(will be inserted by the editor)

Software Tools for Technology Transfer manuscript No.

Introduction to Selected Papers from SPIN 2017

Hakan Erdogmus', Klaus Havelund?*

1" Carnegie Mellon University Silicon Valley, Mountain View, USA
2 Jet Propulsion Laboratory, California Inst. of Technology, Pasadena, USA

Received: date / Revised version: date

The 24th International SPIN Symposium on Model
Checking of Software (SPIN 2017) [2] took place at the
University of California, Santa Barbara, on July 13 and
14, 2017. The symposium brought together researchers
working in automated, tool-based techniques for the anal-
ysis, verification, and validation of software systems, mod-
els, and programs. In this special issue, we bring to you
extended versions of selected papers from the sympo-
sium. To assemble the issue, we issued invitations to the
seven most favorably reviewed papers from SPIN 2017.
The authors of five of these papers accepted the invi-
tation. Each submission subsequently went through the
regular review process of the International Journal on
Software Tools for Technology Transfer, requiring three
reviews per paper. We used the reviewers of the orig-
inal papers when we could, and supplemented this set
with additional reviewers when necessary. The five pa-
pers published in this special issue are the result of this
process and represent the diversity of SPIN 2017, com-
bining theoretical and practical contributions. They ad-
dress efficient, novel, and realistic ways of performing
program synthesis and model checking. The first three
selections each directly target a different practical con-
cern, and the last two make a theoretical contribution,
but with a practical impact.

The first paper addresses synthesis of Java programs
through program sketching. In “EdSketch: Ezecution-
Driven Sketching for Java” [4], authors Jinru Hua, Yushan
Zhang, Yuqun Zhang, and Sarfraz Khurshid propose a
method to complete partial Java programs and test as-
sertions that the programs’ complete versions must pass,
using an execution-driven approach. The main advan-
tage of this approach is that it does not rely on manually
produced models of the libraries on which the programs

* The research performed by this author was carried out at Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.

may depend, thus sidestepping a practical obstacle to
program sketching.

In the second paper, “An Integrated Environment
for Spin-Based C Code Checking - Towards Bringing
Model-Driven Code Checking Closer to Practitioners”
[6], Daniel Ratiu and Andreas Ulrich advocate a model-
driven approach to verify functional requirements of C
programs, similarly focussing on an impediment to their
practical application. Their approach uses Spin as the
underlying verification engine, but avoids hard-to-produce
and obscure environment models that mix C and Promela
code to define the required verification harnesses. They
propose instead a higher-level and compact language,
prototyped in the mbeddr platform, with the added ad-
vantage of being able to express and verify properties
beyond traditional assertions.

The third paper by Michalis Kokologiannakis and
Konstantinos Sagonas is a case study that tackles a real-
world model checking problem. In “Stateless Model Check-
ing of the Linuz Kernel’s Read-Copy-Update (RCU)” [5],
the authors analyze a complicated memory synchroniza-
tion mechanism used heavily in the Linux kernel. They
use a stateless model checking tool to verify the main
guarantees of this mechanism and reproduce known safety
and liveness violations in a very efficient way. Their suc-
cess suggests that model checking could become part of
the standard assurance approach of large foundational
software systems that we heavily rely on.

The last two papers are theoretical contributions in
model checking with impact on performance.

In “Model Checking with Generalized Rabin and Fin-
less Automata” [1], authors Vincent Bloemen, Alexandre
Duret-Lutz, and Jaco van de Pol explore the feasibility of
using two alternative forms of automata with different
acceptance conditions for model checking LTL proper-
ties. The new forms tend to generate fewer states, but
have higher computational complexity. The authors in-
vestigate this tradeoff by comparing the performance of



2 Erdogmus, Havelund: Introduction to Special Issue

the new forms to the traditional Biichi-based form. They model-driven code checking closer to practitioners. Inter-
design parallel algorithms for the new forms and test national Journal on Software Tools for Technology Trans-
their algorithms using existing model checking bench- fer, STTT, in this issue, 2019.

marks. Although the new forms do not produce the ex-
pected improvements, the experiments provide insights
on how different features of the new forms impact per-
formance, thus paving the way for new algorithms that
can capitalize on these insights.

The final paper, by John Fearnley, Sanjay Jain, Bart
de Keijzer, Sven Schewe, Frank Stephan, and Dominik
Wojtczak, tackles a common graph-theoretic problem
pertinent to model checking and program synthesis. In
“An Ordered Approach to Solving Parity Games in Quasi-
Polynomial Time and Quasi-Linear Space” [3], the au-
thors provide an efficient implementation of an existing
algorithm for solving parity games, a class of zero-sum
graph coverage games involving two antagonistic play-
ers. The significance of this works is that, if the problem
of determining the winner in these types of games can
be solved efficiently, the most expensive steps of model
checking and program synthesis can also be performed
efficiently by reducing these steps to the corresponding
parity games. The paper compares the performance of
the authors’ implementation to competing parity game
solutions using a set of standard examples, noting per-
formance differences and their reasons across problem
categories.

Hakan Erdogmus and Klaus Havelund
SPIN 2017 PC Chairs

References

1. Vincent Bloemen, Alexandre Duret-Lutz, and Jaco van de
Pol. Model checking with generalized Rabin and Fin-less
automata. International Journal on Software Tools for
Technology Transfer, STTT, in this issue, 2019.

2. Hakan Erdogmus and Klaus Havelund, editors. SPIN
2017: Proceedings of the 24th ACM SIGSOFT Interna-
tional SPIN Symposium on Model Checking of Software,
Santa Barbara, CA, USA, 2017. ACM.

3. John Fearnley, Sanjay Jain, Bart de Keijzer, Sven Schewe,
Frank Stephan, and Dominik Wojtczak. An ordered ap-
proach to solving parity games in quasi-polynomial time
and quasi-linear space. International Journal on Software
Tools for Technology Transfer, STTT, in this issue, 2019.

4. Jinru Hua, Yushan Zhang, Yuqun Zhang, and Sarfraz
Khurshid. EdSketch: Execution-driven sketching for Java.
International Journal on Software Tools for Technology
Transfer, STTT, in this issue, 2019.

5. Michalis Kokologiannakis and Konstantinos Sagonas.
Stateless model checking of the Linux kernels Read-Copy-
Update (RCU). International Journal on Software Tools
for Technology Transfer, STTT, in this issue, 2019.

6. Daniel Ratiu and Andreas Ulrich. An integrated environ-
ment for Spin-based C code checking - towards bringing



