
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Introduction to the Special Section on Runtime Verification
Oleg Sokolsky1, Klaus Havelund2?, Insup Lee1

1 Department of Computer and Info. Science, University of Pennsylvania, Philadelphia, PA 19041, USA
2 Jet Propulsion Laboratory, California Institute of Technology, California, CA 91109, USA

1 Overview

Runtime verification (RV) is a relatively new area of study
that is concerned with dynamic monitoring and analysis of
system executions with respect to precisely specified proper-
ties. A rigorous approach to proving the correctness of pro-
grams at run time was first presented in a paradigm called
program checking by Blum and Kannan [10]. The papers on
program checking also demonstrated that runtime monitoring
was feasible in many instances where static, design-time ver-
ification does not appear to be. This was the primary initial
motivation for this field at its inception about a decade ago.
That is, despite the best verification efforts, problems can oc-
cur at run time, and dynamic analysis of the running system
can improve confidence in its evolving behavior. Since then,
researchers came to realize that precisely specified monitor-
ing and checking can be used for many purposes, such as pro-
gram understanding, systems usage understanding, security
or safety policy monitoring, debugging, testing, verification
and validation, fault protection, behavior modification (e.g.,
recovery), etc. At the most abstract level, a running system
can be regarded as a generator of execution traces, i.e., se-
quences of relevant states or events. Traces can be processed
in various ways, e.g., checked against formalized specifica-
tions [28], used to drive the simulation of behavioral models,
analyzed with special algorithms, visualized [36], etc. Statis-
tical analysis [25] and machine learning of system properties
can be performed over the traces.

The scope of RV research covers two conceptually sep-
arate aspects. One aspect concerns checking of traces, such
as property specification, and algorithms for the checking of
such property specifications over a given trace. The other as-
pect has to do with the generation of traces; that is, how
observations are made and recorded. Most RV systems rely
on some form of instrumentation to extract observations. Of

? Part of the research described in this publication was carried out at Jet
Propulsion Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.

course, these two aspects are not independent. A trace gen-
eration method has to ensure that all observations necessary
for checking a property are recorded. A missed observation is
likely to result in an incorrect checking outcome. On the other
hand, generating irrelevant observations increases checking
overhead and should be avoided. Recording exactly the right
set of observations for a given property is the subject of trace
generation research. This dependency between the two as-
pects may also be turned around: if the trace generation method
is fixed, one can pose the question, which property specifica-
tion language would be the most appropriate. For example, if
the trace records state changes — that is, differences between
two successive states — rather than values of state variables,
checking a state-based property would require an additional
step of reconstructing states.

We distinguish three broad categories of RV approaches
to property specification. In the first category, properties de-
pend on execution history and their evaluation depends on a
sequence of states in a trace. Such properties are often ex-
pressed in a variant of temporal logic; however, other speci-
fication languages are also used, such as regular expressions
and state machines. The second category relies on the use
of contracts or assume-guarantee interfaces between modules
in the system. Properties in this category typically describe
a single state or changes between two consecutive states in
the trace. It may be considered a special case of the previous
category. However, logics use for property specification as
well as checking algorithms tend to be different here. Finally,
the third category, sometimes referred to as specification-less
monitoring, develops checking algorithms that detect viola-
tions of specific common properties. These properties typi-
cally relate to concurrent executions, such as freedom from
race conditions [22], atomicity [43], serializability [16], etc.

An important research direction in runtime verification,
which cuts across both RV aspects mentioned above, is the
management of overhead. An inefficient implementation of
the monitoring algorithm can easily be disruptive to system
performance and limit the use of RV techniques. A significant



2 Oleg Sokolsky et al.: Introduction to the Special Section on Runtime Verification

source of overhead is instrumentation that is necessary to ex-
tract observations from a running system. Reducing the num-
ber of instrumentation points reduces instrumentation over-
head but may lead to missing observations and incorrect check-
ing results.

Last but not least, an RV framework has to provide the
right feedback to the users. In many situations, it is not enough
to signal that a violation has occurred. If checking is applied
to a running system, as opposed to a recorded trace, feedback
from the checker can help the system recover from a problem.
Understanding the right feedback to produce, and reasoning
about its effects on the system overall behavior is yet another
important direction in RV research.

The Special Section on Runtime Verification contains five
research papers that consider all of the research questions
mentioned above. The rest of this introduction puts these pa-
pers in context. Throughout the text, references to papers in-
cluded in this section are highlighted in bold, to distinguish
them from papers published elsewhere.

Our introduction is organized as follows. In Section 2,
we discuss checkers based on temporal specifications and
contract-based checkers. The third category, specification-less
monitoring is extensively covered in a survey [38] included
in this section, and we do not consider it in this overview pa-
per. Section 3 discusses different approaches to instrumenting
software for monitoring. Section 4 considers the problem of
overhead reduction. Section 5 discusses feedback. We con-
clude with the outlook on the future of RV research.

2 Categories of runtime verification

2.1 Monitoring and checking of temporal specifications

This category of RV tools have been developed as a direct ex-
tension of the static verification concept of model checking.
Model checking algorithms [17] verify a model of the sys-
tem against properties specified in a temporal logic or similar
formalism. The original RV research question was whether an
execution of the system can be verified at run time against the
same set of properties. From the theoretical perspective, the
problem is to deal with the fact that the trace is evolving as
checking is being performed. Repeating the process from the
beginning of the trace every time a new observation arrives
is wasteful. On-line or incremental variants of the algorithms
are necessary to make RV efficient.

Efficient on-line algorithms for checking a trace with re-
spect to formulas in past- and future-time temporal logics, as
well as regular expressions, have been available for about a
decade [9,20,27,28,32] and are incorporated in a variety of
tools [11,26,31]. One of the most extensive toolsets for run-
time verification of formal specifications is the MOP frame-
work [34], which is presented in this section. It supports a va-
riety of specification formalisms, such as temporal logics and
finite state machines, and several monitoring targets, such as
Java programs and bus snooping.

Comparison of RV algorithms for different specification
formalisms reveals that they have much in common. All of the
algorithms maintain a checker state that is updated when new
observation from a target system arrives. For example, in the
case of past-time linear temporal logic (ptLTL), the checker
state contains the valuations of all subformulas of a given for-
mula in the current state of the trace, which is updated using
a dynamic programming approach [27].

This similarity between algorithms for seemingly differ-
ent formalisms has led to the research on special monitoring
logics that can be used as the common underlying formalism
for specifying monitors. Eagle [3] is a logic with explicit fix-
point operators that is capable of implementing future- and
past-time temporal logics, interval logics, extended regular
expressions, and other formalisms that may be useful in the
monitoring context. An execution engine for Eagle specifi-
cations makes it a flexible platform for implementing check-
ers. RuleR [5] takes this approach one step further by replac-
ing explicit fixed point operators with rules that activate each
other in response to observations. RuleR is lower-level logic
that requires more effort to encode high-level semantics of a
commonly used logic. However, it allows much finer manage-
ment of the checker state, leading to more efficient checkers,
and yields a system that is easier to implement and maintain.

2.2 Design-by-contract monitoring

Design by contract, pioneered in the Eiffel programming lan-
guage [35], relies on interface specifications between com-
ponents in the system. These specifications take the form of
pre-conditions, post-conditions, and invariants. Contracts are
typically state predicates (that is, expressions over the values
of system variables in the current state). Contracts also typi-
cally allow us to relate “old” and “new” values of variables.
Like any other correctness properties, contracts can be veri-
fied statically (within the inherent limitations of verification
tools), but they often are also checked at run time for unex-
pected violations.

Unlike temporal specifications discussed earlier, contract
checking is typically integrated more tightly with the system
execution, and can conceptually be viewed as part of the sys-
tem. Semantics of contracts determine, at which points the
contracts should be checked. For example, a pre-condition
for a method in an object-oriented program is checked when
the method is called, and a post-condition is checked just be-
fore the method returns. Because of this tighter integration,
instrumentation is typically not an issue.

Some languages, such as Eiffel and Spec# [2], provide
special syntax for contracts. Other language frameworks sup-
port embedding of contract as code, usually providing a li-
brary of contract primitives. For example, the Code Contracts
project [23] provides contracts for .NET languages as calls to
methods of a Contract class. The TraceContract project [4]
supports writing temporal specifications in Scala as calls to
methods of a Monitor class. There are several comment-
based contract frameworks for Java, such as JML [15] and
Jass [6]. Both are based on writing specifications as special



Oleg Sokolsky et al.: Introduction to the Special Section on Runtime Verification 3

recognizable comments, which can then be extracted by tools.
Some contract checking systems, Jass among them, extend
standard contracts with trace assertions [7], which can be
used to specify restrictions on sequences of invocations of
methods of the class. With this extension, the distinction be-
tween contracts and temporal properties begins to disappear.

3 Instrumentation

In order to extract observations necessary for checking prop-
erties, RV tools rely on instrumentation. Most tools use active
instrumentation, that is, insertion of code probes into the run-
ning system. One of the few exceptions is BusMOP [37], an
instantiation of the MOP framework [34] for the monitoring
of PCI buses. BusMOP uses passive instrumentation, directly
observing traffic on the bus. In order to avoid missing rel-
evant observations and allow RV to scale to large systems,
instrumentation should be automatic. Automatic instrumen-
tation requires us to perform analysis of the target system in
order to identify where events of interest occur.

An increasingly popular way of implementing instrumen-
tation of source code is through the use of aspect-oriented
programming [30]. Indeed, multiple probes are added to the
code that collectively supply observations to the monitor. Thus,
instrumentation satisfies the definition of a cross-cutting con-
cern, which underlies aspect-oriented programming. The use
of aspect-oriented techniques in RV research was pioneered
in the tools J-Lo [11] and Hawk [19]. An even closer con-
nection between RV and aspect-oriented instrumentation was
made in the AspectBench Compiler using the notion of trace-
matches [1]. A tracematch is an extension of the AspectJ lan-
guage, which captures a regular pattern of events. In other
words, it is similar to other temporal specifications discussed
in Section 2.1. However, tracematches are given aspect se-
mantics so that they can be automatically weaved by the com-
piler. Since then, several RV tools, including MOP [34] and
Larva [18], rely on AspectJ for instrumentation. Aspect-oriented
instrumentation for other programming languages is less com-
mon. Here we mention the InterAspect system [41], which
performs instrumentation based on the intermediate represen-
tation of the GCC compiler, thus providing aspect-oriented
instrumentation for languages with GCC front-ends, in par-
ticular, C and C++.

Based on the mode of interaction between the instrumented
system and the checker, we distinguish between synchronous
and asynchronous monitoring. In synchronous monitoring,
whenever a relevant observation is produced by the system,
further execution is stopped until the checker confirms that
no violation has occurred. Synchronous monitoring may de-
liver a higher degree of assurance than the asynchronous one,
because it can block a dangerous action. However, this comes
typically with a higher instrumentation overhead. In some ap-
plications, where the system can tolerate a slower response,
but effects of a property violation are dramatic [18], this ad-
ditional overhead is justified.

4 Overhead reduction

Runtime checking of complicated properties that involve many
system variables imposes high overhead on the system perfor-
mance. There has been much work on reducing the checking
overhead by combining static analysis techniques with sub-
sequent runtime checking.

The concept of combining static and dynamic analysis
originates in the programming language community in the
context of typestate analysis. Typestate properties are proper-
ties of paths in a program and are similar to behavioral speci-
fications studied in the RV literature. A typical typestate prop-
erty may be expressed as a state machine constraining valid
sequences of API calls in a program. Residual typestate anal-
ysis has been proposed in [21]. It is based on the observation
that, while static typestate analysis often leads to inconclu-
sive results, it produces valuable information that can reduce
the state machine that needs to be analyzed at run time.

Complementary to the residual analysis is the work of
Eric Bodden and his colleagues [12,14]. Here, static analy-
sis of the code to be monitored is performed with the goal
of identifying instrumentation points that can be safely re-
moved. Results of this work have been implemented in the
tool Clara [13], which is included in this section.

In some cases, however, it may be acceptable to lower
the accuracy of monitoring by missing some of the execution
events. In these cases, there is a trade-off between accuracy
and lower overhead. The paper by X. Huang, et al., included
in this section [29], presents a control-theoretic approach to
implementing this trade-off.

5 Feedback and runtime enforcement

An important question when designing an RV system is what
to do when a violation is discovered. If the system is under-
going testing, it may be sufficient to alert the operator, who
will stop the system and diagnose the problem. However, in
order to realize the vision of RV for a post-deployment alter-
native to the design-phase verification, a more programmatic
approach is needed.

Several RV systems, including MaC and MOP, have the
ability to invoke user-specified recovery routines. Monitoring
specifications allow the user to specify, what actions are to
be invoked when a particular violation occurs, and what in-
formation is to be passed to the recovery routine. The system
can be partially reset or switched to a failsafe mode. In some
situations, for example, when monitoring performance and
quality-of-service properties [39], the system can be steered
to a more suitable state.

This approach relies on an implicit assumption that the
recovery routine will be effective, regardless of the reason
the property was violated. For a property that depends on the
interaction of several parts of a system, this assumption may
not hold. To give a simple example, suppose the property is
that the size of a queue, buffering traffic from a sender to a
receiver, should be always below a threshold. If the property



4 Oleg Sokolsky et al.: Introduction to the Special Section on Runtime Verification

is violated, it may mean that the sender is sending the mes-
sages too fast or that the receiver is processing them too slow.
Different recovery actions may be warranted in each of these
cases.

A possible approach to solving this deficiency is to in-
corporate diagnostic facilities into an RV system. The first
work to explore this line of research was [8]. A more efficient
approach, that combines on-line and off-line techniques has
been studied in [42].

Instead of having the monitor react to a property viola-
tion, it is sometimes possible to prevent the violation by de-
laying or reordering events, or by preventing certain events
from happening. This extension of the RV research has come
to be known as runtime enforcement. In general, some events
may not be under the control of a monitor. However, runtime
enforcement has proved very effective in many important ar-
eas such as security. The power of an enforcement moni-
tor determines the class of properties that can be enforced.
Blocking of events is sufficient to enforce safety properties [40],
while the capability to delay events allows one to handle some
liveness properties as well [33]. Falcone, et al., [24] general-
ize existing enforcement approaches in a single framework
and further extends the class of enforceable properties.

6 Future of runtime verification

The diversity of research topics centered around the general
theme of runtime verification, demonstrated by the articles in
this section, is the evidence of the vibrancy of the field and
the variety of practical problems that it is addressing. Con-
nections to a wide variety of established research areas such
as model-based testing, formal verification, debugging, etc.
bode well for RV research as it will keep flourishing as a nec-
essary, complementary technique, without being subsumed
by any of these areas.

References

1. C. Allan, P. Avgustinov, S. Kuzins, O. de Moor, D. Sereni,
G. Sittampalam, J. Tibble, A. S. Christensen, L. Hendren, and
O. Lhoták. Adding trace matching with free variables to As-
pectJ. In Proceedings of the 20th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and ap-
plications (OOPSLA’05), pages 345–364, October 2005.

2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# pro-
gramming system: An overview. In Workshop on Construction
and Analysis of Safe, Secure, and Interoperable Smart Devices
(CASSIS’04), volume 3362 of LNCS, March 2004.

3. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-
based runtime verification. In Proceedings of 5th International
Conference on Verification, Model Checking and Abstract In-
terpretation (VMCAI’04), volume 2937 of LNCS, pages 44–57,
January 2004.

4. H. Barringer and K. Havelund. TraceContract: A Scala DSL for
trace analysis. In Proceedings of 17th International Symposium
on Formal Methods(FM’11), volume 6664 of LNCS, June 2011.

5. H. Barringer, D. Rydeheard, and K. Havelund. Rule systems
for run-time monitoring: From Eagle to RuleR. In Proceedings
of the 7th Workshop on Runtime Verification (RV’07), volume
4839 of LNCS, pages 111–125, March 2007.

6. D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim. Jass -
Java with assertions. In Proceedings of the 1st Workshop on
Runtime Verification (RV’01), July 2001.

7. W. Bartussek and D.L. Parnas. Using assertions about traces
to write abstract specifications for software modules. In Pro-
ceedings of the 2nd Conference on European Cooperation in
Informatics, volume 65 of LNCS, pages 211–236, 1978.

8. A. Bauer, M. Leucker, and C. Schallhart. Model-based run-
time analysis of distributed reactive systems. In Proceed-
ings of the 2006 Australian Software Engineering Conference
(ASWEC’06), pages 243–252, April 2006.

9. A. Bauer, M. Leucker, and C. Schallhart. Comparing LTL se-
mantics for runtime verification. Journal of Logic and Compu-
tation, 20(3):651–674, 2010.

10. M. Blum and S. Kannan. Designing programs that check their
work. In Proceedings of the 21st Annual ACM Symposium on
Theory of Computing, pages 86–97, May 1989.

11. E. Bodden. A lightweight LTL runtime verification tool for
Java. In 9th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA’04), pages 306–307, October 2004.

12. E. Bodden. Efficient hybrid typestate analysis by determining
continuation-equivalent states. In International Conference on
Software Engineering (ICSE’10), pages 5–14, May 2010.

13. E. Bodden and L. Hendren. The Clara framework for hybrid
typestate analysis. Software Tools for Technology Transfer, Spe-
cial Section on Runtime Verification, in this volume, 2011.

14. E. Bodden, L. Hendren, and O. Lhoták. A staged static pro-
gram analysis to improve the performance of runtime moni-
toring. In Proceedings of the 21st European Conference on
Object-Oriented Programming (ECOOP’07), volume 4609 of
LNCS, pages 525–549, July 2007.

15. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leav-
ens, K. R. M. Leino, and E. Poll. An overview of JML tools
and applications. International Journal on Software Tools for
Technology Transfer, 7(3):212–232, June 2005.

16. K. Chen, S. Malik, and P. Patra. Runtime validation of transac-
tional memory systems. In International Symposium on Quality
Electronic Design, pages 750–756, 2008.

17. E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking.
MIT Press, 2000.

18. C. Colombo, G. Pace, and P. Abela. Compensation-aware
runtime monitoring. In Proceedings of the 1st International
Conference on Runtime Verificaiton (RV’10), volume 6418 of
LNCS, pages 214–228, November 2010.

19. M. D’Amorim and K. Havelund. Event-based runtime verifi-
cation of Java programs. In Workshop on Dynamic Program
Analysis (WODA’05), volume 30 of ACM Sigsoft Software En-
gineering Notes, pages 1–7, 2005.

20. D. Drusinsky. The Temporal Rover and the ATG Rover. In
SPIN Model Checking and Software Verification, volume 1885
of LNCS, pages 323–330, 2000.

21. M. B. Dwyer and R. Purandare. Residual dynamic typestate
analysis: Exploiting static analysis results to reformulate and
reduce the cost of dynamic analysis. In Proceedings of the 22nd

International Conference on Automated Software Engineering
(ASE’07), pages 124–133, November 2007.



Oleg Sokolsky et al.: Introduction to the Special Section on Runtime Verification 5

22. T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: Efficiently
computing the happens-before relation using locksets. In Pro-
ceedings of the Workshop on Formal Approaches to Testing and
Runtime Verification (FATES/RV’06), August 2006.

23. M. Fähndrich, M. Barnett, and F. Logozzo. Embedded contract
languages. In Proceedings of the 2010 ACM Symposium on
Applied Computing (SAC’10), pages 2103–2110, 2010.

24. Y. Falcone, J.-C. Fernandez, and L. Mounier. What can you
verify and enforce at runtime? Software Tools for Technology
Transfer, Special Section on Runtime Verification, in this vol-
ume, 2011.

25. B. Finkbeiner, S. Sankaranarayanan, and H. Sipma. Collecting
statistics about runtime executions. Formal Methods in System
Design, 27(3):253–274, 2005.

26. K. Havelund and G. Rosu. Monitoring Java programs with Java-
PathExplorer. In Proceedings of the 1st Workshop on Runtime
Verification, volume 55 of Electronic Notes in Theoretical Com-
puter Science. Elsevier Publishing, 2001.

27. K. Havelund and G. Rosu. Synthesizing monitors for safety
properties. In Proceedings of Tools and Algorithms for Con-
struction and Analysis of Systems (TACAS’02), volume 2280 of
LNCS, pages 342–356, April 2002.

28. K. Havelund and G. Rosu. Efficient monitoring of safety prop-
erties. International Journal on Software Tools for Technology
Transfer, 6(2):158–173, August 2004.

29. X. Huang, J. Seyster, S. Callanan, K. Dixit, R. Grosu, S. A.
Smolka, S. D. Stoller, and E. Zadok. Software monitoring with
controllable overhead. Software Tools for Technology Transfer,
Special Section on Runtime Verification, in this volume, 2011.

30. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented program-
ming. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), volume 1241 of LNCS,
pages 220–242, June 1997.

31. M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan.
Java-MaC: a run-time assurance approach for Java programs.
Formal Methods in Systems Design, 24(2):129–155, March
2004.

32. I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M.Viswanathan.
Runtime assurance based on formal specifications. In Proceed-
ings of the Int. Conf. on Parallel and Distributed Processing
Techniques and Applications (PDPTA’99), June 1999.

33. J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of
nonsafety policies. ACM Transactions on Information and Sys-
tem Security, 12(3):1–41, 2009.

34. P. Meredith, D. Jin, D. Griffith, F. Chen, and G. Rosu. An
overview of the MOP runtime verification framework. Software
Tools for Technology Transfer, Special Section on Runtime Ver-
ification, in this volume, 2011.

35. B. Meyer. Object-Oriented Software Construction. Prentice
Hall, 1988.

36. W. De Pauw and S. Heisig. Visual and algorithmic tooling for
system trace analysis: a case study. In Proceedings of the 22nd

ACM Symposium on Operating Systems Principles (SOSP’09),
2009.

37. R. Pellizzoni, P. Meredith, M. Caccamo, and G. Rosu. Hard-
ware runtime monitoring for dependable COTS-based real-time
embedded systems. In Proceedings of the 29th Real-Time Sys-
tems Symposium (RTSS’09), pages 481–491, December 2008.

38. S. Qadeer and S. Tasiran. Runtime verification of concurrency-
specific correctness criteria. Software Tools for Technology
Transfer, Special Section on Runtime Verification, in this vol-
ume, 2011.

39. U. Sammapun, I. Lee, O. Sokolsky, and J. Regehr. Statistical
runtime checking of probabilistic properties. In Proceedings
of the 7th Workshop on Runtime Verification, volume 4839 of
LNCS, pages 164–175, March 2007.

40. F. B. Schneider. Enforceable security policies. ACM Transac-
tions on Information and System Security, 3(1):30–50, 2000.

41. J. Seyster, K. Dixit, X. Huang, R. Grosu, K. Havelund, S.A.
Smolka, S.D. Stoller, and E. Zadok. Aspect-oriented instrumen-
tation with GCC. In Proceedings of the 1st International Con-
ference on Runtime Verification, volume 6418 of LNCS, pages
405–420, November 2010.

42. S. Tripakis. A combined on-line/off-line framework for black-
box fault diagnosis. In Proceedings of the 9th Workshop on
Runtime Verification (RV’09), pages 152–167, July 2009.

43. Liqiang Wang and Scott D. Stoller. Runtime analysis of atom-
icity for multi-threaded programs. IEEE Transactions on Soft-
ware Engineering, 32:93–110, February 2006.


