
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Some Recent Advances in Automated Analysis

Erika Ábrahám1, Klaus Havelund2?

1 RWTH Aachen University, Aachen, Germany
2 Jet Propulsion Laboratory, California Inst. of Technology, USA

Received: date / Revised version: date

Abstract. Due to the increasing complexity of soft-
ware systems, there is a growing need for automated
and scalable software synthesis and analysis. In the last
decade, active research in the formal methods commu-
nity brought interesting results and valuable tools. How-
ever, there are still challenges to face and hard problems
that need to be solved. We briefly outline some recent
trends, and review some of the latest achievements, in-
troducing six papers selected from the 20th International
Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS 2014).

1 Introduction

This special issue of the journal Software Tools for Tech-
nology Transfer (STTT) contains revised and extended
versions of six papers selected out of 42 papers presented
at the 20th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems
(TACAS’14) [4], held in Grenoble, France during April
7-11, 2014, as part of the Joint European Conferences
on Theory and Practice of Software (ETAPS). The peer-
reviewed papers collected in this special issue have been
invited by the guest editors amongst the top papers pre-
sented at TACAS’14 based on their relevance to STTT.

TACAS is a forum for researchers, developers, and
users interested in rigorously based tools and algorithms
for the construction and analysis of systems. The re-
search areas covered by TACAS include, but are not
limited to, formal methods, software and hardware spec-
ification and verification, static analysis, dynamic anal-
ysis, model checking, theorem proving, decision proce-

? The research performed by this author was carried out at Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.

dures, real-time, hybrid and stochastic systems, com-
munication protocols, programming languages, and soft-
ware engineering. TACAS provides a venue where com-
mon problems, heuristics, algorithms, data structures,
and methodologies in these areas can be discussed and
explored.

Due to the increasing complexity of software systems,
there is a growing need for automated software synthesis
and analysis. In the last decade, active research in the
formal methods community brought interesting results
and valuable tools. However, there are still challenges to
face and hard problems that need to be solved. As the
size of our software systems is increasing, the scalability
of the automated synthesis and analysis techniques is a
highly relevant issue.

The selected papers cover four domains, which we be-
lieve form trends within the formal methods community,
and which are discussed below and organized as follows.
Section 2 discusses parallel algorithms and their applica-
tion to for example model checking. Section 3 discusses
SAT and SMT solving. Section 4 discusses runtime veri-
fication. Section 5 discusses hybrid and probabilistic ver-
ification. Finally Section 6 concludes the paper.

2 Distributed and Parallel Algorithms

Nowadays, nearly all personal computers have many-
core CPUs, the usage of cloud and grid computing is
rising, and there are great advances in supercomputer
architectures. The performance of the fastest supercom-
puters available today has reached the PetaFLOPS scale,
i.e., they can execute 1015 floating point operations per
second (FLOPS). The next generation of Exa-scale su-
percomputers with 1018 FLOPS performance is under
development.

Distributed and parallel computing techniques make
use of such hardware structures to solve computationally



2 Ábrahám, Havelund: Some Recent Advances in Automated Analysis

intensive problems. Typical areas for massively parallel
applications are, e.g., weather forecasting, climate re-
search, and simulations of chemical, biological and phys-
ical processes.

However, the efficient usage of these distributed and
parallel computer architectures is not at all trivial. The
computational effort might be unbalanced between the
processes, such that one process might need to wait for
a long time for results computed by another process,
thereby wasting available computing resources. Last but
not least, massive communication (e.g., message broad-
casting in a massively parallel application) can be itself
a bottleneck for efficiency.

For these reasons, achieving a linear speed-up (in
the number of used cores) for the computation time
is hard to realize. Performance analysis techniques and
tools help the developers to identify execution bottle-
necks via monitoring the program execution, and com-
puting and visualizing characteristic quantities like, e.g.,
average waiting times at certain control points. However,
there is a strong need for further improvements. We still
have problems to exploit the capabilities of Peta-scale
supercomputers, and no one knows yet how to achieve
this at the forthcoming Exa-scale, where, besides scal-
ability issues, additional problems like increased failure
rates must be faced [3].

Besides efficiency, a central problem is the correctness
of parallel programs, which has different facets. Dead-
locks can happen when threads or processes wait for
each other in a cyclic manner, such that none of them can
continue its execution. Furthermore, correct parallel pro-
grams should preferably (in the general case) yield the
same result, independently of the temporal order of pro-
cess executions. For example, in multi-threading, mutual
exclusion must be used in a safe manner to assure atomic
computation where needed. To achieve functional cor-
rectness, if a problem is decomposed into sub-problems,
the result must be carefully synthesized from the sub-
results.

To assure such correctness properties, formal meth-
ods can be used for the verification of parallel programs.
Whereas the theoretical roots for the verification of par-
allel programs are historically relatively deep [12,31,62,
66,71], current approaches are still far from being scal-
able at the supercomputing level. New advances in this
direction use parallel computing itself for verification,
i.e., the verification algorithms themselves are parallel
programs. Besides deductive techniques, powerful par-
allel model checking approaches have become available.
However, to achieve scalability, also these techniques must
reach an optimal load balance between the parallel run-
ning model checking processes.

Early attempts to overcome this problem include,
e.g., techniques for partial order reduction and slicing
[42,52], and randomization [19,75]. Several efforts have
been made to parallelize the Spin model checker. An

early attempt on distributed model checking in Spin
is described in [64]. More recent work can be classi-
fied into two categories: multi-core approaches [40,53,55]
where model checking is distributed on several cores on
the same machine, and cloud approaches [54,56] where
model checking is distributed on multiple machines in
the cloud. Concerning multi-core approaches, [55] is a
general method for safety verification, while [53] and
[40] concern an algorithm for partial verification of live-
ness properties with parallel breadth-first search. Con-
cerning cloud approaches, [54] describes how the use of
massive parallelism in a cloud-computing context may
deliver near real-time performance. This is furthermore
an application of what is referred to a swarm approach,
where multiple independent and different instances of
the verification problem are launched in parallel.

In this volume we report on three latest developments
on this research front. The paper Concurrent Depth-
First Search Algorithms based on Tarjan’s Algorithm [68],
by Gavin Lowe, an extension of the TACAS’14 confer-
ence paper [67], deals with parallelization issues for some
important graph-related problems: finding strongly con-
nected components, cycles and lassos in graphs. Tarjan’s
algorithm is widely used in its sequential version, how-
ever, its efficient parallelization was still an open chal-
lenge. The proposed parallelized version may find ap-
plication in model checking algorithms, for example to
check which states are divergent, i.e., which states can
lead to an unbounded number of internal steps.

The paper FDR3 - A Parallel Refinement Checker
for CSP [43], by Thomas Gibson-Robinson, Philip Arm-
strong, Alexandre Boulgakov, and A. W. Roscoe, ex-
tends the TACAS’14 publication [44]. It presents the
FDR3 tool, which is a rewrite and of the FDR2 re-
finement checker with extended functionalities. Amongst
its several improvements is a new parallel refinement-
checking algorithm, able to achieve a near-linear speed
up as a function of number of cores utilized (including
clusters of cores), and a new algorithm used to construct
the internal representation of CSP processes. FDR3 is
furthermore able to efficiently make use of on-disk stor-
age once main memory is exhausted. FDR3 relies on Tar-
jan’s algorithm, and future work includes pursuing alter-
native methods of parallelizing divergence checking, in-
cluding methods based on Gavin Lowe’s work presented
in this volume.

The paper Many-Core On-the-Fly Model Checking
of Safety Properties Using GPUs [80], by Anton Wijs
and Dragan Bošnački, presents another parallelization
approach for model checking. A previous version of this
paper was published in [79]. In spite of advances in model
checking, state space explosion is still a hindrance for
scalability. Smart concurrent solutions can push forward
the boundaries of applicability, however, the resources
for concurrent execution are relatively limited on stan-
dard home computers. To best exploit these resources,



Ábrahám, Havelund: Some Recent Advances in Automated Analysis 3

this work makes use of General Purpose Graphics Pro-
cessors (GPUs) for the computations. This is an ex-
tremely challenging path of research, to which this paper
makes an important contribution.

3 SAT and SAT-Modulo-Theories Solving

A further active research area is the integration of dif-
ferent techniques to form powerful and efficient tools. In
this context, logical encoding of problems and the us-
age of SAT and SAT-Modulo-Theories (SMT) solving
for satisfiability checking are frequently employed.

SAT solving aims at the automated check of propo-
sitional logic formulas for satisfiability. The technology
development started around 1960. First approaches used
enumeration and resolution [29]. The combination of enu-
meration with propagation led to the well-known DPLL
algorithm [28]. A breakthrough regarding efficiency and
scalability was achieved by combining enumeration and
propagation with resolution to identify reasons to ex-
plain why certain (partial) assignments do not satisfy
a formula. This resulted in the conflict-directed clause
learning approach [69,82], whose impact is well reflected
in the following citation from the zChaff webpage: “We
have success stories of using zChaff to solve problems
with more than one million variables and 10 million
clauses. (Of course, it can’t solve every such problem!)”.
After the pioneer solvers GRASP [69] and zChaff [82], a
variety of other SAT solvers were developed with watched-
literal techniques and smart heuristics for e.g., clause
learning and forgetting, dynamic variable ordering and
restarts. Just to mention one of them, MiniSAT [38] is
not only highly efficient but also small, and therefore well
suited for understanding and teaching the SAT mecha-
nisms.

The scalability of SAT solvers opened the way to real-
world applications. Besides academic applications in dif-
ferent research areas, nowadays also many companies use
SAT solving, e.g., to solve huge combinatorial problems
or for digital circuit design and verification.

The introduction of a standardized input language
was a great achievement and an important milestone in
the success of SAT solving. On the application side, it al-
lows users to formalize their problems once and apply a
wide range of solvers to them. On the development side,
it enabled the collection of large benchmark sets and the
start of competitions in 2002. In 2014, the SAT compe-
tition had an impressive number of 79 participants with
137 solvers. The SATLive! forum and dedicated confer-
ences and journals further support the community with
platforms for exchange.

The SAT developments showed promising results to
apply similar technologies to more expressive logics, re-
sulting in SAT-Modulo-Theories (SMT ) solving. The idea
is to use SAT solvers to get solutions for the Boolean

skeleton of quantifier-free first-order logic problems, and
use different theory solvers to check the corresponding
sets of theory constraints for consistency. Some of the
important milestones in this area were the development
of decision procedures for combined theories [70,74], and
the extension DPLL(T) [37] of the DPLL approach for
SAT with theories.

One of the first theories considered for SMT solving
were equalities and uninterpreted functions, bit-vectors
and array theory. Later on, also solutions for linear real
and integer arithmetic and fragments thereof were im-
plemented. Latest developments address challenging ex-
tensions also for non-linear arithmetic theories. These
theories are supported by a large and still increasing
number SMT solvers like, e.g., the tools AProVE [45],
CVC [11], HySAT/iSAT [41], MathSAT [26], MiniSmt
[81], OpenSMT [24], SMT-RAT [27], VeriT [23], Z3 [30],
or Yices [36].

Due to the increased level of expressiveness, SMT
finds application in a wide range of domains like, e.g.,
verification (model checking, static analysis, termination
analysis), test case generation, controller synthesis, pred-
icate abstraction, equivalence checking, scheduling, plan-
ning, or product design automation and optimization.

Also the SMT community profits from the SMT-LIB
input standard and from competitions since 2005. In
2014, 20 solvers participated in 32 logical categories.

Where does the development go? Surely, a still major
issue is efficiency and scalability. Whereas for easier the-
ories already large problem instances can be solved, de-
spite encouraging evolution, SMT solving for non-linear
real and integer arithmetic is a yet upcoming area. To
tackle those problems, we need dedicated SMT solvers
for specific problem classes with further novel lemma
generation and learning techniques, elegant ideas for the
combination of decision procedures, and clever paral-
lelization approaches. A big potential lies in learning
from decision procedures and technologies used in sym-
bolic computation [1]. Regarding functionalities, there
is also a trend to increase applicability by generating
unsatisfiable cores and interpolants, handling quantified
formulas, and offering techniques for optimization.

In this volume two contributions are devoted to SAT
and SMT solving. SATMC 3.0, a SAT-based bounded
model checker for security-critical systems is presented in
the paper SATMC: a SAT-based Model Checker for Se-
curity Protocols, Business Processes, and Security APIs
[7], by Alessandro Armando, Roberto Carbone, and Luca
Compagna, as an extension of [6]. It is distinguished by
combining techniques originally developed for planning
with techniques developed for the analysis of reactive
systems. SATMC has been applied in a variety of appli-
cation domains, including security protocols, security-
sensitive business processes, and cryptographic APIs.
SATMC supports a powerful specification language, in-
cluding rewrite rules, Horn clauses, and first-order LTL



4 Ábrahám, Havelund: Some Recent Advances in Automated Analysis

formulae. It leverages NuSMV to generate a SAT encod-
ing for the LTL formulae and MiniSAT to solve the SAT
problems.

The paper Monitoring Modulo Theories [33], by Nor-
mann Decker, Martin Leucker and Daniel Thoma, an ex-
tended version of the conference paper in [32], considers
an SMT-based approach to runtime verification of tem-
poral properties over first-order theories. It lifts moni-
tor synthesis procedures for propositional temporal log-
ics to a temporal logic over structures within a first-order
theory, and proposes a first-order monitoring algorithm
that combines SMT solving and classical monitoring of
propositional temporal properties. The approach is here
applied to LTL, and the Z3 SMT solver is used for solv-
ing data constraints. However, the approach is generic
and can be applied to any suitable temporal logic, and
any first-order theory can be chosen for which an SMT
solver is available.

4 Runtime verification

The scalability issue often associated with formal meth-
ods is due to the desire to verify (analyze) all possible ex-
ecution paths of the system being analyzed, and poten-
tially for all possible inputs. This problem is in general
NP-complete, and in practice becomes infeasible with-
out relaxing on the kind of properties being proven or
the confidence in the result. Testing is the practical less
perfect alternative to full verification. Here test inputs
are generated using a more or less automated strategy,
and outputs are verified using more or less sophisticated
test oracles (monitors). In industrial practice, test input
generation is typically not automated (rather: test cases
are manually created), and monitors are typically not
very sophisticated, for example just comparing text files
with a diff-command.

Runtime verification [50,65,39] (RV) is a subfield of
computer science focusing on just analyzing systems ex-
ecutions, including collections thereof, either during test
(the test oracle problem), or after deployment. The field
is not concerned with test case generation, which is one
of the main focuses of test research. The purpose of the
field is to focus study how much we can get out of one or
more execution traces, in other words: just by observing
what the system does when executing. The field obvi-
ously intersects with testing by contributing to how to
write advanced test oracles.

Runtime verification as a field covers various sub-
fields. Specification-based monitoring is concerned with
checking a program execution against a formal specifi-
cation of one or more requirements. A program P to be
monitored is instrumented to emit a sequence τ of ob-
servable events, which are fed into a monitor, which as a
second input takes a specification ψ of expected behav-
ior. The trace is then matched against the specification,

also formalized as: τ |= ψ. Instrumentation can for ex-
ample be performed using aspect-oriented programming.
Static analysis can be used to minimize the number of
instrumentation points, a topic receiving increasing at-
tention by the research community.

Events in practice carry data, as in: open("file42"),
in contrast to propositional events, such as openFile,
and it must be possible to refer to these data in spec-
ifications. Recent research has focused on efficient and
low-impact monitoring of such data carrying events, re-
ferred to as parametric monitoring. Such data must be
stored and especially searched efficiently as part of the
monitor. The 1st Intl. Competition of Software for Run-
time Verification (CSRV’14), in particular focusing on
parametric monitoring, was held together with the RV
conference in 2014 in Toronto, Canada.

Detection of a property violation can be used not
only for testing an application, but also during operation
in the field, to cause a change of behavior by triggering
fault-protection code, which steers the application out
of a bad situation. The extreme RV solution is planning
and scheduling techniques, which continuously adapt to
the current situation. For a survey relating verification
and validation to planning and scheduling, see [21].

Over the last 15 years numerous specification-based
runtime verification systems have been developed, only a
few of which will be mentioned here. Initial specification-
based systems could only handle propositional events.
These include for example Temporal Rover [35], MaC
[63], and Java PathExplorer [51]. The first systems to
handle parameterized events appeared around 2004, and
include [5,14,25,76]. Several parametric monitoring sys-
tems have appeared since then. RV systems usually im-
plement specification languages which are based on for-
malisms such as state machines [13,25,46], regular ex-
pressions [5,25], temporal logic [17,18,25,32,48,76], vari-
ations over the µ-calculus [14], grammars [25], and rule-
based systems [16,49]. A few of these logics incorporate
time as a built-in concept, typically embedded in tempo-
ral logics, as for example in [17]. If no special concept of
time is introduced, time observations can be considered
as just data (time stamps).

Runtime verification systems are based on different
algorithms. Slicing-based algorithms have shown very ef-
ficient [5,13,25]. These algorithms conceptually slice a
trace into projections, a projection for each parameter
combination. The efficiency of these algorithms gener-
ally comes at the cost of lack of some expressiveness,
as pointed out in [13]. Other monitoring systems repre-
sent data as constraints. A constraint-based system is the
first-order linear temporal logic described in [18]. Some
systems based on linear temporal logic apply rewriting
of temporal formulas. These include for example [14,15,
48,76]. Rule-based systems, such as [16,49] operate with
a collection of facts, usually organized in an efficient data
structure/network, which is modified by the rules.



Ábrahám, Havelund: Some Recent Advances in Automated Analysis 5

Most of the logics mentioned above are so-called ex-
ternal DSLs, small languages with their own grammar
and parser. However, also systems have been developed
which offer APIs in programming languages (also re-
ferred to as internal DSLs), for writing monitors. These
include [15,22,49].

Specifications can be written by humans, or they
can be learned from nominal executions, also referred
to as specification mining [57]. A form of runtime verifi-
cation not requiring specifications is what we will refer
to as runtime analysis, where program executions are
analyzed with specialized algorithms. Examples include
algorithms for detecting concurrency problems such as
deadlock potentials [20] and data races [8,73]. Finally,
trace visualization of execution traces supports human
comprehension of what the system does [72]. Trace vi-
sualization is related to specification mining in that it
produces an abstraction the system’s behavior, although
only for the eyes.

The focus of future runtime verification research will
include continued studies of how to optimize monitoring
algorithms, to use less time and less space. Static analy-
sis can be combined with dynamic analysis to minimize
the code instrumentation performed, thereby reducing
the impact on the monitored program. Another way of
looking at this problem is to use static analysis to prove
as much as possible of a property, and then use runtime
verification to monitor the remaining unproved proof
obligations. There will be continued research in expres-
sive and succinct logics, potentially merging well known
logical systems such as temporal logic, regular expres-
sions, and state machines/rule systems. We may even-
tually see the emergence of such logics in programming
languages as part of the design-by-contract paradigm.
Specifications are hard to write, and specification min-
ing and visualization may contribute a great deal to ease
this task. Each time we run our program, we should learn
from it. The ultimate proof of success of this field will
be widespread deployment of monitoring against logic
based requirements in industrial applications.

This area of research is represented in this volume
by the paper Monitoring Modulo Theories [33], by Nor-
mann Decker, Martin Leucker, and Daniel Thoma, al-
ready mentioned in Section 3.

5 Probabilistic systems

Probabilistic systems are systems with randomized be-
havior. Some examples are probabilistic algorithms which
involve random values drawn from some probability dis-
tributions, computer systems with inherent randomiza-
tion such as quantum computers or approximate com-
puting, or biological systems whose evolution can be
modeled probabilistically.

There are different languages to model probabilistic
systems. Popular automata-based modeling formalisms
for probabilistic systems are discrete- and continuous-
time Markov chains, and variants thereof which exhibit
non-determinism such as Markov decision processes or
probabilistic automata. Probabilistic programs use, ad-
ditionally to the standard programming constructs, prob-
abilistic branching and probabilistically determined val-
ues in assignments, and are well-suited for high-level
modeling.

To describe the behavior of probabilistic models, prob-
abilistic properties like “the (maximal) probability to
reach a set of bad states is at most 0.1” can be formal-
ized in different property specification languages. Proba-
bilistic computation tree logic (PCTL) extends the logic
CTL with probabilities and can be used to describe prop-
erties of discrete-time models. Continuous stochastic logic
(CSL) is a PCTL extension supporting the specification
of continuous-time properties. Last but not least, proba-
bilistic linear-time temporal logic (PLTL), a probabilis-
tic extension of LTL can be used to specify probabilistic
liveness properties.

Efficient model checking algorithms for these mod-
els and logics have been developed, implemented in a
variety of software tools, and applied to case studies
from various application areas. The crux of probabilistic
model checking [9,10,59,60] is to appropriately combine
techniques from numerical mathematics and operations
research with standard reachability analysis and model-
checking techniques. In this way, properties can be auto-
matically checked up to a user-defined precision. Marko-
vian models comprising millions of states can be checked
rather fast by dedicated tools such as MRMC [58] and
PRISM [61]. These tools are currently being extended
with counterexample generation facilities to enable the
possibility to provide useful diagnostic feedback in case
a property is violated [2].

To be able to formalize and analyze systems with un-
certain behavior or incomplete specification, also para-
metric modeling languages and probabilistic model check-
ing techniques for them were investigated, resulting in
tools like PARAM [47] and PROPhESY [34].

Despite this intensive and successful developments,
there remain several challenging hard and practically rel-
evant problems to be solved. There were some achieve-
ments on probabilistic hybrid systems, which have cer-
tain probabilistic components either in their discrete or
in their continuous behavior. However, these techniques
need to be strengthened to reach practical applicability.
Also scalability is still an issue. Though model checking
tools can handle huge models, novel symbolic approaches
and abstraction techniques are needed to analyze prob-
abilistic programs with large variable domains or large-
scale parallelism. To mention a last challenge, proba-
bilistic domain-specific languages and formal methods
for their analysis would help to model and analyze appli-



6 Ábrahám, Havelund: Some Recent Advances in Automated Analysis

cations from the area of high-performance computation
and approximate computing.

The application of existing techniques and tools to
case studies is extremely important, as it brings highly
valuable insights to applicability, it highlights bottle-
necks, drives research to important practical problems,
and eases technology transfer to industry. In this volume,
a report on an interesting case study is given in the pa-
per Probabilistic Verification and Synthesis of the Next
Generation Airborne Collision Avoidance System [78],
by Christian von Essen and Dimitra Giannakopoulou,
extending the TACAS’14 publication [77]. ACAS X, the
next generation airborne collision avoidance system con-
siders probabilistic models to represent different types of
uncertainty. The authors give a nice example of how the
power of existing formal methods and frameworks can
be bundled by integrating them into a tool dedicated to
a special problem class.

6 Conclusion

Some recent advances in automated analysis have been
discussed and related to selected papers from TACAS
2014, included in this volume. Four domains have been
identified: the parallelization of algorithms - including al-
gorithms for verifying systems, specifically model check-
ing; SAT and SMT solving with a basis in first order
logic; runtime verification; and finally probabilistic sys-
tems. Parallel algorithms, SAT/SMT solving, and run-
time verification illustrate different ways of dealing with
the scalability problem of formal methods. Parallel al-
gorithms and SAT/SMT solving can be considered suc-
cessful techniques for solving the traditional verification
problem, whereas runtime verification is an example of
shifting the problem from verification of full models to
analysis of single traces. Probabilistic systems modeling
and verification is an example of a new domain, requiring
new techniques all together.

Acknowledgements. We are grateful to all authors for
their contributions and to the reviewers of TACAS’14
and of this special issue for their thorough and valuable
work.

References

1. Erika Ábrahám. Building bridges between symbolic com-
putation and satisfiability checking. In Proc. of the 2015
ACM International Symposium on Symbolic and Alge-
braic Computation (ISSAC’15), pages 1–6. ACM Press,
2015.

2. Erika Ábrahám, Bernd Becker, Christian Dehnert, Nils
Jansen, Joost-Pieter Katoen, and Ralf Wimmer. Coun-
terexample generation for discrete-time Markov models:
An introductory survey. In Formal Methods for Exe-
cutable Software Models - 14th International School on
Formal Methods for the Design of Computer, Communi-
cation, and Software Systems (SFM’14), Advanced Lec-
tures, volume 8483 of LNCS, pages 65–121. Springer,
2014.

3. Erika Ábrahám, Costas Bekas, Ivona Brandic, Samir
Genaim, Einar Broch Johnsen, Ivan Kondov, Sabri
Pllana, and Achim Streit. Preparing HPC applications
for exascale: Challenges and recommendations. CoRR,
abs/1503.06974, 2015.

4. Erika Ábrahám and Klaus Havelund, editors. Proc. of
the 20th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems
(TACAS’14), volume 8413 of LNCS. Springer, 2014.

5. Chris Allan, Pavel Avgustinov, Aske Simon Christensen,
Laurie Hendren, Sascha Kuzins, Ondrej Lhoták, Oege
de Moor, Damien Sereni, Ganesh Sittamplan, and Julian
Tibble. Adding trace matching with free variables to
AspectJ. In Proc. of the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’05), pages 345–
364. ACM Press, 2005.

6. Alessandro Armando, Roberto Carbone, and Luca Com-
pagna. SATMC: A SAT-based model checker for
security-critical systems. In Proc. of the 20th Interna-
tional Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’14), volume
8413 of LNCS, pages 31–45. Springer, 2014.

7. Alessandro Armando, Roberto Carbone, and Luca Com-
pagna. SATMC: a SAT-based model checker for se-
curity protocols, business processes, and security APIs.
International Journal on Software Tools for Technology
Transfer, STTT, in this issue, 2015.

8. Cyrille Artho, Klaus Havelund, and Armin Biere. High-
level data races. Software Testing, Verification and Re-
liability, 13(4), 2004.

9. Christel Baier, Boudewijn R. Haverkort, Holger Her-
manns, and Joost-Pieter Katoen. Performance evalua-
tion and model checking join forces. Communications of
the ACM, 53(9):76–85, 2010.

10. Christel Baier and Joost-Pieter Katoen. Principles of
Model Checking. The MIT Press, 2008.

11. Clark Barrett, Christopher L. Conway, Morgan Deters,
Liana Hadarean, Dejan Jovanović, Tim King, Andrew
Reynolds, and Cesare Tinelli. CVC4. In Proc. of the
23rd International Conference on Computer Aided Veri-
fication (CAV’11), volume 6806 of LNCS, pages 171–177.
Springer, 2011.

12. Howard Barringer. A Survey of Verification Techniques
for Parallel Programs, volume 191 of LNCS. Springer,
1985.

13. Howard Barringer, Ylies Falcone, Klaus Havelund, Giles
Reger, and David Rydeheard. Quantified event automata
- Towards expressive and efficient runtime monitors. In
Proc. of the 18th International Symposium on Formal
Methods (FM’12), volume 7436 of LNCS, pages 68–84.
Springer, 2012.

14. Howard Barringer, Allen Goldberg, Klaus Havelund, and
Koushik Sen. Rule-based runtime verification. In Proc. of



Ábrahám, Havelund: Some Recent Advances in Automated Analysis 7

the 5th International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI’04), vol-
ume 2937 of LNCS, pages 44–57. Springer, 2004.

15. Howard Barringer and Klaus Havelund. TraceContract:
A Scala DSL for trace analysis. In Proc. of the 17th
International Symposium on Formal Methods (FM’11),
volume 6664 of LNCS, pages 57–72. Springer, 2011.

16. Howard Barringer, David E. Rydeheard, and Klaus
Havelund. Rule systems for run-time monitoring: From
Eagle to RuleR. Journal of Logic and Computation,
20(3):675–706, 2010.

17. David A. Basin, Felix Klaedtke, and Samuel Müller. Pol-
icy monitoring in first-order temporal logic. In Proc. of
the 22nd International Conference on Computer Aided
Verification (CAV’10), volume 6174 of LNCS, pages 1–
18. Springer, 2010.

18. Andreas Bauer, Jan-Christoph Küster, and Gil Vegliach.
From propositional to first-order monitoring. In Proc.
of the 4th International Conference on Runtime Veri-
fication (RV’13), volume 8174 of LNCS, pages 59–75.
Springer, 2013.

19. Gerd Behrmann, Thomas Hune, and Frits Vaandrager.
Distributing timed model checking - How the search or-
der matters. In Proc. of the 12th International Confer-
ence on Computer Aided Verification (CAV’00), volume
1855 of LNCS, pages 216–231. Springer, 2000.

20. Saddek Bensalem and Klaus Havelund. Dynamic dead-
lock analysis of multi-threaded programs. In Proc. of
the First Haifa International Conference on Hardware
and Software Verification and Testing (HVC’05), volume
3875 of LNCS, pages 208–223. Springer, 2006.

21. Saddek Bensalem, Klaus Havelund, and Andrea Orlan-
dini. Verification and validation meet planning and
scheduling. Software Tools for Technology Transfer,
16(1):1–12, 2014.

22. Eric Bodden. MOPBox: A library approach to runtime
verification. In Proc. of the 2nd International Conference
on Runtime Verification (RV’11), volume 7186 of LNCS,
pages 365–369. Springer, 2011.

23. Thomas Bouton, Diego Caminha B. de Oliveira, David
Déharbe, and Pascal Fontaine. veriT: An open, trustable
and efficient SMT-solver. In Proc. of the 22nd Interna-
tional Conference on Automated Deduction (CADE-22),
volume 5663 of LNCS, pages 151–156. Springer, 2009.

24. Roberto Bruttomesso, Edgar Pek, Natasha Sharygina,
and Aliaksei Tsitovich. The OpenSMT solver. In Proc.
of the 16th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems
(TACAS’10), volume 6015 of LNCS, pages 150–153.
Springer, 2010.

25. Feng Chen and Grigore Roşu. Parametric trace slicing
and monitoring. In Proc. of the 15th International Con-
ference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’09), volume 5505 of
LNCS, pages 246–261, 2009.

26. Alessandro Cimatti, Alberto Griggio, BastiaanJoost
Schaafsma, and Roberto Sebastiani. The MathSAT5
SMT solver. In Proc. of the 19th International Confer-
ence on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’13), volume 7795 of LNCS,
pages 93–107. Springer, 2013.

27. Florian Corzilius, Gereon Kremer, Sebastian Junges, Ste-
fan Schupp, and Erika Abraham. SMT-RAT: An open

source C toolbox for strategic and parallel SMT solving.
In Proc. of the 18th International Conference on The-
ory and Applications of Satisfiability Testing (SAT’15),
LNCS. Springer, 2015.

28. Martin Davis, George Logemann, and Donald Loveland.
A machine program for theorem-proving. Communica-
tions of the ACM, 5(7):394–397, 1962.

29. Martin Davis and Hilary Putnam. A computing pro-
cedure for quantification theory. Journal of the ACM,
7(3):201–215, 1960.

30. L. M. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In Proc. of the 14th International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’08), volume 4963 of LNCS, pages
337–340. Springer, 2008.

31. Willem P. de Roever, Frank S. de Boer, Ulrich Hanne-
mann, Jozef Hooman, Yassine Lakhnech, Mannes Poel,
and Job Zwiers. Concurrency Verification: Introduction
to Compositional and Noncompositional Methods, vol-
ume 54 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2001.

32. Normann Decker, Martin Leucker, and Daniel Thoma.
Monitoring modulo theories. In Proc. of the 20th In-
ternational Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’14), vol-
ume 8413 of LNCS, pages 341–356. Springer, 2014.

33. Normann Decker, Martin Leucker, and Daniel Thoma.
Monitoring modulo theories. International Journal on
Software Tools for Technology Transfer, STTT, in this
issue, 2015.

34. Christian Dehnert, Sebastian Junges, Nils Jansen, Flo-
rian Corzilius, Matthias Volk, Harold Bruintjes, Joost-
Pieter Katoen, and Erika Ábrahám. Prophesy: A prob-
abilistic parameter synthesis tool. In Proc. of the 27th
International Conference on Computer Aided Verifica-
tion (CAV’15), volume 9206 of LNCS, pages 214–231.
Springer, 2015.

35. Doron Drusinsky. The temporal rover and the ATG
rover. In Proc. of the 7th International SPIN Workshop
on Model Checking and Software Verification (SPIN’00),
volume 1885 of LNCS, pages 323–330. Springer, 2000.

36. Bruno Dutertre. Yices 2.2. In Proc. of the 26th
International Conference on Computer Aided Verifica-
tion (CAV’14), volume 8559 of LNCS, pages 737–744.
Springer, 2014.

37. Bruno Dutertre and Leonardo de Moura. A fast linear-
arithmetic solver for DPLL(T). In Proc. of the 18th In-
ternational Conference on Computer Aided Verification
(CAV’06), volume 4144 of LNCS, pages 81–94. Springer,
2006.

38. Niklas Eén and Niklas Sörensson. An extensible SAT-
solver. In Proc. of the 6th International Confer-
ence on Theory and Applications of Satisfiability Test-
ing (SAT’03), volume 2919 of LNCS, pages 502–518.
Springer, 2004.

39. Yliès Falcone, Klaus Havelund, and Giles Reger. A tuto-
rial on runtime verification. In Summer School Markto-
berdorf 2012 - Engineering Dependable Software Systems.
IOS Press, 2013.

40. Ioannis Filippidis and Gerard J. Holzmann. An im-
provement of the piggyback algorithm for parallel model
checking. In Proc. of the 2014 International Symposium



8 Ábrahám, Havelund: Some Recent Advances in Automated Analysis

on Model Checking of Software (SPIN’14), pages 48–57.
ACM Press, 2014.

41. Martin Fränzle, Christian Herde, Tino Teige, Stefan
Ratschan, and Tobias Schubert. Efficient solving of large
non-linear arithmetic constraint systems with complex
Boolean structure. Journal on Satisfiability, Boolean
Modeling and Computation, 1(3-4):209–236, 2007.

42. Hubert Garavel, Radu Mateescu, and Irina Smaran-
dache. Parallel state space construction for model-
checking. In Proc. of the 8th International SPIN Work-
shop on Model Checking of Software (SPIN’01), pages
217–234. Springer, 2001.

43. Thomas Gibson-Robinson, Philip Armstrong, Alexandre
Boulgakov, and A. W. Roscoe. FDR3 - a parallel refine-
ment checker for CSP. International Journal on Software
Tools for Technology Transfer, STTT, in this issue, 2015.

44. Thomas Gibson-Robinson, Philip J. Armstrong, Alexan-
dre Boulgakov, and A. W. Roscoe. FDR3 - A modern
refinement checker for CSP. In Proc. of the 20th Interna-
tional Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’14), volume
8413 of LNCS, pages 187–201. Springer, 2014.

45. Jürgen Giesl, Marc Brockschmidt, Fabian Emmes, Flo-
rian Frohn, Carsten Fuhs, Carsten Otto, Martin Plücker,
Peter Schneider-Kamp, Thomas Ströder, Steffi Swider-
ski, and René Thiemann. Proving termination of pro-
grams automatically with AProVE. In Proc. of the 7th
International Joint Conference on Automated Reason-
ing (IJCAR’14), volume 8562 of LNAI, pages 184–191.
Springer, 2014.

46. Jean Goubault-Larrecq and Julien Olivain. A smell of
ORCHIDS. In Proc. of the 8th Int. Workshop on Run-
time Verification (RV’08), volume 5289 of LNCS, pages
1–20. Springer, 2008.

47. Ernst Moritz Hahn, Holger Hermanns, Björn Wachter,
and Lijun Zhang. PARAM: A model checker for para-
metric Markov models. In Proc. of the 22nd International
Conference on Computer Aided Verification (CAV’10),
volume 6174 of LNCS, pages 660–664. Springer, 2010.

48. Sylvain Hallé and Roger Villemaire. Runtime enforce-
ment of web service message contracts with data. IEEE
Transactions on Services Computing, 5(2):192–206, 2012.

49. Klaus Havelund. Rule-based runtime verification revis-
ited. Software Tools for Technology Transfer, 17(2):143–
170, 2014.

50. Klaus Havelund and Allen Goldberg. Verify your
runs. In Proc. of the 1st IFIP TC 2/WG 2.3 Confer-
ence on Verified Software: Theories, Tools, Experiments
(VSTTE’05), pages 374–383, 2008.

51. Klaus Havelund and Grigore Roşu. Efficient monitor-
ing of safety properties. Software Tools for Technology
Transfer, 6(2):158–173, 2004.

52. Tamir Heyman, Daniel Geist, Orna Grumberg, and As-
saf Schuster. Achieving scalability in parallel reachability
analysis of very large circuits. In Proc. of the 12th In-
ternational Conference on Computer Aided Verification
(CAV’00), pages 20–35. Springer, 2000.

53. Gerard J. Holzmann. Parallelizing the SPIN model
checker. In Proc. of the 19th International Workshop
on Model Checking Software (SPIN’12), volume 7385 of
LNCS, pages 155–171. Springer, 2012. Oxford, England.

54. Gerard J. Holzmann. Proving properties of concur-
rent programs. In Proc. 20th International Symposium

on Model Checking Software (SPIN’13), volume 7976 of
LNCS, pages 18–23. Springer, 2013.

55. Gerard J. Holzmann and Dragan Bošnački. The design of
a multicore extension of the SPIN model checker. IEEE
Transactions on Software Engineering, 33(10):659–674,
2007.

56. Gerard J. Holzmann, Rajeev Joshi, and Alex Groce.
Swarm verification techniques. IEEE Transactions on
Software Engineering, 37(6):845–857, 2011.

57. Malte Isberner, Falk Howar, and Bernhard Steffen.
Learning register automata: From languages to program
structures. Machine Learning, 96(1-2):65–98, 2014.

58. Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz
Hahn, Holger Hermanns, and David N. Jansen. The ins
and outs of the probabilistic model checker MRMC. Per-
formance Evaluation, 68(2):90–104, 2011.

59. Marta Z. Kwiatkowska. Model checking for probabil-
ity and time: From theory to practice. In Proc. of
the 18th IEEE Symposium on Logic in Computer Sci-
ence (LICS’03), pages 351–360. IEEE Computer Society
Press, 2003.

60. Marta Z. Kwiatkowska, Gethin Norman, and David
Parker. Stochastic model checking. In Formal Methods
for Performance Evaluation - 7th International School
on Formal Methods for the Design of Computer, Com-
munication, and Software Systems (SFM’07), Advanced
Lectures, volume 4486 of LNCS, pages 220–270. Springer,
2007.

61. Marta Z. Kwiatkowska, Gethin Norman, and David
Parker. PRISM 4.0: Verification of probabilistic real-time
systems. In Proc. of the 23rd International Conference
on Computer Aided Verification (CAV’11), volume 6806
of LNCS, pages 585–591, 2011.

62. Leslie Lamport. Proving the correctness of multiprocess
programs. IEEE Transactions on Software Engineering,
3(2):125–143, 1977.

63. Insup Lee, Sampath Kannan, Moonjoo Kim, Oleg Sokol-
sky, and Mahesh Viswanathan. Runtime assurance based
on formal specifications. In Proc. of the International
Conference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA’99), pages 279–287.
CSREA Press, 1999.

64. Flavio Lerda and Riccardo Sisto. Distributed-memory
model checking with SPIN. In Proc. of the 5th and
6th International SPIN Workshops on Theoretical and
Practical Aspects of SPIN Model Checking, pages 22–39.
Springer, 1999.

65. Martin Leucker and Christian Schallhart. A brief account
of runtime verification. Journal of Logic and Algebraic
Programming, 78(5):293–303, 2008.

66. Gary Marc Levin and David Gries. A proof technique for
communicating sequential processes. Acta Informatica,
15(3):281–302, 1981.

67. Gavin Lowe. Concurrent depth-first search algorithms.
In Proc. of the 20th International Conference on Tools
and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’14), volume 8413 of LNCS, pages 202–216.
Springer, 2014.

68. Gavin Lowe. Concurrent depth-first search algorithms
based on Tarjan’s algorithm. International Journal on
Software Tools for Technology Transfer, STTT, in this
issue, 2015.



Ábrahám, Havelund: Some Recent Advances in Automated Analysis 9

69. Joaäo P. Marques-silva and Karem A. Sakallah. Grasp:
A search algorithm for propositional satisfiability. IEEE
Transactions on Computers, 48:506–521, 1999.

70. Greg Nelson and Derek C. Oppen. Simplification by
cooperating decision procedures. ACM Transactions
on Programming Languages and Systems, 1(2):245–257,
1979.

71. Susan Owicki and David Gries. Verifying properties of
parallel programs: An axiomatic approach. Communica-
tions of the ACM, 19(5):279–285, 1976.

72. Steven P. Reiss and Alexander Tarvo. What is my pro-
gram doing? Program dynamics in programmer’s terms.
In Proc. of the 2nd Int. Conference on Runtime Verifi-
cation (RV’11), volume 7186 of LNCS, pages 245–259.
Springer, 2011.

73. Stefan Savage, Michael Burrows, Greg Nelson, Patrick
Sobalvarro, and Thomas Anderson. Eraser: A dy-
namic data race detector for multithreaded programs.
ACM Transactions on Computer Systems, 15(4):391–
411, 1997.

74. Robert E. Shostak. A practical decision procedure for
arithmetic with function symbols. Journal of the ACM,
26(2):351–360, 1979.

75. Ulrich Stern and David L. Dill. Parallelizing the Murφ
verifier. In Proc. of the 9th International Conference on
Computer Aided Verification (CAV’97), pages 256–267.
Springer, 1997.

76. Volker Stolz and Eric Bodden. Temporal assertions using
AspectJ. In Proc. of the 5th Int. Workshop on Runtime
Verification (RV’05), volume 144(4) of ENTCS, pages
109–124. Elsevier, 2006.

77. Christian von Essen and Dimitra Giannakopoulou. An-
alyzing the next generation airborne collision avoidance
system. In Proc. of the 20th International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’14), volume 8413 of LNCS, pages
620–635. Springer, 2014.

78. Christian von Essen and Dimitra Giannakopoulou. Prob-
abilistic verification and synthesis of the next generation
airborne collision avoidance system. International Jour-
nal on Software Tools for Technology Transfer, STTT,
in this issue, 2015.

79. Anton Wijs and Dragan Bošnački. GPUexplore: Many-
core on-the-fly state space exploration using GPUs. In
Proc. of the 20th International Conference on Tools and
Algorithms for the Construction and Analysis of Sys-
tems (TACAS’14), volume 8413 of LNCS, pages 233–247.
Springer, 2014.

80. Anton Wijs and Dragan Bošnački. Many-core on-the-fly
model checking of safety properties using GPUs. Interna-
tional Journal on Software Tools for Technology Trans-
fer, STTT, in this issue, 2015.

81. Harald Zankl and Aart Middeldorp. Satisfiability of non-
linear (ir)rational arithmetic. In Proc. of the 16th Inter-
national Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR-16), volume 6355 of
LNAI, pages 481–500. Springer, 2010.

82. Lintao Zhang, Conor F. Madigan, Matthew H.
Moskewicz, and Sharad Malik. Efficient conflict driven
learning in a Boolean satisfiability solver. In Proc. of
the 2001 IEEE/ACM International Conference on Com-
puter Aided Design (ICCAD’01), pages 279–285. IEEE
Computer Society Press, 2001.


