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Abstract. We describe how the PVS theorem prover has been used to
verify a safety property of a widely studied garbage collection algorithm.
The safety property asserts that “nothing but garbage is ever collected”.
The garbage collection algorithm and its composition with the user pro-
gram can be regarded as a concurrent system with two processes working
on a shared memory. Such concurrent systems can be encoded in PVS as
state transition systems using a model similar to TLA [16]. The safety
criterion is formulated as a refinement and proved using refinement map-
pings. Russinoff [19] originally verified the algorithm in the Boyer-Moore
prover, but his proof was not based on refinement. Furthermore, the
safety property formulation required a glass box view of the algorithm.
Using refinement, however, the safety criterion makes sense independent
of the garbage collection algorithm. As a by-product, we encode a ver-
sion of the theory of refinement mappings in PVS. The paper reflects
substantial work that was done over two decades ago, but which is still
relevant.

1 Introduction

Russinoff [19] used the Boyer-Moore theorem prover to verify a safety property of
a mark–and–sweep garbage collection algorithm originally suggested by Ben-Ari
[3]. The garbage collector and its composition with a user program is regarded
as a concurrent system with both processes working on a common shared mem-
ory. The collector uses a colouring (marking) technique to iteratively colour all
accessible nodes black while leaving garbage nodes white. When the colouring
has stabilized, all the white nodes can be collected and placed in the free list.

An initial version of the algorithm was first proposed by Dijkstra, Lamport,
Martin, Scholten, and Steffens [6] as an exercise in organizing and verifying the
cooperation of concurrent processes. Their solution involved three colours. Ben-
Ari improved this algorithm so as to use only two colours while simplifying the
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resulting proof. All of these proofs were informal pencil and paper exercises.
As pointed out by Russinoff [19], these informal proofs ran into difficulties of
one sort or another. Dijkstra, et al [6] explained (as an example of a “logical
trap”) how they originally proposed a minor modification to the algorithm. This
claim turned out to be wrong, and was discovered by the authors just before
the proof reached publication. Ben-Ari later proposed the same modification
to his algorithm and argued for its correctness without discovering its flaw.
Counterexamples were later given by Pixley [18] and van de Snepscheut [20].
Furthermore, although Ben-Ari’s algorithm is correct, his proof of the safety
property was found to be flawed. This flaw was essentially reproduced by Pixley
[18] where it again survived the review process, and was only discovered ten years
later by Russinoff during the course of his mechanical verification [19]. Ben-Ari
also gave a flawed proof of a liveness property (every garbage node will eventually
be collected) that was later observed and corrected by van de Snepscheut [20].

Russinoff’s correctness property is formulated as a state predicate P , which
is then proven to be an invariant, i.e., true in all reachable states. In gross terms,
this invariant predicate is formulated as follows. The garbage collector can at
any time be in one of 9 different locations. In one of the locations, here called
Append, the append operation representing garbage collection is applied to a
certain memory node X, but only when this node is white. The safety predicate
P is then formulated as: “if the control of the garbage collector is at location
Append and X is white then X is garbage”. However, this formulation of the
safety property does not really tell us whether the program is correct. We have
to additionally ensure that the append operation is only invoked in location
Append, and only on white nodes. Hence, the safety property of the garbage
collector follows from both the invariance of P and an operational understanding
of the garbage collection algorithm.

This observation motivated us to carry out a proof in the PVS3 theorem
prover [1] using a refinement approach, presented in this paper, where the safety
property itself is formulated as an abstract algorithm, and the proof is based
on refinement mappings as suggested by Lamport [16]. This approach has the
advantage that the safety property can be formulated more abstractly without
considering the internal structure of the final implementation. Here a black box
view of the algorithm is sufficient. This yields a further contribution in terms
of the formalization of refinement mappings in PVS. In order better to make
a comparison, we also carried out a proof in PVS using the same technique
as in [19]. This work was documented in [11]. In [12] we verified a distributed
communication protocol using similar techniques for representing state transition
systems. Our key conclusion is that techniques for strengthening invariants are
of major importance also in refinement proofs, and that refinement does not
remove this burden. The proof presented here was carried out over two decades
ago, but was only published as a (substantial) technical report [13]. Since we
still consider the work relevant, and even cited, we decided to finally publish
this work.
3 PVS stands for Prototype Verification System.
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The paper is organized as follows. Section 2 outlines additional related work.
In Section 3, a formalization of state transition systems and refinement mappings
is provided in an informal mathematical style that is later formalized in PVS.
The garbage collection algorithm is described in Section 4. Sections 5 and 6
present the successive refinements of the initial algorithm in three stages. This
presentation is based on an informal notation for transition systems. Section 7
lists some observations on the entire verification exercise. Appendices A and B
formalize the concepts introduced in Sections 3, 5 and 6 in PVS.

2 Additional Related Work

Our proof was performed in 1996. In the same year, Gonthier [10] verified a de-
tailed implementation of a realistic concurrent garbage collector [7] using TLP,
a prover for the Temporal Logic of Actions. Gonthier’s proof demonstrates that
the implementation preserves a complex safety invariant with about 22,000 lines
of proof. Since 1996, there have been a number of verification efforts aimed at
the verification of garbage collectors. Jackson [15] used an embedding of tem-
poral logic in PVS to verify both safety and liveness properties for an abstract
mutator/allocator/collector model of the tricolor algorithm of Dijkstra, et al.
This abstract model is then refined to a lower-level heap-based implementation.
Burdy [4] formalized our refinement argument in both B and Coq for the purpose
of comparing the two formal systems. In Burdy’s formalization, the abstract mu-
tator already colors the target of a pointer assignment. Gammie, Hosking, and
Engelhardt [9] describe the Isabelle/HOL formalization and verification of the
tricolor concurrent garbage collector (similar to the one verified by Gonthier) for
an x86-TSO memory model in a multi-mutator setting as an invariance proof.
Many of the proofs build the cooperative marking by the mutator into the spec-
ification. When this marking by the mutator alternatively is viewed as a refine-
ment, as in our proof, it is important to demonstrate that the refinement has not
restricted the mutator so that it does not generate any garbage. It can do this,
for example, by never redirecting a pointer so as to leave a node orphaned. Such
a mutator would satisfy the refinement with an idle garbage collector. A correct
refinement must preserve the nondeterminism of the mutator and therefore must
simultaneously witness a simulation relation on the collector and a bisimulation
relation on the mutator.

Several efforts cover non-concurrent garbage collectors. McCreight, Shao, Lin,
and Li [17] use Coq to verify the safety of the implementation of several stop-
the-world and incremental garbage collectors in an assembly language. Coupet-
Grimal and Nouvet [5] embed temporal logic in Coq to verify an incremental
garbage collection algorithm. Hawblitzel and Petrank [14] verify stop-the-world
garbage collectors using Boogie exploiting the quantifier instantiation capability
of the Z3 SMT solver. Ericsson, Myreen, and Pohjola [8] describe the verification
of the CakeML generational garbage collector in HOL4.
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3 Transition Systems and Refinement Mappings

In this section, we establish the formal theory for using an abstract non-
deterministic program as a safety specification so that any behaviour is safe
as long as it is generated by the abstract program. An implementation is then
defined as a refinement of this program. The basic concepts are those of tran-
sition systems, traces, invariants, observed transition systems, refinements, and
refinement mappings. The theory presented is a minor modification of the the-
ory developed by Abadi and Lamport [2]. We first introduce the basic concept
of a transition system. Specifications as well as their refinements are written as
transition systems.

Definition 1 (Transition System). A transition system is a triple (Σ, I,N),
where

– Σ is a state space
– I ⊆ Σ is the set of initial states.
– N ⊆ Σ × Σ is the next-state relation. Elements of N are denoted by pairs

of the form (s, t), meaning that there is a transition from the state s to the
state t.

An execution trace is an infinite sequence of states, where the first state sat-
isfies the initiality predicate and every pair of adjacent states is related by
the next-state relation. A sequence σ is just an infinite enumeration of states
〈s0, s1, s2, . . .〉. We let σi denote the i’th element si of the sequence. The traces
of a transition system can be defined as follows.

Definition 2 (Traces). The traces of a transition system are defined as follows:

Θ(Σ, I,N) = {σ ∈ Σω | σ0 ∈ I ∧ ∀i ≥ 0 ·N(σi, σi+1)}

We shall need the notion of a transition system invariant, which is a state pred-
icate true in all states reachable from an initial state by following the next-state
relation.

Definition 3 (Invariant). Given a transition system S = (Σ, I,N), then a
predicate P : Σ → B is an S invariant iff.

∀σ ∈ Θ(S) · ∀i ≥ 0 · P (σi)

Since we want to compare transition systems, and decide whether one transition
system refines another, we need a notion of observability. For that purpose, we
extend transition systems with an observation function, which when applied to
a state returns an observation in some domain.

4



Definition 4 (Observed Transition System). An observed transition system
is a five-tuple (Σ,Σo, I,N, π) where

– (Σ, I,N) is a transition system
– Σo is a state space, the observed one
– π : Σ → Σo is an observation function that extracts the observed part of a

state.

Typically (at least in our case) a state s ∈ Σ consists of an observable part sobs ∈
Σo and an internal part sint, hence s = (sobs, sint) and π is just the projection
function: π(sobs, sint) = sobs. We adopt the convention that a projection function
π applied to a trace 〈s1, s2, . . .〉 results in the projected trace 〈π(s1), π(s2), . . .〉.

The central concept in all this is the notion of refinement: that one observed
transition system S2 refines another observed transition system S1. By this we
intuitively mean that every observation we can make on S2, we can also make
on S1. Hence, if S1 behaves safely so will S2 since every projected trace of S2 is
a projected trace of S1. This is formulated in the following definition.

Definition 5 (Refinement). An observed transition system
S2 = (Σ2, Σo, I2, N2, π2) refines an observed transition system S1 =
(Σ1, Σo, I1, N1, π1) iff for every trace of S2 there exists a trace of S1 with the
same observed states (note that they have the same observed state space Σo):

∀σ2 ∈ Θ(S2) · ∃σ1 ∈ Θ(S1) · π1(σ1) = π2(σ2)

We have thus established what it means for one observed transition system to
refine another, but we still need a practical way of showing refinement. Note that
refinement is defined in terms of traces which are infinite objects so that reason-
ing about them directly is impractical. We need a way of reasoning about states
and pairs of states. A refinement mapping is a suitable tool for this purpose.
A refinement mapping from a lower level transition system S2 to a higher-level
one S1 is a mapping from the state space Σ2 to the state space Σ1, that when
applied statewise, maps traces of S2 to traces of S1. This is formally stated as
follows.

Definition 6 (Refinement Mapping). A refinement mapping from an ob-
served transition system S2 = (Σ2, Σo, I2, N2, π2) to an observed transition sys-
tem S1 = (Σ1, Σo, I1, N1, π1) is a mapping f : Σ2 → Σ1 such that there exists
an S2 invariant P (representing reachable states in S2), where:

1. ∀s ∈ Σ2 · π1(f(s)) = π2(s)
2. ∀s ∈ Σ2 · I2(s)⇒ I1(f(s))
3. ∀s, t ∈ Σ2 · P (s) ∧ P (t) ∧N2(s, t)⇒ N1(f(s), f(t))
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Property 1 says that the observation of a state in S2 is the same as that of its
image in S1 obtained by applying the refinement mapping. Property 2 says that
an initial state in S2 is mapped to an initial state in S1. Property 3 says that
if two reachable states (satisfying the invariant P ) in S2 are connected via S2’s
next-state relation, then their images in S1 are correspondingly connected via
S1’s next-state relation.

We can now state the main theorem (which is stated in [2], and which we
have proved in PVS for our slightly modified version):

Theorem 1 (Existence of Refinement Mappings). If there exists a refine-
ment mapping from an observed transition system S2 to an observed transition
system S1, then S2 refines S1.

We shall show how we demonstrate the existence of refinement mappings
in PVS, by providing a witness, that is: defining a particular one. Defining the
refinement mapping turns out typically to be easy, whereas showing that it is
indeed a refinement mapping (the properties in Definition 6) is where the major
effort goes. Especially finding and proving the invariant P is the bulk of the
proof.

We differ from Abadi and Lamport [2] in two ways. First, we allow general
observation functions, and not just projection functions that are the identity map
on a subset of the state space. Second, in Definition 6 of refinement mappings,
we assume that states s and t satisfy an implementation invariant P , which is
not the case in [2]. We have thus weakened the premises of the refinement rule.
Whereas the introduction of observation functions is just a nice (but not strictly
necessary) generalization, the use of invariants is of real importance for practical
proofs.

4 The Algorithm

In this section we informally describe the garbage collection algorithm. As illus-
trated in Figure 1, the system consists of two processes, the mutator and the
collector, working on a shared memory.

4.1 The Memory

The memory is a fixed size array of nodes. In Figure 1 there are 5 nodes (rows)
numbered 0–4. Associated with each node is an array of uniform length of cells.
Figure 1 shows 4 cells numbered 0 – 3 per node. A cell is identified by a pair of
integers (n,i) where n is a node number and where i is called the index. Each cell
contains a pointer to a node, called the son. In the case of a LISP implementation,
there are, for example, two cells per node. In Figure 1, we assume that all empty
cells contain the NIL value 0, and hence point to node 0. In addition, node 0
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Fig. 1. The mutator, collector and shared memory

points to node 3 (because cell (0,0) does so), which in turn points to nodes 1
and 4. Hence the memory can be thought of as a two-dimensional array, the size
of which is determined by the positive integer constants NODES and SONS. Each
node has an associated colour, black or white, that is used by the collector in
identifying garbage nodes.

A pre-determined number of nodes, defined by the positive integer constant
ROOTS, are designated as the roots, and these are kept in the initial part of the
array (they may be thought of as static program variables). In Figure 1, there
are two such roots shown separated from the rest with a dotted line. A node
is accessible if it can be reached from a root by following pointers, and a node
is garbage if it is not accessible. Nodes 0, 1, 3, and 4 in Figure 1 are therefore
accessible, and node 2 is garbage.

There are only three operations by which the memory structure can be modified:

– Redirect a pointer towards an accessible node.
– Change the colour of a node.
– Append a garbage node to the free list.

In the initial state, all pointers are assumed to be 0, and nothing is assumed
about the colours.

4.2 The Mutator

The mutator corresponds to the user program and performs the main compu-
tation. From an abstract point of view, it continuously changes pointers in the
memory; the changes being arbitrary except for the fact that a cell can only be
set to point to an already accessible node. In changing a pointer the “previously
pointed-to” node may become garbage, if it is not accessible from the roots in
some alternative way. In Figure 1, any cell can hence be modified by the mutator
to point to a node other than 2. Only accessible cells can be modified, but as
shown below, the algorithm can in fact be proved safe without this restriction.
The algorithm is as follows:
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1. Select a node n, an index i, and an accessible node k, and assign k to cell
(n,i).

2. Colour node k black. Return to step 1.

Each of the two steps is regarded as an atomic instruction.

4.3 The Collector

The collector collects garbage nodes and puts them into a free list, from which
the mutator may then remove them as they are needed during dynamic storage
allocation. Associated with each node is a colour field, that is used by the col-
lector during its identification of garbage nodes. Basically, it colours accessible
nodes black, and at a certain point it collects all white nodes, which are then
garbage, and puts them into the free list. Figure 1 illustrates the situation at
such a point: only node 2 is white since it is the only garbage node. The collector
algorithm is as follows:

1. Colour each root black.
2. Examine each pointer in succession. If the source is black and the target is

white, colour the target black.
3. Count the black nodes. If the result exceeds the previous count (or if there

was no previous count), return to step 2.
4. Examine each node in succession. If a node is white, append it to the free

list; if it is black, colour it white. Then return to step 1.

Steps 1–3 constitute the marking phase where all accessible nodes are black-
ened. Each of these steps involves an iteration involving a smaller step that is
executed atomically. For example, step 3 consists of several atomic instructions,
each counting (or not) a single node.

5 The Specification

We now present the initial specification of the garbage collector. It is presented
as a transition system using an informal notation. In Appendix A it is described
how we encode transition systems in PVS.

We shall assume a data structure representing the memory. The number of
nodes in the memory is defined by the constant NODES. The type Node defines
the numbers from 0 to NODES− 1. The constant SONS defines the number of cells
per node. The type Index defines the numbers from 0 to SONS − 1. Hence, the
memory can be thought of a two-dimensional array, and can be declared as in
Fig 24.

4 The actual PVS specification shown on page 23 is more abstract and does not specify
the memory as being implemented as an array. We use an array implementation here
for clarity of presentation.
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var M : array[Node,Index] of Node;

Fig. 2. Specification state

The memory will be the observed part of the state (Σo – see Definition 6)
throughout all refinements. For example, the node colouring structure and other
auxiliary variables that we later add will be internal. Recall that an initial seg-
ment of the nodes are roots, the number being defined by the constant ROOTS.
A number of functions (e.g., for reading the state) and procedures (e.g., for
modifying the state) are assumed, see Fig 3.

function accessible(n:Node):bool;

function son(n:Node,i:Index):Node;

procedure set_son(n:Node,i:Index,k:Node);

procedure append_to_free(n:Node);

Fig. 3. Functions and procedures used in the specification

The function accessible returns true if its argument node is accessible from
one of the roots by following pointers. The function son returns the contents of
cell (n,i). The procedure set son assigns k to the cell identified by (n,i). Hence
after the procedure has been called, this cell now points to k. The procedure
append to free appends its argument node to the list of free nodes, assuming
that it is a garbage node. The specification consists of the parallel composition
of the mutator and the collector. The mutator is shown in Fig. 4.

MODIFY :

[1] choose n,k:Node; i:Index where accessible(k) ->

set_son(n,i,k);

goto MODIFY

end

Fig. 4. Specification of mutator

A program at any time during its execution is in one of a finite collection
of locations that are identified by program labels. The above mutator has one
such location named MODIFY. Associated with each location is a set of numbered
([1], [2], . . . ) rules, typically of the form p -> s, where p is a pre-condition
on the state and s is an assignment statement. When the program execution
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is at this location, all rules where the condition p is true in the current state
are enabled, and a non-deterministic choice is made between them, resulting
in the next state being obtained by applying the s statement of the chosen
rule to the current state. The “choose x:T where p(x) -> s end” construct
represents a set of such rules, one for each choice of x within its type T. Hence,
the mutator repeatedly chooses two arbitrary nodes n,k:Node and an arbitrary
index i:Index such that k is accessible. The cell (n,i) is then set to point to
k. The collector is shown in Fig 5.

COLLECT :

[1] choose n:Node where not accessible(n) ->

append_to_free(n);

goto COLLECT

end

Fig. 5. Specification of collector

It repeatedly chooses an arbitrary inaccessible node which is then appended
to the free list of nodes. Since the node is not accessible it is a garbage node, hence
only garbage nodes are collected (appended), and this is the proper specification
of the garbage collector. This yields an abstract specification of the behavior of
the collector that is not yet a reasonable implementation. We need to somehow
implement the selection of an inaccessible node.

6 The Refinement Steps

In this section we outline how the refinement is carried out in three steps, result-
ing in the garbage collection algorithm described informally in Section 4. Each
refinement is given an individual subsection, which again is divided into a pro-
gram subsection presenting the new program, and a proof subsection outlining
the refinement proof. According to Theorem 1 a refinement can be proved by
identifying a refinement mapping from the concrete state space to the abstract
state space, see Definition 6. Hence, each proof section will consist of a defini-
tion of such a mapping together with a proof that it is a refinement mapping,
focusing on the simulation relation required in item (3) of Definition 6. The PVS
encoding of the programs is described in Appendix A, while the PVS encoding
of the refinement proofs is described in Appendix B.

6.1 First Refinement : Introducing Colours

6.1.1 The Program In the first step, the collector is refined to base its search
for garbage nodes on a colouring technique. The type Colour is defined as bool,
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the set of Booleans, assumed to represent the colours black (true) and white
(false). The global state must be extended with a colouring of each node in the
memory (not each cell), and a couple of extra auxiliary variables Q and L used
for other purposes. The extended state is shown in Fig. 6.

var

M : array[Node,Index] of Node;

C : array[Node] of Colour;

Q : Node;

L : nat;

Fig. 6. First refinement state

Three extra operations on this new data structure are needed, shown in Fig. 7.

procedure set_colour(n:Node,c:Colour);

function colour(n:Node):Colour;

function blackened():bool;

Fig. 7. Additional functions and procedures used in first refinement

The procedure set colour colours a node either white or black by updating
the variable C. The function colour returns the colour of a node. Finally, the
function blackened returns true if all accessible nodes are black. The mutator
is now refined into the program which was informally described in Section 4, see
Fig. 8.

MUTATE :

[1] choose n,k:Nodes; i:Index where accessible(k) ->

set_son(n,i,k);

Q := k;

goto COLOUR;

end

COLOUR :

[1] true -> set_colour(Q,true); goto MUTATE;

Fig. 8. Refinement of mutator

There are two locations, MUTATE and COLOUR. In the MUTATE location, in ad-
dition to the mutation, the target node k is assigned to the global auxiliary
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variable Q. Then in the COLOUR location, Q is coloured black. Note that the muta-
tor will not be further refined, it will now stay unchanged during the remaining
refinements of the collector. The collector is defined in Fig 9.

COLOUR :

[1] choose n:Nodes ->

set_colour(n,true);

goto COLOUR;

end;

[2] blackened() -> L := 0; goto TEST_L;

TEST_L :

[1] L = NODES -> goto COLOUR;

[2] L < NODES -> goto APPEND;

APPEND :

[1] not colour(L) -> append_to_free(L); L := L + 1; goto TEST_L;

[2] colour(L) -> set_colour(L,false); L := L + 1; goto TEST_L;

Fig. 9. First refinement of collector

It consists of two phases. While in the COLOUR location, nodes are coloured
arbitrarily until all accessible nodes are black (blackened()). The style in which
colouring is expressed may seem surprising, but it is a way of defining a post
condition: colour at least all accessible nodes.5 In the second phase at locations
TEST L and APPEND, all white nodes are regarded as garbage nodes, and are hence
collected (appended to the free list). The auxiliary variable L is used to control
the loop: it runs through all the nodes. After appending all garbage nodes to the
free list, the colouring phase is restarted.

6.1.2 The Refinement Proof The refinement mapping, call it abs, from the
concrete state space to the abstract state space maps M to M. Note that such
a mapping only needs to be defined for each component of the abstract state,
showing how it is generated from components in the concrete state. Hence, the
concrete variables C, Q and L are not used for this purpose. This is generally
the case for the refinement mappings to follow: they are the identity on the
variables occurring in the abstract state. Also program locations have to be
mapped. In fact, each program (mutator, collector) can be regarded as having
a program counter variable, and we have to show how the abstract program
counter is obtained (mapped) from the concrete. Whenever the concrete program
is in a particular location l, then the abstract program will be in the location

5 By formulating this colouring as an iteration, we can avoid introducing a history
variable at a lower refinement level. Note that any node can be coloured, not only
accessible nodes. This allows a later refinement to colour nodes that originally were
accessible, but later have become garbage.
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abs(l). In the current case, the concrete mutator locations MUTATE and COLOUR are
both mapped to MODIFY, while the concrete collector locations COLOUR, TEST L

and APPEND all are mapped to COLLECT. This completes the definition of the
refinement mapping.

In order to prove Property (3) in Definition 6, we associate each transition
in the concrete program with a transition in the abstract program, and prove
that: “if the concrete transition brings a state s1 to a state s2, then the abstract
transition brings the state abs(s1) to the state abs(s2)”. We say that the con-
crete transition, say tc, simulates the abstract transition, say ta, and write this
as tc � ta. Putting all these sub-proofs together will yield a proof of (3). Some
of the concrete transitions just simulate a stuttering step (no state change) in
the abstract system. This will typically be some of the new transitions associ-
ated with new location names added to the concrete program. Other concrete
transitions have exact counterparts in the abstract program. These are typically
transitions associated with same location names as in the abstract program. In
the following, we will only mention cases that deviate from the above two; i.e.,
where we add new location names, and where the corresponding new transitions
do not simulate a stuttering step in the abstract program.

Hence in our case, MUTATE.1 � MODIFY.1, and APPEND.1 � COLLECT.1

(APPEND.2 simulates stuttering). In the proof of APPEND.1 � COLLECT.1, an
invariant is needed about the concrete program:

collector@APPEND ∧ accessible(L) =⇒ colour(L)

It says that whenever the concrete collector is at the APPEND location, and
node L is accessible, then L is also black. From this we can conclude that the
append to free operation is only applied to garbage nodes, since it is only ap-
plied to white nodes. Hence, we need to prove an invariant about the concrete
program in order to prove the refinement. In general, the proof of these invariants
is what really makes the refinement proof non-trivial. To prove the above invari-
ant, we do in fact need to prove a stronger invariant, namely that in locations
TEST L and APPEND: ∀n ≥ L · accessible(n) =⇒ colour(n). This invariant
strengthening is typical in our proofs.

6.2 Second Refinement : Colouring by Propagation

6.2.1 The Program In this step, accessible nodes are coloured through a
propagation strategy, where first all roots are coloured, and next all white nodes
which have a black father are coloured. The state is extended with an extra
auxiliary variable K used for controlling the iteration through the roots. The
extended state is shown in Fig 10. Two additional functions are needed, shown
in Fig. 11.

The function bw returns true if n is black and son(n,i) is white. The function
exists bw returns true if there exists a black node, say n, that via one of its
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var

M : array[Node,Index] of Node;

C : array[Node] of Colour;

Q : Node;

K, L : nat;

Fig. 10. Second refinement state

function bw(n:Node,i:Index):bool;

function exists_bw():bool;

Fig. 11. Additional functions used in second refinement

COLOUR_ROOTS :

[1] K = ROOTS -> goto PROPAGATE;

[2] K < ROOTS -> set_colour(K,true); K := K+1; goto COLOUR_ROOTS;

PROPAGATE :

[1] choose n:Node; i:Index where bw(n,i) ->

set_colour(son(n,i),true);

goto PROPAGATE;

end;

[2] not exists_bw() -> L := 0; goto TEST_L;

TEST_L :

[1] L = NODES -> K := 0; goto COLOUR_ROOTS;

[2] L < NODES -> goto APPEND;

APPEND :

[1] not colour(L) -> append_to_free(L); L := L + 1; goto TEST_L;

[2] colour(L) -> set_colour(L,false); L := L + 1; goto TEST_L;

Fig. 12. Second refinement of collector

cells, say i, points to a white node. That is: bw(n,i). The collector becomes as
shown in Fig. 12.

The COLOUR location from the previous level has been replaced by the two
locations COLOUR ROOTS and PROPAGATE (while the append phase is mostly un-
changed). In the COLOUR ROOTS location all roots are coloured black, the loop
being controlled by the variable K. In the PROPAGATE location, either there exists
no black node with a white son (i.e. not exists bw()), in which case we start
collecting (going to location TEST L), or such a node exists, in which case its son
is coloured black, and we continue colouring.

6.2.2 The Refinement Proof The refinement mapping, besides being the
identity on identically named entities (variables as well as locations), maps the
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collector locations COLOUR ROOTS and PROPAGATE to COLOUR. Hence concrete root
colouring as well as concrete propagation are just particular kinds of abstract
colourings.

Concerning the transitions, COLOUR ROOTS.2 � COLOUR.1, PROPAGATE.1 �
COLOUR.1, and PROPAGATE.2 � COLOUR.2. In the proof of PROPAGATE.2 �
COLOUR.2, an invariant is needed about the concrete program:

collector@PROPAGATE =⇒ ∀r : Root · colour(r)

It states that in location PROPAGATE all roots must be coloured. This fact com-
bined with the propagation termination condition not exists bw(): “there does
not exist a pointer from a black node to a white node”, will imply the propagation
termination condition in COLOUR.2 of the abstract specification: blackened(),
which says that “all accessible nodes are coloured”.

6.3 Third Refinement : Propagation by Scans

6.3.1 The Program In the last refinement, the propagation, represented by
the location PROPAGATE above, is refined into an algorithm, where all nodes are
repeatedly scanned in sequential order, and if black, their sons coloured; until a
whole scan does not result in a colouring. The state is extended with auxiliary
variables BC (black count) and OBC (old black count), used for counting black
nodes; and the variables H, I, and J for controlling loops, see Fig. 13.

var

M : array[Node,Index] of Node;

C : array[Node] of Colour;

Q : Node;

H, I, J, K, BC, OBC : nat;

Fig. 13. Third refinement state

The collector is described in Fig 14, where transitions have been divided into
4 steps corresponding to the informal description of the algorithm on page
8. Two loops interact (steps 2 and 3). In the first loop, TEST I, TEST COLOUR

and COLOUR SONS, all nodes are scanned, and every black node has all its sons
coloured. The variables I and J are used to “walk” through the cells. In the sec-
ond loop, TEST H, COUNT and COMPARE, it is counted how many nodes are black.
This amount is stored in the variable BC, and if this amount exceeds the old
black count, stored in the variable OBC, then yet another scan is started, and
OBC is updated. The variable H is used to control this loop.
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- Step 1 : Colour roots

COLOUR_ROOTS :

[1] K = ROOTS -> I := 0; goto TEST_I;

[2] K < ROOTS -> set_colour(K,true); K := K + 1; goto COLOUR_ROOTS;

- Step 2 : Propagate once

TEST_I :

[1] I = NODES -> BC := 0; H := 0; goto TEST_H;

[2] I < NODES -> goto TEST_COLOUR;

TEST_COLOUR :

[1] not colour(I) -> I := I + 1; goto TEST_I;

[2] colour(I) -> J := 0; goto COLOUR_SONS;

COLOUR_SONS :

[1] J = SONS -> I := I + 1; goto TEST_I;

[2] J < SONS -> set_colour(son(I,J),true); J := J + 1;

goto COLOUR_SONS;

- Step 3 : Count black nodes

TEST_H :

[1] H = NODES -> goto COMPARE;

[2] H < NODES -> goto COUNT;

COUNT :

[1] not colour(H) -> H := H + 1; goto TEST_H;

[2] colour(H) -> BC := BC + 1; H := H + 1; goto TEST_H;

COMPARE :

[1] BC = OBC -> L := 0; goto TEST_L;

[2] BC /= OBC -> OBC := BC; I := 0; goto TEST_I;

- Step 4 : Append garbage nodes

TEST_L :

[1] L = NODES -> BC := 0; OBC := 0; K := 0; goto TEST_I;

[2] L < NODES -> goto APPEND;

APPEND :

[1] not colour(L) -> append_to_free(L); L := L + 1; goto TEST_L;

[2] colour(L) -> set_colour(L,false); L := L + 1; goto TEST_L;

Fig. 14. Third and final refinement of collector

6.3.2 The Refinement Proof The refinement mapping is the identity, ex-
cept for six of the locations of the collector. That is, the collector locations
TEST I, TEST COLOUR, COLOUR SONS, TEST H, COUNT, and COMPARE are all mapped
to PROPAGATE. Concerning the transitions, COLOUR SONS.2 � PROPAGATE.1

whereas COMPARE.1 � PROPAGATE.2. In the proof of COLOUR SONS.2 �
PROPAGATE.1, the following invariant is needed:

collector@COLOUR SONS =⇒ colour(I)

This property implies that the abstract PROPAGATE.1 transition pre-condition
bw(I,J) will be true (in case the son is white) or otherwise (if the son is also
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black), the concrete transition corresponds to a stuttering step (colouring an
already black son is the identity function). Correspondingly, in the proof of
COMPARE.1 � PROPAGATE.2, the following invariant is needed:

collector@COMPARE ∧ BC = OBC =⇒ ¬ exists bw()

It states that when the collector is in location COMPARE, after a counting scan
where the number of black nodes have been counted and stored in BC, if the
number counted equals the previous (old) count OBC then there does not exist a
pointer from a black node to a white node. Note that BC = OBC is the propagation
termination condition, and this then corresponds to the termination condition
not exists bw() of the abstract transition PROPAGATE.2. The proof of these
two invariants is quite elaborate, and does in fact compare in size and “look” to
the complete proofs in [11] as well as in [19].

7 Observations

It is possible to compare the present proof (PVSref -proof) with two other mech-
anized proofs of exactly the same algorithm: the proof in the Boyer-Moore prover
[19], from now on referred to as the BMinv-proof; and the PVS proof [11], re-
ferred to as the PVSinv-proof. Instead of being based on refinement, these two
proofs are based on a statement of the correctness criteria as an invariant to be
proven about the implementation (the third refinement step). The PVSinv-proof
follows the BMinv-proof closely. Basically the same invariants were needed. The
PVSref -proof has the advantage over the two other proofs, that the correctness
criteria can be appreciated without knowing the internal structure of the im-
plementation. That is, we do not need to know for example that the append
operation is only applied in location Append to node X, and only if X is white.
Hence, from this perspective, the refinement proof represents an improvement.
The PVSref -proof has approximately the same size as the PVSinv-proof, in that
basically the same invariants and lemmas about auxiliary functions need to be
proven (19 invariant lemmas and 57 function lemmas). The proof effort took a
couple of months. Hence, one cannot argue that the proof has become any sim-
pler. On the contrary in fact: since we have many levels, there is more to prove.
Some invariants were easier to discover when using refinement, especially at the
top levels. In particular nested loops may be treated nicely with refinement, only
introducing one loop at a time. In general, loops in the algorithm to be verified
are the reason why invariant discovery is hard, and of course nested loops are
no better. The main lesson obtained from the PVSinv-proof is the importance
of invariant discovery in safety proofs. Our experience with the PVSref -proof is
that refinement does not relieve us of the need to search for invariants. We had to
come up with exactly the same invariants in both cases, but the discovery process
was different, and perhaps more structured in the refinement proof. Automated
or semi-automated discovery of invariants remains a challenging research topic.
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A Formalization in PVS

This appendix describes how in general transition systems and refinement map-
pings are encoded in PVS, and in particular how the garbage collector refinement
is encoded.

A.1 Transition Systems and their Refinement

Recall from section 3 that an observed transition system is a five-tuple of the
form: (Σ,Σo, I,N, π) (Definition 4). In PVS we model this as a theory with two
type definitions, and three function definitions.

ots : THEORY

BEGIN

State : TYPE = ...

O_State : TYPE = ...

proj : [State -> O_State] = ...

init : [State -> bool] = ...

next : [State,State -> bool] = ...

END ots

The correspondence with the five-tuple is as follows: Σ = State, Σo =
O State, π = proj, I = init and N = next. The init function is a predi-
cate on states, while the next function is a predicate on pairs of states. We shall
formulate the specification of the garbage collector as well as all its refinements
in this way. It will become clear below how in particular the function next is de-
fined. Now we can define what is a trace (Definition 2) and what is an invariant
(Definition 3). This is done in the theory Traces.

Traces[State:TYPE] : THEORY

BEGIN

init : VAR pred[State]

next : VAR pred[[State,State]]

sq : VAR sequence[State]

n : VAR nat

p : VAR pred[State]

trace(init,next)(sq):bool =

init(sq(0)) AND FORALL n: next(sq(n),sq(n+1))

invariant(init,next)(p):bool =

FORALL (tr:(trace(init,next))): FORALL n: p(tr(n))

END Traces
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The theory is parameterized with the State type of the observed transition
system. The VAR declarations are just associations of types to names, such that
in later definitions, axioms, and lemmas, these names are assumed to have the
corresponding types. In addition, axioms and lemmas are assumed to be univer-
sally quantified with these names over the types. Note that pred[T] in PVS is
short for the function space [T -> bool]. The type sequence[T] is short for
[nat -> T]; that is: the set of functions from natural numbers to T. A sequence
of States is hence an infinite enumeration of states. Given a transition system
with initiality predicate init and next-state relation next, a sequence sq is a
trace of this transition system if trace(init,next)(sq) holds. A predicate p is
an invariant if invariant(init,next)(p) holds. That is: if for any trace tr, p
holds in all positions n of that trace. Note how the predicate trace(init,next)

(it is a predicate on sequences) is turned into a type in PVS by surrounding it
with parentheses – the type containing all the elements for which the predicate
holds, namely all the program traces.

The next notion we introduce in PVS is that of a refinement between two
observed transition systems (Definition 5). The theory Refine Predicate below
defines the function refines, which is a predicate on a pair of observed transition
systems: a low level implementation system as the first parameter, and a high
level specification system as as the second parameter.

Refine_Predicate[O_State:TYPE, S_State:TYPE, I_State:TYPE] : THEORY

BEGIN

IMPORTING Traces

s_init : VAR pred[S_State]

s_next : VAR pred[[S_State,S_State]]

s_proj : VAR [S_State -> O_State]

i_init : VAR pred[I_State]

i_next : VAR pred[[I_State,I_State]]

i_proj : VAR [I_State -> O_State]

refines(i_init,i_next,i_proj)(s_init,s_next,s_proj):bool =

FORALL (i_tr:(trace(i_init,i_next))):

EXISTS (s_tr:(trace(s_init,s_next))):

map(i_proj,i_tr) = map(s_proj,s_tr)

END Refine_Predicate

The theory is parameterized with the state space S State of the high level
specification theory, the state space I State of the low level implementation
theory, and the observed state space O State, which we remember is common
for the two observed transition systems. Refinement is defined as follows: for
all traces i tr of the implementation system, there exists a trace s tr of the
specification system, such that when mapping the respective projection functions
to the traces, they become equal. The function map has the type map : [[D->R]

-> [sequence[D] -> sequence[R]]] and simply applies a function to all the
elements of a sequence. Finally, we introduce in the theory Refinement the no-
tion of a refinement mapping (Definition 6) and its use for proving refinement
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(Theorem 1). The theory is parameterized with a specification observed transi-
tion system (prefixes S), an implementation observed transition system (prefixes
I), an abstraction function abs, and an invariant I inv over the implementation
system.

Refinement[

O_State : TYPE,

S_State : TYPE,

S_init : pred[S_State],

S_next : pred[[S_State,S_State]],

S_proj : [S_State -> O_State],

I_State : TYPE,

I_init : pred[I_State],

I_next : pred[[I_State,I_State]],

I_proj : [I_State -> O_State],

abs : [I_State -> S_State],

I_inv : [I_State -> bool]] : THEORY

BEGIN

ASSUMING

IMPORTING Traces

s : VAR I_State

r1,r2 : VAR (I_inv)

proj_id : ASSUMPTION FORALL s: S_proj(abs(s)) = I_proj(s)

init_h : ASSUMPTION FORALL s: I_init(s) IMPLIES S_init(abs(s))

next_h : ASSUMPTION I_next(r1,r2) IMPLIES S_next(abs(r1),abs(r2))

invar : ASSUMPTION invariant(I_init,I_next)(I_inv)

ENDASSUMING

IMPORTING Refine_Predicate[O_State,S_State,I_State]

ref : THEOREM refines(I_init,I_next,I_proj)(S_init,S_next,S_proj)

END Refinement

The theory contains a number of assumptions on the parameters and a the-
orem, which has been proven using the assumptions. Hence, the way to use this
parameterized theory is to apply it to arguments that satisfy the assumptions,
prove these, and then obtain as a consequence, the theorem which states that the
implementation refines the specification (corresponding to Theorem 1). This the-
orem has been proved once and for all. The assumptions are as stated in Defini-
tion 6. We shall further need to assume transitivity of the refinement relation, and
this is formulated (and proved) in the theory Refine Predicate Transitive.
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Refine_Predicate_Transitive[

O_State:TYPE, State1:TYPE, State2:TYPE, State3:TYPE] : THEORY

BEGIN

IMPORTING Refine_Predicate

init1 : VAR pred[State1]

next1 : VAR pred[[State1,State1]]

proj1 : VAR [State1 -> O_State]

init2 : VAR pred[State2]

next2 : VAR pred[[State2,State2]]

proj2 : VAR [State2 -> O_State]

init3 : VAR pred[State3]

next3 : VAR pred[[State3,State3]]

proj3 : VAR [State3 -> O_State]

transitive : LEMMA

refines[O_State,State2,State3]

(init3,next3,proj3)(init2,next2,proj2) AND

refines[O_State,State1,State2]

(init2,next2,proj2)(init1,next1,proj1)

IMPLIES

refines[O_State,State1,State3]

(init3,next3,proj3)(init1,next1,proj1)

END Refine_Predicate_Transitive

A.2 The Specification

In this section we outline how the initial specification from section 5 of the
garbage collector is modeled in PVS. We start with the specification of the
memory structure, and then continue with the two processes that work on this
shared structure.

A.2.1 The Memory The memory type is introduced in the theory Memory,
parameterized with the memory boundaries. That is, NODES, SONS, and ROOTS de-
fine respectively the number of nodes (rows), the number of sons (columns/cells)
per node, and the number of nodes that are roots. They must all be positive nat-
ural numbers (different from 0). There is also an obvious assumption that ROOTS
is not bigger than NODES. These three memory boundaries are parameters to all
our theories. The Memory type is defined as an abstract (non-empty) type upon
which a constant and collection of functions are defined. First, however, types of
nodes, indexes and roots are defined. The constant null array represents the
initial memory containing 0 in all memory cells (axiom mem ax1). The function
son returns the pointer contained in a particular cell. That is, the expression
son(n,i)(m) returns the pointer contained in the cell identified by node n and
index i. Finally, the function set son assigns a pointer to a cell. That is, the
expression set son(n,i,k)(m) returns the memory m updated in cell (n,i) to

22



contain (a pointer to node) k. In order to define what is an accessible node, we
introduce the function points to, which defines what it means for one node, n1,
to point to another, n2, in the memory m.

Memory[NODES:posnat, SONS:posnat, ROOTS:posnat] : THEORY

BEGIN

ASSUMING roots_within : ASSUMPTION ROOTS <= NODES ENDASSUMING

Memory : TYPE+

Node : TYPE = {n : nat | n < NODES}
Index : TYPE = {i : nat | i < SONS}
Root : TYPE = {r : nat | r < ROOTS}
m : VAR Memory

n,n1,n2,k : VAR Node

i,i1,i2 : VAR Index

null_array : Memory

son : [Node,Index -> [Memory -> Node]]

set_son : [Node,Index,Node -> [Memory -> Memory]]

mem_ax1 : AXIOM son(n,i)(null_array) = 0

mem_ax2 : AXIOM son(n1,i1)(set_son(n2,i2,k)(m)) =

IF n1=n2 AND i1=i2 THEN k ELSE son(n1,i1)(m) ENDIF

points_to(n1,n2)(m):bool = EXISTS (i:Index): son(n1,i)(m)=n2

accessible(n)(m): INDUCTIVE bool =

n < ROOTS OR

EXISTS k: accessible(k)(m) AND points_to(k,n)(m)

append_to_free : [Node -> [Memory -> Memory]]

append_ax: AXIOM (NOT accessible(k)(m)) IMPLIES

(accessible(n)(append_to_free(k)(m))

IFF (n = k OR accessible(n)(m)))

END Memory

The function accessible is then defined inductively, yielding the least pred-
icate on nodes n (true on the smallest set of nodes) where either n is a root, or n
is pointed to from an already reachable node k. Finally we define the operation
for appending a garbage node to the list of free nodes, that can be allocated by
the mutator. This operation is defined abstractly, assuming as little as possible
about its behaviour. Note that, since the free list is supposed to be part of the
memory, we could easily have defined this operation in terms of the functions
son and set son, but this would have required that we took some design deci-
sions as to how the list was represented (for example where the head of the list
should be and whether new elements should be added first or last). The axiom
append ax defining the append operation says that in appending a garbage node,
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only that node becomes accessible, and the accessibility of all other nodes stays
unchanged.

A.2.2 The Mutator and the Collector The complete PVS formalization
of the top level specification presented in section 5 is given below.

Garbage_Collector[NODES:posnat, SONS:posnat, ROOTS:posnat] : THEORY

BEGIN

ASSUMING roots_within : ASSUMPTION ROOTS <= NODES ENDASSUMING

IMPORTING Memory[NODES,SONS,ROOTS]

State : TYPE = Memory

O_State : TYPE = Memory

s,s1,s2 : VAR State

n,k : VAR Node

i : VAR Index

proj(s):O_State = s

init(s):bool = (s = null_array)

Rule_mutate(n,i,k)(s):State =

IF accessible(k)(s) THEN set_son(n,i,k)(s) ELSE s ENDIF

Rule_append(n)(s):State =

IF NOT accessible(n)(s) THEN append_to_free(n)(s) ELSE s ENDIF

next(s1,s2):bool =

(EXISTS n,i,k: s2 = Rule_mutate(n,i,k)(s1)) OR

(EXISTS n: s2 = Rule_append(n)(s1)) OR

s2 = s1

END Garbage_Collector

The state is simply the memory, and so is the observable state. Hence, there
are no hidden variables, and the projection function proj is the identity. The
next-state relation next is defined as a disjunction between three disjuncts, each
representing a possible single transition of the total system. The first two dis-
juncts represent a move of the mutator and the collector, respectively, each move
defined through a function. The third possibility just represents stuttering: the
fact that a process does not change the state (needed for technical reasons).

Since each process (mutator, collector) only has one location we do not model
these locations explicitly. The function Rule mutate represents a move by the
mutator, which is non-deterministic in the choice of the nodes n,k and index i.
The function, when applied to an old state, yields a new state, where (if k is
accessible) a pointer has been changed. Non-deterministic choices are modeled
via existential quantifications. Each transition function is defined in terms of
an IF-THEN-ELSE expression, where the condition represents the guard of the
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transition (the situation where the transition may meaningfully be applied), and
where the ELSE part returns the unchanged state, in case the guard is false6. The
function Rule append represents a move by the collector. In each step, either the
mutator makes a move, or the collector does. This corresponds to an interleaving
semantics of concurrency. Note how the repeated execution is guaranteed by our
interpretation of what is a trace in terms of the next-state relation.

A.3 The First Refinement

In this section we outline how the first refinement from Section 6.1 of the garbage
collector is modeled in PVS. In order to keep the presentation reasonably sized,
we only illustrate this first refinement. The remaining refinements follow the
same pattern. First, we describe a collection of colouring functions. The theory
Coloured Memory below introduces the primitives needed for colouring memory
nodes. The type Colour represents the colours black (true) and white (false). The
type Colours contains possible colourings of the memory, each being a mapping
from nodes to their colours. The functions colour, set colour and blackened

are formalizations of those presented in Figure 7.

Coloured_Memory[NODES:posnat, SONS:posnat, ROOTS:posnat] : THEORY

BEGIN

ASSUMING roots_within : ASSUMPTION ROOTS <= NODES ENDASSUMING

IMPORTING Memory[NODES,SONS,ROOTS]

Colour : TYPE = bool

Colours : TYPE = [Node -> Colour]

n : VAR Node

i : VAR Index

c : VAR Colour

cs : VAR Colours

m : VAR Memory

colour(n)(cs):Colour = cs(n)

set_colour(n,c)(cs):Colours = cs WITH [n := c]

blackened(cs,m):bool = FORALL n: accessible(n)(m) IMPLIES colour(n)(cs)

END Coloured_Memory

We now show how the first refinement is formulated in PVS. The entire
theory called Garbage Collector1 is presented below.

6 This allows for stuttering where rules are applied without changing the state.
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Garbage_Collector1[NODES:posnat, SONS:posnat, ROOTS:posnat] : THEORY

BEGIN ASSUMING roots_within : ASSUMPTION ROOTS <= NODES ENDASSUMING

IMPORTING Coloured_Memory[NODES,SONS,ROOTS]

MuPC : TYPE = {MUTATE,COLOUR} CoPC : TYPE = {COLOUR,TEST_L,APPEND}
State : TYPE = [# MU:MuPC,CHI:CoPC,Q:nat,L:nat,C:Colours,M:Memory #]

O_State : TYPE = Memory

s,s1,s2 : VAR State n,k : VAR Node i : VAR Index

proj(s):O_State = M(s)

init(s):bool = MU(s) = MUTATE & CHI(s) = COLOUR & M(s) = null_array

Rule_mutate(n,i,k)(s):State =

IF MU(s) = MUTATE AND accessible(k)(M(s)) THEN

s WITH [M := set_son(n,i,k)(M(s)), Q := k, MU := COLOUR]

ELSE s ENDIF

Rule_colour_target(s):State =

IF MU(s) = COLOUR AND Q(s) < NODES THEN

s WITH [C := set_colour(Q(s),TRUE)(C(s)), MU := MUTATE]

ELSE s ENDIF

MUTATOR(s1,s2):bool =

(EXISTS n,i,k: s2 = Rule_mutate(n,i,k)(s1)) OR

s2 = Rule_colour_target(s1)

Rule_stop_colouring(s):State =

IF CHI(s) = COLOUR AND blackened(C(s),M(s)) THEN

s WITH [L := 0, CHI := TEST_L] ELSE s ENDIF

Rule_colour(n)(s):State =

IF CHI(s) = COLOUR THEN

s WITH [C := set_colour(n,TRUE)(C(s))] ELSE s ENDIF

Rule_stop_appending(s):State =

IF CHI(s) = TEST_L AND L(s) = NODES THEN

s WITH [CHI := COLOUR] ELSE s ENDIF

Rule_continue_appending(s):State =

IF CHI(s) = TEST_L AND L(s) < NODES THEN

s WITH [CHI := APPEND] ELSE s ENDIF

Rule_black_to_white(s):State =

IF CHI(s) = APPEND AND L(s) < NODES AND colour(L(s))(C(s)) THEN

s WITH [C:=set_colour(L(s),FALSE)(C(s)),L:=L(s)+1,CHI:=TEST_L]

ELSE s ENDIF

Rule_append_white(s):State =

IF CHI(s) = APPEND AND L(s) < NODES AND NOT colour(L(s))(C(s)) THEN

s WITH [M := append_to_free(L(s))(M(s)),L:=L(s)+1,CHI:=TEST_L]

ELSE s ENDIF

COLLECTOR(s1,s2):bool =

s2 = Rule_stop_colouring(s1) OR (EXISTS n:s2 = Rule_colour(n)(s1))

OR s2 = Rule_stop_appending(s1) OR s2 = Rule_continue_appending(s1)

OR s2 = Rule_black_to_white(s1) OR s2 = Rule_append_white(s1)

next(s1,s2):bool = MUTATOR(s1,s2) OR COLLECTOR(s1,s2) OR s2 = s1

END Garbage_Collector1
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First of all, the state type is a record type with a field for each program vari-
able. In addition to the ordinary program variables, there is a program counter
“variable” for each process: MU for the mutator, and CHI for the collector. Each
program counter ranges over a type that contains the possible labels. The ob-
served state is still just the memory, hence ignoring, for example, the colouring
C. We see that the mutator next-state relation MUTATOR is now defined as a
disjunction between a mutate transition and a colour transition. The collector
next-state relation COLLECTOR is defined as the disjunction between six possible
transitions.

B The Proof in PVS

The proof of a single refinement lemma (step) is divided into three activities:
discovery and proof of function lemmas; discovery and proof of invariant lemmas;
and proof of the refinement lemma. A function lemma states a property of one or
more auxiliary functions involved, which in our case are for example properties
about the functions accessible and blackened. An invariant is a predicate on
states, and an invariant lemma states that an invariant holds in every reachable
state of the concrete implementation (Garbage Collector1 in our case). Recall
that we needed such an invariant when applying the Refinement theory (page
21). The function lemmas are used in proofs of invariant lemmas, which again
are used in proofs of refinement lemmas.

We shall show these lemmas for the first refinement, using a bottom-up pre-
sentation for pedagogical reasons, starting with function lemmas, and ending
with the refinement lemma. In, reality, however, the proof was “discovered” top
down: the refinement lemma was stated (by applying the Refinement theory
to proper arguments), and during the proof of the corresponding ASSUMPTIONs,
the need for invariant lemmas were discovered, and during their proofs, function
lemmas were discovered.

B.1 Function Lemmas

During the proof, we need a new set of auxiliary functions to “observe” (or
calculate) certain values based on the current state of the memory. These ob-
server functions occur in invariants. In the first refinement step, we shall need
the function blackened defined in the theory Memory Observers below.

This function is similar to the function which is part of the first refinement,
page 25, except that it has an additional natural number argument. The function
returns true if all nodes above (and including) that argument are black if ac-
cessible. The theory contains other functions, but these are first needed in later
refinements and will not be discussed here. The lemmas about auxiliary functions
that we need for the first refinement are given in the theory Memory Properties

below.
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Memory_Observers[NODES:posnat, SONS:posnat, ROOTS:posnat] : THEORY

BEGIN

ASSUMING

roots_within : ASSUMPTION ROOTS <= NODES

ENDASSUMING

IMPORTING Coloured_Memory[NODES,SONS,ROOTS]

cs : VAR Colours

m : VAR Memory

n : VAR Node

N : VAR nat

blackened(N)(cs,m):bool =

FORALL (n | N <= n): accessible(n)(m) IMPLIES colour(n)(cs)

...

END Memory_Observers

Memory_Properties[NODES:posnat, SONS:posnat, ROOTS:posnat] : THEORY

BEGIN

ASSUMING roots_within : ASSUMPTION ROOTS <= NODES ENDASSUMING

IMPORTING Memory_Observers[NODES,SONS,ROOTS]

cs : VAR Colours c : VAR Colour m : VAR Memory n,n1,n2,k : VAR Node

i,i1,i2,j : VAR Index N,N1,N2 : VAR nat

accessible1 : LEMMA

accessible(k)(m) AND accessible(n1)(set_son(n,i,k)(m))

IMPLIES accessible(n1)(m)

blackened1 : LEMMA

blackened(n)(cs,m) AND accessible(n)(m) IMPLIES colour(n)(cs)

blackened2 : LEMMA

accessible(k)(m) AND blackened(N)(cs,m)

IMPLIES blackened(N)(cs,set_son(n,i,k)(m))

blackened3 : LEMMA

blackened(N)(cs,m) IMPLIES blackened(N)(set_colour(n,TRUE)(cs),m)

blackened4 : LEMMA

blackened(n)(cs,m) IMPLIES blackened(n+1)(set_colour(n,FALSE)(cs),m)

blackened5 : LEMMA

NOT accessible(n)(m) AND blackened(n)(cs,m)

IMPLIES blackened(n+1)(cs,append_to_free(n)(m))

blackened6 : LEMMA

blackened(cs,m) IMPLIES blackened(0)(cs,m)

END Memory_Properties
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The theory in its entirety contains other lemmas, needed for later refinements,
which we shall however not present here. The lemma accessible1 is a key
lemma, and it says that the set son operator cannot turn garbage nodes into
accessible nodes.

B.2 Invariant Lemmas

We can now state the invariant needed for the first refinement step. This is
given in the theory Garbage Collector1 Inv. The invariant really needed for
the refinement proof is inv1, corresponding to the invariant on page 13; but
during the proof of that, invariant inv2 is needed.

Garbage_Collector1_Inv[NODES:posnat, SONS:posnat, ROOTS:posnat] : THEORY

BEGIN

ASSUMING

roots_within : ASSUMPTION ROOTS <= NODES

ENDASSUMING

IMPORTING Memory_Properties[NODES,SONS,ROOTS]

IMPORTING Garbage_Collector1[NODES,SONS,ROOTS]

IMPORTING Invariant_Predicates[State]

s : VAR State

inv1(s):bool =

CHI(s)=APPEND AND L(s) < NODES AND accessible(L(s))(M(s))

IMPLIES colour(L(s))(C(s))

inv2(s):bool =

CHI(s)=TEST_L OR CHI(s)=APPEND IMPLIES blackened(L(s))(C(s),M(s))

I : pred[State] = inv1 & inv2

inv : LEMMA invariant(init,next)(I)

END Garbage_Collector1_Inv

Invariant inv1 is in fact the safety property originally formulated for the
garbage collector in [19]. Its proof requires a generalization, which is inv2. This
shows an example, where we have to strengthen an invariant (inv1) to a stronger
invariant (inv2), which is then proven instead.

B.3 The Refinement Lemma

The first refinement step is formulated as an application of the Refinement

theory which we defined on page 21. This is done in the theory Refinement1

shown below.
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Refinement1[NODES:posnat, SONS:posnat, ROOTS:posnat] : THEORY

BEGIN

ASSUMING

roots_within : ASSUMPTION ROOTS <= NODES

ENDASSUMING

S : THEORY = Garbage_Collector [NODES,SONS,ROOTS]

I1 : THEORY = Garbage_Collector1[NODES,SONS,ROOTS]

IMPORTING Garbage_Collector1_Inv[NODES,SONS,ROOTS]

s : VAR I1.State

r1,r2 : VAR (I)

n,k : VAR Node

i : VAR Index

cs : VAR Colours

abs(s):S.State = M(s)

...

R1 : THEORY =

Refinement[S.O_State,

S.State,S.init,S.next,S.proj,

I1.State,I1.init,I1.next,I1.proj,

abs,I]

END Refinement1

The theory imports the specification garbage collector Garbage Collector,
giving it the name S; the implementation Garbage Collector1, named I1; and
the implementation invariant I defined in the theory Garbage Collector1 Inv.
The theory further defines the abstraction function abs, and finally applies the
Refinement theory. This application gives rise to four TCCs (Type Checking
Conditions) generated by PVS, which have to be proven in order for the PVS
specification to be well formed (type check). Furthermore, the proof of these
TCCs yields the correctness of the refinement. The TCCs are shown below:

R1_TCC1: OBLIGATION FORALL s: S.proj(abs(s)) = I1.proj(s);

R1_TCC2: OBLIGATION FORALL s: I1.init(s) IMPLIES S.init(abs(s));

R1_TCC3: OBLIGATION (FORALL (r1: (I), r2: (I)):

I1.next(r1, r2) IMPLIES S.next(abs(r1), abs(r2)));

R1_TCC4: OBLIGATION invariant(I1.init, I1.next)(I);

There is a TCC for each ASSUMPTION of the Refinement theory. In particular
R1 TCC3 states the simulation property, and R1 TCC4 states the invariant prop-
erty. As illustrated in section 6.1.2 page 13, we show for each concrete transition
which abstract transition it simulates, for example we had that APPEND.1 �
COLLECT.1, which in this PVS setting is formulated as the following lemma.
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sim_append_white : LEMMA

r2 = Rule_append_white(r1) IMPLIES

(EXISTS n: abs(r2) = Rule_append(n)(abs(r1))) OR abs(r2) = abs(r1)

The technique illustrated above for the first refinement step is repeated for
the next two, yielding two further theories Refinement2 and Refinement3. All
3 refinements can now be composed, and the bottom level implementation can
be shown to refine the top level specification using transitivity of the refinement
relation. This is expressed in the theory Composed Refinement below, where the
theorem ref is our main correctness criteria.

Composed_Refinement[NODES:posnat, SONS:posnat, ROOTS:posnat] : THEORY

BEGIN

ASSUMING

roots_within : ASSUMPTION ROOTS <= NODES

ENDASSUMING

IMPORTING Refinement1[NODES,SONS,ROOTS]

IMPORTING Refinement2[NODES,SONS,ROOTS]

IMPORTING Refinement3[NODES,SONS,ROOTS]

IMPORTING Refine_Predicate

IMPORTING Refine_Predicate_Transitive

ref2 : LEMMA

refines[S.O_State,S.State,I2.State]

(I2.init,I2.next,I2.proj)(S.init,S.next,S.proj)

ref : THEOREM

refines[S.O_State,S.State,I3.State]

(I3.init,I3.next,I3.proj)(S.init,S.next,S.proj)

END Composed_Refinement

31


