
Static and Runtime Verification,
Competitors or Friends?

(Track Summary)

Dilian Gurov1, Klaus Havelund2?,
Marieke Huisman3, and Rosemary Monahan4

1 KTH Royal Institute of Technology, Sweden,
dilian@kth.se

2 Jet Propulsion Laboratory, USA
klaus.havelund@jpl.nasa.gov

3 University of Twente, The Netherlands
m.huisman@utwente.nl

4 Maynooth University, Ireland
Rosemary.Monahan@nuim.ie

1 Motivation and Goals

Over the last years, significant progress has been made both on static and run-
time program verification techniques, focusing on increasing the quality of soft-
ware. Within this track, we would like to investigate how we can leverage these
techniques by combining them. Questions that will be addressed are for exam-
ple: what can static verification bring to runtime verification to reduce impact
on execution time and memory use, and what can runtime verification bring to
static verification to take over where static verification fails to either scale or
provide precise results? One can to some extent consider these two views (static
verification supporting runtime verification, and runtime verification supporting
static verification) as fundamentally representing the same scenario: prove what
can be proved statically, and dynamically analyze the rest.

The session will consist of several presentations, some on the individual tech-
niques, and some on experiences combining the two techniques. When preparing
this session, we aimed at finding a balance between static and runtime verifica-
tion backgrounds of the presenters. This is also reflected by the papers associated
to this track. There are several papers describing systems that first attempt to
verify as much as possible by static verification, and then use runtime verifica-
tion for the properties that cannot be verified statically. There is another group
of papers that use static program information to generate appropriate runtime
checks. Finally, a last group of papers discuss program specification techniques
for static verification, and how they can be made suitable for runtime verifica-
tion, or the other way round.

? The research performed by this author was carried out at Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.



During the conference, three panel discussions on this topic are planned. The
first panel focuses on static verification. What are the challenges, and how can
it benefit from runtime verification? The second panel focuses on the opposite
question: what are the challenges in runtime verification, and how can it benefit
from static verification? The last panel discusses future research directions in this
area, and what are the most promising ideas for combining static and runtime
verification. Concrete topics that will be discussed include the limitations and
benefits of each approach, how we can combine efforts to benefit verification,
what are the overheads/benefits of combining efforts, industrial application in
each area, industrial needs, etc.

2 Contributions

The paper contributions in this track are introduced below. The papers are
ordered according to the three sessions of the track: (1) how can static verification
benefit from runtime verification? (2) how can runtime verification benefit from
static verification? and (3) how can we bridge the gap? (more generally). The
papers are ordered alphabetically according to authors within each session.

2.1 How can Static Verification Benefit from Runtime Verification?

Ahrendt, Pace, and Schneider [1] (StaRVOOrS Episode II, Strengthen and Dis-
tribute the Force) build on StaRVOOrS as presented at ISoLA 2012, which aims
at a unifying framework for static and runtime verification of object-oriented
software. Advances on a unified specification language for data and control ori-
ented properties, a tool for combined static and runtime verification, and ex-
periments are presented. Future research concern (i) the use of static verifica-
tion techniques to further optimize the runtime monitor, and (ii) extending the
framework to the distributed case. A roadmap for addressing these challenges is
presented.

Azzopardi, Colombo, and Pace [2] (A Model-Based Approach to Combining
Static and Dynamic Verification Techniques) present how static and runtime
verification can be used to ensure safety of systems that are to be used in an
unknown context. The system developer has to provide a model of the system.
This model then is used to find the appropriate context for the system to work
in, and an attempt is made to statically verify the desired properties of the
composed system. Any property (or part of a property) that cannot be verified
statically will be verified dynamically. Moreover, it will also be verified dynami-
cally whether the concrete implementation of the system respects the model. In
some cases, knowledge about the properties that will be monitored can be used
to reduce the model. The paper discusses a concrete example of this approach
for an online payment ecosystem.

Bodden, Pun, Steffen, Stolz, and Wickert [3] (Information Flow Analysis
for Go) present parts of the theory and implementation of an information flow
analysis of Go programs. The purpose is to detect the flow of so-called tainted



values, from untrusted sources (such as reading from input) to so-called sinks,
which represent locations where such untrusted data should not end up. Go
allows for concurrent programming via channels, requiring special techniques.
Discussions include how dynamic analysis can be applied, to monitor execution
paths, that cannot be determined safe due to the conservative static analysis. An
option is to stop the execution of the program when a tainted datum is about
to reach a sink. A dynamic coverage tool can also provide information as to how
many of these potentially unsafe paths have been executed and verified.

2.2 How can Runtime Verification Benefit from Static Verification?

Goodloe [5] (Challenges in High-Assurance Runtime Verification) first presents
an overview of the Copilot RV framework, followed by several challenges that are
barriers to realizing high-assurance runtime verification. More specifically, these
challenges relate specification, observability of data, traceability from require-
ments, fault tolerance, composition of runtime verification and the system under
observation, monitor specification and monitor correctness. While the challenges
are formulated generally, Goodloe addresses them concretely in the context of
the Copilot RV framework. Additional challenges to be addressed in future work,
as well as challenges regarding the use of automated verification tools for high-
assurance runtime verification, are also discussed.

Kosmatov, Marché, Moy, and Signoles [6] (Static versus Dynamic Verification
in Why3, Frama-C and SPARK 2014) describe the Why3 system, and two tools
that use the Why3 system as a backend, namely Frama-C and SPARK. As these
systems focus on different kinds of verification techniques (SPARK concentrates
on runtime verification, while Frama-C and Why3 favor static verification) and
properties of interest, there are differences in the specification languages, in
the treatment of ghost code, and in the treatment of proof failures. The paper
provides an in-depth discussion of these differences.

Reger [9] (Considering Typestate Verification for Quantified Event Automata)
sketches how static verification techniques for type states can be used on a com-
monly used specification framework for runtime verification, namely quantified
event automata. He gives an overview of type states and quantified event au-
tomata, and then sketches how type state techniques can be used, using some
example properties specified as quantified event automata.

2.3 How can we Bridge the Gap?

Leofante, Vuotto, Ábrahám, Tacchella, and Jansen [7] (Combining Static and
Runtime Methods to Achieve Safe Standing-Up for Humanoid Robots) address
how to improve a scripted stand up strategy for robots, making it safe and stable,
using a combination of runtime verification and static verification. This paper
describes a novel approach to achieve safe standing-up for humanoid robots. It
proposes a combination of three methods. The first is reinforcement learning that
uses Q-learning based on a robot simulator to construct a standing-up strategy.



The second method is greedy model repair that uses efficient probabilistic model
checkers to repair the strategy to avoid given unsafe states with a given proba-
bilistic threshold. These two methods result in an initial strategy that is deployed
on the robot. As the strategy has been obtained on an idealized model of the
real robot and environment, it may still not be adequate. Therefore, the third
method is runtime verification with a feedback loop to observe the real-time be-
havior of the robot and adapt the strategy on the go. The implementation of the
presented theory is ongoing, but already some experimental results for (model
free) reinforcement learning strategies are presented.

Leucker [8] (On Combinations of Static and Dynamic Analysis) elaborates in
his presentation on the similarities and differences of model checking and runtime
verification, and how they can benefit from each other. In particular, if model
checking an abstract version of the system fails, how can runtime verification be
used to investigate the unsuccessful run? The presentation also discusses ideas
for how to use information obtained by static verification to improve runtime
verification results.

Eilertsen, Bagge, and Stolz [4] (Safer Refactorings) present a method to avoid
refactorings changing the behavior of a program. Refactorings are a way to
restructure a program’s code. If a refactoring is wrongly applied, this might
actually change the behavior of the program, which should be avoided. Eilertsen
et al. propose a technique to identify when the program’s behavior is actually
changed. For two concrete refactorings (extract local variable, and extract and
move method) they describe how this is done. Essentially, together with the
refactoring they generate an assertion which will fail if the refactoring changed
the program behavior. To validate their approach, they automatically apply
these refactorings on a large code base, and use unit tests to identify how many
assertions actually fail.

References

1. W. Ahrendt, G. J. Pace, and G. Schneider. StaRVOOrS episode II, strengthen
and distribute the force. In T. Margaria and B. Steffen, editors, 7th International
Symposium On Leveraging Applications of Formal Methods, Verification and Vali-
dation, ISoLA 2016, Corfu, Greece, October 10-14, LNCS. Springer, 2016. These
proceedings.

2. S. Azzopardi, C. Colombo, and G. Pace. A model-based approach to combining
static and dynamic verification techniques. In T. Margaria and B. Steffen, editors,
7th International Symposium On Leveraging Applications of Formal Methods, Veri-
fication and Validation, ISoLA 2016, Corfu, Greece, October 10-14, LNCS. Springer,
2016. These proceedings.

3. E. Bodden, K. I. Pun, M. Steffen, V. Stolz, and A.-K. Wickert. Information flow
analysis for Go. In T. Margaria and B. Steffen, editors, 7th International Symposium
On Leveraging Applications of Formal Methods, Verification and Validation, ISoLA
2016, Corfu, Greece, October 10-14, LNCS. Springer, 2016. These proceedings.

4. A. M. Eilertsen, A. H. Bagge, and V. Stolz. Safer refactorings. In T. Margaria
and B. Steffen, editors, 7th International Symposium On Leveraging Applications of



Formal Methods, Verification and Validation, ISoLA 2016, Corfu, Greece, October
10-14, LNCS. Springer, 2016. These proceedings.

5. A. Goodloe. Challenges in high-assurance runtime verification. In T. Margaria
and B. Steffen, editors, 7th International Symposium On Leveraging Applications of
Formal Methods, Verification and Validation, ISoLA 2016, Corfu, Greece, October
10-14, LNCS. Springer, 2016. These proceedings.

6. N. Kosmatov, C. Marché, Y. Moy, and J. Signoles. Static versus dynamic verification
in Why3, Frama-C and SPARK 2014. In T. Margaria and B. Steffen, editors, 7th
International Symposium On Leveraging Applications of Formal Methods, Verifica-
tion and Validation, ISoLA 2016, Corfu, Greece, October 10-14, LNCS. Springer,
2016. These proceedings.

7. F. Leofante, S. Vuotto, E. Ábrahám, A. Tacchella, and N. Jansen. Combining
static and runtime methods to achieve safe standing-up for humanoid robots. In
T. Margaria and B. Steffen, editors, 7th International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation, ISoLA 2016, Corfu,
Greece, October 10-14, LNCS. Springer, 2016. These proceedings.

8. M. Leucker. On combinations of static and dynamic analysis. In T. Margaria
and B. Steffen, editors, 7th International Symposium On Leveraging Applications of
Formal Methods, Verification and Validation, ISoLA 2016, Corfu, Greece, October
10-14, LNCS. Springer, 2016. These proceedings.

9. G. Reger. Considering typestate verification for quantified event automata. In
T. Margaria and B. Steffen, editors, 7th International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation, ISoLA 2016, Corfu,
Greece, October 10-14, LNCS. Springer, 2016. These proceedings.


