance, accuracy, and constraints 
on the input problems to be solved. This in turn implies that 
there is no simple and “clean” characterization of the 
elaborated software requirements. Previous work has 
demonstrated that this design space can be successfully 
negotiated, since systems capable of generating very good 
results, often exceeding what can be done by humans, have 
been built. But validating and verifying these systems raises 
challenges. Are the approximate solutions produced by the 
system adequate? Are the real time performance goals met? 
Another characteristic of NP-complete problems is that of 
discontinuity - a small change to an input can lead to 
significant changes to the accuracy and performance of the 
algorithm. This discontinuous behavior makes V&V more 
difficult, because the central notion of testing is that by 
testing “representative” inputs one can inductively infer that 
similar inputs will also behave correctly. 

The planning and scheduling software applications we 
consider consist of a declarative model that defines 
constraints, hierarchical goal structures, domain entities, etc. 
and an “engine” that interprets problem solving tasks using 
this model. This different structure calls into question the 
direct applicability of traditional white box structural testing 
methods and coverage criteria. The model-based approach 
furthermore leads to a development methodology in which 
the model is incrementally developed and validated, which 
in turn requires a V&V methodology that can support such 
frequent modifications. Empirical observation suggests that 
it is more difficult for a human to understand the behavior 
of model-based systems because of the seemingly 
exponential number of possible interactions of model 
elements. Because the engine is fairly stable (except for 
changes to heuristics) and shared between different 
applications, validating the model is the primary V&V 
focus. 

Finally, almost by definition, autonomy software is required 
to react to a diverse set of conditions. A test approach based 
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Figure 1: Planning with PLASMA 
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on testing a nominal scenario and off-nominal variants 
cannot be applied. A larger operational profile must be 
defined and tested against. Thus one can expect that for 
autonomy software the test set is very large, and that 
automated testing procedures will be very important. 

In summary, autonomy is a high-stakes technology often 
used at the highest level of commanding systems with high 
cost and human risk. The V&V task is more difficult for 
autonomy software because it 

• has an input-output behavior that is difficult to 
state and verify,  

• responds to a wide variety of inputs and not just a 
single “nominal” scenario, and  

• has a declarative model-based architecture that 
makes it difficult to predict “execution paths”. 

In the following we shall investigate a particular V&V 
technology, runtime verification, which can be used to 
increase the reliability of model-based autonomy systems. 

3 RUNTIME VERIFICATION 

Runtime Verification  

Formal methods hold out the promise for higher-quality 
software verification by judicious application of 
mathematical methods. Unfortunately formal methods have 
not scaled to be routinely applied to production software 
code. The challenges of autonomy software, described 
above, exacerbate this problem making it unlikely that 
formal methods can be usefully applied to autonomy 
software in the near to mid term. However, emerging from 
formal methods research are hybrid V&V methods that 
apply the technological advances of formal methods to more 
traditional V&V methods. Runtime verification is such a 
hybrid approach.  

In the rigorous approach of formal methods, precisely-
specified software properties are stated and mathematically 
verified. The precision is obtained by stating properties in a 
formal logic. A particularly relevant one for expressing 
properties of software is temporal logic. Temporal logic is a 
logic that enables succinct description of systems that 
evolve over time, for example, the discrete computational 
steps of a computer program. Temporal logic is appropriate 
for programs that are reactive, i.e. those that execute 
continuously by reacting to an environment, and do not 
simply take an input at the start of the computation and 
produce a single output at termination. Using temporal logic 
properties like “if the reset signal is received then within 1 
second the device is reset” are naturally stated. Furthermore, 
V&V can be more effective if not just the inputs and outputs 
of a program are examined but also the internals of the 
computation. There again temporal logic is relevant. 

Runtime verification applies temporal logic to program 
testing. The software is tested for conformance to precisely 
stated properties specified in the logic. The properties may 
be universal properties that are expected true of all program 
inputs, as with traditional formal verification, or can be 
properties specific to a particular input. Runtime verification 
acknowledges that proving non-trivial functional and 
performance properties for all inputs for complex software 
is beyond current capabilities, but that the specification of 
those properties using a formal language such as temporal 
logic is a great advantage in a testing context.   

Runtime verification is used as part of writing/generating 
test cases. A test case consists of a test input and an oracle. 
The oracle is a predicate that determines if the behavior of 
the program is the desired or correct behavior with respect 
to the input. In an automated test suite the oracle must be 
represented by code that performs the checking. If the 
correct behavior of the program is described by a set of 
temporal logic formulas then the oracle is a program for 
checking those formulas. The value added by runtime 
verification is the creation of tools to automatically generate 
such oracles. The key technology is a compiler or interpreter 
that translates temporal logic formulas into code that checks 
if a program execution conforms to the property.  

A runtime verification system can be architected so that the 
checking is done independently of the system under test. In 
this case the system under test is instrumented so that a 
sequential log is generated. The log can be saved to a file for 
offline analysis or examined in real time. Alternatively the 
checking can be done as code that is integrated into the 
system under test. There are advantages to both approaches. 
The main advantage of the independent approach is that the 
impact on the real time performance of the system under test 
is minimized to creation of the log. The main advantage of 
the integrated approach is that the checking can become part 
of the system under test thus supporting an autonomic 
computing or Integrated Vehicle Health Management 
(IVHM) capability.  

Figure 2 illustrates the offline architecture we used in this 
runtime verification application.  
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Figure 2: Offline Test Execution Architecture 

Eagle 

In this section we describe Eagle [2,3,1], the temporal logic 
framework for runtime verification used in this work. Most 
temporal logics were developed for use with model 
checkers, and so had to trade expressiveness for efficient 
model checking. In designing Eagle for runtime verification 
we were able to include more features that improve 
expressiveness because the computational efficiency is a 
lesser, although still important, issue.  

Eagle is a rule-based framework for defining temporal 
logics. It allows the definition of new temporal operators 
using a parameterized rule construct. With Eagle, in a few 
lines of text, we are able to define past, future and interval 
time temporal logics, real-time temporal logics, regular 
expression logics, state machine notations, and more. Unlike 
more common “propositional” temporal logics, the Eagle 
user can define rules parameterized by data values (e.g. the 
value of a program variable from the system under test).  

The models of the logic are execution traces, where a trace 
is a sequence of states, each state associating values with a 
collection of variables. An execution trace can, for example, 
represent the log file generated by executing the system 
under test. Assume as an example the following trace 
consisting of four states, each being a pair giving value to 
two variables x and y: 

(x=0,y=0)    (x=1,y=0)    (x=0,y=1)    (x=1,y=1) 

In the first state both x and y are 0. In the next state x is 1 
while y is still 0, etc. Our logic allows us to state properties 
about such a trace, properties that can be checked. Assume 
for example that we want to state and check the (true) 
property “P1: it is always the case that when x is positive 
then eventually y becomes positive”. This sentence embeds 
two temporal operators “always” and “eventually”, which 
we will have to define. Note, once defined they can be 
reused. The definition in Eagle of these two operators is as 
follows: 

  max Always(Form F) = F ∧ @ Always(F)  

 min Even(Form F) = F ∨ @ Even(F)  

The first definition introduces the temporal operator 
Always, which as argument takes a formula F, and is 
defined as: F holds now, and in the next state Always(F) 
holds recursively. The operator @ points to the next state in 
the trace, relative to a current position. This definition 
corresponds to standard equations in classical text books. 
Similarly, the second definition defines the Even 
(eventually) operator: F holds now, or Even(F) holds in 
the next state.  

The keywords max and min (referring to the mathematical 
semantics as a maximal versus minimal fix-point 
interpretation) define the value of the respective formulas 
Always(F) and Even(F) at the end of the trace, when 
evaluation terminates: a maximal rule evaluates to true 
while a minimal evaluates to false. This carries the natural 
intuition that Always(F) is true at the end if it has been 
true all along, while Even(F) is false at the end, since 
apparently an obligation F did not occur that should have 
occurred. 

The monitor for property P1 can now be stated as follows: 

    mon P1 = Always(x>0 → Even(y>0))  

The defined monitor is composed of temporal operators and 
of classical propositional logic operators, such as here 
implication (→). The logic also allows for the definition of 
past time operators, using the previous-state operator #. For 
example, dual past time versions of the Always and Even 
operators, which we name Sofar and Prev, are defined as 
follows: 

 max Sofar(Form F) = F ∧ # Sofar(F)  

 min Prev(Form F) = F ∨ # Prev(F)  

We have now seen examples of rules being parameterized 
with formulas, useful for defining new temporal operators. 
However, rules can also be parameterized with data such as 
integers, floats, strings, etc. Consider for example that we 
want to state and check the (false) property: “P2: whenever 
x is positive with some value k, then sometime in the past y 
had that value, and sometime in the future x is less than k”. 
This property can be stated as follows, using an extra rule R 
to capture the value k: 

 min R(int k) = Prev(y=k) ∧ Even(x<k)  

 mon M2 = Always(x>0 → R(x))  

The rule R is here introduced to capture the value of x at 
the moment where x>0, binding it to the formal parameter 
k. 

Test input 

Goal set 
 

 

properties 
 

Planner log 
 

Eagle 

Accept/reject 
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Eagle rules are converted into oracles that check the trace, 
state by state, without storing the entire trace. This means 
that very large traces can be examined on-the-fly while the 
system under test is executing. This works by for each 
monitor to maintain a “current formula” that represents the 
value of the original formula on the so-far processed prefix 
of the trace. Consider for example the monitor for P1 above. 
After having processed the first state (x=0,y=0), the current 
formula is unchanged since no triggering positive x was 
detected. After processing the second state (x=1,y=0) 
however, the formula now changes to: 

  Always(x>0 → Even(y>0)) ∧ Even(y>0) 

The crucial change is the addition of the conjunct 
Even(y>0), which now is an obligation to be fulfilled. It 
will be discharged at the third state (x=0,y=1), where after 
the current formula will reduce to its original form again. 
The fourth state (x=1,y=1) re-generates the Even(y>0) 
obligation since x=1, but it is immediately discharged since 
at the same time y=1>0. 

4 PLASMA 

In this section we describe PLASMA, a C++ library for 
building planning systems, that was tested using Eagle. 

MAPGEN is a ground-based tactical activity planning 
system used on the ground each day for planning the 
command sequences uplinked to the Mars Rovers. It is 
based on EUROPA [9] which provided the core constraint-
based planning technology to the MAPGEN team. 
PLASMA (PLAn State Management Architecture) is a 
successor to EUROPA, developed to provide increased 
performance, usability, and flexibility to this proven 
planning paradigm. PLASMA is intended for use in off-
board and on-board planning and plan execution 
applications arising in the domain of space exploration. In 
addition to support of the development activities of 
PLASMA itself, it is an important goal to provide 
comprehensive verification and validation support for 
engineering mission applications with PLASMA. In this 
section we briefly present the underlying semantics of plans 
and planning in PLASMA, and describe the components of 
a typical application using PLASMA.  
 
Plans and Planning in PLASMA 

Consider the problem of controlling an imaging system on a 
satellite. In this example, we are concerned with attitude 
adjustment to position a camera, and control of the camera 
to take pictures. One could imagine a planning system 
which received input of initial attitude (i.e. initial state) and 
a set of imaging requests (i.e. goals). The solution is a 
sequence of states and actions reflecting the camera and 
satellite attitude control over time to accomplish the given 
requests (i.e. a plan). For simplicity, an imaging request is 

given by a position, and attitude is controlled to point to a 
position. Imaging requests are serviced by a Camera, and 
attitude control is accomplished by an Attitude Controller. 
These are two objects of the system whose behavior varies 
over time. The notion of predicates applying over intervals 
of time is fundamental to the description of object behavior 
in the PLASMA planning paradigm. The interval of time 
over which a predicate occurs is described using temporal 
variables i.e. start, end and duration. Use of variables 
provides flexibility in when a predicate might start or end. A 
relationship exists between these variables, namely, start + 
duration = end. This relationship is enforced via a 
constraint such that the bounds of the variables are 
automatically adjusted to eliminate illegal values from the 
domain of each variable. The actions and states of this 
domain are given by the following predicates which hold 
true over said intervals of time: 

• Camera::off() – this predicate is true when the 
Camera is off. 

• Camera::ready() – this predicate is true when the 
Camera is ready to take a picture. 

• Camera::takePic(Position p) – this predicate is 
true when an action to take a picture at position p is 
taking place. The parameter p is an additional 
variable added to the built in temporal variables of 
this predicate. 

• Attitude::pointAt(Position p) – this predicate is 
true when the Attitude Controller is pointing at 
position p. The parameter p is an additional 
variable added to the built in temporal variables of 
this predicate. 

• Attitude::turn(Position from, Position to) – this 
predicate is true when an action to turn the satellite 
from one attitude to another is occurring. 
Parameters from and to are additional variables of 
this predicate. 

 
Constraints must be specified in the model. For example 
there is the obvious constraint that a camera cannot be off 
while it is taking a picture. A number of additional model 
rules are indicated in Figure 3a. For example, the camera 
must be ready before it is used to take a picture. Such a rule 
is naturally enforced as a constraint equating the end time of 
the ready predicate and the start time of the takePic 
predicate. Furthermore, we see that relations exist between 
parameter variables of predicate instances. For example, a 
turn action must meet a pointing state such that the target 
position of the turn is equal to the position to which we are 
pointing.  
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Figure 3: Plasma Planning 

In PLASMA, planning is a process of elaboration of an 
initial partial plan into a final complete plan. Initial problem 
descriptions are specified in terms of predicate instances.  
For example, we might initially be in a state at the 
beginning of the mission where the Camera is off, the 
Attitude Controller is pointing at position D, and there is a 
goal to take a picture at position E. Model rules are used to 
express the causal relationships between actions and states 
in the problem domain. PLASMA uses these rules to 
automatically infer additional actions and states which must 
be introduced into the plan and to further introduce 
constraints among predicate variables to enforce model 
relationships. Figure 3(b) illustrates an interim stage of the 
planning process where some causal rules have introduced 
additional predicate instances (e.g. pointAt(E) and turn(?, 
E) ) and constraints. A constraint reasoning system is used 
to propagate the relationships among variables in the plan, 
removing illegal values proactively to avoid unnecessary 
search. The planner is used to select values for variables and 
to place predicate instances in sequence on objects. If all 
values of a variable have been removed, the system is 
inconsistent and the planner must backtrack and try an 
alternative solution path. When all relevant variables have 
values, and all required predicate instances have been placed 
in the plan the planner will terminate. 

PLASMA Architecture 

PLASMA is a library for building constraint-based planning 
applications. The key provisions of the PLASMA 
architecture illustrated in Figure 4 are: 

• A modeling language for describing the artifacts of 
the problem domain (i.e. objects and predicates) 
and the rules governing their interactions. Model 
development is a critical engineering task in 
deploying or developing an application in 
PLASMA. 

• A component for representing plan state. The 
primary component for doing this is referred to as a 
plan database. The plan database accepts 
transactions to 1) create or delete objects; 2) create 
or delete predicate instances; 3) create or delete 
constraints; 4) restrict or relax variables. The plan 
database uses a schema, populated from the model, 
to enforce type restrictions. 

• Inference and consistency management services. 
Plan state management is coordinated by the plan 
database but aided by both the rules engine and the 
constraint engine. The former uses rules from the 
model to create or delete predicate instances and 
constraints based on changes in plan state. The 
latter co-ordinates an extendible range of 
specialized algorithms (e.g. resource envelope 
calculations, temporal network propagation) for 
propagating relationships among variables to prune 
illegal values and detect inconsistencies. 

• Search services. The problem of searching is 
essentially one of deciding which of the available 
open decisions should be made (or retracted) next, 
and which choice to make for that decision. 
Different applications will employ different search 
strategies. PLASMA provides a baseline planner 
using chronological backtracking. It further 
provides facilities to track open decisions and 
apply heuristics for decision ordering. Heuristics 
can be scripted as part of application development 
and/or deployment. 

• Event publication for external integration. 
PLASMA exposes a rich set of events for all 
components of the system. Listeners can be 
registered for these events for a variety of reasons. 
Most relevant in the context of this work is the use 
of a listener to log events to an event log which can 
be monitored by a runtime verification system. 

5 RUNTIME VERIFICATION OF PLASMA 

In this section we describe the application of runtime 
verification to regression testing.  

When using model-based autonomy software for 
applications such as planning and scheduling the major 
development focus is construction of a model representing 
the application domain. The model must be accurate and 
effective, meaning that the model must reflect the physical 
reality of the objects, and the model when linked to the 
engine(s) and heuristics must be capable of generating 
effective plans for the problem set of interest.  Construction 
of such a model is often done as an evolutionary process. 
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First a simple model is constructed and tried on simple 
examples. The model is then modified or enhanced. 
Sometimes the search strategy or heuristics are modified. 
Whenever any such change is made there is a significant 
likelihood that the prior test cases will not execute exactly 
as they did previously. While this situation is not essentially 
different then any other regression test situation in which 
retesting is required when the code is changed, there are 
some significant new and different factors in the autonomy 
case. First, regression testing is required to support the 
central development activity – namely model construction. 
Second, unlike traditional software, there is not a single 
correct output with an easily specifiable oracle. Changes in 
the model may yield plans that may differ dramatically but 
still be acceptable. (Recall the “discontinuity” of autonomy 
problems.) In other words, the acceptability criteria to be 
represented in an oracle may be quite complex. Recalling 
the first difference, that regression testing is part of a 
development activity, it is appropriate and in fact crucial, to 
frame the problem as building an oracle that determines if 
the computation and not just the output of the computation 
is acceptable. For example, a developer may wish to assert 
that the planner should never need to backtrack on the 
problem, or that the plan database have certain properties at 
various points through the planning process. For these 
reasons, the power of a runtime verification system such as 
Eagle can be usefully leveraged.  

 

Figure 4: PLASMA Architecture 

As described above, offline runtime verification processes a 
log containing the pertinent data for testing the asserted 
properties. In this application, since PLASMA already 
generates sufficiently detailed trace logs usable by Eagle 
code instrumentation is not necessary. Instead the logs are 
simply parsed and used to update the Eagle state. To date 
we have prototyped this approach on a number of simple 
examples and found it effective.  

6 OTHER APPLICATIONS OF RUNTIME 
VERIFICATION 

Autonomy software differs in significant ways from more 
traditional software and these differences have impact on 
V&V. We describe some additional applications of runtime 
verification to autonomy V&V that we have developed or 
plan to do. 

Planners produce a plan, and, of course, at some later stage 
the plan is executed by an execution executive. Verification 
of the execution executive requires checking that plans are 
executed according to their intended meaning. This too can 
be checked using runtime verification, by translating the 
plan semantics into Eagle properties, logging the behavior 
of the execution engine and monitoring that against the 
properties. This was done as part of earlier work using a 
test-case generation and runtime verification system called 
X9 [1], which not only monitored plan executions but 
combined that with a test case generator to generate test 
plans. 

In rich and complicated environments such as those 
encountered by planetary rovers, plans often fail due to 
differences between the actual encountered environment and 
the assumed environment. This often leads to a re-planning 
activity, and a tight integration of the planner and the 
execution engine. Furthermore, these consideration leads to 
an architecture in which planning occurs at multiple levels 
with different time horizons. A planner may be used to 
globally plan the day’s activity for a rover and a second, 
reactive planner may be used to plan on the minute-or-less 
time scale, taking into account execution failures. Should 
the goal of the long time horizon planner fail to be achieved, 
then re-planning at the higher level is initiated. Our future 
work includes applying runtime verification to verify this 
architecture. The approach is to translate the high level 
planning model into Eagle and then monitor a trace of the 
low-level execution against the model. This does not 
validate the model but rather checks the consistency of the 
multiple planners and execution executive against the model 
semantics.  

7 RELATED WORK 

In essence, the focus of the work presented in this paper is 
model-based planning systems, and specifically how 
runtime verification can be used to observe the process of a 
planner interpreting a model, with the purpose of analyzing 
the quality of the model. There has been relatively little 
work on V&V of autonomy software, and nothing to our 
knowledge on such regression testing for autonomy model 
validation.  

A model can alternatively be analyzed in isolation, without 
invoking a planner, for various properties, such as 
completeness and soundness. In [13] and [11] are described 
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two attempts to use model checking to analyze models. 
Model checking is a technique for exploring all possible 
paths through the model, using various techniques for 
avoiding re-exploration of paths. The earliest work 
described in [13] applies discrete state (without real-time 
constraints) model checkers to the analysis of planning 
models. A planning model is formulated in the input 
notation of the model checker. Various goals can then be 
stated and it can be determined for example whether a plan 
exists for achieving a specific goal, whether there are initial 
states where a plan cannot be generated for a specific goal, 
etc. The approach described in [11] goes beyond this work 
by using a real-time model checker, allowing to represent 
more realistic models with time constraints. These attempts 
demonstrate that inconsistencies and missing constraints can 
be detected. However, the experiments with especially real-
time model checking show scalability issues for larger 
models.  

Model checking has also been used to analyze executives, 
systems that execute plans. In [10] is described work 
applying model checking to analyze part of the executive of 
the Remote Agent planning and execution system that for a 
small period controlled the Deep-Space 1 (DS-1) space craft 
during flight in 1998. Although labor intensive, the analysis 
demonstrated, before flight, serious concurrency problems, 
problems that actually caused a deadlock during flight, 
resulting in a system shut-down for several hours. The 
errors found before flight were corrected but the deadlock 
was re-introduced later. 

In [7] Chien et.al. describe their efforts to validate autonomy 
software on the EO-1 mission. This includes walkthroughs 
for model validation, and test case generation. Safety 
constraints were checkable against a lower level safety 
monitor.  

Feather and Smith [8] note that it is easier to check that a 
plan is correct with respect to a model than it is to produce 
the plan, and have applied this idea to the DS-1 Remote 
Agent planner. They load a plan resulting from execution of 
the planner into a database and then check the database 
against constraints generated from the model. This is 
intended to verify the planner but not to validate the model. 

The Livingstone PathFinder (LPF) [12] is a system for 
testing Livingstone models. Livingstone is a model-based 
diagnosis system. LPF consists of a test driver that generates 
a sequence consisting of either commands or injected faults, 
a simulator of the modeled device and the Livingstone 
Engine. The system checks whether the diagnosis system 
can detect the faults injected into the input stream.  

8 CONCLUSIONS 

The difficulty of verification has slowed the incorporation 
of autonomy software in flight systems in space and on 

aircraft. However due to the advanced functionality and 
significant cost savings autonomy provides, there is great 
incentive to utilize autonomy. In this paper we demonstrated 
new V&V capabilities that exploit the structure and needs of 
autonomy software. In particular we addressed the problem 
of V&V of model-based software by prototyping a new 
capability that allows a developer to incrementally evolve a 
domain model and an automated regression suite. 
Constructing a domain model that is an accurately models 
the domain and that is effective in solving planning 
problems is the key development activity. Since there are 
many acceptable solutions to a planning problem, defining 
an oracle for a test is non-trivial. We showed that by use of 
runtime verification called Eagle oracle can be constructed 
that are based not just on the resulting plan but on the 
computation of the planner to arrive at the plan, and that 
rich temporal properties of the computation can be easily 
stated.. 
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