
A Case Study in DSL Development
An Experiment with Python and Scala

Klaus Havelund Michel Ingham David Wagner
Jet Propulsion Laboratory, California Institute of Technology ∗

{klaus.havelund, michel.d.ingham, david.a.wagner}@jpl.nasa.gov

Abstract
This paper describes an experiment performed with devel-
oping a Domain Specific Language (DSL) for monitoring
and control of the launch platform for future Constellation
rockets at NASA’s Kennedy Space Center in Florida, USA.
The Constellation project has been conceived as NASA’s re-
placement of the current aging space shuttle program, with
the extended objective of sending humans back to the moon,
and subsequently to Mars. The DSL effort was specifically
performed for the NASA Constellation Launch Control Sys-
tem (LCS) project. The main experiment was performed us-
ing simulators of the existing space shuttle launch platform,
and included designing and implementing a prototype in the
Python programming language, chosen for its succinct no-
tation. A later study was carried out where part of the DSL
was implemented in Scala, and compared to the Python im-
plementation from a linguistic DSL elegance point of view.

Categories and Subject Descriptors D.2.1 [Software En-
gineering]: Requirements/Specifications; D.3.3 [Program-
ming Languages]: Language Constructs and Features

General Terms languages, measurement, verification

Keywords domain specific languages, system monitoring
and control, Python, Scala

1. Introduction
NASA’s Constellation program [3] has as purpose to re-
place the aging space shuttle fleet with new vehicles. The
program’s success will require significant upgrades to the
ground-based infrastructure needed to assemble, test, and
operate these new vehicles. One such system is the Launch
Control System (LCS) at the Kennedy Space Center (KSC).
In addition to coordinating and controlling the launch se-
quence, this system will be used to test the spacecraft, launch
vehicles, and possibly their component subsystems as they

∗ Scala Days 2010 – April 15-16, Lausanne. Copyright c© 2010 California
Institute of Technology. Government sponsorship acknowledged.

Part of the research described in this publication was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.

are delivered to the Space Center and assembled for launch,
to control various pieces of ground support equipment used
during operations, and to ensure the safety of all of these
operations.

A considerable expense is the extensive process by which
system engineers express requirements for test procedures in
prose, software developers translate these requirements into
code, and then both sets of experts are engaged in verifica-
tion of the resulting application’s correctness. One element
of the study was an investigation of the potential benefits of
using a Domain Specific Language (DSL) that systems engi-
neers would be able to use to write executable specifications
of monitor and control applications (i.e., capture detailed re-
quirements in a form that would either be directly executable
or automatically translatable to software implementation).
Engineers at KSC, in collaboration with personnel from JPL
(including the authors) conducted a study of DSLs for pro-
gramming such systems over a roughly one-year period from
late 2006 to late 2007. Several existing domain specific lan-
guages were studied, as described in [1]. In addition, it was
decided to develop a home-grown experimental DSL.

Two approaches to defining such a DSL were considered.
The stand-alone DSL is a DSL developed from scratch, and
translated into a general purpose programming language, or
interpreted in such a language. The integrated DSL is an
extension of an existing general purpose programming lan-
guage, possibly just as an API. The advantage of a stand-
alone DSL is that its size can be kept small, which is an
important factor when used by systems engineers, who are
normally not programmers. The advantage of an integrated
DSL is that it allows for fully general purpose programming
(by expert programmers) in cases where this is needed. With
a stand-alone DSL one would have to switch from the DSL
to the general purpose language in some, possibly rare, situa-
tions. While a stand-alone DSL will be suited to monitor and
control applications, it will also tend to have more limited
development and/or execution environments and tool sup-
port (syntax highlighting, debugging, etc.). General-purpose
languages offer significant flexibility in terms of implement-
ing required functionality and have impressive portability
and maturity characteristics, but suffer primarily in terms



of readability and verifiability considering the targeted user
base of systems engineers.

Based on these observations it was decided to develop an
integrated DSL, putting emphasis on flexibility, functional-
ity, portability and maturity. An experimental implementa-
tion of a DSL was developed as a library in the dynamically
typed Python scripting/programming language [5]. Python
was selected because it was considered to present the small-
est “semantic gap” and shallowest learning curve to a sys-
tems engineer user, among the general-purpose program-
ming languages considered (Scala was not considered at the
time of the original study in 2006-2007). An additional ex-
perimental implementation of elements of the same DSL
was later developed in the statically typed programming lan-
guage Scala [6], as also described in [2]. Scala was not con-
sidered main stream at the time of the first experiment, and
only came to the attention of the authors thereafter. The lan-
guage, however, appears to have several advantages for DSL
definition. The paper presents the results from this exper-
iment and briefly compares the two efforts. Java and C++
were also considered for implementation of a DSL, but were
both considered less appropriate for this task, mainly due to
the lack of function values, a concept used extensively in the
Python DSL.

2. The Python DSL
The system should in a simplified view support communi-
cation between (i) CONTROL: computers running applica-
tions and human operators interacting with displays, and
(ii) PLATFORM: the shuttle launch platform and equipment
around it, also referred to as end items. The CONTROL
should be able to read telemetry emitted from the PLAT-
FORM, verify its well-formedness, and submit commands
back to the PLATFORM, possibly guided by humans via
communication on console displays in the launch control
room. Middleware and gateways connect the components in
this network. We shall focus attention on the modeling of the
measurement database and a function verify within for
monitoring that some condition becomes true within some
time frame.

2.1 Measurements
From the point of view of a control application, the state
can be seen as a mapping from measurement variable names
(each associated with a sensor in an end item) to measure-
ments. A measurement object is an instance of the following
class, for which only some of the methods are shown:

class Measurement:
def __init__(self, id, value): ...
def getId(self): return self.id
def getValue(self): return self.value
def getTime(self): return self.time
def __lt__(self, other): ...
...

A measurement object contains a name, a value1, and a time
tag. The time tag is automatically inserted in the object upon
creation. The class defines a set of mathematical relational
methods for comparing values ( __lt__ , __eq__ , ), corre-
sponding to the relational operators <, =, etc. The methods
are named in such a way that they overload the built-in re-
lational symbols. For example, given two measurements m1
and m2, they can be compared using traditional syntax: m1
< m2. One has to define all arithmetic operations on mea-
surements this way if one wants to use the standard arith-
metic notation on measurement objects. The measurements
are stored in a mapping from names to Measurements in an
object ms of the class MeasurementService:

class MeasurementService:
def publish(self, name, value): ...
def getByName(self, name): ...
def __getattr__(self,name):
return self.getByName(name)

def __setattr__(self, name, value):
self.publish(name, value)

ms = MeasurementService()

When end items change status at the PLATFORM the new
measurements are stored in the ms object. The function
__getattr__(self,name) is called by the Python inter-
preter on an attribute when the attribute is referred to in ms
but not found in the object. That is, a reference of the form
ms.x results in a call of ms.__getattr__("x") if x is not
defined as a method or field in ms. It is now possible to write
statements like:

if ms.pressure < 300:
doSomething()

Note specifically that it is not possible to refer to pressure
without some additional notation to cause a lookup in the
database for the real value. For this to work it is necessary
that the script writer has access to the ms object, or generally
an object providing a __getattr__ method. An alternative
is to define a reader function as follows:

def read(name):
return ms.getByName(name)

If we define Python variables for the measurement names,
for example:

pressure = "pressure"

we can alternatively write:

if read(pressure) < 300:
doSomething()

1 Values are here for simplicity considered to be integers. In the real system
values can have different types.



It is also possible for scripts to publish measurements to
be shared with other scripts that run in parallel, operating
different parts of the launch platform. This is done by calls
of the function set defined as follows:

def set(name,value):
ms.publish(name,value)

For example, a shared measurement is published as follows:

set("pressure1",80)

The setter counterpart to the __getattr__ method in the
MeasurementService class above is the __setattr__
method. It allows us to achieve the same effect by writing:

ms.pressure1 = 80

The function derive(X,F) defines a new measurement
named X derived from another expression, in Python rep-
resented as a function F. A reference to ms.X will thereafter
return the value of F(). One can for example define a vari-
able "pressure2" to be derived from pressure as follows:

derive("pressure2",lambda: ms.pressure * 1000)

Note the use of a lambda abstraction to delay the evaluation
of the expression ms.pressure * 1000.

2.2 The verify within function
The DSL monitoring functions offer capabilities for testing
the values of named measurements as a function of time. A
monitoring function is characterized along five dimensions:
the condition to check, for example pressure < 300, the
period within or during which the condition should hold,
a reaction to be executed in case the property is violated,
whether checking should continue if the property gets vio-
lated, and finally whether the construct is blocking (in which
case the calling application will wait until the verification
has been performed), or whether the verification is spawned
to the background. In a non-blocking case where a reaction is
to be executed upon violation of the condition, there is a fur-
ther choice between letting this reaction execute in parallel
with the calling application or letting it interrupt the calling
application. All these functionalities were implemented via
one single heavily parameterized function, hidden from the
user, and then called in a collection of functions available to
the user for sending commands as well as verify telemetry.

We shall focus on one function called verify within
which checks that a given condition becomes true within a
certain time period, otherwise a reaction optionally provided
in the call is executed. The command is blocking. If the con-
dition becomes true within its duration, then the function re-
turns immediately without waiting for the duration to expire.
Its definition has the form (body not shown):

def verify_within(condition,duration,
reaction=DIALOG, name=""):
...

The reaction and name are both optional parameters (can be
left out in the call) with default values. DIALOG is constant
(an integer) indicating that a dialog with the user should be
started in case no other reaction is provided. The following
call verifies that the value of pressure becomes bigger than
or equal to 300 within 10 seconds, otherwise a message is
sent to a display:

verify_within(
lambda: ms.pressure >= 300,
10,
lambda: display("pressure error"),
"P1"

)

Note how lambda abstractions are used to delay evaluation
of the condition and the reaction until the verify within
function calls these in its body. This allows for example the
condition to be re-tested repeatedly in the body.

3. The Scala DSL
Scala provides, as described in [4], all the features Python
supports relevant for definition of the DSL, such as higher
order functions and default arguments (introduced in Scala
version 2.8.0). However, in Scala the body of a lambda ab-
straction can contain any number of statements and expres-
sions. This is in contrast to a lambda abstraction in Python,
the body of which can only contain one expression2. In ad-
dition to this, Scala offers some features that further ease
definition of domain specific languages:

• Call-by-name, also referred to as automatic closure con-
struction. This allows to delay the evaluation of state-
ments and expressions without using lambda abstrac-
tions, making the DSL notation more user-friendly.

• Curried functions, allowing arguments to be naturally
separated without having to appear in a comma-separated
argument list.

• Overloaded methods (functions defined in classes or ob-
jects), allowing minor variants of a DSL construct to have
the same name (for major variants one might want to
have different names). Method overloading to some ex-
tent can be used to avoid default arguments, and thereby
a comma-separated list of arguments.

• Infix notation for method calls, permitting definition of
DSL constructs that appear as built-in language con-
structs.

• Implicit conversions: Scala allows for the definition of
so-called implicit functions that convert values of one
type to values of another type. Such functions are applied

2 The body of a lambda abstraction in Python can be a call to a function,
the body of which can contain several statements, but this is not considered
convenient in this context.



automatically in places where it will correct a type prob-
lem.

In the following discussion, it will be demonstrated how
these concepts can be used to define the verify within
construct in three variations. First, however, it will be
demonstrated how measurements can be modeled, allowing
for maximal notational convenience.

3.1 Measurements
Measurements are defined in a class similar to the Python
equivalent3:

class Measurement(id:Symbol, value:Int) {
private val time:Long =
System.currentTimeMillis()

def getId:Symbol = id
def getValue:Int = value
def getTime:Long = time

}

A main difference is that values and methods are now typed.
Measurement ids are represented as symbols in the Sym-
bol data type, which contains quoted identifiers such as
’pressure. Symbols are slightly more convenient to write
than their string counterparts: "pressure". Second, mea-
surements are published in a mapping from symbols to mea-
surements in the measurement service object ms (we only
show the methods):

object ms {
def publish(name:Symbol,value:Int)
{...}

def getByName(name:Symbol):Measurement =
{...}

...
}

Assume a value declaration of the form (a user may decide
to get rid of symbol quotes this way):

val pressure = ’pressure

Without any further definitions, a measurement would be
accessed as follows:

if (ms.getByName(pressure).getValue < 300)
doSomething()

or, if the above is defined as a function named read:

def read(s:Symbol) = {
ms.getByName(s).getValue

}

we can at best write:
3 Scala allows for an even more succinct definition of this class using val

constructor arguments, thereby avoiding getter-functions.

if (read(pressure) < 300)
doSomething()

In order to avoid such still slightly heavy notation, an im-
plicit conversion function can be defined from symbols to
integers:

implicit def conv1(s:Symbol):Int = {
ms.getByName(s).getValue

}

The name of this function is unimportant since it will be ap-
plied by the Scala compiler under the hood to make expres-
sions type check. That is, this function allows us to write:

if (pressure < 300)
doSomething()

Scala will automatically apply the appropriate conversion
function (conv1 in this case) to obtain an integer from
pressure. Hence the condition is equivalent to:

conv1(’pressure) < 300

It is of course a question whether such implicit conversions
are safe to use for programming safety critical systems. It is
possible for a user to create unsafe code due to unexpected
type conversions. As an example, a user could define a func-
tion to convert milliseconds to seconds:

def seconds(milliseconds:Int):Double = {
milliseconds/1000

}

and later apply it as follows:

if (seconds(’pressure) < 80)
goForLaunch()

The wrongly programmed condition would then type check
since ’pressure is a Symbol now occurring where an inte-
ger is expected, causing the conv1 conversion function to be
applied to make it type check, whereas in this case we would
want this condition not to type check.

Derived values can be defined as follows using Scala’s
def construct:

def pressure2 = pressure * 1000

Each time pressure2 is now referenced, the expression
pressure * 100 is evaluated according to the rules already
described, including application of the implicit conversion
function. The corresponding Python notation was:

derive(pressure2,lambda: ms.pressure * 1000)

Implicit conversion from symbols to integers in addition
gives us all the operators on integers to work on measure-
ments, without having to define them as methods in the
Measurement class, as we did in Python.



3.2 The verify within Construct : Solution 1
In the following we shall illustrate three approaches to define
the verify within construct. In Scala, we have to declare
the type of a reaction explicitly. This can be done as follows
using Scalas version of algebraic types, namely case classes:

abstract class Reaction
case object DIALOG
extends Reaction

case class CODE(code:()=>Unit)
extends Reaction

We can now define a function with the following signature:

def verify_within(
cond:()=>Boolean,
time:Int,
reaction:Reaction = DIALOG,
name:String = "") = {
...

}

This definition looks much like its corresponding definition
in Python, except for the added type information. With such
a definition we would be able to write:

verify_within(() => pressure>=300, 10,
DIALOG)

verify_within(() => pressure>=300, 10,
CODE(() => display("pressure error")))

Note the required application of the CODE(...) object con-
structor. If, however, we define an implicit conversion func-
tion:

implicit def conv2(code:()=>Unit):Reaction =
{
new CODE(code)

}

we can now, instead of the previous call of verify within
above, write:

verify_within(() => pressure>=300, 10,
() => display("pressure error"))

This now has the same appearance as the Python code, but
has the advantage of being statically typed.

3.3 The verify within Construct : Solution 2
In the second version, we define a function that is curried
(ignoring the name-argument), and which uses call-by-name
formal parameters for the condition:

def verify_within
(cond:=>Boolean)
(time:Int)
(reaction:Reaction) = { ... }

Currying will make applications of the function more read-
able. The first parameter to the function, the condition,
has the type: ‘=> Boolean’, representing a call-by-name
Boolean parameter type. When applying the function to a
Boolean expression, this expression is not evaluated until it
is referred to inside the body of verify within. For exam-
ple, we can write:

verify_within (pressure>=300) (...) (...)

without the expression pressure>=300 being evaluated at
call time. In addition, we can define an implicit conversion
function from call-by-name statements to reactions:

implicit def conv3(code:=>Unit):Reaction =
{
new CODE(() => code)

}

With these definitions we can now write:

verify_within (pressure>=300) (10) (DIALOG)

and:

verify_within(pressure>=300) (10) {
display("pressure error")

}

In this last call, the implicit conversion function conv3 is
applied to the block: ‘{display("pressure error")}’.
This notation appears more user-friendly than solution 1 and
the Python solution. The solution is also safe in the sense
that should one forget some of the arguments, as in:

verify_within (pressure>=300) (10)

the compiler will emit the error message: “missing argu-
ments for method verify within”. It is only possible to
omit arguments to a curried function if the call appears in a
context where the type of the partial application matches or
if the call is followed by the symbol ‘ ’.

3.4 The verify within Construct : Solution 3
The final solution consists of attempting to give a program-
ming language feel to the syntax. Instead of the above solu-
tion we would want to write:

verify (pressure>=300) within 10 onfail
DIALOG

and:

verify (pressure>=300) within 10 onfail {
display("pressure error")

}

Consider that such a construct were to be defined by a gram-
mar with a non-terminal for each phrase starting with a key-



word4, using 〈N〉 to indicate a non-terminal N and [...] to
indicate optional:

〈Verify〉 ← verify [〈Name〉] 〈Cond〉 〈Within〉
〈Within〉 ← within 〈Int〉 〈OnFail〉
〈OnFail〉 ← onfail 〈Reaction〉

This grammar structure can be emulated in an object-
oriented language, as illustrated by the following Scala ob-
ject, which is intended to define the above grammar and its
semantics:

object Verify {
def verify(cond:=>Boolean):Within =
{
new Within("", cond)

}

def verify(name:String)
(cond:=>Boolean):Within =

{
new Within(name, cond)

}

protected class Within(name:String,
cond:=>Boolean)

{
def within(time:Int):OnFail = {
new OnFail(name, cond, time)

}
}

protected class OnFail(name:String,
cond:=>Boolean,
time:Int)

{
def onfail(reaction:Reaction) {
// implementation of construct

}
}

implicit def conv4(code:=>Unit):Reaction =
{
new CODE(() => code)

}
}

The object defines two overloaded verify functions, corre-
sponding to the optional nature of the property name, one
method not taking a name as argument and one taking a
name. Each of these functions return an object of the nested
class Within. The Within class itself defines a within
method, which when applied to a time value returns an

4 This is not the most succinct formulation of a grammar for this construct,
but serves to illustrate the encoding of the grammar in Scala.

object of the class OnFail. This class finally defines the
onfail method, which at this point has access to all infor-
mation (name, condition, time and reaction), and hence can
execute the semantics of the construct (not shown). The im-
plicit conversion function converts code to reactions. With
this definition we can write:

verify(pressure>=300).within(10).onfail({
display("pressure error")

})

However, Scala allows method calls using infix notation.
That is, given an object o and a method m in o, instead of
writing o.m(a) as in traditional OO languages, it is possible
to write: ‘o m a’ omitting the dot (’.’) and the parentheses
around the argument. We can therefore write:

verify (pressure>=300) within 10 onfail {
display("pressure error")

}

The construct now appears like any other programming con-
struct and from a DSL design point of view looks ideal (ig-
noring opinions on how this particular construct should be
designed, which is not the topic of this paper).

The approach, however, has a couple of minor issues
associated with it, that can make programming unsafe. First,
it is for example possible to write only part of the construct,
as in:

verify (pressure>=300) within 10

leaving out the onfail {...} part. The compiler will not
complain. Furthermore, if no special runtime checking is
performed to detect this (for example by ensuring that all
begun constructs are ended before a new is begun), no warn-
ings will be issued during runtime, either. However, a so-
lution for this problem might be implemented in a future
version of the Scala compiler, as communicated by Scala’s
designer Martin Odersky [4]. An analysis will be provided
for checking whether a function call has side-effects or not.
Odersky suggests in [4] that with such an analysis it is pos-
sible to disallow pure expressions as statements, essentially
disallowing the partially instantiated DSL construct above
(note that all the effect is in the onfail method).

Another problem is due to Scala’s semicolon inference. It
is not possible to write for example:

verify (pressure>=300) within 10
onfail {
display("pressure error")

}

where the onfail DSL keyword has been moved to a line
for itself. The compiler will infer a semicolon after the first
line, and will subsequently not be able to associate the name
onfail with the method defined in the OnFail object which
is the result of the first line. There is no obvious solution to



this problem beyond avoiding such line breaks, or enclosing
the entire statement in between parentheses ( . . . ), in which
case line breaks are allowed. Note, however, that fortunately
it is possible to write:

verify (pressure>=300) within 10 onfail {
display("pressure error")

}

4. Evaluation and Conclusions
We have above seen 3 approaches to defining a DSL con-
struct in Scala. The first approach corresponds to the way a
DSL is defined in Python. The notation is just as succinct as
in Python, and more succinct than it would be in Java due
to Java’s lack of function values. As an added advantage, in
contrast to the Python solution, the Scala solution is stati-
cally typed, which will prevent many programmer mistakes.
The second approach, using overloading, currying and call-
by-name, yields a solution that from a notational point of
view is even more succinct and clear. This solution is still
as safe as the previous solution with respect to the compiler
being able to detect programming errors. On the other hand,
the third approach, which attempts to give more of a textual
programming language feel to the syntax, was demonstrated
unsafe in the current version 2.8.0 of Scala, but might be-
come safe in future versions of Scala.

Common for the Scala solutions is the use of implicit con-
version functions. This concept does introduce a potential
for programming errors due to conversions being automat-
ically performed in locations where it is not intended. This
powerful and useful programming language feature on its
own could deserve further investigation. Are there for exam-
ple ways to make implicit conversions safe, potentially by
restricting their application to certain contexts?

Scala seems to have qualities that make it a good platform
for integrated DSL development (where the DSL is an exten-
sion of a general purpose programming language) compared
to Python, Java and C++. It offers language concepts that
make it possible to construct a DSL optimized for ease of
use. It is statically typed, with a notationally succinct flavor
comparable with a scripting language like Python (amongst
other things due to type and semicolon inference). It is com-
patible with Java, which would make it easy to integrate
with other parts of a system, for example the middleware. It
has a concurrency model more appropriate for the DSL than
Python’s, which only allows one thread to execute at any
point in time, preventing utilization of multi-core machines.
Of things that could be desired from Scala based on this ex-
perience: (i) Ability to check completion of DSL constructs
as mentioned above (can be solved, as suggested by Martin
Odersky [4], with a compiler check for statements without
side-effects and where the return value is not used). (ii) Per-
mission to omit parentheses in function applications: it is a
slight annoyance that one has to for example put parenthe-
ses around the time value in solution 2 above. (iii) Alterna-

tive handling of parameterless functions: if a DSL construct
ends with a method that takes no arguments (modeling a ter-
minating keyword), and the () is left out in the call to make
it look like a keyword, the compiler will look at the next line
and regard this as a superfluous argument in case that line
is non-empty (and give an error message). (iv) Domain spe-
cific declarations: it would be interesting if it was possible
to allow domain specific declarations in addition to domain
specific statements and expressions, although this was not
needed for this application experiment.

References
[1] Development of a Prototype Domain-Specific Language for

Monitor and Control Systems. M. Bennett, R. Borgen, K.
Havelund, M. Ingham and David Wagner. IEEE Aerospace
Conference, Big Sky, Montana, March 1-8, 2008.

[2] Prototyping a Domain-Specific Language for Monitor and
Control Systems. M. Bennett, R. Borgen, K. Havelund, M.
Ingham and David Wagner. Journal of Aerospace Computing,
Information, and Communication, 2010. To appear. Extended
version of [1].

[3] Constellation Program: www.nasa.gov/exploration.

[4] Personal communication with Martin Odersky, Jan 5, 2010.

[5] Python: python.org.

[6] Scala: www.scala-lang.org.


