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Abstract
This paper presents the open-source runtime verification tool MESA (MEssage-based System Analysis), implemented in
Scala, which supports concurrent monitors using the Actor model. Furthermore, the tool supports indexing (slicing) on
the data values occurring in data-carrying events, for each individual monitor. The tool is generic in the sense that any
monitoring system can be used for creating monitors. In this paper, we use the internal Scala DSL Daut for programming
such data-parameterized state machines and temporal logic. To illustrate MESA/Daut, we present a case study that monitors
flights from live U.S. airspace data streams, verifying that they conform to planned routes. With base in the case study, we
then perform an extensive empirical study of the potential benefits from monitoring slices of a single property in concurrently
executing actors. Due to the overhead of scheduling “small” actors (one for each slice or a small number of slices), it is not
obvious that concurrent execution of such is beneficial. However, as a main result, we demonstrate that concurrent monitoring
of slices to handle data-carrying events can provide considerable speed gains.

Keywords Runtime verification · First-order temporal properties · Slicing · Concurrency · Actors · Scala

1 Introduction

Distributed computing is becoming increasingly important
as almost all modern systems in use are distributed. Dis-
tributed systems usually refer to systems with components
that are placed at different locations, and that communi-
cate via message passing. These systems are known to be
very hard to reason about due to certain characteristics, e.g.,
their concurrent nature, non-determinism, and communica-
tion delays [24, 36]. There has been a wide variety of work
focusing on verifying distributed systems, including dynamic
verification techniques such as runtime verification [20, 39]
which checks if a run of a System Under Observation (SUO)
satisfies properties of interest. Properties are typically cap-
tured as formal specifications expressed in forms of linear

temporal logic, finite state machines, regular expressions,
etc. Some of the proposed runtime verification techniques
related to distributed computing employ concurrent moni-
toring [8, 10, 13, 16, 23, 26]. Using concurrency, one can
benefit from parallel execution of the concurrent units, which
can improve the overall performance. One can exploit par-
allelism by using additional hardware resources for running
monitors to reduce their online overhead [13]. Using con-
current monitors instead of one monolithic monitor, one can
achieve higher utilization of available cores [23].

In this paper, we propose a concurrent runtime verifica-
tion approach for analyzing distributed systems. Note that
our runtime verification approach can itself be distributed,
however, the distributed setting is not demonstrated in this
paper. Our approach is not tied to a particular SUO, although
it is motivated by a use case which aims to analyze flight be-
haviors in the National Airspace System (NAS). We pursue
this use case as our case study. NAS refers to the U.S. airspace
and all of its associated components, including airports, air-
lines, air navigation facilities, services, rules, regulations,
procedures, and workforce. NAS is a highly distributed and
large system with over 19,000 airports, including public, pri-
vate, and military airports, and up to 5,000 flights in the U.S.
airspace at the peak traffic time. NAS actively evolves under
the NextGen (Next Generation Air Transportation System)
project, led by the Federal Aviation Administration (FAA),
which aims to modernize NAS by introducing new concepts,
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and technologies. Considering the size and complexity of
NAS, efficiency is vital to our approach. Our ultimate goal is
to generate a monitoring system that handles high volumes
of live data feeds and can be used as a ground control station
to analyze air traffic data in NAS.

Our approach is based on employing concurrent moni-
tors, and adopts the actor programming model for building
concurrent systems. The actor model was proposed in 1973
as a way to deal with concurrency in high performance sys-
tems [31]. Concurrent programming with shared memory
is notoriously difficult, creating problems such as synchro-
nization and memory protection. The actor programming
model offers an alternative that is supposed to eliminate
such problems. The primary building blocks in the actor
programming model are actors, which are concurrent objects
that do not share states and only communicate by means of
asynchronous messages that do not block the sender. Ac-
tors are fully independent and autonomous and only become
runnable when they receive a message in their buffer, called
the mailbox. The model also guarantees that each runnable
actor only executes in one thread at a time, a property which
allows for viewing an actor’s code as a sequential program.

Our approach is implemented as the framework MESA,
which is an open source project [43]. MESA uses the Akka
toolkit [4, 51], that provides an implementation of the ac-
tor model in Scala. The actor model is adopted by numer-
ous frameworks and libraries. However, what makes Akka
special is how it provides support and additional tooling
for building actor-based systems. MESA also leverages the
Runtime for Airspace Concept Evaluation (RACE) [40, 41]
framework, another system built on top of Akka and ex-
tending it with additional features. RACE is a framework to
generate airspace simulations, and provides actors to import,
translate, filter, archive, replay, and visualize data from NAS,
that can be directly employed in MESA when checking for
properties in the NAS domain.

MESA supports specification of properties in data-
parameterized temporal logic and state machines. The sup-
port for formal specification is provided by integrating the
trace analysis tools TraceContract [9, 30] and Daut (Data
automata) [28, 29], implemented as domain-specific lan-
guages (DSLs) [5]. TraceContract, which was also used for
command sequence verification in NASA’s LADEE (Lunar
Atmosphere And Dust Environment Explorer) mission [37],
supports a notation that combines data-parameterized state
machines, referred to as data automata, with temporal logic.
Daut is a modification of TraceContract, which, amongst
other things, allows for more efficient monitoring. In con-
trast to general-purpose languages, external DSLs offer high
levels of abstractions but usually limited expressiveness.
TraceContract and Daut are, in contrast, internal DSLs since
they are embedded in an existing language, Scala, rather than
providing their own syntax and runtime support. Thus, their

specification languages offer all features of Scala, which adds
adaptability and richness.

As a basic optimization technique, MESA supports index-
ing, a restricted form of slicing [42, 48]. Indexing slices the
trace up into sub-traces according to selected data in the trace,
and feeds each resulting sub-trace to its own sub-monitor. As
an additional optimization technique, MESA allows concur-
rency at three levels. First, MESA runs in parallel with the
monitored system(s). Second, multiple properties are trans-
lated to multiple concurrently running monitors, one for each
property. Third, and most importantly for this presentation,
each property is checked by multiple concurrent monitors
by slicing the trace up into sub-traces using indexing, and
feeding each sub-trace to its own concurrent sub-monitor.

MESA is highly configurable. One can configure MESA
by specifying how to check a property using concurrent mon-
itors. By tuning relevant parameters in the MESA config-
uration, and evaluating the performance, one can find the
optimal number of concurrent monitors to improve the per-
formance. As the main result of the paper, we demonstrate
that concurrent execution of slices (the third form of concur-
rency mentioned above) is beneficial with respect to perfor-
mance. This is not an obvious result considering the cost of
scheduling threads for small tasks.

Note that this paper is an extended and revised version
of a preliminary conference paper, which was presented in
RV 2020 [52]. The present paper elaborates more on the
implementation of the tool, and the case study. It includes
the description of the underlying threading model and how
it is set up in our experiments. Finally, it expands on related
work, and the results obtained from our experiments.

The rest of the paper is organized as follows. Section 2
outlines related work. Section 3 provides an overview of the
MESA architecture. Section 4 presents the case study illus-
trating how MESA can be used to monitor arrivals to US
airports. Section 5 gives a brief introduction to the Akka
threading model in Scala, which is useful for understanding
the following experiment. Section 6 presents an experiment
rooted in the case study, analyzing the combination of con-
currency and indexing, a main contribution of the paper.
Section 7 discusses the overall approach and results. Finally,
Sect. 8 concludes the paper.

2 Related work

Amongst the most relevant work is that of Hallé et al. [26]. In
this work, the authors use data parallelism to scale first-order
temporal logic monitoring by slicing the trace into multiple
sub-traces, and feeding these sub-traces to different parallel
executing monitors. The approach creates as many monitors
as there are slices. The individual monitors are considered
black boxes, which can host any monitoring system fitting
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the expected monitor interface. The authors do not provide
performance results for specifically the combination of slic-
ing and concurrency. Their approach is implemented as an
extension of BeepBeep 3 [25] which allows certain types
of computations to be performed in parallel. However, the
parallelism in BeepBeep 3 is done manually, which requires
much fine-tuning.

Another attempt in a similar direction is that of Basin
et al. [10] which also submits trace slices to parallel moni-
tors, a development of the author’s previous work on using
MapReduce for the same problem [8]. The authors provide
performance results for the use of slicing together with con-
currency, but do not compare these with runs without concur-
rency. However, their evaluation shows that their monitoring
approach scales to large logs. The logs analyzed contain bil-
lions of events, supporting the observation that exactly this
use of concurrency is performance enhancing. The approach
is proposed for offline verification where traces are logged in
a distributed file system.

Reger in his MSc dissertation [47] experimented with
creating parallel monitors to monitor subsets of the state
space for each submitted event. However, in that early work,
the results were not promising as using concurrency slowed
down the monitoring process, possibly due to the less mature
state of support for parallelism in Java and hardware at the
time. As Reger writes in [47] (page 81): “Monitoring the
DaCapo benchmarks gave barely any good results . . . the
concurrency offered by a multicore system was insignificant
and these approaches often made the benchmarks run much
slower than with just the base monitor”. Reger also later in
[49] (page 2) writes: “In previous work [47], we attempted to
parallelise the way that a RuleR monitor handles events and
found that the amount of work required to evaluate a single
event was generally not large enough to benefit from par-
allelisation. For runtime monitoring as usually envisaged,
with simple events and event processing, we believe this to
be generally the case when considering a single step of a
monitor.”.

Berkovich et al. [13] also address the splitting of the trace
according to data into parallel executing monitors. However,
differently from the other approaches, the monitors run on
GPUs instead of on CPUs, as the system being monitored
does. Their monitoring approach incurs minimal intrusion,
as the execution of monitoring tasks takes place on different
computing hardware than the execution of the SUO.

Francalanza and Seychell [23] explore structural paral-
lelism, where parallel monitors are spawned based on the
structure of the formula. E.g., a formula p ∧ q will cause
two parallel monitors, one for each conjunct, co-operating to
produce the combined result.

El-Hokayem and Falcone [18] review different approaches
to monitoring multithreaded Java programs, which differs in
perspective from the monitoring system itself to be parallel.

Francalanza et al. [24] survey runtime verification research
on how to monitor systems with distributed characteristics,
solutions that use a distributed platform for performing the
monitoring task, and foundations for decomposing monitors
and expressing specifications amenable for distributed sys-
tems.

In [12], Basin et al. present an approach to scaling mon-
itoring of distributed systems. Their approach assumes that
the monitoring system receives more than one input stream,
and that events can arrive out of order. Note that in the here
presented work we also target monitoring of distributed sys-
tems, however, in our case the monitoring system is dealing
with only a single input stream.

The work by Burlò et al. [14] targets open distributed
systems and relies on session types for specification of com-
munication protocols. It applies a hybrid verification tech-
nique where the components available pre-deployments are
checked statically, and the ones that become available at run-
time are verified dynamically. Their approach is based on
describing communication protocols via session types with
assertions, from the lchannelsScala library, which are used
to synthesize monitors automatically. They develop a formal
model of processes monitored using session types, and prove
the correctness of their approach in terms of soundness and
completeness. Moreover, they show the feasibility of their
approach through a set of benchmarks.

The work by Neykova and Yoshida [45] applies runtime
verification to ensure a sound recovery of distributed Erlang
processes after a failure occurs. Their approach is also based
on session types to enforce protocol conformance.

The work by Attard and Francalanza [6] targets asyn-
chronous distributed systems. Their approach allows for gen-
erating partitioned traces at the instrumentation level, where
each partitioned trace provides a localized view for a subset
of the SUO. The work focuses on global properties that can be
cleanly decomposed into a set of local properties, which can
be verified against local components. It is suggested that one
could use the partitioned traces to infer alternative merged
execution traces of the system. The implementation of the
approach targets actor-based Erlang systems, and includes
concurrent localized monitors captured by Erlang actors.

The work by El-Hokayem and Falcone [19] targets decen-
tralized systems that consist of multiple components without
a central observation point. They present a general algorithm
to monitor decentralized specifications which are composed
of a set of automata captured by monitors attached to compo-
nents. They also elaborate on two properties of decentralized
specifications, monitorability and compatibility. The former
ensures that the monitors are able to reach a verdict for all
possible traces, and the later ensures that a specification can
be deployed on a given architecture.

In [38], Lavery et al. present an actor-based monitoring
framework in Scala, that, similar to our approach, is built
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using the Akka toolkit. The monitoring system does not, in
contrast to our approach, provide a temporal logic API for
specifying properties, which is argued to be an advantage.
Note, that Daut as well as TraceContract, in addition to such a
temporal logic API, allow defining monitors using any Scala
code as well. A monitor master actor can submit monitoring
tasks to worker actors in an automated round-robin fashion.
This, however, requires that the worker monitors do not rely
on an internal state representing a summary of past events.

The work by Aceto et al. [2] presents a synthetic bench-
marking framework for evaluating runtime verification tools
that can target concurrent message-based systems. The
benchmarks are synthesised as Erlang actor-based systems.
The work performs an empirical study, which reports on
overhead from synthesised monitors that are inlined into the
system.

Monitoring of hyperproperties [3, 21] is a more recent
research topic, where a property is a set of sets of traces (in-
stead of a set of traces). In a hyperproperty temporal logic,
a formula can relate multiple executions of a, not neces-
sarily distributed, system to each other. The concept of hy-
perproperties was initially suggested in [15] as a means to
express security policies that cannot be expressed as tradi-
tional single-trace properties. A yet unexplored question is
whether MESA can be used for monitoring hyperproperties.

Two high-performance systems in particular paved the
way wrt. slicing, first MOP [42] and later MarQ [48]. Our ap-
proach to slicing can be compared to those efforts by focusing
on the expressiveness of the slicing along two dimensions,
which we shall call dispersed slicing and partial slicing. Both
MOP and MarQ support dispersed slicing by allowing event
parameters used for indexing to arrive in different events. In
contrast, in our approach such event parameters have to all
arrive in the same event. The classic example is the unsafe
map iterator property [42], which states that iteration over
the keys (domain) of a map in Java is safe. Specifically, if an
observed event reports that the keys of a map m are extracted
as a collection c, and a next event reports that an iterator i is
extracted from the collection c, and a third event reports that
the map m is updated, then after that it is unsafe to continue
iterating over the iterator i. In this case, the keys m and c are
introduced in the first event and i is introduced in the second
event. Note, that even though we do not support dispersed
indexing, properties like this can be expressed, although with
less efficient execution.

Both MarQ and our approach support partial slicing by
allowing a strict subset of the parameters to an event to be
used for indexing. In contrast, MOP requires all event param-
eters to be used for indexing. This limits the expressiveness
of MOP. Say for example that we monitor acquisitions and
releases of locks l by threads t in a concurrent system via
events of the form acq(t, l) and rel(t, l). A property that cannot
be expressed in MOP is that if a lock l has been acquired by a

thread t, indicated by the event acq(t, l), then another thread
t ′ cannot acquire the lock until t has released it. The reason is
that acq(t, l) and acq(t ′, l) will be sent to two different slices.

3 An overview of MESA

Our approach implemented in MESA allows for concurrent
monitoring of formal properties. As shown in this section,
MESA is designed in a way to ensure concurrency at three
different levels. It can run in parallel with the SUO. Moreover,
multiple properties can be captured by multiple concurrent
monitors. Finally, one property can be translated into multi-
ple concurrent monitors. Furthermore, MESA is designed to
provide flexibility in terms of the system used for property
specification. We elaborate on this by explaining how the
Daut system is integrated into MESA.

MESA is a framework for building actor-based monitor-
ing systems. An overview of a system that can be built using
MESA is shown in Fig. 1. A MESA system is solely com-
posed of actors that implement a pipeline of four processing
steps. The vertical lines between actors represent publish-
subscribe communication channels, resembling pipelines
where outputs from one step are used as inputs for the follow-
ing step. The first step is data acquisition, which extracts data
from the SUO. The second step is data processing, which
parses raw data extracted by the previous step and generates
a trace composed of events that are relevant to the properties
of interest. Next step is monitoring which checks the trace
obtained from the previous step against the given properties.
Finally, the last step is reporting which presents the verifi-
cation results. What MESA offers are the building blocks to
create actors for each step of the runtime verification. Of-
ten one needs to create application specific actors to extend
MESA towards a particular domain. Besides the NAS do-
main, MESA is extended towards the UxAS project, which
is developed at Air Force Research Laboratory and provides
autonomous capabilities for unmanned systems [46].

Akka actors can use a point-to-point or publish-subscribe
model to communicate with one another. In point-to-point
messaging, the sender sends a message directly to the re-
ceiver, whereas, in publish-subscribe messaging, the re-
ceivers subscribe to a channel, and messages published on
that channel are forwarded to them by the channel. Messages
sent to each actor are placed on its mailbox. Only actors with
a non-empty mailbox become runnable. Actors extend the
Actor base trait and implement a method receiveLive of
type PartialFunction[Any, Unit] which captures their
core behavior. It includes a list of case statements that, by
applying Scala pattern matching over parameterized events,
determine the messages that can be handled by the actor
and the way they are processed. To create a MESA monitor-
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Fig. 1 Overview of a MESA
actor-based monitoring system

Fig. 2 The MESA framework infrastructure

ing system (Fig. 1), one needs to specify the actors and the
way they are connected with communication channels in a
HOCON [32] configuration file used as an input to MESA.

Figure 2 shows the MESA framework infrastructure and
the existing systems incorporated into MESA. These systems
are all open source Scala projects. MESA is also written in
Scala, and it is open source, available at [43]. Akka provides
the actor model implementation. RACE, built on top of Akka,
is used for connectivity to external systems. MESA employs a
non-intrusive approach since for safety-critical systems such
as NAS, sources are either not available or are not allowed to
be modified for security and reliability reasons. Even when
the source is available, any potential malfunction that may
be introduced by instrumentation cannot be tolerated. RACE
provides dedicated actors, referred to as importers, that can
subscribe to commonly-used messaging system constructs,
such as JMS server and Kafka. Using an importer actor from
RACE in the data acquisition step, we extract data from the
SUO, in a nonintrusive manner. Moreover, RACE extends
Akka with features that our framework relies on, such as
synchronizing the execution of actor lifetime phases includ-
ing instantiation, initialization, start, and termination. RACE
also provides a mechanism to let remote actors communicate
with local actors seamlessly using the same API. By incorpo-
rating remote actors, one can create a distributed monitoring
system using MESA, where actors are placed on different
machines.

MESA incorporates the tools TraceContract [9, 30] and
Daut [28, 29] for property specification. TraceContract and
Daut are both internal (embedded) trace analysis DSLs (Scala
libraries), where given a program trace and a formalized
property, they determine whether the property holds for the
trace. Since they are internal DSLs, they allow for the use
of full Scala for writing monitors, in addition to, and in
combination with, using the DSLs. This allows for very ex-
pressive monitors, which can not only perform arbitrary data

computations, but also give rich verdicts beyond the Boolean
domain, such as results of such computations. Monitor is the
main class in these DSLs (tracecontract.Monitor and
daut.Monitor), which encapsulates property specification
capabilities. It implements the method verify, that for each
incoming event updates the state of the monitor accordingly.

Properties are defined as subclasses of class Monitor, and
instances of such are referred to as monitors from here on.
Similar to the actor receiveLive method, a user-defined
subclass of the class Monitor includes a series of case

statements that determine the events that can be handled by
the monitor and the behavior triggered for each event. The
properties described in this paper are specified using Daut
since it also provides an indexing capability within monitors
to improve their performance. It allows for defining a function
from events to keys, where keys are used as entries in a hash
map to obtain those states which are relevant to an event.
Using indexing, a Daut monitor, when receiving an event,
only iterates over an indexed subset of states relevant for
the event instead of the entire set, yielding a performance
improvement.

The actors in the monitoring step (Fig. 1), referred to as
monitor actors, hold instances of the Monitor classes and
feed them with incoming event messages. MESA provides
components referred to as dispatchers which are configurable
and can be used in the monitoring step to determine how the
check for a property is distributed among different moni-
tor actors. Dispatchers, implemented as actors, can generate
monitor actors on-the-fly and distribute the incoming trace
between the monitor actors, relying on identifiers extracted
from data parametrized events. Dispatchers are key to our
experiments.

The UML diagram in Fig. 3 illustrates how Daut is in-
tegrated into MESA. The integration of TraceContract is
performed in a similar manner. The integration ensures that
code is not tied to any specific trace analysis DSL to pro-
vide extensibility when employing new DSLs. To integrate
a trace analysis DSL, MESA includes a class that extends
the key class in DSL that provides property specification
capabilities (e.g., daut.Monitor in Daut). The class used
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Fig. 3 Integration of the Daut
DSL into the MESA framework

to integrate the DSL also implements a trait which is called
MesaMonitor and used as a Scala mixin.1

To integrate Daut, MESA implements the class
DautMonitor, which extends daut.Monitor and imple-
ments MesaMonitor. The MesaMonitormixin is used to es-
tablish a common interface throughout the code to refer to all
monitor objects. It defines the verifyEvent method, which
is implemented by subtypes and checks the incoming events
against the specified properties by delegating the verifica-
tion to the DSL code (e.g. daut.Monitor.verify(event:
Event) for a Daut monitor). Monitor actors in the monitor-
ing phase extend the class MonitorActor. This class has a
field of type MesaMonitor, which is set to a monitor object
during the actor initialization. The concrete type for the mon-
itor object is specified in the monitor actor’s configuration.
For each incoming event placed in the monitor actor mail-
box, the monitor actor invokes the method verifyEvent on
its underlying monitor object to verify the event against the
properties implemented by the monitor.

4 Monitoring live flights in the U.S. airspace

This section presents the case study where MESA is applied
to check a property known as RNAV STAR adherence, re-
ferred to as PRSA in this paper. RNAV (Area Navigation)
[56] is a navigation system that allows the aircraft to move
on any desired flight route, provided as a sequence of way-
points, without relying on ground-based navigation aids. The
RNAV system is based on instrument flight rules [57] which
are a set of regulations under which the aircraft is navigated
only by reference to the instruments in the aircraft cockpit
rather than using visual references. RNAV systems continu-
ously determine the position of the aircraft and by providing
deviation from the desired route, they aid the pilot to navigate
the aircraft.

A STAR is a standard arrival procedure designed by the
FAA to transition flights from the en-route phase to the ap-
proach phase, where descent starts. Every STAR specifies a

1 “Mixing in” traits (mixins) is a way of allowing for a class (or trait)
to extend multiple traits. These are included, rather than inherited from,
avoiding the problems of multiple inheritance.

set of flight routes (See Fig. 4), where each route is specified
by a sequence of waypoints, accompanied by vertical and
speed profiles specifying altitude and airspeed restrictions.
A waypoint is a geographical position with latitude and lon-
gitude coordinates. A STAR is a form of communication
between the flight crew and air traffic controllers. When the
air traffic controller gives a clearance to the pilot to take a
certain STAR route, they communicate the route, altitude,
and airspeed. A STAR route, assigned to a flight, is encoded
in the flight plan, presented to the pilot as a sequence of
waypoints. Certain STARs, that can be only used by aircraft
equipped with RNAV navigation systems, are referred to as
RNAV STARs. One of the ongoing focus points of the FAA is
to increase the utilization of RNAV-based procedures, which
reduce the communication overhead with ground. Figure 4
demonstrates a RNAV STAR procedure, called BDEGA3,
which is designed for the SFO airport. There are a total of
10 RNAV STAR procedures assigned to the SFO airport.

From 2009 to 2016, as part of the NextGen project, 264
more RNAV STAR procedures were implemented on an ex-
pedited timeline [56] which led to safety concerns raised
by airlines and air traffic controllers, including numerous
unintentional pilot deviations [17, 33]. A possible risk asso-
ciated with deviating from a procedure is a loss of separation,
which can result in a midair collision. The work presented in
[54] studies RNAV STAR adherence trends based on a data
mining methodology, and shows deviation patterns at major
airports [7].

The case study applies runtime verification to check if
flights are compliant with the designated RNAV STAR routes
in real-time. A navigation specification for flights assigned
to a RNAV STAR requires a lateral navigation accuracy of 1
NM2 for at least 95% of the flight time [34]. Our approach
focuses on lateral adherence, where incorporating a check
for vertical and speed profiles becomes trivial. We infor-
mally define the RNAV STAR lateral adherence property as
follows, adopted by others [54].
PRSA : a flight shall cross inside a 1.0 NM radius around
each waypoint in the assigned RNAV STAR route, in order.

2 NM, nautical mile is a unit of measurement equal to 1,852 meters.
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Fig. 4 BDEGA3 RNAV STAR
procedure designed for SFO

4.1 Formalizing property PRSA

For the sake of brevity, we say that a flight visits a waypoint if
the flight crosses inside a 1.0 NM radius around the waypoint.
We say that an event occurs when the aircraft under scrutiny
visits a waypoint that belongs to its designated RNAV STAR
route. For example, in Fig. 5, where circles represent 1.0 NM

radius around the waypoints, the sequence of events for this
aircraft is MLBEC MLBEC JONNE.

We define a state machine capturing Property PRSA. Let
L be a set including the labels of all waypoints in the RNAV
STAR route. Let first and last be predicates on L that denote
the initial and final waypoints, respectively. Let next be a
partial function, L ↪→ L, where given a non-final waypoint
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Fig. 5 The sequence of events
for the aircraft is MLBEC
MLBEC JONNE

in L it returns the subsequent waypoint in the route. For
example, next(MLBEC) returns JONNE (Fig. 5). The finite
state machine for Property PRSA is the tuple (Q,Σ,q0,F, δ)
where

– Q = L ∪ {init,err,drop}
– Σ = {et | t ∈ L ∪ {FC,SC}}
– q0 = init
– F = {err,drop} ∪ {q ∈ L | last(q)}
– δ : Q × Σ→Q

Q is the set of all states, and init is the initial state. Σ is the
set of all possible events. The event et where t ∈ L indicates
that the aircraft visits the waypoint t. The event eFC indicates
that the flight is completed, and eSC indicates that the flight
is assigned to a new STAR route. Note that FC stands for
flight completed and SC stands for STAR changed. F is
the set of final states, where last represents the set of accept
states indicating that the flight adhered to the assigned RNAV
STAR route. The state err represents an error state indicating
the violation of the property. The state drop represents a state
at which the verification is dismissed due to assignment of
a new STAR route. The transition function δ is defined as
below.

δ(q,et ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

t if (q = init & first(t))
or (q ∈ {x ∈ L | ¬last(x)} &

t ∈ {q,next(q)})
err if (q = init & t � SC & ¬first(t))

or (q ∈ {x ∈ L | ¬last(x)} &
t � {q,next(q),SC})

drop if (q � err & t = SC)

At init, if the flight visits the first waypoint of the assigned
route, the state machine advances to the state representing
the first waypoint. Alternatively, if at waypoint q, the flight
can only visit q or the next waypoint in the route, next(q).
Otherwise, if at init, and it visits any waypoint other than the
first waypoint of the route, the state machine advances to err.
Likewise, if the flight visits any waypoint not on the route,
the state advances to err. Finally, at any state other than err,
if the flight gets assigned to a new route (t = SC), the state
machine advances to drop.

4.2 PRSA monitor implementation

Event types are implemented as Scala case classes due to
their concise syntax and built-in pattern matching support,
that facilitates convenient programming of transitions be-
tween states. There are three such event types.

case class Visit( info : Info , wp: Waypoint)
case class Completed(track: Track)
case class StarChanged(track: Track)

The class Visit represents an event indicating that a flight
visits a given waypoint wp of type Waypoint. The info
argument of type Info carries information about the flight,
including its state and its track. The state captures position,
heading, speed, etc. and the track captures the assigned STAR
route. Each flight is uniquely identified by a so-called call
sign (cs), of type String, which is part of the state as
well as of the track. The class Completed represents an
event indicating that a flight is completed. Finally, the class
StarChanged represents an event indicating that a flight is
assigned a new STAR route.

We implement the property PRSA as the Daut monitor
in Fig. 6. A Daut monitor is defined as a class, in this
case P_RSA, which, directly or indirectly, extends the class
Monitor, defined in the Daut library. In this case, the class
P_RSA extends the class DautMonitor, which itself ex-
tends class Monitor. Class Monitor defines, amongst other
things, the type state, the state producing functions always
and watch, and finally error and ok, which represent end
states with the obvious meanings.

A Daut monitor maintains a set of current states, each of
type state. Each state is associated with a transition func-
tion of type: PartialFunction[E,Set[state]], where E
is the type of events submitted to the monitor. A partial func-
tion can in Scala be defined as a block of case-statements,
defining the exact domain for which it is defined. A tran-
sition function returns a set of new states when applied to
an event for which it is defined.3 Different kinds of states
are supported, such as always-states which are always active,
and watch-states, which are active until an event matches a
transition, at which point they are removed. The functions

3 Given a partial function f in Scala, the expression f .isDefined(e)
is true iff. the function f is defined for the value e, in our case whether
event e matches one of the case-statements. This is used by the monitor
to determine whether a state is enabled to process an event.
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Fig. 6 Implementation of Property PRSA in Daut

always and watch produce such states when applied to par-
tial functions representing the transitions.

The monitor should be read as follows. Lines 2-6 define
the initial state, always observing Visit and Completed

events. The partial function in lines 3-5 defines the transi-
tions in this always-state. The first case matches a Visit

event e,4 with an Info argument containing a track, and
a waypoint wp, and where the condition isNewFlight(e)

is true, meaning that the event represents a new flight (new
call sign) not already monitored. In this case, if the waypoint
is the first we enter, a new state is entered, returned by a
call of the function nextState, now monitoring the flight
in this initial waypoint. Otherwise (if a not yet monitored
flight starts in a waypoint different from the first), an error

state is entered. If it is a Completed event for a new flight,
indicating that the flight is completed without visiting any
waypoints, an error state is entered.

Note that although nextState, lines 8-18, is a normal
Scala function, introducing this function gives the resem-
blance of a state machine with two kinds of states, the initial
always-state, and the state(s) represented by this function.
In Sect. 6 we shall see an example of a property with “un-
named” states, resembling how temporal logic does not refer
to named states.

The function nextState returns a new state monitoring
a specific flight with a specific call signal cs and at a certain
current waypoint wp. First, in line 9, we compute the next
waypoint, next, reachable from the current waypoint wp,
used to monitor whether that next waypoint is entered. The
subsequent call of the watch function, lines 10-17, returns
a state monitoring the transitions provided to the call as the

4 The pattern e @ pattern behaves as pattern, but in addition gives
the name e to the value matching the pattern.

partial function in lines 11-16. If a Visit event is observed,
line 11, with a call sign matching the call sign provided as
parameter (grave accent quotes around a variable mean that
the value of that variable has to be matched) and with a
waypoint matching the current, then we just continue in the
current state. If, on the other hand, lines 12-13, it is a Visit
event where the waypoint matches the next way point, then
if it is the last we terminate monitoring in the ok state, and if
not then we continue monitoring in the next waypoint. If it
is a Visit event and none of these cases match, line 14, we
end up in the error state. If a Completed event is observed,
line 15, without having reached the end state via a Visit
event first (line 13), an error state is entered. Finally, line
16, if the route is changed for that flight, the flight is dropped
as being monitored, and we enter the ok state.

4.3 A MESA monitoring system for PRSA

Figure 7 illustrates the MESA monitoring system used to
verify Property PRSA. The data acquisition step extracts the
data relevant to the property which includes flight informa-
tion, position, navigation specification, flight plan, etc. To
get this data, we connect to an FAA system, SWIM (System
Wide Information Management) [27]. SWIM implements a
set of information technology principles in NAS which con-
solidates data from many sources, e.g., flight data, weather
data, surveillance data, airport operational status. Its purpose
is to provide relevant NAS data, in standard XML formats,
to its authorized users such as airlines, and airports. SWIM
has a service-oriented architecture, which adopts the Java
Message Service (JMS) interface [50] as a messaging API to
deliver data to JMS clients subscribed to its bus. We use the
RACE actor SFDPS-importer, which is a JMS client con-
figured to obtain en-route real-time flight data from a SWIM
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Fig. 7 A MESA instance for verifying Property PRSA for RNAV STARs at SFO

service, SFDPS (SWIM Flight Data Publication Service)
[55]. SFDPS-importer publishes the data to the channel
sfdps.

The data processing step parses the SFDPS data obtained
from the previous stage by subscribing to the channel sfdps,
and generates a trace, which is composed of event objects, rel-
evant to the property. This is done via a pipeline of actors that
parse the SFDPS messages in XML (SFDPS-2-track and
SFDPS-2-state), filter irrelevant data (filter), and finally
generate Visit, Completed, and StarChanged events,
which are known to the monitor P_RSA (event-gen) and
published to the channel trace.

The monitoring step includes monitor actors that encapsu-
late an instance of the monitor P_RSA (Fig. 6). They subscribe
to the channel trace, and feed their underlying P_RSA object
with incoming events. Each monitor actor in Fig. 7 is associ-
ated to a RNAV STAR procedure at SFO which checks for the
flights assigned to that RNAV STAR, and published the ver-
ification result on the channel result. Using the dispatcher
feature of MESA, one can distribute the monitoring differ-
ently, for example using one monitor actor per flight. Finally,
the last step displays the results. The actor display simply
prints data published on result on the console. We also
use a RACE actor, ww-viewer, that uses NASA WorldWind
system [44] to provide interactive geospatial visualization of
flight trajectories.

Using the MESA system shown in Fig. 7, we discovered
violations of PRSA. Figure 8 includes snapshots from our vi-
sualization illustrating two cases where PRSA was violated. In
both cases, the flights are assigned to a route in the BDEGA3
procedure. As shown in Fig. 8, the flight United 1738 missed
the waypoint LOZIT, and the flight Jazz Air 743 missed the
initial waypoint BGGLO.

5 Akka threading model

Since a main focus of this work is evaluating the impact of
concurrent monitors, it is essential to understand the Akka

Fig. 8 Flight deviation from the assigned RNAV STARs detected at
SFO

threading model. This section explains the underlying thread-
ing model in Akka to show how actors in Akka are scheduled.
Scheduling actors in Akka is performed by low-level com-
ponents built into the Akka toolkit, which are referred to
as dispatchers. Note that these dispatchers are completely
different from the dispatcher components implemented in
MESA. To avoid confusion, in some contexts, we refer to the
ones implemented by Akka as Akka dispatchers. Akka dis-
patchers are responsible for management of actor mailboxes
and the threading strategy. They push messages into actors
mailboxes, and associate threads from the thread pools to ac-
tors to process messages in their mailboxes. Akka provides
a fixed number of dispatchers to choose from. The user can
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also assign a certain Akka dispatcher to a group of actors.
The built-in dispatcher types in Akka are as follows.

– Dispatcher is the default Akka dispatcher which asso-
ciates all the assigned actors to one thread pool.

– PinnedDispatcher provides an actor with exclusive ac-
cess to a single thread.

– BalancingDispatcher redistributes messages from
busy actors to the ones with empty mailboxes.

– CallingThreadDispatcher is only used for testing, and
uses the current thread to execute any actor.

Akka provides configuration parameters to tune dispatchers
to specific needs. The parameter throughput represents the
maximum number of messages processed by the actor be-
fore the assigned thread is returned to the pool. The param-
eter throughput-deadline-time represents the deadline
for the actor to process messages each time it executes. One
can also specify the underlying thread pool implementation
used in the Akka dispatcher by setting its executor compo-
nent using the parameter executor. By default, Akka uses
fork-join-executor, which relies on the work-stealing
pattern where threads always try to find tasks from the sub-
mitted tasks to the pool and the ones created by other running
tasks. Akka also includes thread-pool-executor, which
offers a dynamic thread pool that can decrease or increase in
size depending on how busy or idle the threads are. Akka also
allows users to implement their own customized executor.

The number of threads in the pool is another measure that
can be tuned. With too few threads, which may cause low
CPU utilization, the actors are not able to keep up with the ar-
rival of messages. With too many threads, the context switch
time between threads increases, which leaves less time for
processing the threads. The Akka dispatcher configuration
provides three parameters to specify the thread pool size.
The parameters parallelism-min and parallelism-max
represent the minimum and maximum number of threads,
respectively, and parallelism-factor is a factor to cal-
culate the number of threads based on available processors.
The size of the thread pool is parallelism-factor multi-
plied by the number of available processors. The number of
available processors is the value returned by the method
java.lang.Runtime.availableProcessors() which
gives the maximum number of logical cores available to the
virtual machine. If the calculated thread pool size is smaller
than parallelism-min or larger than parallelism-max,
then the thread pool size becomes parallelism-min
or parallelism-max, respectively. Moreover, to set the
thread pool size to a specific value, one could set both
parallelism-min and parallelism-max to that value.

To find the right configuration, one needs to benchmark
with different dispatcher parameters presented in this section.
Section 6.2, which presents the setup for our experiments,

includes the values used for the Akka dispatcher parameters
in our experiments. We use the same configuration for all the
experiments.

6 Experiments

This section presents our experiments evaluating the impact
of using concurrent monitors and indexing. More details on
the experiments can be found in [53]. The experiments use a
property which checks if the sequence of SFDPS messages
with the same call sign received from SWIM is ordered by the
time tag attached to the messages. This property is motivated
by observations where the SFDPS messages did not send in
the right order by SWIM. The reason for considering this
property for our experiments, instead of PRSA (Sect. 4), is
that, unlike PRSA, this property applies to all flights, which
provides us with a larger data set. It should also be noted
that our analysis in Sect. 4 is based on the assumption that
messages are always received in the correct order. We use the
state of flights as events captured by State instances, and
specify the property, named P, in Daut as follows, where t1
and t2 represent the event time.
class P(config: Config) extends DautMonitor(config){

always {
case State(cs,_,_,t1) ⇒ watch {

case State(‘cs ‘, _,_,t2) ⇒ t2 . isAfter (t1) }
}

}

The monitor reads as follows: It always holds that if a State
event is observed for a flight with call sign cs at a time t1,
then the next observed State event after that, with the same
call sign cs, must have a time stamp t2 which is after t1,
determined by the boolean expression t2.isAfter(t1).
A boolean expression in Daut, occurring at a position where
a result state is expected, is interpreted as ok if true and as
error() if false. Note that in contrast to the monitor in Fig. 6
the watch function is applied immediately after the first =>
arrow, without defining a new function containing this call
(similar to giving a name to the result state). It corresponds
to simply inlining the body of the function one could have
otherwise written. This is an example of how one can write
monitors with a temporal logic flavor in contrast to a state
machine flavor as in Fig. 6.

The property P is simple, and it leads to a small service
time, the time used to process the message within the mon-
itor object. To mitigate issues associated with microbench-
marking, we use a feature of Daut that allows for defining
sub-monitors within a monitor object. We implement a Daut
monitor P_SEQ as follows, which maintains a list of sub-
monitors, all monitoring the same property P.
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class P_SEQ(config: Config) extends DautMonitor(config){
val size = config. getInt ( "sub−monitor−count") − 1
val m = for( i ← 0 to size) yield new P(config)
monitor(m: _∗)

}

The variable size is assigned to the desired number of sub-
monitors, denoted by the key sub-monitor-count in the
configuration map, which is set by the user. Next, m is as-
signed a list of size monitor instances, each monitoring
property P, using a for-expression (Scala’s version of a list
comprehension). Finally, the function monitor is applied to
this list (the _* is needed to turn the list m into a variable-
length argument list5). The monitor function adds each of
its argument monitors as a sub-monitor.

We evaluate the impact of concurrency in the context of
indexing. Indexing is an optimization technique that can be
applied both at the monitor level or the dispatcher level, and
serves to reduce the number of states searched when a new
event is submitted. Indexing at the monitor level is supported
by Daut. We activate this feature by overriding the indexing
function keyOf in the Daut monitor. This function, when
applied to an event, returns a key to index on, in this case the
call sign (flight identifier) for each event.
override protected def keyOf(event: Any) = {

e match {
case State(cs, _, _, _) ⇒ Some(cs)

}
}

The Daut monitor will subsequently internally organize the
states in a hash map, mapping each key to the states relevant
for events with that key. Given an observed event, the monitor
obtains the key of the event by applying keyOf, and looks
up the states mapped to by that key, which are then applied
to the event, instead of iterating over all the current states.

At the dispatcher level, indexing is applied by keeping the
monitor instances or references to monitor actors in a hash
map, using the call signs carried by events as entries to the
hash map.

6.1 Monitoring systems

The experiments use four different MESA systems, which
are illustrated in Fig. 9 (the last option represents two differ-
ent monitoring systems, as explained below). Each system
monitors exactly one property. It can be seen that all the
systems have the same data acquisition and data processing
phases, and they are only different in their monitoring phase.
They use the instant-reply actor to acquire the input data,
and the event-gen actor to process the data and create the
trace for the monitors. The instant-reply actor accesses

5 A variable-length argument list refers to a list of arguments of
arbitrary length, all of the same type.

an archive containing recorded SFDPS data messages in the
XML format, and as it reads the messages, it publishes them
to the sfdps channel instantly. The event-gen actor obtains
the XML messages by subscribing to the channelsfdps, gen-
erates a trace composed of State objects from the SFDPS
data, and publishes the State objects to the channel events
accessed in the monitoring step.

Let n be the total number of different call signs in the
input sequence. The outermost white boxes represent actors,
and gray boxes represent monitor instances held by the actor.
Let M refer to P_SEQ monitor instances with no indexing ca-
pability, and MI refer to P_SEQ instances with indexing. The
white box inside each monitor instance includes call signs
monitored by this instance. Next, we explain the monitoring
step for the monitoring systems.

– monitor-indexing - the monitoring step includes one
actor with a single MI monitor which checks for all the
events in the input sequence published to events. The
monitoring step of this configuration is equivalent to di-
rectly using the Daut tool to process the trace sequentially,
with indexing occurring in Daut.

– dispatcher-indexing - the monitoring step includes a
dispatcher actor which creates monitor instances of type M,
and feeds them with incoming events. The dispatcher actor
generates one monitor instance per call sign, and applies in-
dexing by storing the monitor instances in a hash map. The
dispatcher obtains event objects from the channel events,
and, starting with an empty hash map, for each new call
sign, it adds a new monitor instance to the hash map. For an
event object with the call sign csi, the dispatcher invokes
the verify method of the monitor instance Mi.

– concurrent - the trace analysis is performed concurrently
by employing multiple monitor actors, generated on-the-
fly. This demonstrates how a single property is checked
by multiple concurrent monitors. One can configure the
dispatcher to set a limit on the number of monitor ac-
tors. If no limit is set, one monitor actor is generated
for each call sign and the indexing within the monitor
is deactivated. This monitoring system is referred to as
unbounded-concurrent. By setting a limit, one monitor
actor could be assigned to more than one call sign. Such
monitoring system is referred to asbounded-concurrent.
Indexing is also applied at the dispatcher level, using a hash
map that stores monitor actor references with call signs as
entries to the map. For each event object, the dispatcher
forwards the event object to the associated monitor actor
via point-to-point communication. Then the monitor ac-
tor invokes the verify method on its underlying monitor
instance.

The main features of the monitoring systems are summa-
rized in Fig. 10. The rows represent the monitoring sys-
tems. The first and second columns show if indexing is
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Fig. 9 Actor-based monitoring systems used in the experiment

Fig. 10 The main features of
the monitoring systems
presented in Fig. 9

applied at the monitor level and the dispatcher level, re-
spectively. The third column shows if the monitoring system
includes concurrent monitor actors. The monitoring systems
dispatcher-indexing and monitor-indexing are simi-
lar except for their indexing mechanisms. In both systems,
the monitoring phase includes only one actor that performs
the monitoring task sequentially.

6.2 System setup

All experiments were performed on an Ubuntu 18.04.3 LTS
machine, 31.1 GB of RAM, using a Intel®Xeon®W-2155
CPU (10 cores with hyperthreading, 3.30 GHz base fre-
quency). We use an input trace, T, including 200,000 mes-
sages obtained from an archive of recorded SFDPS data in
all experiments. T includes data from 3215 different flights,
that is, n in Fig. 9 is 3215. The number of sub-monitors in
P_SEQ is set to 2000. The Java heap size is set to 12 GB.

We also use the default Akka dispatcher setting in the exper-
iment, which is as follows. All actors use the Dispatcher
implementation with the default value 5 for throughput, 0
for throughput-deadline-time, which indicates no time
limit, and fork-join-executor for the executor. Moreover,
parallelism-min and parallelism-max are set to 8 and
64, and parallelism-factor is set to 3 which leads to the
thread pool of size 30 (parallelism-factor × number of
cores) in the machine with 10 cores. It should be noted that
changing the configuration can impact the results. One can
benchmark to find the right configuration for each setting.
However, since our evaluation involves systems with differ-
ent numbers of concurrent components, to simplify, we use
one configuration for all the experiments.

6.3 Evaluation

Since garbage collection in the Java Virtual Machine (JVM)
is beyond our control, each experiment needs to be repeated
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Fig. 11 Comparing the run
times of different MESA actor
systems

Fig. 12 The CPU utilization profiles obtained by VisualVM

several times. Using a bash script, each MESA monitoring
system is run 10 consecutive times on the trace T, and the av-
erage of the runs is used for evaluation. Figure 11 compares
the run times for the monitoring systems presented in Fig. 9.
The legendunbcon stands for unbounded-concurrent, and
the legend bcon stands for bounded-concurrent, followed
by the number of monitor actors. Considering the 3215 dif-
ferent call signs in T, monitor-indexing includes one mon-
itor actor including one monitor object that tracks all 3215
flights. The dispatcher-indexing system creates one ac-
tor with a hash map of size 3215 storing the monitor ob-
jects, where each object monitors events from one flight. The
unbounded-concurrent monitoring system creates 3215
monitor actors where each actor monitors events from one
flight. The bounded-concurrent system creates 250 mon-
itor actors, where each actor monitors events from 12 or 13
flights.

The results show that the systems with concurrent moni-
tors perform considerably better than the systems with a sin-
gle monitor actor. The system monitor-indexing performs
worse than dispatcher-indexing. The difference amounts
to a larger indexing overhead in monitor-indexing. Since
the number of sub-monitors captured by MI is 2000, index-
ing at the monitor level is repeated 2000 times per incoming
event. This leads to a higher overhead comparing to indexing
at the dispatcher level in dispatcher-indexing which is
only performed once. The CPU utilization profiles for the sys-
tem are obtained by the VisualVM profiler, which represent
the percentage of total computing resources in use during the
run (Fig. 12). The CPU utilization for monitor-indexing is
mostly under 30% and for dispatcher-indexing is mostly
between 40% and 50%. For unbounded-concurrent and
bounded-concurrent, the CPU utilization is mostly above
90% which shows the impact of using concurrent monitor
actors. The VisualVM heap data profiles reveal that all the
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Fig. 13 Comparing the run
times of different MESA actor
systems

Fig. 14 The timeline for a
message sent to the actor [51]

system exhibit a similar heap usage, which mostly remains
under 10G.

Figure 11 shows that limiting the concurrent monitors to
250 results in a better performance than using one moni-
tor actor per flight in unbounded-concurrent. To evaluate
how the number of monitor actors impact the performance,
bounded-concurrent is run with different numbers of mon-
itor actors, 125, 250, 500, 1000, 2000, and 3215. We increase
the number of monitor actors up to 3215, since this is the
number of total flights in the trace T. The results are com-
pared in Fig. 13. The system performs best with 250 monitor
actors, and from there as the number of monitor actors in-
creases, the run time increases. Increasing the number of
monitor actors decreases the load on each monitor actor,
however, it increases the overhead from their scheduling and
maintenance. Note that the optimal number of monitor actors
depends on the application and the value of input parameters.
Tweaking inputs parameters could lead to a different optimal
number of monitor actors. Our results also show that depend-
ing on the number of flights tracked by each monitor actor,
Daut indexing can lead to overhead. For e.g., it leads to 11%
overhead (compared to not using Daut indexing) when using
3215 monitor actors (since indexing is performed, but it is
not needed). On the other hand, Daut indexing leads to per-
formance improvement by 45% (compared to not using Daut
indexing) when using 125 monitor actors (since indexing is
beneficial in this case).

6.4 Actor parameter evaluation

To investigate the underlying factors behind runtime results
further, we also evaluate performance parameters for indi-
vidual dispatcher and monitor actors. The performance pa-
rameters that we consider include the average service time,
the average wait time for messages in the actor’s mailbox, and
the average size of the actor’s mailbox queue obtained after a
message is enqueued. Note that this does not exactly reflect
the average size of the mailbox, since it does not take into

account the mailbox changes in between enqueues, where
mailbox queue can stay empty for a while.

Figure 14 illustrates the relevant points at which we record
data to measure the actors performance metrics. The method
recieveLive, which processes the incoming message, cap-
tures the default actor behavior. The interesting points for
measuring these parameters are when a message is enqueued
into and dequeued from the mailbox, and when the actor
starts processing and finishes processing a message. We pro-
vide mechanisms for actors to wrap the relevant data into con-
tainer objects, which are defined as case classes, and publish
them to a channel accessed by an actor, stat-collector,
which collects this information and reports when the system
terminates.

To measure service time, the default actor behavior,
recieveLive, is replaced by an implementation that for
each message, invokes recieveLive, records the time be-
fore and after the recieveLive invocation, and publishes
a data container with the recorded times to the channel ac-
cessed by the stat-collector actor. The approach that we
used to collect mailbox data is similar to the one proposed in
Chap. 16 of [51] which discusses how one can customize and
configure Akka to improve the overall performance. To ob-
tain information from actor mailboxes, we implement a new
mailbox type, called StatsMailboxType, that extends the
default Akka mailbox implementation with a mechanism that
records the message entry time to and the exit time from the
mailbox, and the size of the mailbox queue after a message is
enqueued, and publishes a data container with the recorded
data to the channel accessed by the stat-collector actor.

Any MESA actor can be configured to use these features,
referred to as ASF, which stands for Actor Statistics Features.
A MESA actor has the boolean property stats.service
which is false by default. To activate the feature that collects
the service time, one needs to set stats.service to true
in the actor configuration. To activate the feature that collects
mailbox data, the new mailbox type is specified by adding
the following lines in the configuration file.
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Fig. 15 Overhead from activating the ASF features

Fig. 16 Comparing the actors performance metrics for the monitor-indexing and dispatcher-indexing systems

stats−collector−mailbox {
mailbox−type =

"gov.nasa.mesa.reporting.stats.StatsMailboxType"
}

The experiments presented in this section also use the
setup outlined in Sect. 6.2. The table in Fig. 15 presents
the run time overhead from activating ASF. It can be
seen that the ASF overheads for monitor-indexing and
dispatcher-indexing are about 20% and 11%. For sys-
tems with concurrent monitor actors, this overhead ranges
between 20% to 28% and, overall, increases as the number
of monitor actors increases.

Figure 16 compares the performance parameters for indi-
vidual actors for the monitor-indexing and dispatcher-
indexing systems. Figure 16a and 16b show that the mon-
itor actor in monitor-indexing has a longer service time,
and a longer wait time in the mailbox comparing to the
dispatcher in dispatcher-indexing. Moreover, Fig. 16c
shows more messages accumulate in the monitor-actor mail-
box in the monitor-indexing system comparing to the
dispatcher mailbox in the dispatcher-indexing system.
These observations are aligned with the fact that indexing in
monitor-indexing introduces a higher overhead since for

each incoming event, it is performed once per sub-monitor,
that is, 2000 times in this example, whereas indexing at
the dispatcher level in dispatcher-indexing is only per-
formed once per incoming event.

Figure 17 compares the dispatcher actors performance
metrics for bounded-concurrentwith different numbers of
monitor actors. It can be seen from Fig. 17a that the average
service time increases as the number of actors increases.
This is aligned with the fact that using more monitor actors
increases the load of the dispatcher actor since it needs to
generate more monitor actors. To mitigate this effect, one
could introduce multiple dispatchers, which is not evaluated
in our study. Moreover, Fig. 17b shows that starting from the
system with 500 monitors, the average message wait time
in the queue increases as the number of actors increases.
In general, with a constant thread pool size, increasing the
number of actors in the system can increase the wait for
actors to get scheduled, leading to longer wait for messages
in mailboxes. Figure 17c shows that the average mailbox size
at the enqueue time for the dispatcher actors in all cases only
varies in a very small range.

Figure 18 compares the monitor actors performance met-
rics for bounded-concurrent with different numbers of
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Fig. 17 Comparing the dispatcher actors performance metrics for the bounded-concurrent systems

Fig. 18 Comparing the monitor actors performance metrics for the bounded-concurrent systems

monitor actors. It can be seen from Fig. 18a that starting
from the system with 250 monitor actors, the average service
time for monitor actors increases as the number of monitor

actors increases. Decreasing the number of monitor actors
increases the load on individual actors, since each monitor
actor deals with higher number of flights. On the other hand,
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applying indexing within the monitor actors helps with im-
proving their performance, however, for monitors that track
small number of flights, indexing can lead to overhead lead-
ing to longer service times. Figure 18b shows that in the case
of monitor actors, the mailbox wait is longer with smaller
number of actors, unlike the dispatchers (Fig. 17b). This is
due to higher arrival rate of messages in these systems, since
each monitor actor is assigned to higher number of flights.
It can be also seen from Fig. 18c that the average mailbox
size at the enqueue time for monitor actors in all the systems
is almost 1. That is, on average, every time a new message
is placed in the monitor actor mailbox, there are no other
messages in the queue in all cases. Note that, as mentioned
before, this measure does not reflect the arrival rate of mes-
sages, since it does not take into account the periods where
the mailboxes are empty.

7 Discussion

MESA is designed as a generic tool for monitoring event
streams using actors and indexing (slicing). It is generic by
not providing a monitoring DSL itself, but allowing any
such as a plugin. In this work, we have used Daut for our
experiments. The tool is applicable for concurrent, indexed
monitoring, and can be used as such or it can be used for ex-
periments with concurrent monitoring, as presented in this
paper.

We have specifically shown the positive impact of using
concurrent monitors combined with indexing for runtime
verification. The main question is: is there an advantage in
using concurrency in monitoring different slices for a single
property. The problem is particularly relevant for monitoring
of first-order temporal properties, which require fast lookup
of relevant parts of a monitor for each data-carrying event.
The answer to this question was not obvious up front. In
particular, one study [47] had not been able to clearly show
an advantage. The concern was that it would just be too fine-
grained an application of concurrency, which would have no
advantage due to overhead from thread scheduling.

The positive observation, however, is that it is beneficial
to split monitoring of a single property into multiple ac-
tors, each processing a subset of the indexes (call signs in
this experiment), and within each of these actors again in-
dex (on the call signs) a second time. However, we showed
that it was inefficient to create an actor for each call sign.
Rather, it was found optimal to group the call signs, and cre-
ate a smaller number of actors, in this case 250 (compared
to 3215, the total number of call signs), each processing a
subset of the flights (12-13 in our case), also referred to as
bounded-concurrent in Fig. 9. This shall be compared to

the sequential approach to indexing (monitor-indexing in
Fig. 9), corresponding to using a single actor (no concurrency
effectively).

As observed, to maximize the performance, one needs to
limit the number of concurrent monitor actors. Due to a va-
riety of overhead sources, the optimal number of actors is
application-specific and is challenging to determine a priori.
The following factors need to be taken into consideration
when configuring values of the related parameters. Limit-
ing the number of monitor actors on a multicore machine
can lead to a low CPU utilization. One can elevate the CPU
utilization by increasing concurrency. However, there is over-
head associated with actors. Assigning actors to threads from
the thread pool and context switching between them impose
overhead. The combination of such competing factors can
make one setting perform better than others.

MESA is a highly configurable platform, and it provides
mechanisms for evaluating performance parameters for in-
dividual dispatcher and monitor actors. Those can facilitate
finding the optimal number of monitor actors to maximize
the performance. One can easily tune relevant parameters
in the configuration file to evaluate the monitoring systems.
While the framework provides features for observing perfor-
mance, parameter tuning, however, is performed manually.
Future work can include automated tuning, either prior to
monitoring actual data in the field, or dynamically during
monitoring in the field, adjusting to the current situation.

As shown in Fig. 2, our framework runs on top of the Java
Virtual Machine (JVM) and relies on the Akka framework.
There are mechanisms, such as garbage collection at the JVM
level and actor scheduling at the Akka level, that cannot be
controlled from a MESA system. Therefore, MESA is not
suitable for verifying hard real-time systems where there are
time constraints on the system response. One of the chal-
lenges that we faced in this work is micro-benchmarking on
the JVM, which is a well-known problem. Certain charac-
teristics of the JVM, such as code optimization can impact
accuracy of the results, specially when it comes to smaller
time measures such as service time and wait time for mes-
sages in the actor mailboxes. However, there are tools such
as JMH that provide accurate benchmarking [35].

An important issue concerns correctness of the approach.
There are two aspects of this issue, namely the correctness
of an individual monitor, and the correctness of the approach
to concurrency. Wrt. correctness of a monitor, it is common
(in contrast to our approach) to automatically synthesize a
such from a specification in an external DSL. In this case,
the verification problem becomes that of ensuring that the
synthesized monitor correctly implements the specification.
This problem can be approached top down, synthesizing a
correct-by-construction monitor, see e.g., [1, 14], or bottom
up, proving a synthesized monitor correct wrt. the speci-
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fication, see e.g. [11, 22]. However, in our case, there is
no specification in an external DSL from which a monitor is
synthesized. The monitor is programmed directly in the Daut
library, an internal DSL, developed specifically for writing
monitors. This library hopefully makes writing such mon-
itors as easy as would an external DSL offering the same
features. The correctness problem in this case consists of
proving that the library correctly implements the intended
behavior of the internal DSL. Such an effort remains as fu-
ture work. Finally, validation consists of ensuring that the
monitor meets the intention of the user. It is our view that it
is fairly easy to convince oneself that the monitor in Fig. 6
and the monitors used for the experiment in Sect. 6 express
the desired properties. However, validation will always be
an important task. Daut offers debugging features, allowing
printing of internal monitor actions and states, which can
help in validating a monitor.

Wrt. to correctness of the concurrency approach, first note
that the approach is thread-safe in the sense that different ac-
tors do not interact in any way beyond all writing to standard
output, which does not influence the correctness (although
output from different actors may be merged). Second, one
can easily convince oneself that all events with the same call
sign always end up in the same actor, and that within each
actor, events with the same call sign are indexed to the same
slice (bucket in the hash map used for indexing). This is due
to the fact that distribution on actors and indexing within
actors is based on the same key, namely the call sign. This
ensures that the properties being checked are correct in the
presence of concurrency.

Note, however, that slicing does put a restriction on what
properties can be monitored. Since the trace is sliced into
subtraces, each of which may be submitted to its own actor,
one cannot express properties that relate different slices. An
example of a property that cannot be stated in, e.g., this
particular case study is that the route taken by an airplane
depends on the routes taken by other airplanes. In MESA,
the slicing strategy is manually defined, and attention must
be paid to the property being verified to ensure a sound
approach.

Even though the focus of the case study has been air
traffic routes, and use of a specific monitor, we believe that
the main result, that it is beneficial to monitor slices of a
single property in multiple actors, transfers to the general
problem of monitoring events that carry data. It is of course
hard to generalize such a result conclusively, but the result
is convincing enough that it may trigger other studies for
other cases. For e.g., one case to explore, and which we have
not covered, is that of monitoring many different properties,
each associated with a dispatch actor (see Fig. 9), under
which multiple sub-actors handle the different slices of a
single property.

8 Conclusion

We have presented MESA, a runtime verification framework
for indexed concurrent monitoring with actors. MESA can be
instantiated with different monitoring logics. In this paper,
we specified properties in the Daut monitoring logic (library)
supporting a mix of data-parameterized state machines and a
form of temporal logic. We illustrated MESA by presenting
a case study, which obtains live air traffic data feeds and ver-
ifies that flights adhere to assigned arrival routes. We then
performed an empirical study to evaluate different combina-
tions of concurrency and indexing applied at different levels.
We observe, as the main result, that there are clear benefits
to monitor a single property with multiple concurrent actors
processing different slices of the input trace. This is not an
obvious result, since there is a cost to scheduling of small
tasks.

Future work includes confirming the result on other ex-
amples. Furthermore, it might be worth experimenting with
dynamic automated optimization of parameters that deter-
mine how many actors to create for a single property. Fi-
nally, experiments need to be done for the case where mul-
tiple different properties are monitored, each evaluated with
indexing.
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