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Abstract. This tutorial explores the design and implementation issues arising in
the development of domain-specific languages for trace analysis. It introduces
the audience to the general concepts underlying such special-purpose languages
building upon the authors’ own experiences in developing both external domain-
specific languages and systems, such as EAGLE, HAWK, RULER and LOGSCOPE,
and the more recent internal domain-specific language and system TRACECON-
TRACT within the SCALA language.
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Domain-specific languages (DSLs) are simply special-purpose programming languages
and, as such, are far from being a new concept; for example in the field of text process-
ing one can find COMIT [16] in the 1950s, which led to SNOBOL [8] in the 1960s, then
on to the likes of AWK [1], Perl [15], etc. The naming of such special-purpose program-
ming languages as DSLs is a more recent development that has come about through the
field of domain-specific modelling. Fowler [9] presents a rather comprehensive volume
on DSLs and their application.

Within the field of run-time verification, as in formal methods in general, specifica-
tion languages and logics have usually been created as separate, standalone, languages,
with their own parsers; these are usually referred to as external DSLs. We have our-
selves developed several external DSLs for trace analysis, e.g. EAGLE [2], HAWK [7],
RULER [6], LOGSCOPE [3], and observe two key points: (i) once a DSL is defined, it
is labourious to change or extend it later; and (ii) users often ask for additional fea-
tures, some of which are best handled by a general purpose programming language. An
alternative approach is to try to use a high level programming language that can be aug-
mented with support for temporal specification. These are usually referred to as internal
DSLs. An internal DSL is really just an API in the host language, formulated using the
language’s own primitives. Recently, we chose to develop an internal DSL, TRACE-
CONTRACT [4], for trace analysis in SCALA [12]. Indeed, SCALA is particularly well
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suited for this because of (i) the language’s in-built support for defining internal DSLs,
and (ii) the fact that it supports functional as well as object oriented programming. A
functional programming language seems well suited for defining an internal DSL for
monitoring, as also advocated in [13] in the case of HASKELL [14]. An embedding of
an internal DSL may be termed as shallow, meaning that one makes the host language’s
constructs part of the DSL, or it may be termed as deep, meaning that a separate inter-
nal representation is made of the DSL (an abstract syntax), which is then interpreted or
compiled as in the case of an external DSL. A shallow embedding has disadvantages,
for example not being easily analyzable. In [10] it is argued that the advantage of a
deep embedding is that “We ‘know’ the code of the term, for instance we can print it,
compute its length, etc”, whereas the advantage of a shallow embedding is that “we do
not know the code, but we can run it”. Generally, the arguments for an internal DSL
are: limited implementation effort due to direct executability of DSL constructs, feature
richness through inheriting the host language’s constructs, and tool inheritance, i.e. it
becomes possible to directly use all the tool support available for the host language,
such as IDEs, editors, debuggers, static analyzers, and testing tools. In summary, the
arguments against an internal DSL are: (i) lack of analyzability, i.e. one cannot ana-
lyze internal DSLs without working with the usually complex host language compiler,
which can then have consequences for performance and reporting to users, and (ii) high
complexity of language, i.e. one now has to learn and use the bigger host programming
language, which may exclude non-programmers from using the language, and which
may lead to more errors. Our main observation is, however, that feature richness and
adaptability are both very attractive attributes. To some extent, adaptability “solves” the
problem of what is the right logic for runtime monitoring. An additional argument is
that often one wants to write advanced properties for which a simple logic does not
suffice, including counting and collecting statistics. In a programming language this all
becomes straightforward. The use of SCALA, whose functional features can be consid-
ered as a specification language in its own right, provides further advantage.

In this tutorial, we will introduce the audience to the above issues in the design of
DSLs, both external and internal, in the context of run-time verification. In particular,
we will use our own experience with the development of RULER, as an external DSL,
and TRACECONTRACT, an internal DSL, to show advantages and disadvantages of
these approaches. The tutorial will be presented through a series of examples, it will
show how an internal DSL can be quickly implemented in SCALA (within the tutorial
session), and it will demonstrate why TRACECONTRACT is being used for undertaking
flight rule checking in NASA’s LADEE mission [11, 5].
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