
Towards a Systems Programming Language
Designed for Hierarchical State Machines

Brian McClelland1, Daniel Tellier1, Meyer Millman1, Kate Beatrix Go1, Alice Balayan1, Michael J Munje1,
Kyle Dewey1, Nhut Ho1, Klaus Havelund2, and Michel Ingham2

1California State University, Northridge, Northridge, CA, 91330
2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

Abstract—In flight applications, Hierarchical State Machines
(HSMs) are often used for writing simulation and control soft-
ware, including that of the Curiosity rover. At the Jet Propulsion
Laboratory (JPL), multiple domain-specific languages have been
developed specifically for writing HSM-based software, and these
have been used in practice. However, we observe that the existing
languages developed have significant issues with one or more
of usability, performance, and safety, making them problematic
for HSM-based development. To address these concerns, we are
taking lessons learned from these languages and developing a
new programming language named Proteus. Proteus builds HSM
support directly into the language, and permits complex HSMs
to be defined which communicate with each other. Proteus is
designed with a look and feel similar to C/C++, making it usable
and approachable for JPL software engineers. Proteus itself
compiles to C++, allowing it to fit easily into existing development
toolchains, making it amenable to embedded real-time systems.
To ensure that Proteus will be of use to its target audience,
it is being iteratively developed through a series of prototypes
which are regularly evaluated by key JPL stakeholders, ensuring
Proteus always stays on track. While Proteus is still very young in
its development, we demonstrate its basic viability on an example
utilizing multiple independent HSMs communicating with each
other, and a relevant execution trace. In the future, we plan to
apply Proteus to larger HSMs taken from real flight applications,
and many additional relevant features are planned.

I. INTRODUCTION

Hierarchical State Machines (HSMs) [1] are commonly used
to design, implement, and reason about complex software
systems to be deployed in flight, including the Curiosity
rover’s control software [2]. In particular, HSMs are used
for the simulation of software models to be implemented, as
well as the actual implementation of flight software, including
control systems. While HSMs are a popular development
model, in order to practically scale to large systems, there is a
need for special tooling and programming language support.
In this paper, we introduce Proteus: a programming language
under design in collaboration with the Jet Propulsion Lab
(JPL) for HSM-based software development.

While there are multiple preexisting HSM-based language
design efforts, we observe that these all have significant weak-
nesses. For example, a typical development approach involves
the use of graphical modeling tools to draw HSMs and then
automatically generate code from their internal representation.
While visualization is recognized as essential, this approach
often results in opaque code which bears little resemblance to

the visualization, making the output code difficult to inspect
and reason about. Closer to Proteus’ design, other approaches
have involved the use of purpose-built textual Domain-Specific
Languages (DSLs) [3]. At least two textual HSM DSLs have
already been developed at JPL, including one embedded within
the Scala general purpose programming language [4], and
another wherein programmers mix fragments of DSL and
C code (strictly used internally at JPL). However, we argue
that neither of these DSLs are appropriate for their purpose.
Notably, the Scala-based DSL is only suitable for simulations,
as Scala’s reliance on garbage collection precludes it from the
real-time embedded software commonly seen in flight applica-
tions. While the C-based DSL is suitable for both simulations
and flight software implementation, it offers essentially no
safety guarantees, adding unnecessary risk to the development
of mission-critical software. Overall, we argue that existing
HSM-based languages are inappropriate for the domains they
target. In contrast, with Proteus, we are developing a language
which is suitable for both simulation and onboard embedded
implementation, without safety compromises.

Like existing HSM-based DSLs, Proteus offers built-in
support for representing state machines, states, external events,
and state transitions. Proteus also has integrated actor [5]
support, allowing for the definition of large systems composed
of multiple asynchronously-communicating HSMs. However,
unlike existing HSM-based DSLs, Proteus is designed from the
ground-up with both safety and performance in mind. Unlike
C/C++, Proteus programs are memory-safe by construction,
and are devoid of undefined behavior. As a result, many com-
mon program bugs endemic of C/C++ are unrepresentable in
Proteus. This safety is granted by Proteus’ fundamental design,
without expensive runtime features (e.g., garbage collection)
which would preclude real-time embedded environments.

Key to Proteus’ design is that it is intended to look and
behave similarly to C/C++, and it even compiles to C++. Much
existing development at JPL is already performed in C/C++,
so going for C++’s look and feel helps ensure adoptability. By
compiling to C++, Proteus is amenable to real-time systems,
and it can integrate with existing C++ development toolchains.
However, unlike with hand-written C++, Proteus code is
guaranteed memory safe, and has a plethora of HSM-related
features not easily representable directly in C++.

The design and development of a novel programming lan-

guage is a massive undertaking, especially one with such
an atypical feature set. While individual features may be
understood in isolation, the combination of features can result
in unexpected emergent behavior. On the one hand, Proteus
is very experimental, and acts as a proving ground for new
ideas. On the other hand, we need to have high confidence that
Proteus is intuitive, or else it is unlikely to be used. A very
real concern is that Proteus will deviate from user expectations.
Complicating matters, user expectations may be vague or even
intangible; users may not know what they want (or do not
want) until they see it in front of them.

To ensure language development is moving in a positive
direction, we plan to gather a series of moderately-sized HSM
implementations which were previously developed at JPL.
Proteus is being developed as a series of prototypes, and we
will re-implement these HSMs in Proteus for each Proteus pro-
totype. If this re-implementation proves difficult (e.g., cannot
be easily expressed, tedious to write, hard to reason about), we
will iterate on Proteus’ design to simplify re-implementation.
Once this re-implementation process is satisfactory, we can
show the Proteus prototype to key stakeholders at JPL and
solicit feedback from them. By showing potential users a
prototype, this should enable specific, actionable feedback.

Overall, the contributions of this paper are as follows:
1) A discussion of Proteus’ core features which enable

HSM-based development (Section III)
2) A discussion of the iterative process through which we

are designing Proteus (Section IV)
3) The application of Proteus to executing multiple small

HSMs, demonstrating basic viability (Section V)

II. BACKGROUND AND RELATED WORK

This section covers background information necessary to
understand Proteus’ features, starting with actors. We also
cover related work, particularly in HSM-based languages.

A. Actors

The actor model enables parallel programming by splitting
computation into different independent components called
actors [5]. Each actor executes its own code sequentially, but
multiple actors can execute in parallel with respect to each
other. In addition to maintaining its own executable code,
each actor also maintains internal state upon which this code
acts. Internal state is only accessible within the same actor;
actors cannot directly manipulate each other’s state. Actors
can communicate only by sending messages to each other.
Messages can be arbitrarily specific and contain arbitrary data.
In practice, actors generally wait for an incoming message, do
some computation to respond to the message (possibly sending
further messages to other actors), and then repeat indefinitely.

While actors are an independent concept from HSMs, we
argue that a built-in parallelism concept like actors is practi-
cally necessary in an HSM-based language. For example, the
HSM-based Curiosity rover control software has about 150
parallel threads [2], and each is viewable as a separate actor.

B. HSM Background

HSMs have been used for over 30 years [1], and are
common in flight applications [2]. HSMs are a variation of
finite state machines, wherein states and whole state machines
can be nested within other states. Any variables introduced in
a parent state are accessible to child states, and child states
similarly inherit behavior from parent states (e.g., state transi-
tions), avoiding needless repetition and improving modularity.

HSMs transition between states in response to input events.
From the standpoint of the actor model, events are indistin-
guishable from messages, and Proteus exclusively uses the
word “event” to refer to messages. With this in mind, when a
Proteus actor receives an event, it can trigger a state transition,
along with the execution of user-defined code.

HSMs are more restrictive than arbitrary code, but they
provide abstractions which are easier for both humans and
machines to reason about, including automated reasoning
techniques like model checking [6] and theorem proving [7].
In practice, JPL makes heavy use of HSMs in flight software.

C. Related Work

We are aware of two DSLs which were designed for
HSM-based development, herein called ScalaHSM [4] and
TextHSM. Both were developed internally at JPL. ScalaHSM
is an internal DSL embedded into the Scala programming lan-
guage, and is thus technically a Scala library. While ScalaHSM
is useful for simulations, it suffers from two major issues. For
one, since Scala is a garbage-collected language, ScalaHSM is
not appropriate for the implementation of real-time code; the
garbage collector can impart sizable delays at possibly critical
moments. Additionally, since ScalaHSM is a Scala library,
its users must be familiar with Scala. This is unfortunately
not the case for most JPL software engineers, who usually
have a C/C++ background. Scala is significantly different from
C/C++, making it a difficult and time-consuming task for a
typical engineer to pick up and use ScalaHSM. ScalaHSM is
therefore not very approachable for its target audience.

In contrast to ScalaHSM, TextHSM is built as an external
DSL, meaning that its syntax is separate from any other
programming language. TextHSM has seen ongoing use at
JPL. Like traditional programming languages, TextHSM is
compiled to another language, specifically C. The use of C
makes it appropriate for real-time tasks, not just simulations.
Like Proteus, TextHSM provides HSM-specific features to the
user. However, TextHSM is merely a thin wrapper on top of C.
TextHSM effectively has “holes” wherein users directly write
C code, and TextHSM itself simply copies the contents of these
holes into the final product. There is no checking that this C
code is correct, or even syntactically valid. For this reason, we
consider TextHSM to be inherently unsafe and thus risky for
any mission-critical development.

Hobbs et al. [8] proposes a holistic solution for the de-
sign, implementation, and verification of collision avoidance
systems. While more specialized than Proteus, this use of a
holistic system to replace multiple ad-hoc processes is in the
same spirit as Proteus’ approach to flight software.

III. PROTEUS CORE FEATURES: A USER’S PERSPECTIVE

This section discusses the core features of Proteus from a
user’s standpoint, with special emphasis on features enabling
HSM-based development. We introduce these features via
example HSMs implemented in Proteus.

A. Examples

Our examples are based on a simplified scenario involving
separate, but related, power and camera controls for a space
vehicle. The corresponding HSMs are shown in Figure 1.
The Power HSM operates with two events POWER_ON
and POWER_OFF, which are assumed to come from ground
control or some other external source. When a POWER_ON
event is received by the Power HSM, Power transitions to
the PowerOn state and subsequently sends a CAMERA_ON
event to the Camera HSM. Similarly, if Power receives a
POWER_OFF event, it will transition back to the PowerOff
state, and send a CAMERA_OFF event to the Camera HSM.

As for the Camera HSM, when it receives a CAMERA_ON
event, it will transition to the CameraOn state, ultimately
entering the CameraIdle state. From here, it will wait
for a CAPTURE event which is bundled with an exposure
time t, which is saved in a variable. Like POWER_ON and
POWER_OFF events, CAPTURE events are assumed to come
from ground control or another external source. Upon re-
ceiving a CAPTURE event, the exposure time is extracted
from the CAPTURE event into t, and saved into the vari-
able exposure_time. From here, Camera transitions to
the CameraCapturing state. In the CameraCapturing
state, a timer is started for exposure_time, and a cam-
era exposure is started. Once the exposure time is reached,
the timer will send a TIMER event to Camera, causing
the image captured to be saved, and transitioning execu-
tion back to the CameraIdle state. At any point, if the
CAMERA_OFF event is received by Camera, a transition
to CameraOff will occur. Additionally, if CAMERA_OFF
is received while in the CameraCapturing state, the exit
action of CameraCapturing will be executed, which will
stop the camera’s exposure and cancel any timers.

The Proteus code in Figures 2 and 3 implements the HSMs
in Figure 1. The rest of this section discusses the various
Proteus features used in this example, subdivided by feature.
This discussion is strictly from the user’s perspective; how
these features are compiled is outside of this paper’s scope.
The compilation avoids heap allocation and other C++ features
which are problematic for our target embedded environments.

B. Actors

Actors are specified within named actor blocks. Actor
blocks are only valid at the top level of a program, disallowing
nesting. At runtime, each actor runs in a separate thread.
Figures 2 and 3 use two actors, for the Camera and Power
HSMs, respectively. Since each HSM is defined in a separate
actor, each HSM can run in parallel with the other.

Variables can be declared inside of actors like so:

actor MyActorWithVar iables {
i n t f i r s t ;
bool second ;

}

All code defined within the MyActorWithVariables ac-
tor would have these variables in scope. These variables are
only accessible within the actor; actors cannot directly access
or modify each other’s variables. Actor-level variables stay in
memory for the duration of the program.

All actors are started at program start, and similarly all
actors are terminated at program end. The names of all actors
are statically known, and actors cannot be dynamically started
or terminated at runtime. While this is more restrictive than
the usual actor model, this reflects how our target audience
typically uses actors. Each actor usually either contains control
code which is expected to constantly run, or serves as an
interface to a fixed piece of hardware; neither case needs
dynamic actor creation or termination. Moreover, while such
dynamic features would make Proteus more flexible, they
would also make Proteus code more difficult to reason about,
which is contrary to our design goals.

C. Events: Definition, Sending, and Receiving
True to the actor model [5], Proteus actors can only com-

municate with each other via exchanging messages (events).
To send an event, the user must first define what events are
valid, along with the types of any contained data, using the
event reserved word. Event definition is only legal at the
top-level of a program. A number of events are declared at
the top of Figure 2, including POWER_ON, POWER_OFF, and
CAPTURE. The CAPTURE event holds a single integer, and
all other events contain no data. Events can also be defined
holding multiple, mixed data types. Events can be sent to an
actor using !, as is done in Figure 3 with:

Camera ! CAMERA ON{} ;

The above snippet sends a CAMERA_ON event to the Camera
actor. While not shown in this example, data can be sent along
with an event, which would be listed within the curly braces.
The number and types of data provided must agree with the
declaration, or else a Proteus compile-time error results.

To receive an event, an actor must use the on reserved word.
on is used extensively in Figures 2 and 3, specifically in states.
States are covered in more detail in Section III-D, though both
states and actors use on to receive events. If an event contains
data, the data can be bound to a new local variable, as is done
in Figure 2 with:

on CAPTURE(t) { . . . }

The data is bound to the newly-declared local variable t,
which is implicitly known to be of type int from the

Fig. 1: Example HSMs for managing power and camera control.

CAPTURE event declaration. When an event is received, the
code within the corresponding on block is executed.

Semantically, actors are fundamentally event-driven; they
wait to receive an input event, execute the corresponding event
handler, and repeat this process indefinitely. An actor will
fully process one input event before attempting to process
another one. With this in mind, in Figure 3, if Power received
multiple POWER_ON events simultaneously, only one would
be processed immediately. All others would be stored in an
internal event queue hidden inside Power. Only once the
first POWER_ON event was fully processed would the next
POWER_ON event be removed from the queue for processing.
Event queues have unbounded size for testing (requiring
dynamic memory allocation), though these can be changed
to have statically-known size with minimal modification.

An actor may receive different kinds of events, as with:

actor Mult iEventExample {
on FOO {

/ / executed i f FOO rece ived
}
on BAR(a , b) {

/ / executed i f BAR rece ived
}

}

As shown above, MultiEventExample handles both FOO
and BAR events. Event processing is still sequential; if
MultiEventExample is processing a FOO event, then any
other received events will be internally stored in an event
queue, even if a separate BAR event is later received.

At compile time, Proteus checks that any sent or received
events are declared with event. Similarly, Proteus checks that
for each event sent, the target actor has an on block for the
sent event. If an undeclared event is sent or received, or if an

event is sent to an actor which does not have a corresponding
on block, it results in a compile-time error.

D. HSM and HSM State Definition

Proteus has language-level support for HSMs. As Fig-
ures 2 and 3 show, state machines and states are de-
clared with statemachine and state, respectively. The
statemachine reserved word can only be used at the top-
level within an actor. The initial state in a state machine or
any child state must be indicated with initial, as Figure 2
does with initial CameraOff;.

Actors containing state machines execute them sequentially,
one state at a time. That said, since states can be nested
in other states, execution may be present in multiple states
simultaneously. We refer to the most deeply-nested state
currently being executed in an actor as the active state. While
sequential execution occurs within a state machine, multiple
state machines can execute in parallel with respect to each
other if they are defined in separate actors.

Variables can be defined in states, known as state variables.
These variables are accessible from within the declared state
and also in any child states of that state. The CameraOn state
in Figure 2 shows this with the exposure_time state vari-
able. States can contain on blocks, which have more complex
semantics when nested states are involved. For example, con-
sider the CameraCapturing state’s on block in Figure 2,
which accepts TIMER events. While CameraCapturing
does not explicitly handle CAMERA_OFF events, its parent
state CameraOn does handle CAMERA_OFF events. As such,
even if CameraCapturing is the active state, the HSM
can still respond to a CAMERA_OFF event. In case of a
CAMERA_OFF event, an automatic transition will be per-
formed to the outer CameraOn state (triggering the exit
action on CameraCapturing), wherein the on block for the

event POWER ON{} ;
event POWER OFF{} ;
event CAMERA ON{} ;
event CAMERA OFF{} ;
event CAPTURE{ i n t } ;
event TIMER{} ;

actor Camera {
statemachine {

i n i t i a l CameraOff ;
state CameraOff {

on CAMERA ON{} {
go CameraOn {}

}
}
state CameraOn {

i n i t i a l CameraIdle ;
i n t exposure time = 0 ;
on CAMERA OFF{} {

go CameraOff {}
}
state CameraIdle {

on CAPTURE{ t } {
go CameraCapturing {

exposure time = t ;
}

}
}
state CameraCapturing {

i n t t ime r i d = 0 ;
entry {

t ime r i d =
s t a r t t i m e r (exposure time) ;

s tar t exposure () ;
}
ex i t {

stop exposure () ;
cance l t imer (t ime r i d) ;

}
on TIMER{} {

go CameraIdle {
save image () ;

}
}

}
}

}
}

Fig. 2: Proteus implementation of events and Camera HSM
from Figure 1.

CAMERA_OFF event will be executed. More details on state
transitions and exit actions are in Sections III-E and III-F.

While not shown in Figures 2 and 3, a child state may define
an on block that accepts the same kind of event as a parent
state. In this case, if the child state is the active state, the child’s
on block will be executed instead of the parent’s on block. If
the active state does not have a corresponding on block, it will
consult the parent’s on blocks, and so on until it finds a state
which will accept the event. As part of this process, exit
handlers are executed in sequence. It is statically guaranteed
that either the active state or one of its parents can accept an

actor Power {
statemachine {

i n i t i a l PowerOff ;
state PowerOff {

on POWER ON{} {
go PowerOn {}

}
}
state PowerOn {

entry {
Camera ! CAMERA ON{} ;

}
ex i t {

Camera ! CAMERA OFF{} ;
}
on POWER OFF{} {

go PowerOff {}
}

}
}

}

func s t a r t t i m e r (i n t ms) −> i n t { . . . }
func cance l t imer (i n t t ime r i d) { . . . }

func s tar t exposure () {
pr in t (” s ta r t exposure \n ”) ;

}

func stop exposure () {
pr in t (” stop exposure\n ”) ;

}

func save image () {
pr in t (” save image\n ”) ;

}

Fig. 3: Proteus implementation of Power HSM from Figure 1,
along with relevant helper functions.

input event, per the same static guarantee that prevents sending
an event to an actor which lacks a corresponding on block.

State variables are in scope while execution is in the
corresponding state, be it the active state or a parent of the
active state. Semantically, such variables only need to consume
memory while the state is being executed. However, in order
to simplify compilation and make compiled code easier to
reason about, such variables instead are effectively lifted to the
corresponding actor and are thus in memory for the duration
of program execution.

E. State Transitions

Compared to general actors, on blocks behave somewhat
differently in states. Specifically, upon receiving an event, an
HSM will usually change which state it is in via a state
transition. State transitions are performed via go, as shown
extensively in Figures 2 and 3. go specifies the state to
transition to, which must be contained within the same state
machine. Additionally, go takes an optional block of code to
execute just before making the state transition.

While not shown in Figures 2 and 3, there is also a condi-
tional version of go called goif, which will only transition
to a state if a provided Boolean condition is also true. As
with a typical if statement, goif can be chained with else
goif clauses. Also like if, the alternatives to goif are tried
sequentially, and the first condition which is true (and only
that condition) has its corresponding code block executed. If
a final unconditional else go is not provided, then no state
transition occurs, and execution remains in the same state.

F. Entry and Exit Actions

Per the usual definition of HSMs, states can also optionally
define entry and exit actions to be performed whenever exe-
cution enters or leaves a state. These actions are defined with
the entry and exit reserved words, as shown in Figures 2
and 3. Because of nested states, the behavior of entry
and exit is not always straightforward. Specifically, when
transitioning out of a state, the exit actions are executed in
order of most deeply-nested to least deeply-nested. Once all
appropriate exit actions are performed, entry actions are then
performed, starting from the outermost state being entered and
moving to the innermost state. Both of these behaviors are per
the usual HSM semantics of state transitions.

G. Functions

A number of helper functions are declared at the end
of Figure 3, using the func keyword. The function bod-
ies of start_timer and cancel_timer have been
elided to keep the example concise. Similarly, the bodies of
start_exposure, stop_exposure, and save_image
in a real implementation would interact with underlying cam-
era hardware, though in our example they merely print text
to the user console. As shown, functions can take parameters,
and can optionally return values. Specifically, start_timer
takes an integer and returns an integer; the notation -> int
means that it returns an integer. In contrast, none of the rest of
the functions return anything, as they do not have any return
types annotated. This notation for return types is inspired by
Rust [9], and avoids the need for a pseudo-type like void.

Proteus currently lacks support for pointers or arrays, as
we have been focusing on the HSM-related components of
Proteus. We plan to include these features in later versions of
Proteus, though in a manner which does not compromise on
safety (e.g., C++-style references, checked array access, etc.).

H. Methods

While Proteus is not an object-oriented programming lan-
guage, it nonetheless supports a concept of methods. Syntacti-
cally, Proteus methods are merely functions which are defined
at either the actor or state level. Unlike typical functions,
methods have access to any actor or state variables which are
in the same scope as the method. Similarly, methods are only
available to be called from within the actor or enclosing state.

IV. PROTEUS DESIGN PROCESS

The creation of any new programming language is a huge
risk, given the sheer amount of work this entails. There is a
real danger that the target audience will not embrace Proteus,
ultimately leading to a failure to be adopted and subsequent
abandonment. To mitigate these risks, we are employing an
iterative design and implementation process, and JPL software
engineers are involved in this process.

Proteus is being developed as a series of prototypes. Upon
a prototype’s completion, we solicit feedback from key JPL
stakeholders, and use it to guide the development of the
next prototype. By regularly involving the target audience, we
ensure that development never deviates far from expectations,
even if expectations are initially unclear.

So far, these iterations have been small and informal, and
have only directly involved co-authoring JPL stakeholders.
However, these interactions have already led to key language
improvements. For example, in a prior prototype, HSMs,
actors, and states were all conflated into the same construct
which had a complex, unintuitive semantics. Most importantly,
the behavior of this construct was not immediately obvious to
people familiar with HSMs, even though it was intended to
represent an HSM state. Since then, we have separated out this
one concept into the states, actors, and HSMs from Section III.

We have found that these prototypes do not need to be
complete to be useful. Even if a feature is not yet fully
implemented, as long as the target audience understands what
the feature should do, useful feedback can be solicited. As
such, pivoting can be done early in prototype development.

V. EXECUTION

This section demonstrates that Proteus can compile and run
programs. We implement the example from Figures 2 and 3
in Proteus, and produce an execution trace showing what the
resulting program does. We first discuss this capability to
produce an execution trace.

A. Execution Tracing

The Proteus compiler can be invoked from the command
line with a flag which strategically adds print statements to the
output C++ program. These print statements produce a human-
readable trace of the program’s execution, noting major HSM-
related actions. For example, consider the following trace line:

Power: send POWER_ON to Camera

This states that from within the Power actor, a POWER_ON
event is sent to the Camera actor. The name at the start of
each line is the thread on which the action is taking place.
The thread is typically an actor, but can also be a timer. The
various possible trace actions are:

• init to {State}: The actor is starting up and transi-
tioning to its initial state. State is the most-initial state
of the HSM’s root state, following the chain of initial
states until no further state nesting is present. This line
will be followed by a sequence of enter actions as the
transition happens.

wait (2000) ;
Power ! POWER ON{} ;
wait (2000) ;
Camera ! CAPTURE{1000} ;
wait (2000) ;
Power ! POWER OFF{} ;

Fig. 4: ENV code.

• enter/exit {State}: The actor is entering or leav-
ing State and is about to execute its enter or exit
blocks. Anything that happens during the execution of
this block will follow this line. This trace message is
printed regardless of the state actually having an enter
or exit block defined, in order to show the sequence
followed during transitions.

• send {Event} to {Actor}: The current thread is
now placing Event into Actor’s event queue. The
event will be received whenever Actor dequeues it.

• handle {Event} via {State}: The actor has de-
queued Event from its event queue, and the event
handler that will be handling it is the one defined in
State. State will either be the actor’s active state or a
(direct or indirect) parent. Anything that happens during
event handling will follow this line.

• trans {State1}->{State2}: As the result of han-
dling an event, the actor has begun transitioning from its
current state State1 to its next state State2. State2
is the most-initial state of the state specified by the
event handler, so it may not match what is written in
the program. If State1 is different from State2, a
sequence of exit and enter actions will follow.

• start Timer {TimerId}: The actor has started an
asynchronous timer. When time elapses, the timer will
send a TIMER event back to the actor.

• cancel Timer {TimerId}: The actor has stopped
the specified timer prematurely; it will not be sending its
TIMER event.

B. Tracing the Example Program

The example from Figures 2 and 3, without any additional
components, would sit indefinitely in an off state. This re-
flects the fact that there is an assumed external generator of
POWER_ON and POWER_OFF events, be they from ground
control or some other source. As such, for testing purposes,
we added a third ENV actor to provide these crucial power-
related events. ENV sends these events with wait statements
in between, which temporarily suspend execution of the calling
actor for a provided number of milliseconds. ENV’s code is
enclosed within a single state, and is shown in Figure 4.

Figure 5 shows the trace output of the resulting Proteus
program. Separators, indicated with multiple hyphens, have
been added for readability, dividing the output into blocks.
Each block results from either initialization or an external
event. By observing this trace, we can deduce the following:

• Initial states are properly followed.

Camera: init to CameraOff
Camera: enter Camera
Camera: enter CameraOff
Power: init to PowerOff
Power: enter Power
Power: enter PowerOff

ENV: send POWER_ON to Power
Power: handle POWER_ON via PowerOff
Power: trans PowerOff->PowerOn
Power: exit PowerOff
Power: enter PowerOn
Power: send CAMERA_ON to Camera
Camera: handle CAMERA_ON via CameraOff
Camera: trans CameraOff->CameraIdle
Camera: exit CameraOff
Camera: enter CameraOn
Camera: enter CameraIdle

ENV: send CAPTURE to Camera
Camera: handle CAPTURE via CameraIdle
Camera: trans CameraIdle->CameraCapturing
Camera: exit CameraIdle
Camera: enter CameraCapturing
Timer 1: start
start_exposure

Timer 1: send TIMER to Camera
Camera: handle TIMER via CameraCapturing
save_image
Camera: trans CameraCapturing->CameraIdle
Camera: exit CameraCapturing
stop_exposure
Camera: enter CameraIdle

ENV: send POWER_OFF to Power
Power: handle POWER_OFF via PowerOn
Power: trans PowerOn->PowerOff
Power: exit PowerOn
Power: send CAMERA_OFF to Camera
Power: enter PowerOff
Camera: handle CAMERA_OFF via CameraOn
Camera: trans CameraIdle->CameraOff
Camera: exit CameraIdle
Camera: exit CameraOn
Camera: enter CameraOff

Fig. 5: The resulting trace from Figures 2, 3, and 4.

• Entry/exit blocks bracket their states. For example,
Power sends CAMERA_ON and CAMERA_OFF to
Camera upon the entry and exit, respectively, of state
PowerOn.

• Actors follow the right sequences of entry/exit actions
when transitioning between states. For example,
when Camera transitions from CameraOff
to CameraIdle, it follows the sequence:
exit CameraOff, enter CameraOn, enter
CameraIdle.

• The print messages appear where they
should: start_exposure upon entering
CameraCapturing, stop_exposure upon exiting
CameraCapturing, and save_image upon handling
the TIMER event.

• Events are handled by the correct states and event han-
dling results in the correct transitions.

From these observations, we can conclude that Proteus is
executing these HSMs correctly; all of these observations
follow directly from what the HSM says to do. The HSM
in play is simple enough to trace by hand without Proteus,
yet complex enough that it stresses most of Proteus’ HSM
capabilities. This provides some reasonable assurance that
Proteus itself is correct, and we internally have a much larger
and more complex test suite to further ensure this.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented Proteus: an HSM-based
programming language emphasizing both safety and perfor-
mance, which is suitable for both simulations and imple-
mentations of flight software. Proteus is being developed
in collaboration with JPL software engineers, who will be
Proteus’ primary users. To ensure Proteus will be usable by
our target audience, we are iteratively developing it in concert
with key JPL stakeholders, via a prototype-driven process.

While Proteus is still early in development, we have shown
that it can already compile and run programs involving actors,
events, and multiple cooperating HSMs. For future work, we
plan to port larger HSMs to Proteus, taken directly from flight
applications. These porting experiences will further expose
the strengths and weaknesses of Proteus, and we will use
this information to refine Proteus’ design. We are currently
adding more features to Proteus, including runtime verification
components (e.g., [10], [11], [12]), user-defined data types, and
typeclasses [13]. We are also investigating adding visualiza-
tions, more static checks, and model checking [6]. Ultimately,
we want Proteus to be used for HSM-based simulations and
control software in flight applications, and we are actively
working towards that goal.

ACKNOWLEDGEMENTS

Thanks to Simran Gill, Eileen Quiroz, and Frank Serde-
nia for their contributions to the Proteus compiler. Funded
by NASA Minority University Research and Education
Project (MUREP) Institutional Research Opportunity (MIRO)
NNH18ZHA008C-MIROG7. The research was carried out in

part at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration. © 2020. All rights reserved.

REFERENCES

[1] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comput. Program., vol. 8, no. 3, p. 231–274, Jun. 1987. [Online].
Available: https://doi.org/10.1016/0167-6423(87)90035-9

[2] K. Havelund and R. Joshi, “Modeling rover communication using
hierarchical state machines with scala,” in Computer Safety, Reliability,
and Security, S. Tonetta, E. Schoitsch, and F. Bitsch, Eds. Cham:
Springer International Publishing, 2017, pp. 447–461.

[3] M. Fowler, Domain-specific languages. Upper
Saddle River, N.J.: Addison-Wesley, 2011. [On-
line]. Available: http://proquest.safaribooksonline.com/640
http://proquest.safaribooksonline.com/?fpi=9780132107549

[4] K. Havelund and R. Joshi, “Modeling and monitoring of hierarchical
state machines in scala,” in Software Engineering for Resilient Systems,
A. Romanovsky and E. A. Troubitsyna, Eds. Cham: Springer Interna-
tional Publishing, 2017, pp. 21–36.

[5] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor
formalism for artificial intelligence,” in Proceedings of the 3rd In-
ternational Joint Conference on Artificial Intelligence, ser. IJCAI’73.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1973, p.
235–245.

[6] R. Alur and M. Yannakakis, “Model checking of hierarchical state
machines,” ACM Trans. Program. Lang. Syst., vol. 23, no. 3, p. 273–303,
May 2001. [Online]. Available: https://doi.org/10.1145/503502.503503

[7] R. C. Cardoso, M. Farrell, M. Luckcuck, A. Ferrando, and M. Fisher,
“Heterogeneous verification of an autonomous curiosity rover,” in NASA
Formal Methods, R. Lee, S. Jha, and A. Mavridou, Eds. Cham: Springer
International Publishing, 2020, pp. 353–360.

[8] K. L. Hobbs, J. Davis, L. Wagner, and E. Feron, “Formal specification
and analysis of spacecraft collision avoidance run time assurance re-
quirements,” in 2021 IEEE Aerospace Conference (50100), 2021, pp.
1–16.

[9] N. D. Matsakis and F. S. Klock II, “The rust language,” in ACM SIGAda
Ada Letters, vol. 34, no. 3. ACM, 2014, pp. 103–104.

[10] K. Havelund and D. Peled, “Efficient runtime verification of first-order
temporal properties,” in Model Checking Software, M. d. M. Gallardo
and P. Merino, Eds. Cham: Springer International Publishing, 2018,
pp. 26–47.

[11] K. Havelund, “Rule-based runtime verification revisited,” Int. J. Softw.
Tools Technol. Transf., vol. 17, no. 2, p. 143–170, Apr. 2015. [Online].
Available: https://doi.org/10.1007/s10009-014-0309-2

[12] K. Havelund, “Data automata in scala,” in 2014 Theoretical Aspects of
Software Engineering Conference, 2014, pp. 1–9.

[13] P. Wadler and S. Blott, “How to make ad-hoc polymorphism less ad
hoc,” in Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’89. New York,
NY, USA: Association for Computing Machinery, 1989, p. 60–76.
[Online]. Available: https://doi.org/10.1145/75277.75283

