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Abstract This article addresses the question of what
properties can be monitored over an unreliable commu-
nication channel. We model unreliable communications
as mutations to finite traces and define what it means
for a property to be immune to such a mutation. We
also introduce the idea of a trustworthy verdict, which
is a verdict guaranteed to be correct in the presence of a
trace mutation. We show that the trustworthiness of a
verdict or immunity of a property for a single mutation
is equivalent to the trustworthiness or immunity for any
number of mutations. We classify trustworthy verdicts
on ω-regular properties by updating a recently proposed
monitorability-focused refinement of the safety-liveness
taxonomy. The article also includes a fixed-parameter
tractable algorithm to test an ω-regular property for
immunity to a trace mutation. Our results show that
many of the most common properties can be monitored
over unreliable channels.
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1 Introduction

In Runtime Verification (RV) the correctness of a pro-
gram execution is determined by another program,
called a monitor. In some cases, monitors run remotely
from the systems they monitor, either due to resource
constraints or for dependability. For example, ground
stations monitor a spacecraft, while an automotive com-
puter may monitor emissions control equipment. In
both cases, the program being monitored must transmit
data to a remote monitor.

Communication between the program and monitor
may not always be reliable, however, leading to incor-
rect or incomplete results. For example, data from the
Mars Science Laboratory (MSL) rover is received out-
of-order, and some low priority messages may arrive
days after being sent [29]. Even dedicated debugging
channels like ARM Embedded Trace Macrocell (ETM)
have finite bandwidth and may lose data during an
event burst [6]. Some works in the field of RV have
begun to address the challenges of imperfect communi-
cation, but the problem has been largely ignored in the
study of monitorability.

Our recent work introduced a definition for a prop-
erty to be considered monitorable over an unreliable
channel [41]. We defined common mutations that may
occur to a trace and provided a decision procedure to
test ω-regular properties for monitorability over a chan-
nel with such a mutation. This article expands on that
work by defining when a property can be unmonitorable
over an unreliable channel but still have value to mon-
itor. We also provide a classification of properties that
may be monitored over certain unreliable channels.

The article is organized as follows. We first define
notation used throughout the article in Section 2. We
then introduce foundations necessary for understand-
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ing the article in Section 3, first examining the con-
cept of uncertainty in monitoring in Section 3.1 and
then reviewing common notions of monitorability in
Section 3.2. We then define common trace mutations
due to unreliable channels in Section 4. In Section 5,
we describe what makes a property immune to a trace
mutation and how that relates to monitorability. Sec-
tion 6 expands on that idea by defining how a verdict
for a property may be trustworthy over an unreliable
channel even when the property is not immune to the
channel’s mutation. We then review and augment the
Finitely-Refutable/Finitely-Satisfiable property classi-
fication in Section 7 by adding subclasses relevant to
common mutations. We use this augmented classifica-
tion to categorize properties with trustworthy verdicts
over those mutations in Section 8 including a discus-
sion of the utility of such properties in Section 8.5. We
work towards a decision procedure for the immunity of
an ω-regular property by mapping the definition of im-
munity to a property of derived monitor automata in
Section 9. Finally, we present a decision procedure for
the immunity of an automaton to a mutation and prove
it correct in Section 10. We then present related work in
Section 11. Section 12 discusses some of the conclusions
from the article and possible future work.

2 Preliminary Notation

We use N to denote the set of all natural numbers in-
cluding zero and ∞ to denote infinity. We write ⊥ to
denote false and > to denote true.

In this work, we consider both finite and infinite
sequences. A finite sequence σ of n values is written
σ = 〈v1, · · · , vn〉 where both vi and σ(i) mean the i’th
item in the sequence. In this work, sequence index num-
bers begin at one. The notation 〈v1, v2, · · · 〉 is used to
denote either an infinite sequence or a finite sequence
of indeterminate length. A value x is in a sequence σ,
denoted by x ∈ σ, iff ∃ i ∈ N such that σ(i) = x.
The length of a sequence σ is written |σ| ∈ N ∪ {∞}.
The suffix of a sequence σ beginning at the i’th item
in the sequence is written σi. The concatenation of two
sequences σ, τ is written σ · τ where σ is finite and τ is
either finite or infinite. A finite sequence u is a prefix of
a finite or infinite sequence σ, written u v σ, iff there
exists a sequence v such that u · v = σ.

We denote the cross product of A and B as A × B
and the set of total functions from A to B as A → B.
Given a set S, S∗ denotes the set of finite sequences
over S where each sequence element is in S, Sω de-
notes the set of infinite sequences of such elements, and
S∞ = S∗ ∪ Sω. Given a set S, we write 2S to mean the
set of all subsets of S. The cardinality of a set S is

written |S|. A map is a partial function M : K 7→ V

where K is a domain of keys mapped to the set V of
values. We write M(k)← v to denote M updated with
k mapped to v. AP is a finite, non-empty set of atomic
propositions. Throughout the work, we assume an al-
phabet, denoted Σ = 2AP. An element of the alphabet
is a symbol s ∈ Σ. A trace, word, or string is a sequence
of symbols. A language, or a property, is a set of words.
A trace σ ∈ Σ∞ satisfies a property L ⊆ Σ∞ if σ ∈ L
or violates it if σ /∈ L.

In this work, we use Finite Automata (FAs) to repre-
sent both regular and ω-regular languages. We use Non-
deterministic Büchi Automata (NBAs) to represent ω-
regular languages, which accept infinite strings, and
Non-deterministic Finite Automata (NFAs) to repre-
sent regular languages, which accept finite strings. Both
an NBA and an NFA are written A = (Q,Σ, q0, δ, F ),
where Q is the set of states, Σ is the alphabet, q0 ∈ Q
is the initial state, δ : Q × Σ → 2Q is the transition
function, and F ⊆ Q is the set of accepting states. The
two types of FAs differ in their accepting conditions.

A path (or run) through an FA A from a state
q ∈ Q over a word σ ∈ Σ∞ is a sequence of states
π = 〈q1, q2, · · · 〉 such that q1 = q and qi+1 ∈ δ(qi, σi).
We writeA(q, σ) to denote the set of all runs onA start-
ing at state q with the word σ. The set of all reachable
states in an FA A from a starting state q0 is denoted
Reach(A, q0)={q ∈ Q : ∃σ ∈ Σ∞.∃π ∈ A(q0, σ). q ∈ π}.

A finite run on an NFA π = 〈q1, q2, · · · , qn〉 is con-
sidered accepting if qn ∈ F . For an infinite run ρ on an
NBA, we use Inf(ρ) ⊆ Q to denote the set of states that
are visited infinitely often, and the run is considered
accepting when Inf(ρ) ∩ F 6= ∅. L(A) denotes the lan-
guage accepted by an FA A. The complement or nega-
tion of an FA A = (Q,Σ, q0, δ, F ) is written A where
L(A) = Σ∗ \L(A) for NFAs and L(A) = Σω \L(A) for
NBAs.

An NFA is a Deterministic Finite Automaton (DFA)
iff ∀q ∈ Q. ∀α ∈ Σ. |δ(q, α)| = 1. Given a DFA
(Q,Σ, q0, δ, F ), a state q ∈ Q, and a finite string
σ ∈ Σ∗ where |σ| = n, the terminal (nth) state of the
run over σ beginning in q is given by the function
δ∗ : Q×Σ∗ → Q.

We use Linear Temporal Logic (LTL) formulae
throughout the article to illustrate examples of proper-
ties because it is a common formalism in the RV area.
The syntax of these formulae is defined by the following
inductive grammar where p is an atomic proposition, U
is the Until operator (ϕ Uψ means ψ must eventually
hold and ϕ must hold until then), and X is the Next op-
erator (Xϕ means ϕ must hold in the next state, which
must exist).

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ
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We use the following inductive semantics for the infi-
nite case, where σ ∈ Σω. The reader should assume the
use of infinite-trace semantics unless otherwise specified
where LTL is found in this article.
σ |= p if p ∈ σ(1)
σ |= ¬ϕ if σ 6|= ϕ

σ |= ϕ ∨ ψ if σ |= ϕ or σ |= ψ

σ |= Xϕ if σ2 |= ϕ

σ |= ϕ Uψ if ∃k ≥ 1. σk |= ψ ∧ ∀j. 1 ≤ j < k. σj |= ϕ

The language of an LTL formula ϕ is given in the infi-
nite case by L[[ϕ]] = {σ ∈ Σω : σ |= ϕ}.

For the finite case, where σ ∈ Σ∗, we use the follow-
ing inductive semantics.
σ |= p if |σ| > 0 and p ∈ σ(1)
σ |= ¬ϕ if σ 6|= ϕ

σ |= ϕ ∨ ψ if σ |= ϕ or σ |= ψ

σ |= Xϕ if |σ| > 0 and σ2 |= ϕ

σ |= ϕ Uψ if ∃k ≥ 1. σk |= ψ ∧ ∀j. 1 ≤ j < k. σj |= ϕ

The language of an LTL formula ϕ is given in the finite
case by LF [[ϕ]] = {σ ∈ Σ∗ : σ |= ϕ}.

For both infinite and finite-trace semantics we also
define the standard notation: true = p ∨ ¬p for any
proposition p, false = ¬true, ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ),
ϕ → ψ = ¬ϕ ∨ ψ, Fϕ = true Uϕ (eventually ϕ), and
Gϕ = ¬F¬ϕ (globally ϕ).

Example: Consider an infinite trace σ where p

holds for the entire trace except the tenth symbol,
which is the only symbol where q holds. The LTL for-
mula Gp is violated for σ in the infinite case and it is
violated in the finite case for prefixes of σ of at least
length ten. The formula is satisfied, however, in the
finite case for prefixes of σ of length less than ten. Like-
wise, the LTL formula Fq is satisfied for σ in the infinite
case and in the finite case for prefixes of σ of at least
length ten. It is violated for prefixes of σ of length less
than ten.

3 Foundations of Monitoring

In this section, we establish definitions from previous
works referenced in the article. We begin with the truth
domains we use and how they relate to monitoring. We
then provide traditional definitions of monitorability.

3.1 Uncertainty

In RV, there are two prevailing options for checking
that a trace of a program’s execution satisfies a prop-
erty: offline and online. In offline RV, we consider a fi-
nite trace produced by a program that has terminated.

In this case, properties are specified as languages of fi-
nite words, for example using a finite-trace semantics
to interpret LTL formulae. In online RV, we consider
a continuously expanding finite prefix produced by a
running program. In this case, properties are specified
as languages of infinite words, for example using an
infinite-trace semantics to interpret LTL formulae.

In this work, we are interested in checking finite
prefixes of execution traces against properties specified
as languages of infinite words. We say a finite string
determines inclusion in (or exclusion from) a language
of infinite words only if all infinite extensions of the
prefix are in (or out of) the language. If some infinite
extensions are in the language and some are out, then
the finite prefix does not determine inclusion and the
result is uncertainty. The problem appears with an LTL
property such as Fa, which is satisfied if an a appears
in the string. However, if no a has yet been observed,
and the program is still executing, it is unknown if the
specification will be satisfied in the future.

To express notions of uncertainty in monitoring lan-
guages of infinite words, extensions to the Boolean
truth domain B2 = {>,⊥} have been proposed. B3 adds
a third verdict of ? to the traditional Boolean notion of
true or false to represent the idea that the specification
is neither satisfied nor violated by the current finite pre-
fix [13]. B4 replaces ? with presumably true (>p) and
presumably false (⊥p) to provide more information on
what has already been seen [14].

The verdicts >p and ⊥p differentiate between pre-
fixes that would satisfy or violate the property inter-
preted with finite trace semantics. The intuition is that
⊥p indicates that something is required to happen in
the future, while >p means there is no such outstand-
ing event. For example, if the formula G(a → Fb) is
interpreted as four-value LTL (LTL4) (also called Run-
time Verification LTL (RV-LTL) [14], which uses B4),
the verdict on a trace 〈{c}〉 is >p because a has not
occurred, and therefore no b is required, while the ver-
dict on 〈{a}〉 is ⊥p because there is an a but as yet
no b. If the same property is interpreted as three-value
LTL (LTL3) (which uses B3) the verdicts on both traces
would be ?.

The above intuitions are formalized in Definition 1.
Here, we define a property L to be a set of both finite
and infinite traces. The infinite words determine the
permanent verdicts of > and ⊥ while the finite words
are used in the B4 case to choose between >p and ⊥p.
For both B3 and B4, Definition 1 includes a function
that evaluates a finite trace prefix with respect to L.

Definition 1 (Evaluation Functions) Given a
property L ⊆ Σ∞ for each of the truth domains
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V ∈ {B3,B4}, we define evaluation functions of the form
EV : 2Σ∞ → Σ∗ → V as the following.
For B3 = {⊥,?,>},

EB3(L)(σ) =


⊥ if σ · µ /∈ L ∀µ ∈ Σω

> if σ · µ ∈ L ∀µ ∈ Σω

? otherwise

For B4 = {⊥,⊥p,>p,>},

EB4(L)(σ) =


EB3(L)(σ) if EB3(L)(σ) 6= ?
⊥p if EB3(L)(σ) = ? and σ /∈ L
>p if EB3(L)(σ) = ? and σ ∈ L

Example: Suppose we would like to moni-
tor the LTL formula ϕ = G(a) ∨ b using the
B4 truth domain. The language (property) to
monitor is L = L[[ϕ]] ∪ LF [[ϕ]]. The follow-
ing are the evaluations for given finite prefixes:
EB4(L)(〈{b}〉) = > All infinite strings begin-

ning with this prefix are in
the language.

EB4(L)(〈{}〉) = ⊥ No infinite strings begin-
ning with this prefix are in
the language.

EB4(L)(〈{a}〉) = >p Some infinite strings be-
ginning with this prefix
are in the language, and
the finite prefix is itself
in the language (because
〈{a}〉 ∈ LF [[ϕ]]).

Monitors also exist for properties that cannot be
specified in LTL or other common temporal logics. This
work uses language-theoretic formalisms that allow for
the monitoring of any language of finite and infinite
words. For example, it is possible to monitor a prop-
erty consisting of an infinite repetition of every valid C
program. Clearly, such a language is not representable
in LTL since recognizing it requires a stack.

For the verdicts specified in Definition 1 for EB4 to
make intuitive sense, the infinite and finite words in the
language must be related. For an LTL formula ϕ, the
infinite words are defined by L[[ϕ]] and the finite words
by LF [[ϕ]]. Given a language of finite words, Falcone et
al. defined how to construct both the finite-words and
infinite-words in [31]. In the general case, however, the
precise relationship between the two subsets has not
been defined. This relationship remains a subject for
future work on monitoring non-ω-star-free languages.

Introducing the idea of uncertainty in monitoring
causes the possibility that some properties might never
reach a definite, true or false verdict. A monitor that
will only ever return a ? result does not have much
utility. The monitorability of a property captures this
notion of the reachability of definite verdicts.

3.2 Monitorability

In this section, we examine the four most common def-
initions of monitorability. To define monitorability for
properties over unreliable channels, we must first de-
fine monitorability for properties over ideal channels.
Rather than choose one definition, we introduce estab-
lished definitions and allow the reader to select that of
their preference.

We begin with the definition of σ-Monitorability,
which depends not only on the monitored property but
also on the already-seen trace prefix. For each definition
of monitorability that depends only upon the monitored
property M ∈ {C(lassical), W(eak), A(lternative)}, we
introduce an evaluation predicate of the form
M M

on : 2Σ∞ → B2 that returns true iff the input prop-
erty is monitorable. We say that an LTL formula ϕ is
monitorable if its language L[[ϕ]]∪LF [[ϕ]] is monitorable.

3.2.1 σ-Monitorability

Pnueli and Zaks introduced the first formal definition
of monitorability in their work on Property Specifica-
tion Language (PSL) for model checking in 2006 [52].
They define monitorable properties given a trace pre-
fix σ. Subsequent works all define monitorability for a
property without assuming knowledge of any part of
the trace.

Definition 2 (σ-Monitorability) Given a finite se-
quence σ ∈ Σ∗, a property L ⊆ Σ∞ is σ-monitorable
iff ∃η ∈ Σ∗. ∀s ∈ Σω. (σ · η · s |= L or σ · η · s 6|= L).

That is, there exists another finite sequence η such that
σ · η determines inclusion in or exclusion from L.

For example, the LTL formula GFp is non-σ-
monitorable for any finite prefix, because the trace
needed to determine the verdict must be infinite. Other
properties are σ-monitorable for some prefixes but not
others. For example, there is no point to continuing to
monitor GFp ∨ q if q does not hold in the first symbol
of the trace.

3.2.2 Classical Monitorability

Bauer, Leuker, and Schallhart reformulated this defini-
tion of monitorability and proved that safety (e.g. Gp)
and guarantee (e.g. Fp) properties represent a proper
subset of the class of monitorable properties [15]. It
was already known that the class of monitorable prop-
erties was not limited to safety and guarantee proper-
ties from the work of d’Amorim and Roşu on moni-
toring ω-regular languages [24], however that work did
not formally define monitorability. Diekert and Leuker
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have also defined a purely topological version of this
definition of monitorability [26].

The definition of monitorability given by Bauer et
al. is identical to Definition 2 except that it considers all
possible trace prefixes instead of a specific prefix [30, 31]
and it excludes languages with finite words. The restric-
tion to infinite words is due to their interest in defining
monitorable LTL3 properties, which only considers in-
finite traces.

Bauer et al. use Kupferman and Vardi’s definitions
of good and bad prefixes of an infinite trace [42] to define
what they call an ugly prefix. That is, given a language
of infinite strings L ⊆ Σω,
– a finite word b ∈ Σ∗ is a bad prefix for L iff ∀s ∈ Σω.
b · s /∈ L, and

– a finite word g ∈ Σ∗ is a good prefix for L iff
∀s ∈ Σω. g · s ∈ L.

Bauer et al. use good and bad prefixes to define ugly
prefixes and then use ugly prefixes to define Classical
Monitorability.

Definition 3 (Ugly Prefix) Given a language of in-
finite strings L ⊆ Σω, a finite word u ∈ Σ∗ is an ugly
prefix for L iff @s ∈ Σ∗. u · s is either a good or bad
prefix.

Definition 4 (Classical Monitorability) Given a
language of infinite strings L ⊆ Σω,

M C
on(L) = @u ∈ Σ∗. u is an ugly prefix for L

Many works have explored decision procedures
for Classical Monitorability. Diekert, Muscholl, and
Walukiewicz proved that the problem is PSPACE-Hard
and can be solved in EXPSPACE [27] for ω-regular
languages. This result was most recently refined by
Peled and Havelund, who showed that deciding Classi-
cal Monitorability for these languages is EXPSPACE-
Complete [49].

3.2.3 Weak Monitorability

Recently, both Chen et al. [21] and Peled and
Havelund [49] proposed a weaker definition of monitora-
bility that includes more properties than the Classical
definition. They observed that there are properties that
are classically non-monitorable, but that are still useful
to monitor. For example, ¬M C

on(L[[a ∧GFa]]) because
any trace that begins with a must then satisfy or vio-
late GFa, which is not possible. However, a ∧ GFa is
violated by traces that do not begin with a, so it may
have some utility to monitor.

Definition 5 (Weak Monitorability) Given a lan-
guage of infinite strings L ⊆ Σω,

M W
on(L) = ∃p ∈ Σ∗. p is not an ugly prefix for L

Deciding that an ω-regular property is Weakly Mon-
itorable requires testing that no information may be
obtained from the monitor. Peled and Havelund gave
an algorithm for deciding Weak Monitorability for
these languages and showed that it is EXPSPACE-
Complete [49].

3.2.4 Alternative Monitorability

Falcone et al. observed that the class of monitorable
properties should depend on the truth domain of the
monitored formula. However, they noticed that chang-
ing from B3 to B4 does not influence the set of mon-
itorable properties under classical monitorability [30,
31]. To resolve this perceived shortcoming, the authors
of [30, 31] introduce an alternative definition of mon-
itorability. They introduce the notion of an r-property
(runtime property) which separates the property’s lan-
guage of finite and infinite traces into disjoint sets. We
do not require this distinction and treat the property
as a single set containing both finite and infinite traces.
Falcone et al. then define an alternative notion of moni-
torability for a property using a variant of Definition 1.

Definition 6 (Alternative Monitorability) Given
a truth domain V and an evaluation function for V,
EV : 2Σ∞ → Σ∗ → V and a property L ⊆ Σ∞,

M A
on(L) = ∀σin ∈ L ∩Σ∗. ∀σout /∈ L ∩Σ∗.

EV(L)(σin) 6= EV(L)(σout)

Definition 6 says that, given a truth domain, a prop-
erty with both finite and infinite words is monitorable
if evaluating the finite strings in the property always
yield different verdicts from evaluating the finite strings
out of the property. By Definition 6, only properties
with finite words are considered monitorable and its re-
sults must be understood in the same context as EB4 ,
where finite words identify prefixes where no outstand-
ing event precludes satisfaction.

Procedures for deciding if an ω-regular property is
Alternatively Monitorable depend on the truth domain.
For B3, monitorable properties are exactly the union of
Safety and Guarantee properties (see Section 8) [31].
Determining inclusion in these classes is known to be
PSPACE-Complete [55]. For B4, monitorable properties
are the Reactivity properties, which are all properties
representable in LTL [31]. Deciding if a language repre-
sented as an NBA is a Reactivity property is PSPACE-
Complete [25].

4 Unreliable Channels

For a property to be monitorable over an unreliable
channel it must be monitorable over ideal channels, and
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it must reach the correct verdict despite the unreliable
channel. To illustrate this, we introduce an example.

4.1 An Example with Unreliable Channels

Consider the LTL formula ϕ = Fa over the alpha-
bet Σ = {{a}, {¬a}}. That is, all traces that contain
at least one symbol with a satisfy ϕ. We assume that
the trace is monitored remotely, and, for this example,
we will adopt a B3 truth domain. Using EB3 from Defi-
nition 1, the verdict on finite prefixes without an a, is ?,
while the verdict when an a is included is >. Figure 1a
shows the NBA for such a property.

q1 q2
a

¬a a,¬a

(a) NBA for Fa

q1

q2 q3

a¬b

b

¬a¬b
¬a¬b

b
a¬b

Σ

(b) NBA for G(a→ F¬a) ∨ Fb

Fig. 1

4.1.1 Monitorability under reordering

Suppose that the channel over which the trace is trans-
mitted may reorder events. That is, events are guaran-
teed to be delivered, but not necessarily in the same
order in which they were sent.

We argue that Fa should be considered monitorable
over a channel that reorders the trace. First, the prop-
erty is monitorable over an ideal channel (see Sec-
tion 3.2). Second, given any trace prefix, reordering the
prefix would not change the verdict of a monitor. Any a
in the trace will cause a transition to state q2, regardless
of its position.

Note that we are not concerned with when the ver-
dict occurs. For example, assume a trace 〈{a}, {¬a}〉
that is reordered to 〈{¬a}, {a}〉. Both traces result in a
B3 verdict of >, but in the reordered case it comes one
symbol later. This article considers these results to be
equivalent, but future work could consider the implica-
tions of such a change in timing.

4.1.2 Monitorability under loss

Now suppose that, instead of reordering, the channel
over which the trace is transmitted may lose events.

That is, the order of events is guaranteed to be main-
tained, but some events may be missing from the trace
observed by the monitor.

We argue that Fa should not be considered mon-
itorable over a channel that loses events, even though
the property is deemed to be monitorable over an ideal
channel. It is possible for the verdict from the monitor
to be different from what it would be given the original
trace. For example, assume a trace 〈{a}, {¬a}〉. For this
trace, the verdict from an LTL3 monitor would be >.
However, if the first symbol (containing a) is lost, the
verdict would be ?.

Note that there may still be some utility to monitor
Fa when symbols may be lost because a > verdict is
actionable. That is, if the monitor receives a trace 〈{a}〉
then a must have held in the original trace as well. In
this case, we call > a trustworthy verdict. We explore
the concept of trustworthy verdicts in Section 6.

4.2 Trace Mutations

To model unreliable channels, we introduce trace muta-
tions. A mutation represents the possible modifications
to traces from communication over unreliable chan-
nels. These mutations are defined as relations between
unmodified original traces and their mutated counter-
parts. Trace mutations include only finite traces be-
cause only finite prefixes may be mutated in practice.

There are four trace mutations Mk ⊆ Σ∗ ×Σ∗
where M denotes any of the relations in Defini-
tions 7, 8, 9, and 10 or a union of any number of them,
and k denotes the number of inductive steps.

Definition 7 (Loss Mutation)
Loss = {(σ, σ′) : σ = σ′∨

∃α, β ∈ Σ∗. ∃x ∈ Σ.
σ = α · 〈x〉 · β ∧ σ′ = α · β}

Definition 8 (Corruption Mutation)
Corruption = {(σ, σ′) :

∃α, β ∈ Σ∗. ∃x, y ∈ Σ.
σ = α · 〈x〉 · β ∧ σ′ = α · 〈y〉 · β}

Definition 9 (Stutter Mutation)
Stutter = {(σ, σ′) : σ = σ′∨

∃α, β ∈ Σ∗. ∃x ∈ Σ.
σ = α · 〈x〉 · β ∧ σ′ = α · 〈x, x〉 · β}

Definition 10 (Out-of-Order Mutation)
OutOfOrder = {(σ, σ′) :

∃α, β ∈ Σ∗. ∃x, y ∈ Σ.
σ = α · 〈x, y〉 · β ∧ σ′ = α · 〈y, x〉 · β}
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Definition 11 (Inductive k-Mutations) Given any
mutation or union of mutations M, we define Mk in-
ductively as the following.
M1 ∈ {⋃

m : m ∈ 2{Loss,Corruption,Stutter,OutOfOrder} ∧m 6= ∅
}
Mk+1 =Mk ∪ {

(σ1, σ3) : ∃σ2. (σ1, σ2) ∈Mk ∧ (σ2, σ3) ∈M1

}

These mutations are based on Lozes and Villard’s
interference model [48]. Other works on the verifica-
tion of unreliable channels, such as [19], have cho-
sen to include insertion errors instead of Corruption
and OutOfOrder. We prefer to define Corruption and
OutOfOrder because the mutations more closely reflect
our real-world experiences. For example, packets sent
using the User Datagram Protocol (UDP) may be cor-
rupted or arrive out-of-order, but packets must be sent
before these mutations occur.

In this work, we assume that the monitor has no in-
formation about how a received trace has been modified
by an unreliable channel. Instead, we only permit that
the channel is known to sometimes mutate traces in a
certain manner (e.g. losing symbols). This differs from
and is a weaker assumption than some other works,
where trace modifications are marked [34, 11, 40, 45].

We say a mutation M is prefix-assured when
∀(σ, σ′) ∈ M such that |σ| > 1, ∃(σp, σ′p) ∈ M , where
σp v σ and σ′p v σ′. All mutations M1 are prefix-
assured. Combining mutations is possible under Defi-
nition 11, and it is possible to form any combination
of strings by doing so. This capability is important to
ensure the mutation model is complete.

Definitions 7 through 10 include every possible mu-
tation. That is, it is possible to apply a combination
of these mutations to a trace to transform it into any
other trace.

Theorem 1 (Completeness of Mutations) Given
any two sets of non-empty traces S, S′ ⊆ Σ∗ \ {ε},
∃k ∈ N. (Loss ∪ Corruption ∪ Stutter)k = S × S′.

Proof: First, Definition 8 allows an arbitrary sym-
bol in a string to be changed to any other symbol.
Thus, ∀σ′ ∈ Σ∗ there exists σ : (σ, σ′) ∈ Corruptionn
where |σ| = |σ′| and n ≥ |σ|. A string can also be
lengthened or shortened arbitrarily, so long as it is
non-empty. Definition 9 allows lengthening, because
Stutter(σ, σ′) =⇒ |σ| < |σ′|, while Definition 7 allows
shortening, because Loss(σ, σ′) =⇒ |σ| > |σ′|. ut

These mutations are general and it may be useful
for practitioners to define their own, more constrained
mutations based on domain knowledge. For example, if

a communications protocol guarantees delivery of high
priority messages but allows low priority messages to
be lost, this can be modeled as a mutation. Some prop-
erties may be monitorable over this more-precise muta-
tion when they would not be monitorable over the Loss
mutation, which permits losing any message.

Even Definition 10 (OutOfOrder) is a more-
constrained version of the Corruption mutation. That
is, OutOfOrdern ⊂ Corruption2n ∀n ∈ N. OutOfOrder
is unnecessary for the completeness of the mutation
model, as can be seen in Theorem 1. However, we con-
sider the mutation to be general enough to include here,
and a combination of Definitions 7, 8, and 9 can only
over-approximate the OutOfOrder relation.

5 Immunity to Trace Mutations

The two requirements for a property to be monitorable
over an unreliable channel are that the property is mon-
itorable over an ideal channel and that the property
is immune to the effects of the unreliable channel. A
monitor must be able to reach a meaningful, actionable
verdict for a trace prefix, and the verdict must also be
correct. If a monitored property is immune to a muta-
tion then we can trust the monitor’s verdict whether or
not the observed trace is mutated.

The notion of immunity to a mutation is related
to the concept of monotonicity of entailment of a logi-
cal system. For a monotonic logic, anything that could
be concluded before information is added can still be
concluded after. In this case, however, mutations to a
trace may remove or modify information as well as add.
Monotonicity of a property with regard to past events
was also previously defined by Joshi, Tchamgoue, and
Fischmeister for channels with Loss to mean that the
property’s monitor cannot change its verdict if lost in-
formation is added to the trace [40]. Monotonicity has
also been used in RV in the sense of a monotone func-
tion to describe how verdicts like > and ⊥ may not
change once reached [22]. Here, we use the term immu-
nity to avoid overloading the word monotonic further
in the field of RV.

Definition 12 characterizes properties where the
given trace mutation will have no effect on the evalua-
tion verdict. For example, the LTL formula Fa from
Figure 1a is immune to OutOfOrder1 (an LTL for-
mula ϕ is immune to a mutation Mk if its language
L[[ϕ]]∪LF [[ϕ]] is immune toMk) with truth domain B3
or B4 because reordering the input trace cannot change
the verdict.

Definition 12 (Full Immunity to Unreliable
Channels) Given a property L ⊆ Σ∞, a trace mu-
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tationMk ⊆ Σ∗ ×Σ∗, a truth domain V, and an eval-
uation function EV : 2Σ∞ → Σ∗ → V, L is immune to
Mk iff ∀(σ, σ′) ∈Mk. EV(L)(σ) = EV(L)(σ′).

Example: We want to check if the LTL for-
mula ϕ = Ga is immune to the Stutter1 mutation for
truth domain B4. The property for this formula is
L = L[[ϕ]] ∪ LF [[ϕ]]. L is immune to Stutter1 for B4 iff
the verdict from EB4 is always the same when applied
to both the left and right sides of every pair in Stutter1.
Where Σ = {{a}, {¬a}}, we check the following:
– (EB4(L)(〈{a}〉),EB4(L)(〈{a}〉)) = (>p,>p)
– (EB4(L)(〈{¬a}〉),EB4(L)(〈{¬a}〉)) = (⊥,⊥)
– (EB4(L)(〈{a}〉),EB4(L)(〈{a}, {a}〉)) = (>p,>p)
– (EB4(L)(〈{¬a}〉),EB4(L)(〈{¬a}, {¬a}〉)) = (⊥,⊥)
– (EB4(L)(〈{a}, {a}〉),EB4(L)(〈{a}, {a}, {a}〉)) ...
If every pair has an equal verdict, then L (and ϕ) is
immune to Stutter1 for B4.

Definition 12 specifies a k-Mutation from Defini-
tion 11, but a property that is immune to a mutation
for some k is immune to that mutation for any k. This
significant result forms the basis for checking for muta-
tion immunity in Section 10. The intuition is that, since
we assume any combination of symbols in the alphabet
is a possible ideal trace, and a mutation could occur at
any time, one mutation is enough to violate immunity
for any vulnerable property.

Theorem 2 (Single Mutation Immunity Equiv-
alence) Given a property L ⊆ Σ∞, a trace mutation
M ⊆ Σ∗ × Σ∗, and a number of applications of that
mutation k, L is immune to Mk iff L is immune to
M1.

Proof: Since k-Mutations are defined inductively,
Theorem 2 is equivalent to the statement that L is
immune to Mk+1 iff L is immune to Mk. Now as-
sume by way of contradiction a property Lbad ⊆ Σ∞
such that Lbad is immune to some k-Mutation Mk

but not to Mk+1. That is, given a truth domain
V, there exists a pair of traces (σ1, σ3) ∈ Mk+1

such that EV(Lbad)(σ1) 6= EV(Lbad)(σ3). From Def-
inition 11, either (σ1, σ3) ∈ Mk, or there ex-
ists both (σ1, σ2) ∈ Mk and (σ2, σ3) ∈ M1

such that EV(Lbad)(σ1) 6= EV(Lbad)(σ3). It cannot
be true that (σ1, σ3) ∈ Mk since Lbad is im-
mune to Mk so there must exist pairs (σ1, σ2) ∈Mk

and (σ2, σ3) ∈M1. Since Lbad is immune to Mk,
EV(Lbad)(σ1) = EV(Lbad)(σ2) so it must be true that
EV(Lbad)(σ2) 6= EV(Lbad)(σ3). However, it is clear from
Definition 11 that Mk ⊆ Mk+1, so M1 ⊆ Mk for any
k, which is a contradiction.

For the reverse case, assume a property Lsad ⊆ Σ∞
such that Lsad is not immune to some k-Mutation Mk

but is immune to Mk+1. However, as we saw before,
Mk ⊆ Mk+1 so Lsad must not be immune to Mk+1, a
contradiction. ut

Immunity under Definition 12 is too strong to
be a requirement for monitorability over an unreli-
able channel, however. Take, for example, the property
G(a → F¬a) ∨ Fb, as shown in Figure 1b. By Defini-
tion 12 with truth domain B4 this property is vulnerable
(not immune) to OutOfOrder1 because reordering sym-
bols may change the verdict. For example, the trace
〈{a,¬b}, {¬a,¬b}〉 results in a verdict of >p, but re-
ordering the trace to 〈{¬a,¬b}, {a,¬b}〉 changes the
verdict to ⊥p. However, this property is monitorable
under all definitions in Section 3.2, because it is always
possible to reach a > verdict if a b appears. We would
like a modified definition of immunity that only consid-
ers the parts of a property that affect its monitorability.

To achieve this modified definition of immunity, we
consider only the determinization of the property to be
crucial. Definition 13 characterizes properties for which
satisfaction and violation are unaffected by a mutation.
We call this true-false immunity, and it is equivalent to
immunity with truth domain B3. The intuition is that
B3 treats all verdicts outside {>,⊥} as the symbol ?
so immunity with this truth domain does not concern
non-true-false verdicts.

Definition 13 (True-False Immunity to Un-
reliable Channels) Given a trace mutation
Mk ⊆ Σ∗ ×Σ∗, a language L ⊆ Σ∞ is true-false
immune to Mk iff L is immune to Mk for the truth
domain B3.

The true-false immunity of a property to a muta-
tion is necessary but not sufficient to show that the
property is monitorable over an unreliable channel. For
example, the LTL formula GFa is true-false immune
to all mutations because EB3(L[[GFa]])(σ) = ? for any
prefix σ ∈ Σ∗, but the property is not monitorable. We
can now define monitorability over unreliable channels
in the general case.

Definition 14 (Monitorability over Unreliable
Channels) Given a language L ⊆ Σ∞, a trace muta-
tionMk ⊆ Σ∗×Σ∗, and a definition of monitorability
M M

on : 2Σ∞ → B2, L is monitorable overMk iff M M
on(L)

and L is true-false immune toMk.

The question of what languages are considered mon-
itorable by Definitions 4, 5, and 6 has largely been an-
swered by prior work. To understand what languages
are monitorable over an unreliable channel, we must
understand what languages are true-false immune to
the given mutation.
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6 Trustworthy Verdicts

Some properties that are unmonitorable over an unreli-
able channel may still have some utility. A property that
is not true-false immune to a trace mutation may still
yield trustworthy verdicts when monitored. This idea is
similar to that of weak-monitorability, defined in Sec-
tion 3.2.3, in that some properties may be interesting
to monitor despite being classically unmonitorable. In
this section we define trustworthy verdicts and examine
their practical consequences.

A trustworthy verdict for a property over an unreli-
able channel implies the same verdict for the property
over an ideal channel. For example, EB3(L[[Fa]])(σ) = >
(the NBA for the LTL formula Fa is shown in Fig-
ure 1a) when there exists a symbol in σ where a holds.
Over a channel with the Loss mutation, a > verdict
guarantees that a held in the original as well as the
mutated trace, since Loss cannot add such a symbol.

Definition 15 (Trustworthy Verdicts) Given a
property L ⊆ Σ∞, a trace mutation Mk ⊆ Σ∗ ×Σ∗,
a truth domain V, and an evaluation func-
tion EV : 2Σ∞ → Σ∗ → V, a verdict v ∈ V is
trustworthy for L over a channel with Mk iff
∀(σ, σ′) ∈Mk. (EV(L)(σ′) = v)→ (EV(L)(σ) = v).

Definition 15 specifies a k-Mutation from Defini-
tion 11, but a property that is immune to a mutation
for some k is immune to that mutation for any k. This
result follows from Theorem 2, which specifies single
mutation immunity equivalence.

Corollary 1 (Single Mutation Trustworthy Ver-
dict Equivalence) Given a property L ⊆ Σ∞, a truth
domain V, a trace mutationM⊆ Σ∗×Σ∗, and a num-
ber of applications of that mutation k, a verdict v ∈ V
is trustworthy from L over a channel with Mk iff v is
trustworthy for L over a channel withM1.

Proof: Corrollary 1 is implied by Theorem 2.
Theorem 2 specifies that a property L ⊆ Σ∞

is immune to a mutation Mk ⊆ Σ∗ × Σ∗ iff
L is immune to M1. By Definition 12, if the
property is immune to M1 for a truth domain
V and an evaluation function EV : 2Σ∞ → Σ∗ → V
then for all pairs (σ, σ′) ∈Mk and for all ver-
dicts v ∈ V (EV(L)(σ) = v)↔ (EV(L)(σ′) = v). There-
fore the same result applies for a specific verdict v ∈ V
and one-way implication instead of two. ut

If all verdicts in a truth domain are trustworthy for
a property and a trace mutation, then that property is
immune to the trace mutation. This equivalence allows
us to apply the study of trustworthy verdicts to that

of mutation immunity. In Section 8, we classify proper-
ties with trustworthy verdicts over unreliable channels
which applies equally to the classification of mutation-
immune properties.

Theorem 3 (Trustworthy Verdict Immunity
Equivalence) Given a property L ⊆ Σ∞, a trace
mutation Mk ⊆ Σ∗ × Σ∗, a truth domain V, and
an evaluation function EV : 2Σ∞ → Σ∗ → V, L is
immune to Mk iff all verdicts in V are trustworthy
over a channel withMk.

Proof: The proof is trivially derived from Defi-
nitions 12 and 15. If for all pairs (σ, σ′) ∈Mk and
for all verdicts v ∈ V it is true that EV(L)(σ′) = v

implies EV(L)(σ) = v, then for all pairs (σ, σ′) ∈Mk

and all verdicts v ∈ V it must be true that
EV(L)(σ) = EV(L)(σ′). ut

Corollary 2 (Trustworthy Verdict True-False
Immunity Equivalence) Given a property L ⊆ Σ∞,
and a trace mutation Mk ⊆ Σ∗ × Σ∗, L is true-false
immune to Mk iff all verdicts in B3 are trustworthy
over a channel withMk.

Proof: The proof follows directly from Definition 13
and Theorem 3. For a property to be true-false immune
to a mutation it must be immune for the B3 truth do-
main. If all verdicts in a domain are trustworthy for a
property and mutation, then the property is immune to
that mutation. ut

7 Classification for Mutation Immunity

In this section, we update the monitorability-focused
refinement of the safety-liveness taxonomy, recently in-
troduced by Peled and Havelund [49]. This classifica-
tion is designed so that its delineations between classes
align well with questions of monitorability. This makes
it better suited for our purposes than the more estab-
lished Safety-Progress Hierarchy [20]. We are interested
in classifying ω-regular properties that are immune to
trace mutations from unreliable channels.

7.1 The FR/FS Classification

Peled and Havelund classify properties by whether
they are Finitely Refutable (FR) or Finitely Satisfiable
(FS) [49]. An ω-regular property L ⊆ Σω must be one
of the following.

– Always Finitely Refutable (AFR) iff ∀σ /∈ L.
∃α ∈ Σ∗ such that α v σ and ∀µ ∈ Σω. α · µ /∈ L
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– Sometimes Finitely Refutable (SFR) iff ∃σ /∈ L.
∃α ∈ Σ∗ such that α v σ and ∀µ ∈ Σω. α · µ /∈ L

– Never Finitely Refutable (NFR) iff ∀σ /∈ L. @α ∈ Σ∗
such that α v σ and ∀µ ∈ Σω. α · µ /∈ L

Additionally, L must be one of the following.
– Always Finitely Satisfiable (AFS) iff ∀σ ∈ L.
∃α ∈ Σ∗ such that α v σ and ∀µ ∈ Σω. α · µ ∈ L

– Sometimes Finitely Satisfiable (SFS) iff ∃σ ∈ L.
∃α ∈ Σ∗ such that α v σ and ∀µ ∈ Σω. α · µ ∈ L

– Never Finitely Satisfiable (NFS) iff ∀σ ∈ L. @α ∈ Σ∗
such that α v σ and ∀µ ∈ Σω. α · µ ∈ L

The definitions for AFR, NFR, AFS, and NFS map directly
to the classic definitions of safety and liveness prop-
erties, and their duals, guarantee and morbidity. The
authors of [49] show that all ω-regular properties are
included in both AFR ∪ SFR ∪ NFR and AFS ∪ SFS ∪ NFS.

– Liveness (NFR) – A property L ⊆ Σω is a liveness
property iff for all finite prefixes α ∈ Σ∗ there exists
an infinite suffix β ∈ Σω such that α · β ∈ L.

– Morbidity (NFS) – A property L ⊆ Σω is a mor-
bidity property iff for all finite prefixes α ∈ Σ∗ there
exists an infinite suffix β ∈ Σω such that α · β /∈ L.

– Safety (AFR) – A property L ⊆ Σω is a safety prop-
erty iff for all infinite traces σ /∈ L there exists a fi-
nite trace α ∈ Σ∗ such that α v σ and for all infinite
suffixes β ∈ Σω α · β /∈ L

– Guarantee (AFS) – A property L ⊆ Σω is a guar-
antee property iff for all traces σ ∈ L there exists
a finite prefix α ∈ Σ∗ such that α v σ and for all
infinite suffixes β ∈ Σω α · β ∈ L

The FR/FS classification is defined by the inter-
sections beetween pairs of FR and FS classes. These
intersections are shown in Figure 2, which also labels
the intersection SFR ∩ SFS as Quaestio, which are the
ω-regular properties not covered by the liveness, mor-
bidity, safety, and guarantee classes. In the figure, each
of NFR, NFS, AFR, and AFS is shown as a stadium shape
with their intersections in the corners. The SFR ∩ SFS
class surrounds the stadia and is also represented in the
center of the diagram.

7.2 Additional Property Classes

We introduce five classes of properties that overlap
with the classes from the FR/FS taxonomy. These
are Proximate, Tolerant, Permissive, Inclusive, and Ex-
clusive. We propose language-theoretic definitions for
these classes and locate them within the context of the
FR/FS framework.

The FR/FS classification provides the basis for a
framework for relating properties that are immune to a

Safety

AFR  SFSSFR  SFS

Guarantee

AFR  AFSSFR  AFS

Liveness

NFR  NFS

NFR  SFS

NFR  AFS

Morbidity

SFR  NFS AFR  NFS

Quaestio SFR  SFS

Quaestio

Fig. 2: The original FR/RS property classification. In
the figure, Liveness is NFR, Morbidity is NFS, Safety is
AFR, and Guarantee is AFS.

trace mutation to properties that are monitorable under
ideal conditions. However, the original FR/FS classes
do not precisely define properties with mutation immu-
nity in many cases. We must define smaller property
classes within the framework to identify the properties
with trustworthy verdicts over channels with the muta-
tions from Definitions 7-10.

Figure 3 shows the FR/FS classification with the ad-
ditional property classes indicated. In the figure, each
area is numbered for ease of reference. Each area may
represent multiple classes (if they overlap) and each
class may be include multiple areas. For example, Live-
ness (NFR) Properties are represented in the figure by
areas 1, 7, 8, 12, 13, and 16. Inclusion Properties, on
the other hand, are represented in only area 12.

7.2.1 Proximate Properties

Proximate Properties, which we denote Prox, are
properties where the duplication of a symbol may
change whether or not a trace satisfies or violates
the property. For example, L[[Xp]] is Proximate, since
the trace 〈{¬p}, {p}, · · · 〉 satisfies the property but
〈{¬p}, {¬p}, {p}, · · · 〉 does not. The intuition behind
the name “Proximate” is that these properties depend,
in some way, on the proximity of two parts of the trace.
In Figure 3, areas 9, 10, 14, and 15 contain only Proxi-
mate Properties, and areas 5, 6, 8, and 13 include Prox-
imate Properties but not only Proximate Properties.
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Safety

R  SFS

Guarantee

AFR  AFSSFR  AFS

Quaestio SFR  SFS

11

17 18

9

Fig. 3: FR/RS property classification including Proxi-
mate (9, 10, 14, 15, and parts of 5, 6, 8, 13), Tolerant
(1, 7, 12, 16), Permissive (1, 2, 3, 4), Inclusion (12), and
Exclusion (3).

Proximate Properties are related to the dual of
a class usually called closed under stuttering [55], or
stutter-invariant [50]. Stutter-invariant Properties are
those in which any satisfying trace still satisfies the
property when symbols are repeated. Proximate is
not exactly the dual of stutter-invariant, as Proximate
Properties are affected only by finite stuttering. This
includes most, but not all, LTL formulae that contain
the next (X) operator. For example, L[[GF (p ∧ Xq)]]
is not Proximate because finite duplication of symbols
cannot cause a satisfying trace to violate the property.
Note that the presence of next (X) in an LTL formula is
not sufficient to prove inclusion in Prox but the absence
of X guarantees that the formula is out of Prox.

Definition 16 (Proximate Properties) A given
property L ⊆ Σω is a Proximate Property (L ∈
Prox) iff ∃α ∈ Σ∗. ∃µ ∈ Σω. ∃x ∈ Σ such that either
α · 〈x〉 · µ ∈ L, and α · 〈x, x〉 · µ /∈ L, or α · 〈x〉 · µ /∈ L,
and α · 〈x, x〉 · µ ∈ L.

7.2.2 Tolerant Properties

Tolerant Properties, which we denote by the abbrevi-
ation Tolr, are properties where satisfying traces will
still satisfy the property with any finite string inserted
into the trace. For example, L[[Fp]] is a Tolerant Prop-
erty because adding any finite string to a satisfying

trace (say, 〈{p}, · · · 〉) cannot cause the trace to violate
the property. The intuition behind the name “Tolerant”
is that the properties tolerate the insertion of a finite
string. Tolerant Properties are shown in Figure 3 as
areas 1, 7, 12, and 16.

Definition 17 (Tolerant Properties) A given prop-
erty L ⊆ Σω is a Tolerant Property (L ∈ Tolr) iff
∀α, β ∈ Σ∗. ∀µ ∈ Σω. (α · µ ∈ L)→ (α · β · µ ∈ L).

Tolerant is a subclass of Liveness and is disjoint from
Proximate. That Tolerant is disjoint from Proximate is
obvious, and we show that it is a subclass of Liveness in
Theorem 4. Areas 8 and 13 in Figure 3 represent Live-
ness Properties that are not Tolerant. A conseqence of
the differences between Definitions 16 and 17 is that
NFR ∩ Prox ⊂ NFR \ Tolr, however. An example of an
NFR property that is not Tolerant, but also is not Prox-
imate is L[[F (p∧Xq)]]. A Proximate Property that is not
Tolerant is L[[F (p∧Xq∧XXp)]]. An exact characteriza-
tion of the properties NFR \ (Prox ∪ Tolr) is unknown
and left for future work.

Theorem 4 (Tolerant is a Subclass of Liveness)
Tolr ⊂ NFR

Proof: We must consider two cases: if the property
is infinitely satisfied, or finitely satisfied.

1. Case 1 (infinite satisfaction): In that case the in-
finite suffix of the trace µ ∈ Σω determines that
α · µ ∈ L for any α ∈ Σ∗. This is what Sistla called
an absolute liveness property which are a subset of
liveness properties [55].

2. Case 2 (finite satisfaction): Suppose, a prop-
erty L2 ⊆ Σω where the finite prefix determines
satisfaction. For clarity, we separate this fi-
nite portion into two parts α, β ∈ Σ∗ such that
∀µ ∈ Σω. α · β · µ ∈ L2. We will prove by contra-
diction. Now assume there exists a finite trace
γ ∈ Σ∗ and an infinite suffix µf ∈ Σω such that
α · γ · β · µf /∈ L2. If ∀µf ∈ Σω. α · γ · β · µf /∈ L2,
then L2 is finitely refutable and not a Live-
ness property. Otherwise, ∃µt ∈ Σω such that
α · γ · β · µt ∈ L2. If that is true, then it must be
that ∃µ ∈ Σω. ∀σ ∈ Σ∗. σ · µ ∈ L2 which is the
definition of a Liveness property. ut

7.2.3 Permissive Properties

Permissive Properties, which we denote by the abbre-
viation Perm, are properties where violating traces will
still violate the property with any finite string inserted
into the trace. For example, L[[Gp]] is a Permissive Prop-
erty because adding any finite string to a violating trace
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(say, 〈{¬p}, · · · 〉) cannot cause the trace to satisfy the
property. The intuition behind the name “Permissive”
is that the properties permit the insertion of a string
(like tolerant, but negative). Permissive Properties are
shown in Figure 3 as areas 1, 2, 3, and 4.

Definition 18 (Permissive Properties) A given
property L ⊆ Σω is an Permissive Property (L ∈ Perm)
iff ∀α, β ∈ Σ∗. ∀µ ∈ Σω. (α · µ /∈ L)→ (α · β · µ /∈ L).

Permissive is a subclass of Morbidity and is disjoint
from Proximate. That Permissive is disjoint from Prox-
imate is obvious, and we show that it is a subclass of
Morbidity in Theorem 5. Areas 5 and 6 in Figure 3
represent Morbidity Properties that are not Permis-
sive. A conseqence of the differences between Defini-
tions 16 and 18 is that NFS ∩ Prox ⊂ NFS \ Perm, how-
ever. An example of an NFS property that is not Permis-
sive, but also is not Proximate is L[[G(p Uq)]]. A Proxi-
mate Property that is not Permissive is L[[G(p→ Xq)]].
Like with Tolerant and Proximate, an exact characteri-
zation of the properties NFR \ (Prox ∪ Perm) is unknown
and left for future work.

Theorem 5 (Permissive is a Subclass of Morbid-
ity) Perm ⊂ NFS

Proof: The proof is equivalent to that for Theorem 4
but for Morbidity instead of Liveness. ut

7.2.4 Inclusion Properties

Inclusion Properties, which we denote by the abbrevi-
ation Incl, are always satisfied by the presence of a
finite set of symbols. For example, L[[Fp]] is an Inclu-
sion Property because its satisfaction depends only on
the presence of one symbol where p holds. Intuitively,
Inclusion Properties are restricted to those that can be
expressed as LTL formulae of the form Fp where p is
propositional, or disjunctions of Inclusion Property for-
mulae with Fp or Gq where p and q are propositional.
Inclusion Properties are shown in Figure 3 as area 12.

Definition 19 (Inclusion Properties) A given
property L ⊆ Σω is an Inclusion Property (L ∈ Incl)
iff there exists a finite set of symbols S ⊆ Σ such that
∀σ ∈ Σω. (σ ∈ L ↔ ∀s ∈ S. s ∈ σ).

Theorem 6 (Inclusion is a Subclass of Tolerant
and Disjoint from Morbidity) Incl ⊂ Tolr \ NFS

Proof: Clearly, L ∈ Tolr ∀L ∈ Incl. Given a prop-
erty L ∈ Incl, any trace σ ∈ L will still satisfy the
property with additional symbols. It is also obvious that
L /∈ NFS ∀L ∈ Incl, since it must be possible to satisfy
L by the inclusion of a finite set of symbols. ut

7.2.5 Exclusion Properties

Exclusion Properties, which we denote by the abbrevia-
tion Excl, are always violated by the presence of a finite
set of symbols. For example, L[[G(¬p)]] is an Exclusion
Property because its satisfaction depends only on the
absence any state where p holds. Intuitively, Exclusion
Properties are restricted to those that can be expressed
as LTL formulae of the form Gp where p is proposi-
tional, or conjunctions of Exclusion Property formulae
with Fp or Gq where p and q are propositional. Exclu-
sion Properties are shown in Figure 3 as area 3.

Definition 20 (Exclusion Properties) A given
property L ⊆ Σω is an Exclusion Property (L ∈ Excl)
iff there exists a finite set of symbols S ⊆ Σ such that
∀σ ∈ Σω. (σ /∈ L ↔ ∀s ∈ S. s ∈ σ).

Theorem 7 (Exclusion is a Subclass of Permis-
sive and Disjoint from Liveness) Excl ⊂ Perm\NFR

Proof: Like for Theorem 6, L ∈ Perm ∀L ∈ Excl.
Given a property L ∈ Excl, any trace σ /∈ L will still
violate the property with additional symbols. It is also
obvious that L /∈ NFR ∀L ∈ Excl, since it must be pos-
sible to violate L by the inclusion of a finite set of sym-
bols. ut

8 Classifying Immune Properties

In this section, we classify trustworthy verdicts in the
B3 truth domain for properties monitored over unreli-
able channels. As shown in Section 6, this classification
also serves to categorize properties that are immune to
the trace mutations from those unreliable channels. To
classify properties, we use the augmented FR/FS clas-
sification introduced in Section 7. We limit our study
to the mutations introduced in Section 4.

Table 1 shows trustworthy verdicts in B3 for each
FR/FS class of properties and each of the four muta-
tions from Section 4. In the table, a 3 indicates that
the verdict is trustworthy, a 7 means that the verdict
is not trustworthy, and a - denotes that the verdict is
not possible for the given property class. The table also
includes an example property for each class. For exam-
ple, the first row in Table 1 shows the results for the
SFR ∩ NFS class, an example of which is the LTL prop-
erty Fp∧Gq. The leftmost three cells show the results
for the Loss mutation. The cells show that the > verdict
is not possible for SFR ∩ NFS Properties, the ⊥ verdict
is trustworthy (for the Permissive subclass), and the ?
verdict is not trustworthy.

Most of the property classes for which verdicts are
trustworthy are subclasses of the original FR/FS classes
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defined in Section 7.2. For these, we annotate the 3

mark to indicate the precise subclass. A 3p indicates
the verdict is trustworthy for only Permissive proper-
ties. A 3t indicates the verdict is trustworthy for only
Tolerant properties. A 3i denotes that the verdict is
trustworthy for only Inclusive Properties. A 3e denotes
that the verdict is trustworthy for only Exclusive Prop-
erties. A 3x indicates the verdict is trustworthy for the
given property class excluding Proximate Properties.

8.1 Channels with Loss

Only the unmonitorable class NFR ∩ NFS is immune to
Loss, but true and false verdicts are trustworthy over
certain properties. Loss is interesting because it is the
only mutation from Definitions 7-10 for which some
properties have both trustworthy and non-trustworthy
verdicts.

Theorem 8 (Over Channels with Loss, True is
Trustworthy only for Tolerant Properties) Given
a property L ∈ Tolr, for all pairs (σ, σ′) ∈ Loss1,
(EB3(L)(σ′) = >)→ (EB3(L)(σ) = >). Given a prop-
erty L ⊆ (Σω \ Tolr), there exists a pair (σ, σ′) ∈ Loss1

such that (EB3(L)(σ′) = >) ∧ (EB3(L)(σ) 6= >).

Proof: We will show that true is trust-
worthy for exactly the properties Tolr. We
must show that ∀L ∈ Tolr there cannot ex-
ist a pair of traces (σ, σ′) ∈ Loss1 such that
EB3(L)(σ′) = > ∧ EB3(L)(σ) 6= >. Or, to restate
using Definition 1, σ′ · µt ∈ L for all infinite suffixes
µt ∈ Σω and there exists an infinite suffix µf ∈ Σω

such that σ · µf /∈ L. We will prove by contradiction.
From Definition 7, since σ and σ′ must not be equal

(or they must result in the same verdict), there ex-
ist finite traces α, β ∈ Σ∗ and a symbol ∃x ∈ Σ such
that σ = α · 〈x〉 · β and σ′ = α · β. So, we assume there
exist a pair of finite traces (α · 〈x〉 · β, α · β) ∈ Loss1

such that, for all infinite suffixes µt ∈ Σω, α · β · µt ∈ L
and there exists an infinite suffix µf ∈ Σω such that
α · 〈x〉 · β · µf /∈ L. For this to be true, it must be
that there exists an infinite suffix µ ∈ Σω such that
α · β · µ ∈ L and α · 〈x〉 · β · µ /∈ L. Since β · µ appears
in both traces, we can simplify to say that there ex-
ists an infinite suffix µ ∈ Σω such that α · µ ∈ L and
α · 〈x〉 · µ /∈ L. However, this is the complement of Tol-
erant Properties from Definition 17, which we have ex-
plicitly excluded. ut

Theorem 9 (False is Trustworthy only for Per-
missive Properties over Channels with Loss)
Given a property L ∈ Perm, for all pairs (σ, σ′) ∈ Loss1,

(EB3(L)(σ′) = ⊥)→ (EB3(L)(σ) = ⊥). Given a prop-
erty L ⊆ (Σω \ Perm), there exists a pair (σ, σ′) ∈ Loss1

such that (EB3(L)(σ′) = ⊥) ∧ (EB3(L)(σ) 6= ⊥).

Proof: The proof is identical to that for Theorem 9,
but for false and Permissive Properties. ut

Theorem 10 (NFR∩NFS Properties are Vacuously
Immune to All Mutations) Given a property L ∈
NFR ∩ NFS, for any finite traces σ, σ′ ∈ Σ∗ it is always
true that EB3(L)(σ′) = EB3(L)(σ).

Proof: The proof is trivial, since EB3(L)(σ) = ? for
any finite trace σ ∈ Σ∗. ut

8.2 Channels with Corruption

Corruption is the only trace mutation we examine for
which no properties, apart from those in NFR∩NFS have
trustworthy verdicts. This result is not surprising, since
corruption can change any symbol in the alphabet to
any other symbol. Corruption cannot change the length
of the original trace, so we first show that this does not
limit the properties for which the mutation may affect
the monitoring verdict.

Lemma 1 (Strings of the Same Length Must
Be Able to Result in Different Verdicts)
Given a property L ⊆ Σω, if there exist two finite
strings s, s′ ∈ Σ∗ such that EB3(L)(s′) 6= EB3(L)(s),
then there must exist two finite strings of the
same length σ, σ′ ∈ Σ∗. |σ| = |σ′| such that
EB3(L)(σ′) 6= EB3(L)(σ).

Proof: First, suppose a property L ∈ Σω such
that there exist finite traces s, s′ ∈ Σ∗ such that
EB3(L)(s′) 6= EB3(L)(s), and for all pairs of fi-
nite traces of equal length (σ, σ′) ∈ Σ∗. |σ| = |σ′|,
EB3(L)(σ′) = EB3(L)(σ).

If all traces of the same length yield the same ver-
dict, then one of s or s′ must be longer than the other
(which one does not matter). Assume |s| > |s′|. There
are three cases:

1. If EB3(L)(s′) = > then, from Definition 1, s′ · µ ∈ L
for all infinite suffixes µ ∈ Σω. However, for all
traces of the same length t ∈ Σ∗. |t| = |s′|, we as-
sume that EB3(L)(t) = >, so there must be a prefix
of s where the verdict is >, but this is a contradic-
tion.

2. The same logic applies if EB3(L)(s′) = ⊥.
3. If EB3(L)(s′) = ?, then either EB3(L)(s) = > or
EB3(L)(s) = ⊥. Suppose that EB3(L)(s) = >, as
the same argument applies for both verdicts. Then
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Table 1: Trustworthy B3 Verdicts Over Unreliable Channels by Property Class

Loss Corruption Stutter OutOfOrder
Class > ⊥ ? > ⊥ ? > ⊥ ? > ⊥ ? Example

SFR ∩ NFS - 3p 7 - 7 7 - 3x 3x - 3e 3e Fp ∧Gq
AFR ∩ NFS - 3p 7 - 7 7 - 3x 3x - 3e 3e Gp
AFR ∩ SFS 7 7 7 7 7 7 3x 3x 3x 7 7 7 p ∨Gq
AFR ∩ AFS 7 7 7 7 7 7 3x 3x 3x 7 7 7 p
SFR ∩ AFS 7 7 7 7 7 7 3x 3x 3x 7 7 7 p ∧ Fq
NFR ∩ AFS 3t - 7 7 - 7 3x - 3x 3i - 3i Fp
NFR ∩ SFS 3t - 7 7 - 7 3x - 3x 3i - 3i Gp ∨ Fq
NFR ∩ NFS - - 3 - - 3 - - 3 - - 3 GFp
SFR ∩ SFS 7 7 7 7 7 7 3x 3x 3x 7 7 7 (p ∨GFp) ∧ q

for all finite suffixes t ∈ Σ∗ such that s′ concate-
nated with t is the same length as s, |s′ · t| = |s|, it
must be that (s′ · t) ∈ L. However, by Definition 1,
there exists an infinite suffix µ ∈ Σω such that
(s′ · µ) /∈ L. Then, there must be either a finite suf-
fix the same length as t, σ ∈ Σ∗. |s′ · σ| = |s| where
EB3(L)(s′ · σ) = ⊥ or EB3(L)(s′ · σ) = ?, which is a
contradiction. ut

Theorem 11 (If Multiple Verdicts are Possible
for a Property, Then None are Trustworthy
Over Channels with Corruption) Given a prop-
erty L ⊆ Σω, for all verdicts v ∈ B3, if there exist
two finite traces s, s′ ∈ Σ∗ such that EB3(L)(s′) = v

and EB3(L)(s) 6= v, then there exists a pair of traces
(σ, σ′) ∈ Corruption1 such that EB3(L)(σ′) = v and
EB3(L)(σ) 6= v.

Proof: Suppose two finite traces with different ver-
dicts s, s′ ∈ Σ∗. EB3(L)(s′) = v ∧ EB3(L)(s) 6= v. From
Lemma 1 it must be possible for |s| = |s′|. Clearly, from
Definitions 8 and 11, there exists a number k ∈ N such
that (s, s′) ∈ Corruptionk, since any finite string may
appear on the left side of the pair and applying Cor-
ruption an arbitrary number of times can transform
a string to any other string of the same length. From
Corollary 1, a verdict is trustworthy for Corruption1 iff
it is trustworthy for Corruptionk. ut

8.3 Channels with Stutter

Many works on temporal logic have examined the ef-
fects of stuttering. Lamport argued for the omission of
the next (X) operator in temporal logic, and demon-
strated that traces with repeating symbols could not
be differentiated without it [44]. The difference between
prior work on stuttering and ours is that Definition 9
includes only finite stuttering, while other works have
allowed for infinite repetition of a symbol [5, 55, 50].
This difference has significant consequences for what
properties are immune to the mutation.

Theorem 12 (All Non-Proximate Proper-
ties are Immune to Stutter) Given a property
L ⊆ (Σω \ Prox), for all pairs (σ, σ′) ∈ Stutter1, it
must be true that EB3(L)(σ′) = EB3(L)(σ).

Proof: The proof follows directly from Defini-
tions 9 and 16. For all non-Proximate Properties,
L ∈ (Σω \ Prox) and for all finite prefixes α ∈ Σ∗
for all infinite suffixes ∀β ∈ Σω and for all symbols
x ∈ Σ, either α · 〈x〉 · β ∈ L, and α · 〈x, x〉 · β ∈ L, or
α · 〈x〉 · β /∈ L, and α · 〈x, x〉 · β /∈ L. Clearly, true is
trustworthy, since for all pairs (σ, σ′) ∈ Stutter1, if
σ′ · µ ∈ L for all infinite suffixes µ ∈ Σω, then σ · µ ∈ L.
By the same logic, false is trustworthy. If there exist
infinite suffixes µt, µf ∈ Σω such that σ′ · µt ∈ L and
σ′ · µf /∈ L, then σ · µt ∈ L and σ · µf /∈ L, so ? is also
trustworthy. By Theorem 3 such a property is immune.

ut

8.4 Channels with Out-of-Order

Properties that are immune to OutOfOrder are limited
to subclasses of Liveness and Morbidity. The Inclusion
and Exclusion classes defined in Section 7 are limited
to properties where satisfaction or violation depend on
the presence of specific symbols.

Theorem 13 (Inclusion and Exclusion Prop-
erties are Immune to OutOfOrder) Given a
property L ∈ Incl ∪ Excl, for all pairs of finite
traces (σ, σ′) ∈ OutOfOrder1, it must be true that
EB3(L)(σ) = EB3(L)(σ′).

Proof: The proof follows directly from Defini-
tions 10, 19 and 20. By Definition 19, given a prop-
erty L ∈ Incl, for all traces in that property s ∈ L
there exists a set of symbols X ⊆ Σ such that for an
infinite trace σ ∈ Σω, σ ∈ L iff all of the symbols
in X are in σ. By Definition 10, for all pairs of finite
traces (σ, σ′) ∈ OutOfOrder1 there cannot exist a sym-
bol x ∈ Σ such that x ∈ σ′ and x /∈ σ. Since all pairs
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(σ, σ′) ∈ OutOfOrder1 must contain the same symbols,
they must result in the same verdicts. The same logic
applies for Definition 20 and violation, rather than sat-
isfaction, of the property. ut

Theorem 14 (No Verdicts are Trustworthy for
Non-Inclusion, Non-Exclusion Properties Over
Channels with OutOfOrder) Given a property
L ⊆ (Σω \ (Incl ∪ Excl)), for all verdicts v ∈ B3 there
exists a pair of traces (σ, σ′) ∈ OutOfOrder1 such that
EB3(L)(σ′) = v and EB3(L)(σ) 6= v, except in the case
where L ∈ NFR ∩ NFS and v = ?, since that is the only
possible verdict for such properties.

Proof: The proof, again, follows directly from
Definitions 10, 19 and 20. Consider a property
L ⊆ (Σω \ (Incl ∪ Excl)). Then, there must exist two
infinite traces σ, σ′ ∈ Σω such that σ ∈ L and σ′ /∈ L
where all symbols s ∈ Σ occur in both string s ∈ σ and
s ∈ σ′. In that case, there are two possibilities.

1. Satisfaction or violation depend on infinite strings.
In that case, either both satisfaction and violation
depend on infinite strings, so L ∈ NFR ∩ NFS and the
verdict is always ?, or only one depends on infinite
strings and the other is covered by the second case.

2. Satisfaction or violation depend on symbol order.
In that case, by Definition 10, there exists a pair of
finite traces (σ, σ′) ∈ OutOfOrder1 such that σ ∈ L
and σ′ /∈ L. ut

8.5 Utility of Mutation Immune Properties

Many properties that are immune to the Stutter and
OutOfOrder mutations or have trustworthy verdicts in
the presence of Loss are useful. To show the impor-
tance of these properties, we provide a classification of
property specification patterns from Dwyer, Avrunin,
and Corbett’s survey [28]. This analysis shows that the
most common patterns are monitorable over some un-
reliable channels.

Table 2 shows the property specification patterns
from [28] and where they fit in the updated FR/FS clas-
sification. Note that we only list patterns in the global
scope as these patterns account for 78.9% of all the
properties in the survey. In the table, the Pattern col-
umn gives the name of the pattern, Class gives the clas-
sification of that pattern in the updated FR/FS taxon-
omy, and Occurence gives the incidence of that pattern
in the global scope in the original study [28].

All of the patterns in Table 2 are immune to at least
Stutter , and most are immune to or have trustworthy
verdicts over other mutations. The Absence, Univer-
sality, Existence, and Bounded Existence patterns are

Table 2: Property Specification Patterns

Pattern Class Occurence
Absence AFR ∩ NFS ∩ Excl 9.4%
Universality AFR ∩ NFS ∩ Excl 25.1%
Existence NFR ∩ AFS ∩ Incl 2.7%
Bnd. Existence AFR ∩ NFS ∩ Excl 0%
Precedence AFR ∩ SFS \ Prox 55%
Response NFR ∩ NFS 5.7%
Precedence Chn. SFR ∩ SFS \ Prox 1.8%
Response Chn. NFR ∩ NFS 0.2%

all either Inclusive or Exclusive Properties. These pat-
terns are immune to Stutter and OutOfOrder and have
trustworthy verdicts over Loss and make up 37.2% of
the global-scope properties from [28]. The Precedence
and Precedence Chain patterns, which make up 56.8%
of global-scope properties, are non-Proximate and im-
mune to Stutter . The Response and Response Chain
patterns, which only make up 5.9% of global-scope
properties, are in NFR∩NFS, which means they are non-
monitorable and trivially immune to all mutations.

The property classification in this section is valu-
able for quickly identifying properties that can be mon-
itored over channels with the Loss, Corruption, Stut-
ter , and OutOfOrder mutations. However, custom mu-
tations that more precisely model an unreliable channel
must be analyzed separately. This requires a decision
procedure that can accommodate any mutation. By
Rice’s Theorem, monitorability over unreliable chan-
nels is undecidable in the general case where the lan-
guage may require a Turing Machine to express. Most
properties of interest, however, including those express-
ible as LTL, are ω-regular. We now provide a decision
procedure for those properties expressible by an NBA.

9 Deciding Immunity for ω-Regular Properties

To determine the immunity of an ω-regular property
to a trace mutation, we must construct automata that
capture the notion of uncertainty from B3. Bauer et
al. defined a simple process to build a B3 monitor using
two DFAs in their work on LTL3 [13]. We will exam-
ine these DFAs to decide if the property is true-false
immune to the trace mutation.

Two DFAs are needed to represent the B3 output of
the monitor, since each DFA can only accept or reject a
trace. In the monitor, if one DFA rejects the trace then
the verdict is ⊥, if the other rejects the trace then the
verdict is > and if neither reject then the verdict is ?.
It is not possible for both DFAs to reject due to how
they are constructed.
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The construction procedure for the monitor be-
gins by complementing the property. A language
of infinite words L is represented as an NBA
AL = (Q,Σ, q0, δ, FL), for example, an LTL formula
can be converted to an NBA by tableau construc-
tion [56]. The NBA is then complemented to form
AL = (Q,Σ, q0, δ, FL). Remark: The upper bound for
NBA complementation is 2O(n logn), so it is cheaper to
complement an LTL property and construct its NBA if
starting from temporal logic [43].

To form the monitor, create two NFAs based
on the NBAs and then convert them to DFAs.
The two NFAs are defined as A = (Q,Σ, q0, δ, F )
and A = (Q,Σ, q0, δ, F ) The new accepting states are
the states from which an NBA accepting state is
reachable. That is, we populate the accepting states
so that F = {q ∈ Q : (Reach(AL, q) ∩ FL) 6= ∅}, and
F = {q ∈ Q : (Reach(AL, q) ∩ FL) 6= ∅}. The two NFAs
are then converted to DFAs via subset construction.
The verdict for a finite trace σ is then given as the
following function VB3 : 2Σω → Σ∗ → B3.

Definition 21 (B3 Monitor Verdict) Given a prop-
erty L ⊆ Σω , derive B3 monitor DFAs A and A. The
B3 verdict for a string σ ∈ Σ∗ is the following.

VB3(L)(σ) =


⊥ if σ /∈ L(A)
> if σ /∈ L(A)
? otherwise

Example: Figure 1b shows the NBA AL that ac-
cepts the infinite-string language of the LTL formula
ϕ = G(a→ F¬a) ∨ Fb. To construct an LTL3 monitor
for ϕ, we must first complement this NBA, then use the
two NBAs to create NFAs and finally DFAs.

Figure 4a shows the NBA AL that accepts the lan-
guage L[[¬ϕ]] and is the complement of AL in Fig-
ure 1b. To obtain monitor DFAs, the states and transi-
tions from these NBAs are used to construct NFAs with
new accepting conditions, and then the NFAs are deter-
minized. Figures 4b and 4c show the simplified monitor
DFAs for L[[ϕ]] and L[[¬ϕ]], respectively. The monitor
reaches a > verdict if the input trace prefix contains a
symbol where b holds, otherwise the verdict is ?.

We can now restate Definition 13 using monitor au-
tomata. This new definition will allow us to construct a
decision procedure for a property’s immunity to a mu-
tation.

Theorem 15 (True-False Immunity to Un-
reliable Channels for ω-Regular Proper-
ties) Given an ω-regular language L ⊆ Σω, de-
rive B3 monitor DFAs A = (Q,Σ, q0, δ, F ) and
A = (Q,Σ, q0, δ, F ). L is true-false immune to a trace

q1

q2 q3

b

a¬b

¬b

Σ a¬b

¬a, b

(a) NBA AL

q1

Σ

(b) DFA A

q1

q2

¬b

b

Σ

(c) DFA A

Fig. 4

mutation Mk ⊆ Σ∗ ×Σ∗ iff for all pairs of finite
traces in the mutation (σ, σ′) ∈Mk, it must be that
(σ /∈ L(A)⇔ σ′ /∈ L(A)) and (σ /∈ L(A)⇔ σ′ /∈ L(A)).

Proof: By Definition 13 we need only show
that EB3(L)(σ) = EB3(L)(σ′) is equivalent to
(σ /∈ L(A)⇔ σ′ /∈ L(A)) and (σ /∈ L(A)⇔ σ′ /∈ L(A)).
There are three cases: ⊥, >, and ?. For ⊥ and > it
is obvious from Definition 21 that the verdicts are
derived from exclusion from the languages of A and
A. As there are only three possible verdicts, this also
shows the ? case. ut

We say that an automaton is immune to a trace
mutation in a similar way to how a property is im-
mune. To show that a property is true-false immune to
a mutation, we only need to show that its B3 monitor
automata are also immune to the property. Note that,
since the implication is both directions, we can use ei-
ther language inclusion or exclusion in the definition.

Definition 22 (Finite Automaton Immunity)
Given a finite automaton A = (Q,Σ, q0, δ, F ) and a
trace mutation Mk ⊆ Σ∗ ×Σ∗, A is immune to Mk

iff for all pairs of finite traces in the mutation
(σ, σ′) ∈Mk, it must be that σ ∈ L(A)⇔ σ′ ∈ L(A).

With this definition we can provide a decision pro-
cedure for the monitorability of an ω-regular property
over an unreliable channel. The procedure will check the
immunity of the B3 monitor automata to the mutations
from the channel, as well as the property’s monitora-
bility. If the DFAs are both immune to the mutations
and the property is monitorable, then the property is
monitorable over the unreliable channel.

10 Decision Procedure for Finite Automaton
Immunity

We propose Algorithm 1 for deciding whether a DFA is
immune to a trace mutation. The algorithm is loosely
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Algorithm 1 Determine if a DFA is immune to a given
trace mutation.
1: procedure immune( A = (Σ,Q, q0, δ, F ),M )
2: for q ∈ Q do E(q)← {q} . E is a map
3: R← Reach(A, q0) . R is the reachable states
4: T ← { } . T is a worklist
5: for (σ, σ′) ∈M where |σ| = minLength(M) do
6: for q ∈ R do
7: q1 ← δ∗(q, σ) . Follow original trace
8: q2 ← δ∗(q, σ′) . Follow mutated trace
9: E(q1)← E(q2)← {q1, q2}
10: T ← T ∪ {(q1, q2)}
11: while T is not empty do
12: let (q1, q2) ∈ T . Get a pair from the worklist
13: T ← T \ {(q1, q2)} . Remove the pair from T
14: for α ∈ Σ do
15: n1 ← δ(q1, α)
16: n2 ← δ(q2, α)
17: C ← {E(n1), E(n2)}
18: if |C| > 1 then
19: E(n1)← E(n2)←

⋃
C . Merge sets in E

20: T ← T ∪ {(n1, n2)}
21: if Any set in E contains both final and non-final states

then return False
22: else return True

based on Hopcroft and Karp’s near-linear algorithm for
determining the equivalence of finite automata [37].

Algorithm 1 checks if the DFA A is immune to the
mutation M , where A represents part of the B3 mon-
itor for a property and M is a relation given by M1

in Definition 11. The intuition behind Algorithm 1 is
to follow transitions for pairs of unmutated and cor-
responding mutated strings in M and verify that they
lead to the same acceptance verdicts. More specifically,
Algorithm 1 finds sets of states which must be equiv-
alent for the DFA to be immune to a given mutation.
The final verdict of immune is found by checking that
no equivalence class contains both final and non-final
states. If an equivalence class contains both, then there
are some strings for which the verdict will change due
to the given mutation.

If all mutations required only a string of length
one, the step at Lines 7 and 8 could follow transi-
tions for pairs of single symbols. However, mutations
like OutOfOrder require strings of at least two sym-
bols, so we must follow transitions for short strings.
We express this idea of a minimum length for a
mutation in the minLength : 2Σ∗×Σ∗ → N func-
tion. For mutations in Section 4, minLength(Loss) =
minLength(Corruption) = minLength(Stutter) = 1 and
minLength(OutOfOrder) = 2. Note that minLength for
unions must increase to permit the application of both
mutations on a string. For example, minLength(Loss ∪
Corruption) = 2. This length guarantees that each

string has at least one mutation, which is sufficient to
show immunity by Theorem 2.

The algorithm works as follows. We assume a mu-
tation can occur at any time, so we begin by following
transitions for pairs of mutated and unmutated strings
from every reachable state (stored in the set R). On
Lines 5-10, for each pair (σ, σ′) inM and for each reach-
able state, we compute the states q1 and q2 reached from
σ (respectively σ′). The map E contains equivalence
classes, which we update for q1 and q2 to hold the set
containing both states. The pair of states is also added
to the worklist T , which contains equivalent states from
which string suffixes must be explored.

The loop on Lines 11-20 then explores those suffixes.
It takes a pair of states (q1, q2) from the worklist and
follows transitions from those states to reach n1 and
n2. If n1 and n2 are already marked as equivalent to
other states in E or aren’t marked as equivalent to each
other, those states are added to the worklist, and their
equivalence classes in E are merged. If at the end, there
is an equivalence class with final and non-final states,
then A is not immune to M .

Theorem 16 (Immunity Procedure Correct-
ness) Algorithm 1 is sound and complete for any
DFA and prefix-assured mutation. That is, given
a DFA A = (Σ,Q, q0, δ, F ), and a mutation, M ,
Immune(A,M)⇔ A is immune to M .

Proof: By Definition 22, this is equiv-
alent to showing that Immune(A,M)⇔
(∀(σ, σ′) ∈M, σ ∈ L(A)⇔ σ′ ∈ L(A)).

We will prove the ⇒ direction (soundness) by con-
tradiction. Suppose at the completion of the algorithm
that all sets in E contain only final or non-final states,
but that A is not immune to M . There is at least one
pair (σb, σ′b) ∈ M where one leads to a final state,
and one does not. If Algorithm 1 had checked this pair
then these states would be in an equivalence class in
E. Since the loop on Line 7 follows transitions for pairs
in M of length minLength(M), the reason (σb, σ′b) was
not checked must be because |σb| 6= minLength(M).
The length of σb must be greater than minLength(M)
since strings shorter thanminLength(M) cannot be mu-
tated by M . Since M is prefix-assured, there must
be a pair (σ, σ′). |σ| = minLength(M) that are pre-
fixes of (σb, σ′b). The loop on Line 11 will check
(σ · s, σ′ · s) ∀s ∈ Σ∗. Therefore it must be the case that
there exist two different finite suffixes t, u ∈ Σ∗. t 6= u

such that σb = σ · t and σ′b = σ′ · u. However, if t 6= u

then (σb, σ′b) ∈Mk for some k > 1, so A is immune to
M1 but not Mk, but from Theorem 2 this is a contra-
diction.
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We prove the ⇐ direction (completeness) by induc-
tion. We will show that if A is immune to M then no
set in E, and no pair in T will contain both final and
non-final states. The base case at initialization is obvi-
ously true since every set in E contains only one state
and T is empty. The induction hypothesis is that at a
given step i of the algorithm if A is immune to M then
every set in E and every pair in T contains only final
or non-final states.

At step i+ 1, in the loop starting at Line 7, E and
T are updated to contain states reached by following σ
and σ′. Clearly, if A is immune to M then these states
must be both final or non-final since we followed tran-
sitions from reachable states for a pair in M . In the
loop on Line 11, n1 and n2 are reached by following the
same symbol in the alphabet from a pair of states in T .
If A is immune toM , the strings leading to that pair of
states must both be in, or both be out of the language.
So, extending both strings by the same symbol in the
alphabet creates two strings that must both be in or
out of the language. These states reached by following
these strings are added to T on Line 20.

On Lines 17 and 19, the two sets in E corresponding
to n1 and n2 are merged. Since both sets must contain
only final or non-final states, and one-or-both of n1 and
n2 are contained in them, the union of the sets must also
contain only final or non-final states. ut

Theorem 17 (Immunity Procedure Complexity)
Algorithm 1 is Fixed-Parameter Tractable. That is,
given a DFA A = (Σ,Q, q0, δ, F ), and a mutation, M ,
its maximum running time is |Q|O(1)f(k), where f is
some function that depends only on some parameter k.

Proof: The run-time complexity of Algorithm 1
is O(n)O(ml f(M)) where n = |Q|, m = |Σ|,
l = minLength(M), and f is a function on M .
First, Lines 4, 7, 8, 9, 10, 12, 13, 15, 16, 17, 18,
19, and 20 execute in constant time, while each of
Lines 2, 3, and 21 run in time bounded by n.

The initialization loop at Line 5 runs once for each
pair in the mutation where the length of σ is bounded
byminLength(M). This count isml times a factor f(M)
determined by the mutation. For example, f(Loss) = l

because each σ is mutated to remove each symbol in
the string. Critically, this factor f(M) must be finite,
which it is for the mutations M1. The loop at Line 6
runs in time bounded by n, so the body of the loop is
reached at most mlf(M)n times.

The loop at Line 11 may run at most mlf(M) + n

times. The loop continues while the worklist T is non-
empty. Initially, T has mlf(M) elements. Each time
Line 13 runs, an element is removed from the worklist.
For an element to be added to T , it must contain states

corresponding to sets in E which differ. When this oc-
curs, those two corresponding sets are merged, so the
number of unique sets in E is reduced by at least one.
Therefore, the maximum number of times Line 20 can
be reached and an element added to T is n. ut

Note that, in practice, minLength(M) is usually
small (often only one), so Algorithm 1 achieves near
linear performance in the size of the FA. The size of
the alphabet has an effect but it is still quadratic.

11 Related Work

Unreliable channels have been acknowledged in formal
methods research for some time. For example, Lamport
suggested in 1983 that temporal logics without next op-
erators were immune to stutter [44]. More recent works
by Purandare et al. [53] and Lomuscio et al. [47] applied
the principle suggested by Lamport for performance op-
timizations.

In this section, we describe related work in three
areas. First, on works examining unreliable channels in
RV, second, on the study of unreliable channels as they
relate to Communicating Finite State Machines (CF-
SMs), and finally, on other definitions of monitorability.

11.1 Runtime Verification

RV seeks to decide whether a trace generated by the
execution of a program satisfies a specification, often
expressed in a temporal logic like LTL [9]. Most RV
methods assume an ideal trace, but the topic of unreli-
able channels is of growing interest in the field.

Work has been done to show which properties are
verifiable on a trace with mutations and to express de-
grees of confidence when they are not. Stoller et al. used
Hidden Markov Models (HMMs) to compute the prob-
ability of a property being satisfied on a lossy trace [58].
Their definition of lossy included a “gap” marker indi-
cating where symbols were missing. They used HMMs
to predict the missing states where gaps occurred and
aided their estimations with a learned probability dis-
tribution of state transitions. Joshi et al. introduced an
algorithm to determine if a specification could be mon-
itored soundly in the presence of a trace with transient
loss, meaning that eventually it contained successfully
transmitted events [40]. They defined monotonicity to
identify properties for which the verdicts could be relied
upon once a decision was made.

Garg et al. introduced a first-order logic with
restricted quantifiers for auditing incomplete policy
logs [34]. The authors used restricted quantifiers to
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allow monitoring policies that would, in principle, re-
quire iterating over an infinite domain. Basin et al. also
specified a first-order logic for auditing incomplete pol-
icy logs [12]. Basin et al. also proposed a semantics
and monitoring algorithm for Metric Temporal Logic
(MTL) with freeze quantifiers that was sound and com-
plete for unordered traces [11]. Their semantics was
based on a three-value logic, and the monitoring algo-
rithm was evaluated over ordered and unordered traces.
All three of these languages used a three value seman-
tics (t, f,⊥) to model a lossy trace, where ⊥ represented
missing information.

Leuker et al. introduced a technique for a Stream
Runtime Verification (SRV) over incomplete traces [45].
They defined an abstract form of the TeSSLa SRV lan-
guage and showed how it could be used to obtain sound
verdicts on traces with well defined gaps. Abstract ver-
dicts were clearly delineated from concrete ones, so that
imprecise results could not be confused for incorrect
results. Their work assumed that missing values were
within a known range and that gaps were identifiable.

Li et al. examined out-of-order data arrival in Com-
plex Event Processing (CEP) systems and found that
SASE [62] queries processed using the Active Instance
Stack (AIS) data structure would fail in several ways
[46]. They proposed modifications to AIS to support
out-of-order data and found acceptable experimental
overhead to their technique.

Baader, Bauer, and Tiu examined the complexity of
regular language inclusion and exclusion of a finite trace
with lost symbols [7]. They modeled traces as patterns
where missing sequences were replaced with variables
and considered both the linear case, where variables
were unique, and the non-linear case, where they could
repeat. The authors showed that, for languages speci-
fied as an NFA, linear exclusion was solvable in poly-
nomial time while non-linear exclusion was PSPACE-
Complete. For inclusion, they found that both the linear
and non-linear cases were PSPACE-Complete.

Runtime verification in the presence of noise has
been studied in the context of Analog and Mixed Sig-
nal (AMS) components, also referred to as mixed signal
circuits. These integrate analog circuits and digital cir-
cuits; e.g. such a component can transform an analog
signal to a digital signal. Wang et al. describe using run-
time verification in combination with Monte Carlo sim-
ulation (called statistical runtime verification) to ana-
lyze Jitter [60]. Jitter is defined as the deviation in time
between a noisy signal and an ideal one. A related con-
cept is the notion of system instability, where control
outputs ocillate permanently while inputs are constant.
Halbwachs et al. proposed a method to verify the sta-

bility of systems using heuristics to check strongly con-
nected components of an operator network [36].

11.2 Communicating Finite State Machines

Several works in information theory have modeled the
problem of unreliable communication channels in CF-
SMs [17]. CFSM communication channels are treated
as unbounded first-in first-out (FIFO) buffers between
Finite State Machines (FSMs), which is a Turing com-
plete model of computation for a class of infinite-state
systems called simple reactive programs [61]. Simple re-
active programs are data-independent and are useful for
modeling communication protocols like the Alternat-
ing Bit Protocol [10] and High-level Data Link Control
(HDLC) [38]. CFSMs also form the basis of protocol
specification languages such as Estelle [18], and Speci-
fication and Description Language (SDL) [16]. CFSMs
with unreliable communcations channels are no longer
Turing complete, and a number of useful properties
have been shown to hold in such cases.

Finkel introduced his notion of completely specified
protocols to show that they are a class of machines for
which the termination problem is decidable [32]. He de-
fined a completely specified protocol as a CFSM where
any FSM can receive any message in any local state and
can stay in that state, and he showed that protocols us-
ing lossy FIFO channels are examples of such protocols.
Abdulla and Jonsson later provided algorithms for de-
ciding the termination problem for protocols on lossy
FIFO buffers, as well as algorithms for some safety and
eventuality properties [2].

Cécé et al. expanded this examination of unreliable
FIFO channels in CFSMs by considering channels with
insertion errors, duplication errors, and a combination
of insertion, duplication, and lossy errors [19]. Their
work defined insertion errors in FIFO buffers to be
equal to our general notion of noisy traces, but their
duplication errors were restricted to consecutive dupli-
cates. They showed that noisy errors on a communica-
tion channel between two FSMs decrease the expressive
power of the system more than lossy errors, while con-
secutive duplication errors do not decrease its expres-
sive power at all.

Iyer and Narasimha introduced probability to the
notion of lossy communications channels [39]. They ar-
gue that this is a more realistic notion of loss, as hard-
ware reliability statistics are often known. Their work
included algorithms for solving probablistic notions of
reachability and model checking. That is, given a chan-
nel with a known probability of loss, they asked whether
a global state in the CFSM was reachable with a cer-
tain probability and tolerance, and whether a Propo-
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sitional Temporal Logic (PTL) property was true with
a certain probability and tolerance. Baier and Engelen
proved that the set of message sequences on a proba-
bilistic lossy channel that satisfy an LTL property could
be decided with probability 1 if the probability of mes-
sage loss was at least 1/2 [8]. Abdulla et al. proved that,
if the probability of message loss was less than 1/2 then
the same problem was undecidable [1].

Peng and Makki introduced Lossy Communicating
Finite State Machines (LCFSMs) to simplify protocol
modeling for lossy channels [51]. Traditionally, loss in
unreliable communications channels has been modeled
using the addition of extra CFSMs which consume mes-
sages. The authors argued that this leads to messy
CFSM specifications which obfuscate the protocol be-
ing modeled. They introduced a delete action to allow
the removal of these extra CFSMs.

11.3 Other Definitions of Monitorability

Some other definitions of monitorability exist which are
outside the scope of this work. These solutions either
assume partial knowledge of the monitored system or
concern monitoring multiple systems simultaneously.

Sistla, Žefran, and Feng defined monitorability and
strong monitorability for partially observable stochas-
tic systems modeled as HMMs [57]. Gondi, Patel,
and Sistla had already introduced this notion in their
work on external monitoring of ω-regular properties of
stochastic systems [35], but the later work focused on
formalizing the concept and on internal monitoring. In
these works, properties to be monitored are given as
deterministic Streett automata [54] and a model of the
system is supplied as a HMM. This varies from defini-
tions of monitoring where only a trace of the output
symbols from the monitored system is assumed to be
known.

Sistla et al. use Acceptance Accuracy (AA) and Re-
jection Accuracy (RA) to define monitorability and
strong monitorability, and define them as properties of
both a monitored formula and a monitored system. AA
is given as the probability that a monitor accurately
returns a positive verdict (accepts) for a formula and a
system model, while RA is given as the probability that
a monitor accurately returns a negative verdict (rejects)
for a formula and a system model. Sistla et al. thus de-
fine that a system is strongly monitorable with respect
to a formula if there exists a monitor such that both
the AA and RA are 1. They then define that a system
is monitorable with respect to a formula if there ex-
ists a monitor(s) such that accuracies arbitrarily close
to 1 may be achieved. The authors conclude that all
properties that can be represented as Streett automata

are considered externally monitorable for finite state
systems and safety properties are also strongly moni-
torable.

Agrawal and Bonakdarpour first proposed monitor-
ing hyperproperties and introduced a notion of moni-
torability for such properties [4]. Hyperproperties are
sets of sets of traces where monitoring requires reason-
ing about many prefixes simultaneously. The authors
introduce a three-valued semantics for the hyperprop-
erty specification language HyperLTL [23] and define
monitorable classes in that logic. Stucki et al. proposed
incorporating partial or complete knowledge of the sys-
tem into monitoring hyperproperties [59]. They showed
that monitoring hyperproperties without such informa-
tion is infeasible in general and refined Agrawal and
Bonakdarpour’s definition of hyperproperty monitora-
bility to incorporate computability of the monitor.

Francalanza, Aceto, and Ingolfsdottir defined mon-
itorability for µ-Hennessy-Milner Logic (µHML), a
branching time logic for RV based on the modal µ-
calculus [33]. They characterized what properties of
µHML are monitorable and gave a method to synthe-
size monitors for those properties. Aceto et al. later
introduced a hierarchy of monitorable fragments for
µHML and established different guarantees for each
fragment [3].

12 Conclusions and Future Work

The mutations from Definitions 7 to 10 are useful
abstractions of common problems in communication.
However, in many cases, they are stronger than is
needed as practitioners may have knowledge of the
channel that constrains the mutations. For example,
on Mars Science Laboratory, messages contain sequence
numbers which can be used to narrow the range of miss-
ing symbols. Although the property classification from
Section 8 cannot be used for custom mutations, muta-
tions can be easily defined and then properties can be
tested for immunity using Algorithm 1. Custom muta-
tions should avoid behavior that requires long strings to
mutate, however, as this causes exponential slowdown.
Future work should incorporate a decision procedure
for trustworthy verdicts that can be used for custom
mutations.

Well designed mutations like those from Defini-
tions 7-10 can be checked quickly. However, the method
relies on B3 monitor construction to obtain DFAs, and
the procedure to create them from an NBA is in 2EX-
PSPACE. We argue that this is an acceptable cost of
using the procedure since it is done offline and a moni-
tor must be derived to check the property in any case.
Future work should explore ideas from the study of



What Can We Monitor Over Unreliable Channels? 21

monitorability [27, 49] to find a theoretical bound on
deciding immunity and to explore algorithms that do
not require monitor construction.

Another avenue for improving our work is to incor-
porate partial system models to reduce the range of
unmutated strings as in grey-box monitoring [59]. Cur-
rently, the definition of immunity to a mutation requires
that any string (using the alphabet) could be mutated.
For many systems, this is more general than is needed,
and constraining unmutated strings can allow for more
properties to be considered immune and therefore mon-
itorable.

Our definition of monitorability also assumes that
every verdict must be trustworthy for a mutation,
but some properties may be useful to monitor where
only some verdicts are trustworthy. This is similar to
how Weak Monitorability relaxes the requirement from
Classical Monitorability that every execution may reach
a true or false verdict. It may be interesting to define
a notion of Weak Monitorability over Unreliable Chan-
nels that only requires true and false to be trustworthy.

The ability to check properties expressible by NBAs
for monitorability over unreliable channels allows RV
to be considered for applications where it would have
previously been ignored. To arrive at this capability,
we first needed to define monitorability over unreliable
channels using both existing notions of monitorability
and a new concept of mutation immunity. We proved
that immunity to a single application of a mutation is
sufficient to show immunity to any number of applica-
tions of that mutation, and we defined true-false im-
munity using B3 semantics. The FR/FS classification
provided a framework that we extended to categorize
the properties that are immune to common mutations.
In some cases, we found that properties had trustwor-
thy verdicts when monitored over an unreliable chan-
nel, despite not being immune to the mutation from
that channel.

We believe unreliable communication is an impor-
tant topic for RV and other fields that rely on remote
systems.
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