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Abstract. Specification-based runtime verification is a technique for
monitoring program executions against specifications formalized in for-
mal logic. Such logics are usually temporal in nature, capturing the re-
lation between events occurring at different time points. A particular
challenge in runtime verification is the elegant specification and efficient
monitoring of streams of events that carry data, also referred to as para-
metric monitoring. This paper presents two parametric runtime verifica-
tion systems representing two quite different approaches to the problem.
qea (Quantified Event Automata) is a state machine approach based on
trace-slicing, while LogFire is a rule-based approach based on the Rete
algorithm, known from AI as being the basis for many rule systems. The
presentation focuses on how easy it is to specify properties in the two ap-
proaches by specifying a collection of properties gathered during the 1st
International Competition of Software for Runtime Verification (CSRV
2014), affiliated with RV 2014 in Toronto, Canada.

1 Introduction

Ensuring the correctness or security of a software system is traditionally ap-
proached in two ways, with static analysis and with dynamic analysis. By static
analysis we shall broadly understand any approach that does not execute the
program using a traditional execution platform, in contrast to dynamic analysis,
where the program is executed. Static analysis techniques include for example
abstract interpretation, theorem proving and model checking. The distinction is
somewhat vague. Some techniques are difficult to classify, for example software
model checkers which execute a program using a specialized virtual machine.
Dynamic analysis includes testing, which is concerned with generating test in-
puts for the system, and applying test oracles (monitors) that can determine
whether a particular run is satisfactory. However, dynamic analysis can also
be applied after deployment of the software in the field, for example to profile
behavior, load, etc. under realistic conditions. The concept of cyber-physical sys-
tem (CPS) is receiving increased attention in the research community. A CPS is
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a system of collaborating computational elements controlling physical entities.
The correctness of such systems is extremely difficult to ensure statically. It is
therefore important to ensure that at least observed executions of such systems
satisfy certain properties.

Runtime verification [30, 41, 49] (RV) is a subfield of dynamic analysis focus-
ing on analyzing executions, including collections thereof, either during test (test
oracles), or after deployment. The field is not concerned with test case genera-
tion. Even though the field can appear rather narrow, by tradition it includes
the following sub-fields. Specification-based monitoring, the topic of this paper,
is concerned with checking a program execution against a formal specification of
one or more requirements, expressed in some form of logic, for example state ma-
chines, regular expressions, temporal logic, grammars, or rule-systems. That is,
given a program P , and a specification ψ, and an execution trace τ of P , an RV
system will be able to determine whether τ satisfies ψ, also formalized as: τ |= ψ.
Logics must be expressive and monitors must be efficient. In runtime analysis,
program executions are analyzed with specialized algorithms. Examples include
algorithms for detecting concurrency problems such as deadlock potentials and
data races. In fault protection, a monitored system will when violating a prop-
erty be brought from an unsafe state to a safe state. Specification learning covers
learning (mining) specifications from execution traces, which are then used for
either system comprehension, or fed back into a verification system for further
analysis, or used for monitoring future revisions of the software. Trace visualiza-
tion of execution traces serves the purpose of comprehending what the system
does. Finally, program instrumentation is concerned with how to instrument pro-
grams to emit events to a monitor, which then analyzes the event stream. For
example aspect-oriented programming can be used for this purpose to automat-
ically insert event emitting code at positions relevant for the properties being
verified. Static analysis can be used to minimize the number of instrumentation
points. RV technology can be stand-alone or incorporated into programming
languages, simple assertions being a standard example.
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Fig. 1. A typical monitoring infrastructure.



Figure 1 shows a typical monitoring infrastructure, which supports the follow-
ing activities. Monitor creation: a monitor is created, potentially from a formal
property. Instrumentation: the system is instrumented to generate events for the
monitor. Execution: The system is executed, generating events that are observed
by the monitor. These events are either monitored online, as they are generated,
or they are stored in logs, which are later analyzed by the monitor. Responses:
the monitor produces for each consumed event a verdict indicating the status of
the property, depending on the event sequence seen so far. In the case of online
monitoring, the monitor may send feedback to the system, so that corrective
actions can be taken by the system.

In this paper we shall focus on specification-based runtime verification, and
in particular on what is referred to as parametric monitoring: the monitoring of
event streams where events can carry data. That is, say we are monitoring a file
system, then an event may have the form read(f) where f is a file identifier, a
parameter to the read event. Parametric monitoring is particularly challenging
as, for each incoming event, it involves the efficient lookup of information about
the previous part of the execution trace that is relevant for that event’s particu-
lar parameter (or set of parameters), in order to determine what the appropriate
action of the monitor should be. We shall describe and apply two parametric run-
time verification systems, representing two seemingly different main approaches
of organizing monitors. The systems will be demonstrated on four classes of
properties stemming from respectively the Java programming language API,
banking, planetary rovers, and finally concurrency in programming languages.
These properties were gathered during the 1st Intl. Competition of Software for
Runtime Verification (CSRV 2014), affiliated with RV 2014 in Toronto, Canada
[2], and also presented in [20]. Our focus is on specification, and we shall there-
fore assume that programs/systems to be monitored have been instrumented
appropriately to emit the necessary events.

The first system, qea (Quantified Event Automata) [4, 53], is a state-machine
logic based on a so-called trace-slicing approach, an approach that has shown
to yield extremely efficient monitors. The approach involves conceptually slic-
ing a trace into projections, a projection for each parameter combination. Fast
indexing makes this very efficient. The state of a monitor is abstractly seen as
a mapping from parameter values to monitor states. Note that trace slicing is
not to be confused with program slicing. The latter involves slicing a program
into projections. The second system, LogFire [40], is a rule-based system, in-
spired by rule systems as developed within the artificial intelligence community.
LogFire’s implementation is based on the Rete algorithm, often used for im-
plementing rule engines. A monitor consists of a set of rules, which abstractly
seen operate on a (structured) set of facts, where a fact is a named record
F (v1, . . . , vn). Here F is a name and v1, . . . , vn are values. A rule’s left-hand side
can check for the presence or absence of facts, and the right-hand side can add
or delete facts. In reality, however, facts are inserted into a network, the Rete
network (rete means “net” in Latin), making rule evaluation more efficient. qea



is a so-called external DSL (Domain Specific Language), whereas LogFire is a
so-called internal DSL, an API in the Scala programming language.

The rest of the paper is organized as follows. Section 2 gives a brief survey
of specification-based runtime verification systems. Section 3 introduces the two
logics qea and LogFire. Sections 4, 5, 6, and 7 contain the specification in
the two logics of the Java API, banking, rover, and concurrency properties
respectively. Section 8 summarizes and discusses the specification experience.
Finally Section 9 concludes the paper.

2 Survey of specification-based runtime verification

Numerous runtime verification systems have been developed over the last 15
years, some of which will be mentioned here. We will only focus on specification-
based systems that verify whether program executions satisfy user-provided for-
mal specifications. As discussed in the introduction, the field is broader than
this. Initial specification-based systems could only handle propositional events.
These include for example Temporal Rover [26], Mac [48], and Java PathEx-
plorer [43, 42]. Later work has studied such propositional monitoring logics from
a more theoretic point of view, including notions such as 4-valued logics [15] and
monitorability [29]. During the last decade there has been an increasing focus on
systems for monitoring data parameterized events, so-called parametric moni-
toring. The first systems to handle parameterized events appeared around 2004,
and include such systems as Eagle [7], Hawk [21], Jlo [58], TraceMatches
[3], and Mop [18, 51]. Several systems have appeared since then. RV systems
usually implement specification languages which are based on formalisms such
as state machines [27, 34, 37, 18, 28, 9], regular expressions [3, 18], temporal logic
[48, 26, 43, 7, 59, 21, 58, 57, 18, 9, 13, 36, 14, 22], variations over the µ-calculus [7],
grammars [18], and rule-based systems [12, 40]. A few of these logics incorporate
time as a built-in concept, for example the metric first-order temporal logics in
the early TemporalRover [26] and in the more recent MFOTL [13]. If no
special concept of time is introduced, time observations can be considered as
just data, as is common in rule-based systems [12, 40].

In this paper we focus on two important approaches to parametric monitor-
ing, namely the trace-slicing approach, represented by qea, and the rule-based
approach, represented by LogFire. Two other important approaches based on
trace-slicing are TraceMatches [3] and Mop [18, 51]. Slicing-based approaches
are generally extremely efficient, but at the cost of lack of some expressiveness,
as pointed out in [4]. qea is an attempt to augment the expressiveness of slicing-
based approaches, without losing too much of the efficiency. Rule systems are
expressive.

The Rete-based LogFire is inspired by the Ruler system [11, 12, 1], itself
a rule-based system. Ruler, however, is not influenced by Rete. Ruler led
to the study of the Rete algorithm (in LogFire), in order to determine its
relevance for runtime verification. Ruler itself was inspired by MetateM [5]
and Eagle [7], a linear time µ-calculus for monitoring, with past time as well



as future time operators. Although attractive, the implementation of Eagle
appeared complex, leading to the simpler implementation in Ruler. Another
derivative from Ruler is LogScope [10, 35, 8], which is a data parameterized
state machine oriented monitoring logic, implemented as a simplified rule-engine,
and applied to log files at Jet Propulsion Laboratory (JPL), for testing of the
Mars Curiosity rover. The qea formalism has similarities with LogScope. Other
rule-based systems include Drools [24], Jess [45] and Clips [19]. Standard rule
systems usually enable processing of facts, which have a life span. In contrast,
LogFire additionally implements events, which are instantaneous. Drools sup-
ports a notion of events, which are facts with a limited life span, inspired by the
concept of Complex Event Processing (CEP), described by David Luckham in
[50]. The Drools project has an effort ongoing, defining functional program-
ming extensions to Drools [25]. In contrast, by embedding a rule system in
an object-oriented and functional language, LogFire can leverage the already
existing host language features.

The classification of runtime verification frameworks into slicing-based and
rule-based is an idealization, and more research is needed in order to make a clean
classification. Some logics, for example, handle data as constraints, including the
first-order Linear Temporal Logic LTLFO [14], and the first-order linear temporal
logic based on SMT (Satisfiability Modulo Theories) solving described in [22].
Some systems based on Linear Temporal Logic (LTL) [52] apply rewriting of
LTL formulas, inspired by [33]. These include for example [26, 43, 7, 59, 58, 9, 36].

qea, like most of the logics mentioned above, is an external DSL, a stand-
alone “small” language equipped with its own customized parser. In contrast,
LogFire is an internal Scala DSL, essentially an API in Scala. Two other
rule-based internal DSLs for Scala exist: Hammurabi [32] and Rooscaloo [55].
Hammurabi, which is not Rete-based, achieves efficient evaluation of rules
by evaluating these in parallel, assigning each rule to a different Scala actor.
Rooscaloo [55] is Rete based, but is not documented in any form other than
experimental code. Other internal Scala DSLs for monitoring include Trace-
Contract [9] and Daut (Data automata) [38, 39], both of which are based on
parameterized state machines. An embedding of LTL in Haskell is described in
[59]. MopBox [17] is a Java library for monitoring, offering a re-implementation
of the efficient trace-slicing algorithms contained in Mop [18, 51], but defining
the interface as an API.

3 Introduction to QEA and LogFire

This section introduces the two logics qea (Section 3.2) and LogFire (Section
3.3). The logics are illustrated using a file usage example, presented below.

3.1 The file usage example

Consider that we can monitor the following file usage events:



– open(f,m, size): records that file f is being opened in mode m (R for read
and W for write), and size denotes the size of the file in bytes on opening.

– close(f): records closing file f .
– read(f): records reading a file f .
– write(f, b): records writing b bytes to file f .

The correct usage of the file system is captured by the following informal re-
quirements:

– A file starts closed and cannot be opened (closed) if already open (closed).
– A file if opened must eventually be closed.
– A file can only be read or written if it is open in the corresponding mode.
– No file can exceed 16MB.

We will use this example to illustrate qea and LogFire in the following two
sections.

3.2 Introduction to QEA

Quantified event automata (qea) [4, 53] is an automaton-based specification lan-
guage for monitoring parameterized events. It is based on the idea of parametric
trace-slicing [18], which is most prominently used by Mop. The theory behind
qea generalizes this previous notion of slicing in a number of ways that will be
discussed below. The MarQ tool [54] takes qea specifications and can monitor
them either online on Java programs or offline on recorded traces.

qea{
Forall(f)
accept next(closed){
open(f,’R’,_) -> readonly
open(f,’W’,size) -> writeonly

}
next(readonly){
read(f) -> readonly
close(f) -> closed

}
next(writeonly){
write(f,b) if [size+b <= 16000000 ]

do [ size+=b ] -> writeonly
close(f) -> closed

}
}

1 2

3

∀f
open(f,’R’, )

close(f)

read(f)

open(f,’W’,size)close(f)

write(f, b) size+b≤16000000
size+=b

Fig. 2. A qea model of the file usage property in both text and graphical formats.

Specification of file usage example in QEA. The qea specification of the
file usage property is given in Figure 2 in both a textual and a graphical repre-
sentation. In other work we have mainly used the graphical representation as we



find it more readable. However, as it is not an input format, it is not appropriate
for discussing specification approaches and will use the textual format later.

A qea consists of some quantifications and an automaton. In this example
the quantification is Forall(f) stating that f is a universally quantified variable.
This quantifier list can also include Exists quantification and a global guard on
quantified variables introduced by the Where keyword.

The automaton has three states relating to the three states a file can be in. In
the textual format the first state defined is always taken to be the initial state.
States have a kind, either next or skip, which defines what should happen when
a transition cannot be taken; next means a next event is required, skip means
the next event will be skipped if no transition can be taken. The states here are
all next states i.e. from the closed state it is only possible to open a file as an
event is required to make a transition.

Only the start is state is an accept state. As defined later, a trace is
accepted if it has a path to an accepting state. The language also includes implicit
success and failure states which are skip states with no outgoing transitions
and where the former is an accept state.

In the writeonly state the write transition has a guard size+b <=
16000000 and assignment size+=b, which are used to ensure that the size
of the file does not exceed the limit, note how the size variable is given the
initial size when the file is opened. The if keyword introduces guards and the
do keyword introduces assignments.

Let us consider how we would monitor this property on the following trace:

open(A, ‘R’, 0).open(B, ‘W’, 15999900).write(B, 100).read(A).write(B, 100).close(B)

Here there are two files, A and B. The quantification ∀f tells us that we need
to slice the trace on these values. This gives us the following two trace slices
associated with bindings of f :

[f 7→ A] 7→ τ1 = open(A, ‘R’, 0).read(A)
[f 7→ B] 7→ τ2 = open(B, ‘W’, 15999900).write(B, 100).write(B, 100).close(B)

The trace slice τ1 should then be interpreted for the automaton with f re-
placed by A. In this case there is a path in the automaton from state closed
to state readonly. But, as this state is not accepting, any trace finishing in
this state is rejected. Similarly the trace slice τ2 should be interpreted on the
automaton with f replaced by B. Here we can capture the behavior through
the rewriting of a configuration containing the current state and binding of free
variable size:

〈1, []〉 open(B,‘W’,15999900)−−−−−−−−−−−−−→ 〈3, [size 7→ 15999900]〉 write(B,100)−−−−−−−−→ 〈3, [size 7→ 16000000]〉

After two events we reach state 3 (writeonly) but cannot take the write

transition as the guard size+b <= 16000000 does not hold. As the state is
labelled next this leads to failure as next states must be able to make a move
on the next event. This trace violates the property as at least one, in this case
both, of the trace slices are not accepted by the instantiated automaton.



As we consider the trace slices τ1 and τ2 separately, we would have had the
same result for any interleaving of τ1 and τ2. This interleaving can be restricted
if two trace slices contain the same ground event, as the slices must ‘synchronize’
on an occurrence of this event in the full trace.

Defining qea acceptance through trace-slicing. qea has been formally
defined elsewhere [4, 53], here we give a flavor of the structures and notion of
trace acceptance. We begin with the basic definitions. An event in the alphabet
Σ(X,Y ) is of the form e(z) where z ∈ (X ∪ Y ∪ Val)∗ for values Val and dis-
joint variable sets X and Y . We separate the variables into those that will be
quantified X and those that will remain free Y ; this distinction will be clarified
below. An event is ground if z ∈ Val∗. A trace is a finite sequence of ground
events. A binding is a map (partial function with finite domain) from variables
to values. Bindings can be applied to events to rewrite their variables. A guard
is a predicate on bindings. An assignment is a (partial) function on bindings.
An event e(z) matches a ground event e(v) if there is a binding θ such that
θ(e(z)) = e(v) and match(e(z), e(v)) is the minimal such binding with respect
to the sub-map relation (if such a binding exists, undefined otherwise).

An event automaton (EA) is a (potentially non-deterministic) finite state
machine with alphabet Σ(X,Y ) where transitions can be labelled with guards
and assignments. Recall that states can be either next or skip as described
above. An EA can be grounded with a binding with domain X. A grounded EA
has an acceptance relation for traces (over its alphabet) defined for configurations
(pairs of states and bindings). We do not give this relation here but it is the
standard transition relation extended for guards, assignments and the notion of
next and skip states. For an EA E and a grounding binding θ, the acceptance
relation defines a ground language L(θ(E)) over Σ(θ(X),Val) as the set of all
traces that can reach a configuration with an accepting state. Note that free
variables (Y ) are replaced by Val as they can take any value that is acceptable
to the transition relation i.e. satisfies the guard and assignment structures.

For example, the automaton in Fig. 2 has alphabet Σ({f}, {size, b}). The
grounded language for binding [f 7→ A] would contain traces such as

open(A, ‘R’, 0).read(A).close(A).open(A, ‘R’, 0).read(A).close(A)
open(A, ‘W’, 12000).write(A, 100).write(A, 100).close(A)

as they reach an accepting state and satisfy all guards.

A qea is a pair consisting of a quantifier list Λ(X) and an EA over alphabet
Σ(X,Y ). The quantifier list consists of universal and existential quantification
over variables X, can include a global guard over X and can be negated. The
domain of a quantified variable x ∈ X is given as those values that can be bound
to x when matching events from the EA’s alphabet with events in the trace i.e.

D(τ, x) = {match(e(z), e(v))(x) | e(z) ∈ Σ(X,Y ), e(v) ∈ τ}



In the previous section we extract the domain D(τ, f) = {A,B} as, for example,

match(open(A, ‘R‘, 0), open(f, ‘R‘, size)) = [f 7→ A, size 7→ 0]
match(close(B), close(f)) = [f 7→ B]

The notion of trace acceptance is defined using trace-slicing. We first consider
pure universal quantification. Given a qea with Λ = ∀x1...∀xn and EA E , the
trace τ is accepted if for every binding θ such that θ(xi) ∈ D(τ, xi) the trace
τ ↓Σ(θ(X),Y ) is in L(θ(E)) where the slicing (projection) operation ↓A is defined
as

ε ↓A = ε

τ.e(v) ↓A =
τ ↓A .e(v) if ∃e(z) ∈ A such that matches(e(z), e(v))
τ ↓A otherwise

i.e. for the binding θ we slice the trace to give only events relevant to θ, then
we check if that trace slice is accepted by the EA grounded with θ. This can be
appropriately modified for existential and alternating quantification. For exam-
ple, the quantifier alternation ∃x∀y says that there is a value d ∈ D(τ, x) such
that τ ↓Σ(θ(X),Y ) is in L(θ(E)) for every binding θ where θ(x) = d.

Note that this slicing can place ground events in multiple slices i.e. if we had
an alphabet {create(c, i), update(c), use(i)} for quantified c and i, the event
create(A) would be relevant to bindings [c 7→ A, i 7→ 1] and [c 7→ A, i 7→ 2].
Also free variables are ignored for slicing, so an event in the trace matching an
event using only free variables would be relevant to all bindings.

Monitoring algorithm. Whilst the above gives a reasonable definition of trace
acceptance, this is not a pragmatic method for runtime monitoring as it requires
multiple passes of the trace. Instead, an incremental notion of acceptance has
been introduced [4, 53] which maintains a map from bindings of quantified vari-
ables to sets of configurations. As not all information is available at the start
it is necessary to track partial bindings of quantified variables, which requires
careful treatment to preserve the semantics described above. The introduction of
this map from bindings to configurations lends itself to forms of indexing, which
is what has made tools that use trace-slicing, such as Mop, highly efficient.
MarQ implements a symbol-based form of indexing that uses the alphabet of
each (partially) instantiated EA to locate the relevant configurations.

Free versus quantified variables. One aspect of qea that deserves clarifica-
tion is the difference between quantified and free variables. Recall that an EA
has two sets of variables, X and Y , and the quantifications range of X, leaving
those in Y free. The qea in Figure 2 has one quantified variable f and two free
variables b and size. As we saw in the earlier examples, we use values for f to
slice the trace and then fix this value when evaluating the trace. The variables
b and size are rebound whenever they match a new value and can be checked in
guards and updated in assignments.



class FileUsage extends Monitor {
"r1" -- ’open(’f, ’m, ’size) & not(’Open(’f, ’_, ’_)) |->

insert(’Open(’f, ’m, ’size))
"r2" -- ’Open(’f, ’_, ’_) & ’open(’f, ’_, ’_) |-> fail()
"r3" -- ’Open(’f, ’_, ’_) & ’close(’f) |-> remove(’Open)
"r4" -- ’Open(’f, ’m, ’_) & ’read(’f) |-> ensure(’m.string == "R")
"r5" -- ’read(’f) & not(’Open(’f, ’_, ’_)) |-> fail()
"r6" -- ’Open(’f, ’m, ’size) & ’write(’f, ’b) |-> {

ensure(’m.string == "W" && ’size + ’b <= 16000000)
update(’Open(’f, ’m, ’size + ’b))

}
"r7" -- ’write(’f) & not(’Open(’f, ’_, ’_)) |-> fail()

hot(’Open)
}

Fig. 3. An LogFire model of the file usage property.

Actual guards and assignments. Whilst the qea language theoretically sup-
ports arbitrary guards and assignments, the MarQ monitoring tool currently
only supports those relating to arithmetic and sets. For arithmetic we have the
standard comparison operations (i.e. =,≤), arithmetic operators (i.e. +,×) and
update operations (i.e. +=,++). For sets we have set definition, addition and
removal, and the contains (in) predicate.

3.3 Introduction to LogFire

LogFire [40] is a rule-based specification language specifically developed for
monitoring streams of parameterized events. It is developed as an internal Scala
DSL (an API in Scala), allowing a user to freely mix rule programming with
traditional programming. It is based on the Rete algorithm [31], specifically
as described in [23]. The Rete algorithm is the basis for various rule-based
systems. LogFire augments it with a distinction between facts and events and
implements an indexing algorithm for optimizing rule evaluation. LogFire can
be used for online as well as offline monitoring, although offline monitoring (log
analysis) has been the main focus. In the case of online monitoring, the tool
would have to be connected to the application via some instrumentation tool,
such as AspectJ [46].

Specification of file usage example in LogFire The LogFire specification
of the file usage property is given in Fig. 3. LogFire only provides a textual
language. One could imagine a graphical notation for rule-based systems, similar
to (but yet different from) the visualization of qea models, as illustrated in
Figure 2. However, this is not explored in this work. A LogFire monitor is
defined as a Scala class that extends (is a sub-class of) the class Monitor,
which defines all the LogFire primitives (constants, variables and functions),
which allows one to write rules. A monitor extending this class must define zero
or more rules, each of the form:

"name" -- ’cond1 & ... & condn |-> action



A rule has a name (a string), followed by a left-hand side, which is a list of
conditions separated by conjunction (‘&’); and a right-hand side following the
arrow (|->), this is the action. The state of a monitor at any time during the
evaluation of an event stream is conceptually (simplified) a set of facts of the
form F (v1, . . . , vn), where F is a name and v1, . . . , vn is a list of ground values.
This set is referred to as the fact memory. Observed events are also facts, which,
however, only exist a brief moment when observed. By convention, names of
observed events consist of all small letters, whereas names of internally generated
facts start with a capital letter. A condition in a rule’s left-hand side can check for
the presence or absence of a particular fact (including events), and the action on
the right-hand side of the rule can add or delete facts, produce error messages, or
cause other side effects. Generally, an action can be any Scala code. Left-hand
side matching against the fact memory usually requires unification of variables
occurring in conditions. In case all conditions on a rule’s left-hand side match
(become true), the right-hand side action is executed. This model is very well
suited for processing data rich events, and is simple to understand by nature of
its very operational semantics. It is interesting to note that finite-state machines
can be mapped into rule systems.

The monitor in Figure 3 should be understood as follows. The monitor op-
erates with one fact: Open(f,m, size), representing the fact that file f has been
opened in mode m, and currently has size size. There are seven rules, named
r1 . . . r7. Rule r1 states that upon the occurrence of an open(f, m, size)
event, if the file has not been opened yet (there is no fact in the fact memory
that matches the pattern Open(f, , )), then an Open(f, m, size) fact
is inserted into the fact memory. Free identifiers on the left-hand side, appearing
as Scala quoted symbols, such as ’size, are bound when matched against
facts, including events. Rule r2 states that if a file has been opened, an open
event will cause a failure to be reported. Rule r3 handles the closing of a file,
causing the fact matching Open(f, , ) to be removed from the fact memory.
Rule r4 ensures that a file can only be read if it has been opened in read-mode.
An alternative, also allowed, formulation of this rule would have been:

"r4" -- ’Open(’f, "W", ’_) & ’read(’f) |-> fail()

Rule r5 states that reading a file that is not open is reported as a failure.
Rule r6 captures writing to a file, and ensures that the file has been opened in
write-mode, and that the new size does not exceed the upper allowed bound. In
addition, the Open fact is updated to record the increased size. Rule r7 states
that it is illegal to write to a non-opened file. Finally, the fact Open is recorded
to be a so-called hot fact, which is equivalent to a non-acceptance state in a
state machine. When monitoring terminates there should be no hot facts in the
fact memory. Figure 4 shows how the fact memory evolves as the events are
consumed in the previous trace used to illustrate qea.

Implementation of LogFire In the presentation above, the configuration of
LogFire was described as being a set of facts, those active at any moment during
monitoring. Facts can be added or deleted from this set. This explanation is valid



{} open(A,‘R’,0)−−−−−−−−→
{Open(‘A’, ‘R’, 0)} open(B,‘W’,15999900)−−−−−−−−−−−−−→
{Open(‘A’, ‘R’, 0), Open(‘B’, ‘W’, 15999900)} write(B,100)−−−−−−−−→
{Open(‘A’, ‘R’, 0), Open(‘B’, ‘W’, 16000000)} read(A)−−−−−→
{Open(‘A’, ‘R’, 0), Open(‘B’, ‘W’, 16000000)} write(B,100)−−−−−−−−→ error

Fig. 4. Evolution (simplified) of LogFire fact memory.

Open(f,m,size)
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Fig. 5. Rete network for rules r2, r3, r4, and r6.

for understanding specifications. However, such a set implementation would be
potentially inefficient when evaluating rules against an incoming event. Consider
for example the configuration:

{Open(‘A’, ‘R’, 0), Open(‘B’, ‘W’, 15999900)}

and the incoming event write(B, 100). We could now (i) evaluate all the seven
rules, one by one, and for each we would (ii) scan the set above to examine if it
contains a relevant fact Open(‘B’, ‘W’, . . .). To avoid this, LogFire implements
the Rete algorithm, which optimizes (i). In addition, LogFire augments this
algorithm with indexing into this set, which optimizes (ii). The Rete algorithm
stores rules and facts as a network, which “glues” rules together that have com-
mon prefixes of left-hand sides.

A Rete network for rules r2, r3, r4, and r6 is shown in Figure 5. Sup-
pose rule r1 fires and adds an Open(f,m,size) fact. This will enter the upper
left so-called alpha memory. Newly added facts (including events) are added to



alpha memories (white boxes). The top join node will be activated and merge
the incoming fact with previous facts, of which there are none (the initial so-
called beta memory, the upper right grey box, is empty). The result is stored
in a new beta memory. Each of these beta memories represents a prefix of the
conditions in a rule. They contain all facts matching a corresponding condition
with pointers back to facts in preceding beta memories, establishing a collection
of chains of facts. Since Open(f,m,size) occurs as the first condition of rules r2,
r3, r4, and r6, these now are connected to this beta memory. For example, in
the case of a write(B, 100) event, the event is added to the right-most alpha
memory, whereafter rule r6’s join node is activated, corresponding to firing of
rule r6. Thereby we avoid evaluating all the other rules, corresponding to the
optimization of case (i) above.

Concerning optimization (ii), recall that a beta memory contains all facts
matching a corresponding condition. It can for example be the set above con-
taining the two facts: Open(‘A’, ‘R’, 0) and Open(‘B’, ‘W’, 15999900). On the ob-
servation of a write(B, 100) event, rule r6’s join node will now have to search
for an Open(‘B’, . . . , . . .) fact in this set. With a large number of facts, this can
be costly. To optimize this search, the beta memory is organized as an index
from file identifiers to sets of facts:

A 7→ {Open(‘A’, ‘R’, 0)}
B 7→ {Open(‘B’, ‘W’, 15999900)}

It is the join node’s responsibility to look up the relevant facts in the beta node
when it is activated with an event from an alpha node. The first argument to
the write(B, 100) event tells the join node to look up B in the index. As such
the implementation has some similarity with the slicing approach.

LogFire syntax It remains to briefly explain how rules are interpreted. Con-
sider for example rule r4. This rule is by the Scala compiler interpreted as the
following chain of method calls:

R("r4").--(C(’Open).apply((’f, ’m, ’_))).&(C(’read).apply(’f)).|->{
ensure(’m.string == "R")

}

Scala allows dots and parentheses around method arguments to be omitted in
calls of methods on objects. In the above expansion these have been inserted.
In addition, two so-called implicit functions R and C have been applied by the
Scala compiler. A user-defined implicit function from type T1 to type T2 is
applied by the compiler when a value of type T1 occurs in a place where a value
of type T2 is expected (the function must be unique). For example, R is defined as
follows, returning an (anonymous) object, which defines the method ‘--’, which
again returns an object defining the methods ‘&’ and ‘|->’.

implicit def R(name: String) = new {
def --(c: Condition) = new RuleDef(name, List(c))

}

class RuleDef(name: String, conditions: List[Condition]) {



def &(c: Condition) = new RuleDef(name, c :: conditions)

def |->(stmt: => Unit) {
addRule(Rule(name, conditions.reverse, Action((x: Unit) => stmt)))

}
}

4 Specification of Java API properties

The first domain we consider is the task of checking compliance with the Java
library API. These properties are common examples in publications on runtime
verification, and some featured multiple times in the competition. In this case
they are all about collections but properties of sockets and streams have been
discussed elsewhere [53]. There has also been a systematic effort to formalize the
informal properties in the Java library documentation [47]. Properties about
programming APIs, specifically object-oriented languages like Java, have com-
mon characteristics. Typically they are about a small set of objects, and if more
than one object is targeted then the objects are typically connected in some way
i.e. one is created from another.

4.1 HasNext

This property applies to every java.util.Iterator object, and requires that
hasNext() be called before next() and that hasNext() returns true. Two events
are monitored: hasNext(i, r) is triggered when hasNext is called on Iterator i
with result r and next(i) is triggered when next is called on Iterator i.

QEA specification. The specification defines a safe and unsafe state; a
next event is only allowed in the safe state, which is reached by hasNext

returning true.

qea {
Forall(i)
accept skip(unsafe){

hasnext(i,r) if [ r = true ] -> safe
next(i) -> failure

}
accept skip(safe){

next(i) -> unsafe
}

}

LogFire specification. The monitor uses one fact, Safe(i), to record when
hasnext has been called returning true. It is required by next, as a guard,
and then removed. The monitor, as subsequent LogFire monitors, is named M
in order to keep naming brief. Similarly, rule names are kept short.

class M extends Monitor {
"r1" -- ’hasnext(’i, true) |-> insert(’Safe(’i))
"r2" -- ’Safe(’i) & ’next(’i) |-> remove(’Safe)
"r3" -- ’next(’i) & not(’Safe(’i)) |-> fail()

}



4.2 Counting iterator

If a java.util.Iterator object is created from a collection of size s then
we can only call next on that iterator at most s times. Two events are relevant:
iterator(i,s) records the creation of iterator i from a collection of size s; and
next(i) records call next on iterator i. As iterators are Java objects they can
only be created once.

QEA specification. This qea saves the size of the iterator and decreases this
size on each next event whilst it is safe to do so. As the iterate state is a
next state, a failure will occur if a next event occurs and the guard csize >
0 cannot be satisfied.

qea{
Forall(i)
accept skip(start){ iterator(i,csize) -> iterate }
accept next(iterate) { next(i) if [ csize > 0 ] do [ csize-- ] -> iterate }

}

LogFire specification. The monitor uses one fact, Iterate(i,csize), to
record that there are csize elements left in the collection that iterator i is
derived from. It is decreased on each observation of a next.

class M extends Monitor {
"r1" -- ’iterator(’i, ’csize) |-> ’Iterate(’i, ’csize)
"r2" -- ’Iterate(’i, ’csize) & ’next(’i) |-> {

if (’csize > 0)
update(’Iterate(’i, ’csize - 1))

else
fail()

}
}

4.3 UnsafeMapIterator

If a collection is created from a java.util.Map object (via calls to values
or keySet) and then an java.util.Iterator object is created from that
collection, then the iterator cannot be used after the original map has been
updated. Four events are relevant: create(m,c) records the creation of collection
c from map m; iterator(c,i) records the creation of iterator i from collection
c; update(m) records m being updated; and use(i) records the usage of iterator
i. As collections and iterators are Java objects they can only be created once.

QEA specification. This qea specifies the path to failure i.e. the sequence
of events that reach a non-accepting state. Note that quantification is over all
maps, collections and iterators. A naive monitoring algorithm would create all
such bindings, even for unrelated objects - this is an inherent inefficiency in trace-
slicing that must be avoided through careful implementation and extension of
the theory. Note the use of skip states to ignore irrelevant events.



qea{
Forall(m,c,i)
accept skip(start){ create(m,c) -> hascol }
accept skip(hascol){ iterator(c,i) -> hasit }
accept skip(hasit){ update(m) -> updatedm }
accept skip(updatedm){ use(i) -> failure }

}

LogFire specification. The monitor uses three facts: HasCol(m,c) to record
when collection c has been created from a map m; HasIt(m,i) to record that
iterator i has been created from a collection created from map m; and finally
UpdateM(i) to record that the map that iterator i is derived from has been
updated, and hence no further iteration (use) is allowed.

class M extends Monitor {
"r1" -- ’create(’m, ’c) |-> insert(’HasCol(’m, ’c))
"r2" -- ’HasCol(’m, ’c) & ’iterator(’c, ’i) |-> insert(’HasIt(’m, ’i))
"r3" -- ’HasIt(’m, ’i) & ’update(’m) |-> insert(’UpdateM(’i))
"r4" -- ’UpdateM(’i) & ’use(’i) |-> fail()

}

4.4 Hashing persistence

Objects placed in a hashing structure, such as a HashSet or HashMap, should
have persistent hash codes whilst in the structure for the usage to be sound.
Otherwise we may have the situation where we add an object and then get the
result false when checking for its presence. Three events are relevant: add(c,o,h),
observe(c,o,h) and remove(c,o,h) respectively record the addition, observation
and removal of object o on hashing collection c using hash code h.

QEA specification. We have chosen not to quantify over collections in this qea
as it is possible to specify the property by quantifying over objects only. Note that
monitoring complexity depends on the number of bindings, which can be, in the
worst case, exponential in the number of quantified variables. This specification
works by tracking how many collections the object is in and ensuring that the
hash code remains persistent whilst this is non-zero. This assumes that the add

event only occurs when the object did not previously exist in the collection, and
remove only occurs when it did. If these assumptions cannot be enforced (via
instrumentation) then the specification would need to quantify over c.

qea{
Forall(o)
accept skip(out){

add(c,o,h) do [ count:=1; ] -> in
}
accept next(in){

add(c,o,h2) if [ h = h2 ] do [ count++ ] -> in
observe(c,o,h2) if [ h = h2 ] -> in
remove(c,o,h2) if [ count > 1 and h = h2 ] do [ count-- ] -> in
remove(c,o,h2) if [ count = 1 and h = h2 ] -> out

}
}



LogFire specification. The monitor uses one fact, In(c,o,h), to record that
collection c contains object o, which had hash code h when first added. This
should remain the hash code as long as the object is in that collection.

class M extends Monitor {
"r1" -- ’add(’c, ’o, ’h) |-> insert(’In(’c, ’o, ’h))
"r2" -- ’In(’c, ’o, ’h1) & ’observe(’c, ’o, ’h2) |-> ensure(’h1.i == ’h2.i)
"r3" -- ’In(’c, ’o, ’h1) & ’add(’c, ’o, ’h2) |-> ensure(’h1.i == ’h2.i)
"r4" -- ’In(’c, ’o, ’h1) & ’remove(’c, ’o, ’h2) |-> {

ensure(’h1.i == ’h2.i)
remove(’In)

}
}

5 Specification of banking properties

The next application domain we consider is that of banking. The following prop-
erties are concerned with accounts and transfers. There is a focus on timed prop-
erties i.e. ensuring that an action occurs within a given timeframe. In both logics
time is modeled as time stamps, which are just data.

5.1 Unique accounts

An account approved by the administrator may not have the same account num-
ber as any other already existing account in the system. The event approve(id)
indicates that an account with id has been approved.

QEA specification. To specify this property in a pure trace-slicing style we
would quantify over ids and record a failure if two events occur with the same
quantified id.

qea{
Forall(id)
accept skip(start){ approve(id) -> once }
accept skip(once) { approve(id) -> failure }

}

However, with qeas we can also maintain a set S of previously seen account
ids. This is more like the fact-based approach taken by LogFire. It does not
utilize the trace-slicing mechanisms but will be more efficient for this very simple
property as trace-slicing, and the associated indexing, is not required.

qea{
accept next(safe){ approve(id) if[ not(id in S) ] do[ S.add(id) ] -> safe }

}

LogFire specification. The monitor uses one fact, Approved(id), to record
that account id has been approved.

class M extends Monitor {
"r1" -- ’approve(’id) |-> insert(’Approved(’id))
"r2" -- ’Approved(’id) & ’approve(’id) |-> fail()

}



5.2 Greylisting

Once grey-listed, a user must perform at least three incoming transfers be-
fore being white-listed. There are three relevant events. greyList(user) and
whiteList(user) indicate that user was grey and white-listed respectively and
transfer(user) records the fact that user performed a transfer.

QEA specification. This specification has two states indicating the status of
the user. The number of transfers are counted in the grey state (and zeroed on
a greyList event) so that this count can be checked at a whiteList event.

qea{
Forall(u)
accept skip(white){

greyList(u) do [ count:=0 ] -> grey
}
accept next(grey){

transfer(u) do [ count++ ] -> grey
greyList(u) do [ count:=0 ] -> grey
whiteList(u) if [count >= 3 ] -> white

}

}

LogFire specification The monitor uses one fact, Grey(u,count), to record
that user u has been grey-listed, and since then has had count incoming money
transfers, initially 0.

class M extends Monitor {
"r1" -- ’greyList(’u) & not(’Grey(’u, ’_)) |-> insert(’Grey(’u, 0))
"r2" -- ’Grey(’u, ’_) & ’greyList(’u) |-> update(’Grey(’u, 0))
"r3" -- ’Grey(’u, ’count) & ’transfer(’u) |-> update(’Grey(’u, ’count + 1))
"r4" -- ’Grey(’u, ’count) & ’whiteList(’u) |-> {

if (’count < 3)
fail()

else
remove(’Grey)

}
}

5.3 Reconciling accounts

The administrator must reconcile accounts every 1000 attempted external money
transfers or an aggregate total of one million dollars in attempted external trans-
fers. There are two events: reconcile is a propositional event that indicates that
all accounts have been reconciled; and transfer(amount) indicates that amount
was transferred. Invalid traces have two forms. The first is where there are more
than 1000 events between reconcile events and the second is where the sum of
amounts exceeds one million dollars.



QEA specification. Here the safe state indicates some safe amount has been
transferred and we can only stay in this state if each transfer is safe. To ensure
this a running count and total is kept.

qea{
accept next(start){

transfer(amount) do[ count:=1; total:=amount ] -> safe
}
accept next(safe){

transfer(amount) if[ count < 1000 and total < 1000000 ]
do[ count++; total += amount ] -> safe

reconcile do[ count:=0; total:= 0] -> safe
}

}

LogFire specification The monitor uses one fact, Sums(count,total), car-
rying two sums: count, which is the number of transfers since the last recon-
ciliation, and total, which is the total sum of money transferred since the
last reconciliation. An initial Sums(0,0) fact is added to the fact memory
(addFact(’Sums)(0,0)) before monitoring starts.

class M extends Monitor {
"r1" -- ’Sums(’_, ’_) & ’reconcile() |-> update(’Sums(0, 0))
"r2" -- ’Sums(’count, ’total) & ’transfer(’a) |-> {

if (’count + 1 > 1000 || ’total + ’a > 1000000)
fail()

else
update(’Sums(’count + 1, ’total + ’a))

}

addFact(’Sums)(0,0)
}

The monitor above purely uses rules to implement the property. However, we
can, as in the qea monitor, use global variables count and total. This is shown
in the following version, illustrating how LogFire monitors can mix rules and
programming:

class M extends Monitor {
var count: Int = 0
var total: Int = 0

"r1" -- ’reconcile() |-> {count = 0; total = 0}
"r2" -- ’transfer(’a) |-> {

if (count + 1 > 1000 || total + ’a > 1000000)
fail()

else {
count += 1; total += ’a

}
}

}

5.4 Maximum withdrawals

The number of withdrawal operations performed within 10 minutes before a
customer logs off is less than or equal to the allowed limit of 3. It is assumed
that a trace records the activities of a single user. A user is not required to
log off. There are two events of interest: withdraw(time) records the time that



a customer made a withdrawal and logoff(time) records the time that the
customer logged off.

QEA specification. This QEA can be read as ‘we do not reach failure’ as
it is a negated QEA accepting invalid traces. The QEA is non-deterministic,
creating a new configuration per time window. A failure is detected if one of these
configurations reaches the success state, as the specification is negated. The
combination of non-determinism and negation is required as a trace is accepted
if at least one path reaches an accepting state, therefore we use this approach if
we want failure when all paths are required to reach an accepting state.

On each withdraw event a new configuration is created in the safe state
with count 1. On each subsequent withdraw event (within the time window) this
count is increased until it reaches 3 and the configuration is transferred to the
unsafe state. Any logoff occurring within the time window for a configuration
in the unsafe state will lead to failure. Note that, due to the use of next
states, configurations will be removed if an event occurs that does not satisfy
any transitions i.e. one that happens outside of that configuration’s time window.

qea{
Negated
skip(start){

withdraw(t1) do[ count:=1 ] -> safe
withdraw(_) -> start

}
next(safe){

withdraw(t2) if[ t2-t1 <= 10 and count < 3 ] do [ count++ ] -> safe
withdraw(t2) if[ t2-t1 <= 10 and count = 3 ] do [ count++ ] -> unsafe

}
next(unsafe){

withdraw(t2) if[ t2-t1 <= 10 ] -> unsafe
logoff(t2) if[ t2-t1 <= 10 ] -> success

}
}

LogFire specification The monitor uses one fact, Count(time,count),
which is created upon each withdrawal event, using the same form of non-
determinism as used in the qea specification. It tracks the number of with-
drawals since (and including) that withdrawal, should a logoff occur. It carries
two pieces of data: time, which is the time of the withdrawal, and count, which
is the number of withdrawals since then.

class M extends Monitor {
"r1" -- ’withdraw(’time) |-> insert(’Count(’time, 1))
"r2" -- ’Count(’time, ’count) & ’withdraw(’time2) |-> {

if (’time2 - ’time <= 10)
update(’Count(’time, ’count + 1))

else
remove(’Count)

}
"r3" -- ’Count(’time, ’count) & ’logoff(’time2) |-> {

ensure(’time2 - ’time > 10 || ’count <= 3)
remove(’Count)

}
}



5.5 Transaction limit reporting

The property requires that a client’s executed transactions must be reported
within at most 5 days if the transferred amount exceeds a given threshold of
$2,000. A transaction only occurs once. The event trans(c, t, a, ts) denotes that
the client c performs transaction t, transferring the amount a at timestamp ts.
The report(t, ts) event denotes that transaction t is reported at timestamp ts.

QEA specification. In this specification, making a transfer for an amount
more than 2000 moves us into an unsafe state for a transaction. A report

event within 5 days takes us to a safe state. To ensure that failures are captured
early, this specification only allows transfer events for other clients to occur
within the 5 day waiting period.

qea{
Forall(t)
accept skip(safe){ trans(t,a,ts1) if [ a > 2000 ] -> unsafe }
skip(unsafe){

trans(_,_,ts2) if[ ts2-ts1 > 5 ] -> failure
report(t,ts2) if[ ts2-ts1 <= 5 ] -> success

}
}

LogFire specification The monitor uses one fact, Unsafe(t,ts), represent-
ing the fact that a transaction t occurred at time ts of more than 2, 000 dollars.
This fact is declared hot, meaning that monitoring should not terminate with
such a fact in the fact memory – it has to eventually be reported (and within 5
days).

class M extends Monitor {
"r1" -- ’transfer(’t, ’a, ’ts) |-> {

if (’a > 2000) insert(’Unsafe(’t, ’ts))
}
"r2" -- ’Unsafe(’t, ’ts1) & ’report(’t, ’ts2) |-> {

ensure(’ts2 - ’ts1 <= 5)
remove(’Unsafe)

}

hot(’Unsafe)
}

5.6 Transaction limit authorization

The property requires that executed transactions of any customer must be au-
thorized by some employee before they are executed if the transferred money
exceeds a given threshold of $2,000. Authorization only lasts for 21 days and
a transaction must be authorized at least 2 days before it is made. A transac-
tion can only occur once. The trans(t,a,ts) indicates transaction t occurred at
time ts for amount a. The event auth(t, ts), indicates the authorization of the
transaction t at timestamp ts.



QEA specification. In the unauth state transactions can only be below 2,000.
The auth event takes us to the auth state, where any transaction can occur as
long as we are inside the authorized period.

qea{
Forall(t)
accept skip(unauth){

trans(t,a,_) if [ a < 2000 ] -> success
trans(t,a,_) if [ a >= 2000 ] -> failure
auth(t,auth_ts) -> auth

}
accept skip(auth){

trans(t,a,ts) if [ ts-auth_ts >= 2 and ts-auth_ts < 21 ] -> success
trans(t,a,ts) if [ ts-auth_ts < 2 and ts-auth_ts > 21 ] -> failure
auth(t,auth_ts) -> auth

}
}

LogFire specification The monitor uses one fact, Auth(t,ts), representing
the fact that transaction t has been authorized at time ts. Note how autho-
rizations are updated in case such exist.

class M extends Monitor {
"r1" -- ’auth(’t, ’ts) & not(’Auth(’t, ’_)) |-> insert(’Auth(’t, ’ts))
"r2" -- ’Auth(’t, ’_) & ’auth(’t, ’ts) |-> update(’Auth(’t, ’ts))
"r3" -- ’Auth(’t, ’ts1) & ’trans(’t, ’a, ’ts2) |-> {

ensure(’a < 2000 || (’ts2 - ’ts1 >= 2 && ’ts2 - ’ts1 < 21))
remove(’Auth)

}
"r4" -- ’trans(’t, ’a, ’_) & not(’Auth(’t, ’_)) |-> {

ensure(’a < 2000)
}

}

5.7 Report approval

The property represents an approval policy for publishing business reports within
a company. The property requires that any report must be approved prior to its
publication. Furthermore, the property asks that the person who publishes the
report must be an accountant and the person who approves the publication must
be the accountants manager at the time of the approval. Finally, the approval
must happen within at most 10 days before the publication.

The event publish(a, f, ts) denotes the publication of the report f by the
accountant a at timestamp ts. The event approve(m, f, ts) denotes the publish-
ing approval of the report f by the manager m at timestamp ts. The event
mgr S(m, a) marks the time when m starts being manager of accountant a,
and the event mgr F(m, a) marks the corresponding finishing time. Analogously,
acc S(a) and acc F(a) mark the starting and finishing times when a is an ac-
countant

QEA specification. This specification keeps track of the current managers
of accountant a in set M. There are then two states: nota and isa indicate
that the accountant is not approved or is. Then ts app tracks the most recent



time at which the report was legitimately approved so that this can be checked
on a publish event. In QEA it is assumed that sets are empty on their first
occurrence. The defined predicate is true if a variable has been given a value.

qea{
Forall(f,a)
accept next(nota){

mgr_S(m,a) do [ M.add(m) ] -> nota
mgr_F(m,a) do [ M.remove(m) ] -> nota
approve(m,f,ts_app) if [ m in M ] -> nota
acc_S(a) -> isa

}
accept next(isa){

mgr_S(m,a) do [ M.add(m) ] -> isa
mgr_F(m,a) do [ M.remove(m) ] -> isa
approve(m,f,ts_app) if [ m in M ] -> isa
acc_F(a) -> nota
publish(a,f,ts_pub) if [ defined(ts_app) and ts_pub - ts_app < 10 ] -> isa

}
}

LogFire specification The monitor uses the following facts: Mgr(m,a) to
record that manager m is manager of accountant a; Acc(a) to record that a is
an accountant; and finally Appr(a,f,ts) to record that accountant a at time
ts has been approved by one of his/her managers to publish report f. Note
how a Appr(a,f,ts) fact is generated for each accountant a that a manager
is manager of when he/she approves a report f. Note also how approvals are
updated in case such exist.

class M extends Monitor {
"r1" -- ’mgr_S(’m, ’a) |-> ’Mgr(’m, ’a)
"r2" -- ’Mgr(’m, ’a) & ’mgr_F(’m, ’a) |-> remove(’Mgr)
"r3" -- ’acc_S(’a) |-> ’Acc(’a)
"r4" -- ’Acc(’a) & ’acc_F(’a) |-> remove(’Acc)
"r5" -- ’approve(’m, ’f, ’ts) & ’Mgr(’m, ’a) & not(’Appr(’a, ’f, ’_)) |->

insert(’Appr(’a, ’f, ’ts))
"r6" -- ’Appr(’a, ’f, ’_) & ’approve(’m, ’f, ’ts) & ’Mgr(’m, ’a) |->

update(’Appr(’a, ’f, ’ts))
"r7" -- ’publish(’a, ’_, ’_) & not(’Acc(’a)) |-> fail()
"r8" -- ’publish(’a, ’f, ’_) & not(’Appr(’a, ’f, ’_)) |-> fail()
"r9" -- ’Appr(’a, ’f, ’ts1) & ’publish(’a, ’f, ’ts2) |-> ensure(’ts2 - ’ts1 <= 10)

}

5.8 Withdrawal limit

The property is rooted in the domain of fraud detection. The property requires
that the sum of withdrawals of each user in the last 28 days does not exceed
the limit of $10,000. The event withdraw(u, a, ts) denotes the withdrawal of the
amount a by the user u at timestamp ts.

QEA specification. This is another specification of the form ‘there does not
exist a path to failure’. This time we capture the behavior required to perform
a bad withdraw. On each withdraw event we create a new configuration that
represents the start of a new 28 day period.



qea {

Negated
Exists(u)

skip(start){
withdraw(u,a,_) -> start
withdraw(u,a,ts) do[s:=a] -> withdrawn
withdraw(u,a,_) if[a > 10000] -> success

}
next(withdrawn){

withdraw(u,a,ts2) if[ ts2-ts < 28 and s+a > 10000 ] -> success
withdraw(u,a,ts2) if[ ts2-ts < 28 and s+a <= 10000 ]

do[s+=a] -> withdrawn
}

}

LogFire specification The monitor uses one fact, Withdrawn(u,a,ts), to
record that user u withdrew a dollars at time ts (not including amounts greater
than 10, 000). Such a fact is produced for each withdrawal, and is used to monitor
the next 28 days from that point, accumulating the withdrawn amounts.

class M extends Monitor {
"r1" -- ’withdraw(’u, ’a, ’ts) |-> {

if (’a <= 10000)
insert(’Withdrawn(’u, ’a, ’ts))

else
fail()

}
"r2" -- ’Withdrawn(’u, ’sum, ’ts1) & ’withdraw(’u, ’a, ’ts2) |-> {

if (’ts2 - ’ts1 <= 28) {
val newSum = ’sum + ’a
if (newSum <= 10000)
update(’Withdrawn(’u, newSum, ’ts1))

else
fail()

} else remove(’Withdrawn)
}

}

6 Specification of rover properties

In this set of properties we consider the operation of planetary rovers. The
first two properties consider communication and the last three consider internal
resource management.

6.1 Rover coordination

This property relates to the self-organization of communicating rovers and cap-
tures the situation where (at least) one rover is able to communicate with all
other (known) rovers. The property states that there exists a leader (rover) who
has pinged every other (known) rover and received an acknowledgement. The
events ping(from,to) and ack(to,from) indicate that from pinged to and to ac-
knowledged from respectively. The leader does not need to have pinged itself.
The set of known rovers are those that ping/ack or have been pinged/acked.



QEA specification. This specification uses quantifier alternation to capture
the property that there is one rover r1 that sends ping and receives an ack from
every other different rover r2. The Join declaration indicates that the domains
of r1 and r2 should be joined i.e. if a value is considered for r1 it should also
be considered for r2 and vice-versa.
qea{
Exists(r1) Forall(r2) Where(r1!=r2) Join(r1,r2)
skip(start) { ping(r1,r2) -> pinged }
skip(pinged){ ack(r2,r1) -> success }

}

LogFire specification. The monitor uses the following facts: Ping(r1,r2)
to record that rover r1 pings rover r2; Node(r) to record that r is a node;
Reach(r1,r2) to record that node r1 has pinged node r2, and that r2 has
acknowledged back; Cand(r) to record that rover r is a candidate as leader, all
nodes are declared as candidates; and finally End() records the end of the trace,
at which point the final computation is performed. At that point candidates are
removed if there is some node they do not reach. If no candidates are left at
some point an error is reported, there is no leader.
class M extends Monitor {
"r1" -- ’ping(’r1, ’r2) |-> {

insert(’Node(’r1))
insert(’Node(’r2))
insert(’Ping(’r1, ’r2))

}
"r2" -- ’ack(’r1, ’r2) |-> {

insert(’Node(’r1))
insert(’Node(’r2))

}
"r3" -- ’Node(’r) |-> {

insert(’Cand(’r))
insert(’Reach(’r, ’r))

}
"r4" -- ’Ping(’r1, ’r2) & ’ack(’r2, ’r1) |-> {

insert(’Reach(’r1, ’r2))
remove(’Ping)

}
"r5" -- ’end() |-> ’End()
"r6" -- ’End() & ’Cand(’r1) & ’Node(’r2) & not(’Reach(’r1, ’r2)) |->

remove(’Cand)
"r7" -- ’End() & not(’Cand(’_)) |-> fail()

}

The LogFire specification is clearly more complicated than the qea au-
tomaton. In LogFire we are limited since we cannot directly model a universal
quantifier nested under an existential quantifier as in the following quantified lin-
ear temporal logic formula: ∃leader • ∀n • ♦(ping(leader, n) ∧ ♦ack(n, leader)),
where ♦ψ has the classical meaning: eventually ψ for some temporal formula ψ.

6.2 Command nesting

If a command with identifier B starts after a command with identifier A has
started, then command B must succeed before command A succeeds (last issued
– first to succeed). A command can only be started and succeed once. The events
com(id) and suc(id) record the issuing and success of command id respectively.



QEA specification. This specification captures the property that command
c2 is nested inside command c1. Note that, due to the symmetry of c1 and
c2, for every two values there will be two instances of the qea considering each
command being nested inside the other. As the trace is considered after instan-
tiation, the events com(c1) and com(c2) are distinct as they will be instantiated
with different values. The states capture different stages in each command. Note
that the events com(c2) and suc(c2) on the initial state are necessary if c2 is
not nested inside c1. Similarly, the finishedEarly state is entered if c2 only
occurs after c1 succeeds.

qea{
Forall(c1,c2)
accept next(none){

com(c2) -> none; suc(c2) -> none
com(c1) -> startedOne

}
accept next(startedOne){

com(c2) -> startedTwo
suc(c2) -> finishedEarly

}
accept next(startedTwo){

suc(c2) -> finishedTwo
}
accept next(finishedTwo){

suc(c1) -> finished
}
accept next(finishedEarly){

com(c2) -> finishedEarly; suc(c2) -> finishedEarly
}
accept next(finished){}

}

LogFire specification. The monitor uses the following facts: Com(x) to record
that command x has been issued (this fact is never deleted); Suc(x) to record
that command x has succeeded (this fact is never deleted); and finally Ord(x,y)
to record that command y has been issued after command x, and therefore must
succeed before command x.

class M extends Monitor {
"r1" -- ’com(’x) |-> insert(’Com(’x))
"r2" -- ’Com(’x) & ’com(’x) |-> fail()
"r3" -- ’Com(’x) & ’suc(’x) |-> insert(’Suc(’x))
"r4" -- ’suc(’x) & not(’Com(’x)) |-> fail()
"r5" -- ’Suc(’x) & ’suc(’x) |-> fail()
"r6" -- ’Com(’x) & not(’Suc(’x)) & ’com(’y) |-> ’Ord(’x, ’y)
"r7" -- ’Ord(’x, ’y) & ’suc(’y) |-> remove(’Ord)
"r8" -- ’Ord(’x, ’y) & ’suc(’x) |-> fail()

}

6.3 Resource lifecycle

This property represents the lifecycle of a resource with respect to a task, as
managed by a planetary rover’s internal resource management system - or any
resource management system in general. The lifecycle goes as follows:

– A resource may be requested by the task



– A requested resource may be denied or granted to the task
– A granted resource may be rescinded or cancelled
– A resource may only be requested by a task if that task does not currently

hold the resource
– A granted resource must eventually be cancelled

We use the events request(t, r), deny(t, r), grant(t, r), rescind(t, r) and cancel(t, r)
for a task t and resource r.

QEA specification. The specification captures the three valid states for a
resource, with respect to a task, and the valid transitions for each state.

qea{
Forall(t,r)
accept next(free){

request(t,r) -> requested
}
accept next(requested){

deny(t,r) -> free
grant(t,r) -> granted

}
accept next(granted){

cancel(t,r) -> free
rescind(t,r) -> granted

}
}

LogFire specification. The monitor uses the following two facts: Req(t,r)
to record that resource r has been requested by task t; and Grant(t,r) to
record that resource r has been granted to task t.

class M extends Monitor {
"r1" -- ’request(’t,’r) |-> insert(’Req(’t,’r))
"r2" -- ’Req(’t,’r) & ’deny(’t,’r) |-> remove(’Req)
"r3" -- ’Req(’t,’r) & ’grant(’t,’r) |-> {

remove(’Req)
insert(’Grant(’t,’r))

}
"r4" -- ’Grant(’t,’r) & ’cancel(’t,’r) |-> remove(’Grant)
"r5" -- ’deny(’t,’r) & not(’Req(’t,’r)) |-> fail()
"r6" -- ’grant(’t,’r) & not(’Req(’t,’r)) |-> fail()
"r7" -- ’request(’t,’r) & ’Grant(’t,’r) |-> fail()
"r8" -- ’rescind(’t,’r) & not(’Grant(’t,’r)) |-> fail()
"r9" -- ’cancel(’t,’r) & not(’Grant(’t,’r)) |-> fail()

hot(’Grant)
}

6.4 Resource management

Every resource should only be held by at most one task at any one time. If
a resource is granted to a task it should be cancelled before being granted to
another task. This is therefore a mutual exclusion property. The event grant(t, r)
captures that task t is granted resource r, similarly cancel(t, r) captures that
task t releases resource r.



QEA specification. This specification captures the notion of a bad grant. A
bad grant occurs when a resource has been granted to a task and is then granted
again to any task (including the task holding the resource). It also uses a guard
to ensure that the task granted the resource is the task that cancels the resource.

qea{
Forall(r)
accept next(free){ grant(t1,r) -> granted }
accept next(granted){

grant(_,r) -> failure
cancel(t2,r) if [ t1 = t2 ] -> free

}
}

LogFire specification. The monitor uses one fact, Granted(t,r), repre-
senting that task t has been granted resource r.

class M extends Monitor {
"r1" -- ’grant(’t, ’r) & not(’Granted(’_, ’r)) |-> insert(’Granted(’t, ’r))
"r2" -- ’Granted(’_, ’r) & ’grant(’_, ’r) |-> fail()
"r3" -- ’Granted(’t, ’r) & ’cancel(’t, ’r) |-> remove(’Granted)
"r4" -- ’cancel(’t, ’r) & not(’Granted(’t, ’r)) |-> fail()

}

6.5 Resource conflict management

This property represents the management of conflicts between resources as man-
aged by a planetary rovers internal resource management system - or any re-
source management system in general. It is assumed that conflicts between re-
sources are declared at the beginning of operation. After this point resources
that are in conflict with each other cannot be granted at the same time. A con-
flict between resources r1 and r2 is captured by the event conflict(r1,r2) and a
conflict is symmetrical. Resources are granted and cancelled using grant(r) and
cancel(r) respectively.

QEA specification. The specification quantifies over two resources and has
two separate states representing each resource being granted (after being put
in conflict). Note the symmetry of the conflict events required to capture
the relationship. Elsewhere [53] this property has been specified differently with
efficiency in mind; an encoding of the property that would be more efficient to
monitor would replace the r2 quantification with a set that collects all resources
in conflict with r1. This would be more efficient as the monitoring algorithm is
exponential in the number of quantified variables.

qea{
Forall(r1,r2)
accept skip(start){

conflict(r1,r2) -> free
conflict(r2,r1) -> free

}
accept skip(free){

grant(r1) -> granted1
grant(r2) -> granted2



}
accept next(granted1){

cancel(r1) -> free
}
accept next(granted2){

cancel(r2) -> free
}

}

LogFire specification. The monitor uses the following facts: Conflict(r1,r2)
to record that there is a conflict between resources r1 and r2 – for each such
conflict added its symmetric fact is also added; Granted(r) to record that re-
source r has been granted; and finally Locks(r1,r2) to record that resource
r1 has been granted, which is in conflict with r2, which therefore is locked from
being granted also. The Lock predicate is needed since LogFire currently does
not permit negation of conjunctions in conditions.

class M extends Monitor {
"r1" -- ’conflict(’r1, ’r2) |-> {

insert(’Conflict(’r1, ’r2))
insert(’Conflict(’r2, ’r1))

}
"r2" -- ’grant(’r) & not(’Granted(’r)) & not(’Locks(’_, ’r)) |->

insert(’Granted(’r))
"r3" -- ’Granted(’r) & ’grant(’r) |-> fail()
"r4" -- ’Locks(’_, ’r) & ’grant(’r) |-> fail()
"r5" -- ’Granted(’r1) & ’Conflict(’r1, ’r2) |-> ’Locks(’r1, ’r2)
"r6" -- ’Granted(’r) & ’cancel(’r) |-> remove(’Granted)
"r7" -- ’Locks(’r1,’r2) & ’cancel(’r1) |-> remove(’Locks)
"r8" -- ’cancel(’r) & not(’Granted(’r)) |-> fail()

}

7 Specification of concurrency properties

Finally we consider two properties related to concurrency and synchronization
via locks.

7.1 Lock nesting

A thread should release a lock as many times as it acquires the lock. Addition-
ally, locks taken within a call to a method should be released during that call.
This property therefore represents a double nesting of method calls and lock
taking. Abstractly this could be viewed as parenthesis matching for two kinds
of parenthesis. The four events of interest are begin(t) and end(t), which re-
spectively record the beginning and end of a method for thread t, and lock(t,l)
and unlock(t,l), which respectively record the locking and unlocking of lock l
by thread t.

QEA specification. This qea specifies paths to failure for a thread and lock
using the negated existential pattern seen earlier. The first path to the failed
state via the locked state is followed when the lock is held when exiting the



method it was taken in. There also exists a set of paths that finish in the inside
or locked states when either a method is not exited or a lock not unlocked.
Finally, unlocking a lock that is not locked will also lead to failure. The behavior
is captured using the counter depth to track the depth of the thread’s call
stack. Each begin event creates a new configuration inside a method call; this
effectively attempts to find a failing path for each suffix of the trace starting
with a begin event. The count counter tracks the lock depth.

qea{
Negated
Exists(t,l)
skip(outside){

begin(t) do [ depth:=1 ] -> inside
begin(t) -> outside

}
accept skip(inside){

begin(t) do [ depth++ ] -> inside
end(t) if [ depth = 1 ] do [ depth:=0] -> finished
end(t) if [ depth > 1 ] do [ depth -- ] -> inside
lock(t,l) do [ count:=1 ] -> locked
unlock(t,l) -> failed

}
skip finished {}
accept skip (locked){

lock(t,l) do [ count++ ] -> locked
unlock(t,l) if [count > 1 ] do [ c o u n t ] -> locked
unlock(t,l) if [ count =1 ] do [ count:=0 ] -> inside
begin(t) do [ depth++ ] -> locked
end(t) if [ depth > 1 ] do [ d e p t h ] -> locked
end(t) if [ depth = 1 ] -> failed

}
accept skip(failed){}

}

LogFire specification The monitor uses the following two facts: Inside(t,d)
to record that thread t is currently at a method activation depth of d (it
has called methods nested d times without returning from any of them); and
Locked(t,l,d,c) to record that thread t has taken lock l a total of c times
while at activation depth level d.

class M extends Monitor {
"r1" -- ’begin(’t) & not(’Inside(’t, ’_)) |-> insert(’Inside(’t, 1))
"r2" -- ’Inside(’t, ’d) & ’begin(’t) |-> update(’Inside(’t, ’d + 1))
"r3" -- ’Inside(’t, ’d) & ’end(’t) |-> {

if (’d.int > 1)
update(’Inside(’t, ’d - 1))

else
remove(’Inside)

}

"r4" -- ’Inside(’t, ’d) & ’lock(’t, ’l) & not(’Locked(’t, ’l, ’d, ’_)) |->
insert(’Locked(’t, ’l, ’d, 1))

"r5" -- ’Inside(’t, ’d) & ’Locked(’t, ’l, ’d, ’c) & ’lock(’t, ’l) |->
update(’Locked(’t, ’l, ’d, ’c + 1))

"r6" -- ’Inside(’t, ’d) & ’Locked(’t, ’l, ’d, ’c) & ’unlock(’t, ’l) |-> {
if (’c > 1)
update(’Locked(’t, ’l, ’d, ’c - 1))

else
remove(’Locked)

}
"r7" -- ’Inside(’t, ’d) & ’unlock(’t, ’l) & not(’Locked(’t, ’l, ’d, ’_)) |->



fail()
"r8" -- ’Inside(’t, ’d) & ’Locked(’t, ’_, ’d, ’_) & ’end(’t) |-> fail()

hot(’Locked)
}

7.2 Lock ordering

This property represents a conservative deadlock-avoidance strategy that pre-
vents cycles between locks by enforcing a partial ordering on locks: a thread can
only take a lock L2 while holding a lock L1 if L1 precedes L2 in the partial order-
ing. The property states that for every two (different) locks, if they are taken in
one order in one part of the system, then they are not taken in the opposite order
in another part of the system. The events lock(t,l) and unlock(t,l) respectively
capture the locking and unlocking of lock l by thread t.

QEA specification. This specification quantifies over a pair of threads and a
pair of (distinct) locks. If the locks are taken by the first thread in one order,
then they cannot be taken in a different order by the second thread.

qea{
Forall(t1,t2,l1,l2)
Where(l1 != l2)

accept skip(start){ lock(t1,l1) -> lock1 }
accept skip(lock1){

unlock(t1,l1) -> start
lock(t1,l2) -> lock12

}
accept skip(lock12){ lock(t2,l2) -> lock122 }
accept skip(lock122){

unlock(t2,l2) -> lock12
lock(t2,l1) -> failure

}
}

LogFire specification The monitor uses the following two facts: Locked(t,l)
to record that thread t has taken lock l and not yet released it; and Edge(l1,l2)
to record that thread t at some point held lock l1, while nested acquiring lock
l2.

class M extends Monitor {
"r1" -- ’lock(’t, ’l) |-> insert(’Locked(’t, ’l))
"r2" -- ’Locked(’t, ’l) & ’unlock(’t, ’l) |-> remove(’Locked)
"r3" -- ’Locked(’t, ’l1) & ’lock(’t, ’l2) |-> insert(’Edge(’l1, ’l2))
"r4" -- ’Edge(’l1, ’l2) & ’Edge(’l2, ’l1) |-> fail()

}

8 Summary and discussion

In this section we summarize and discuss our experience specifying the various
properties in the two different logics. We reflect on the two logics from a linguistic
perspective and make suggestions for improvements to each logic. We also discuss
some issues relating to the pragmatic differences between the two methods.



8.1 Relationship to temporal logic

Two approaches to specification of property monitors have been presented, qea
which is automaton-based, and LogFire, which is rule-based. From the point
of view of writability and readability it is clear that both logics are low-level
in the sense that specifications are somewhat verbose and can be hard to read.
The standard alternative approach is some form of temporal logic or regular
expressions. In many cases it is likely that these more abstract logics can make
specifications easier to write and read. However, note that some properties will
not benefit from the abstractions of these higher level logics. For example, the
resource lifecycle property in Section 6.3 is suited to a low-level specification
style and will likely have a highly convoluted specification in temporal logic.

Note that it is common folklore that temporal logic can be difficult for users to
write and read. However, we do believe that many properties can more easily be
stated in a combination of temporal logic and regular expressions, as for example
found in the Salt language [16], itself influenced by Psl [60]. Occasionally when
understanding a property we would draw a time line and plot in events on the
time line, not far from the time line notation proposed in TimeEdit [56].

The classical way of giving semantics to temporal logic within the model
checking community is to translate temporal formulas to automata [33, 44]. Sim-
ilarly, it has been shown how to translate temporal formulas (LTL) to rules [6].
Temporal logics for parametric monitoring are, however, typically not translated
into automata (or rules), but are rather interpreted over the structure of the for-
mulas, which evolve as events are consumed. One reason for this discrepancy in
approach within the model checking and runtime verification communities is in
part due to lack of automata concepts that involve data. Note that extended
state machines (state machines with variables that can be checked in transition
guards and updated in transition actions) are not sufficient since variables are
global, in contrast to qea where they are local to a slice. Both qea and LogFire
can be considered as target for translations from parametric temporal logic.

LTL (Linear Temporal Logic) is a more realistic candidate for such transla-
tions than CTL (Computation Tree Logic) since a single trace is linear. However,
one can imagine monitoring CTL on sets of traces. A transformation of LTL into
either logic (qea or LogFire) would be straightforward, assuming a version of
LTL with a finite-trace semantics, as RV is an activity carried out on finite traces
only.

In the case of LogFire, since it really is a Scala API, such translation can
be defined as templates in Scala, as described in [40]. This allows a mix of rule-
based programing and temporal logic (in addition to traditional programming).
A similar mix of state machines and temporal logic can be found in TraceCon-
tract [9] and Daut (Data automata) [38, 39]. Similarly, temporal logic can be
translated into qea. We believe that a combination of low-level automata/rules
and high-level temporal logic/regular expressions would be a convenient speci-
fication formalism. It is interesting to observe that if one allows states/facts to
be anonymous (un-named) one obtains systems much related to temporal logic.



This corresponds to having transitions labelled with sequences of events, in con-
trast to just single events. This can be viewed as a basic abstraction mechanism.

8.2 A few notes on specification styles

Several qea automata have been stated in positive form: describing only valid
transitions. This is in contrast to a negative form, in which erroneous transitions
are called out explicitly, in qea by leading to a failure state and in LogFire
by leading to an error state. As an example, consider the introductory file
usage example. The qea specification in Figure 2 expresses that a read or write
operation is not allowed on a file unless it has been opened, by simply not
containing such a transitions out of the closed state. In contrast, the LogFire
specification in Figure 3 expresses this explicitly as two failure transitions (rules
r5 and r7). All properties in LogFire are stated in negative form since positive
form formulations are not possible. In qea one has a choice. It can be debated
which of the two forms (positive or negative) that in general is more readable.

Another difference is that qea supports negation of automata, i.e. the qea
specifies erroneous behavior as success with the understanding that this verdict
should be negated. This can be hard to read as one must translate success into
failure. The negation is needed for non-deterministic qea where no paths should
lead to failure, as the acceptance condition for the automaton is defined as:
there exists a path to an accepting state. In LogFire all paths must lead to an
acceptance state.

Neither qea nor LogFire support the specification of time as a built-in
concept. In both cases time is modeled as time stamps, which are just data like
any other data. This leads to a difficulty in determining when time bounds get
exhausted since it requires an event with a new time stamp. Time violations
are not necessarily detected as soon as they happen but rather when the next
event arrives. This is demonstrated in the transaction limit reporting property
in Section 5.5.

8.3 Expressiveness and complexity

The expressiveness and complexity of formalisms presented here have not been
formally studied at the time of writing. However, it seems plausible that both
formalisms are Turing complete, hence equally expressive, and able to express
any form of verifiable properties. We here consider LogFire without including
all of Scala for writing actions. Of course, if we allow any Scala code to be
executed the answer to this question is obvious.

The complexity of monitoring in general depends on the property being mon-
itored and the trace. In the worst case, the monitor may end up storing the entire
trace, and in each step search this. For this reason it is important that such search
is optimized. In general, however, a monitor stores an abstraction of the so-far
observed trace, as a function of the property monitored. This makes monitoring
pragmatically possible.



In trace-slicing based techniques such as qea the number of bindings used
in trace-slicing is, in the worst case, exponential in the length of the trace. In
practice, values are reused and (for online monitoring) garbage collection (see
Sec. 8.5) reduces the set of bindings during monitoring. However, it is often
possible to define a specification with fewer quantified variables at the cost of
introducing additional guards and assignments. This can dramatically improve
the monitoring performance.

8.4 Comments on logics

QEA. One of qea’s main features is that it allows arbitrary interleaving of quan-
tifiers, universal as well as existential. For example, a universal quantification
can be nested underneath an existential quantification, which was specifically
useful in the specification of the rover coordination property in Section 6.1. An-
other useful feature of qea is its support for variables that are local to a slice.
LogFire also allows for declaration of variables (since LogFire is a Scala
API). However, these are global to the monitor. In LogFire variables local to
what corresponds to a slice are modeled as parameters to facts.

One significant drawback of the slicing-based approach of qea is that a guard
on a transition only can test on variables within one slice, and not across slices.
The consequence of this restriction is not clear. In LogFire all facts are visible
to all rules referring to them. A related disadvantage is that qea must declare a
finite quantifier list, making it difficult to specify either second-order properties
(i.e., for all subsets) or properties over a variable number of parameters (i.e., for
n rovers for variable n). Both kinds of properties can be handled by the more
flexible rule-based approach. Another minor drawback is that the automaton
approach in qea considers states to be distinct. This means that if some variables
need updating in several states, such update transitions are needed in all those
states, hence causing a repetition of specification. This issue does not occur in
LogFire.

During the specification exercise it was recognized that qea specifications
could be simplified by the introduction of pre-defined success and failure states.
Other possible modifications could include the following. qea specifications con-
tain many state modifiers. A choice could be to introduce defaults, such that
for example states by default were accept states. Similarly, one could choose
a default amongst the skip/next state modifiers. In TraceContract [9] for
example, by default all states are accept and skip states. As we have learned
from programming, an if-then-else construct would be useful in order to avoid
repeating conditions on transitions.

LogFire. LogFire allows a rule’s left-hand side conditions to refer to numer-
ous facts and negations thereof. This yields an expressive power, which in qea
can be partially emulated by introducing sets. Furthermore, LogFire supports
transitive closure on facts. The Rete engine will execute rules on a set of facts
until a fixed point is reached. This feature is not available in classical automata.



It can be useful for expressing for example reachability properties. This is needed
for example if generalizing the lock order property in Section 7.2 to N threads,
where N is unknown before monitoring.

LogFire’s disadvantages include the following. Due to the fact that it is
an API in Scala, user-defined names (event names and fact names) are quoted
symbols. This is somewhat inconvenient, and is a consequence of names not being
first-class citizens in Scala, as they are not in most programming languages.
Finally, facts have to be removed explicitly, in contrast to state machines when
taking a transition out of a state.

During the specification exercise it was recognized that LogFire specifica-
tions could be simplified by the introduction of hot facts (non-accept facts).
Other possible modifications could include the following. A fact could be de-
clared as transient, meaning that if it occurs in a rule that fires it is removed.
LogFire currently does not allow conditions that are negations of conjunctions
of facts, as is allowed in the original Rete algorithm. This would be a useful
addition. Finally, also in LogFire would an if-then-else construct be useful. The
Ruler system [11, 12, 1] has hot and transient facts, as well as an if-then-else
construct.

8.5 Under the hood

With respect to implementations, both the slicing algorithm in qea and the aug-
mented Rete algorithm in LogFire use indexing to access states/facts relevant
for an incoming event. Future research will expose the exact relationship be-
tween the two approaches. Furthermore, there are three pragmatic issues related
to monitoring that we have not discussed in depth. They are instrumentation,
object identity, and garbage collection. We will briefly explain their relevance.
Instrumentation techniques must be used to extract events from running pro-
grams/systems; the extracted events might be passed directly to an online mon-
itor or recorded in log files for later processing. To deal with data values, they
must have a notion of object identity, i.e., an object such as an Iterator should
be consistently recorded using the same identifier. In languages such as Java
it is possible to use either an object’s reference identity (i.e., ==) or seman-
tic identity (i.e., equals). Usually a property is written with one in mind and
getting the correct verdict will depend on using the intended notion of identity.
The reference identity of an object is consistent over time, whilst the seman-
tic identify can change, i.e. the semantic identity of a collection may change as
its contents changes, making semantic identity inappropriate for monitoring in
some cases. Using reference identity requires storing the reference in the monitor
(as normally also does semantic identity, but one can get around it, see below).
Storing the references can be problematic in garbage-collected languages such as
Java, where storing (in the monitor) a reference to an object can prevent the
object from being garbage collected when the monitored application no longer
refers to it (introducing a memory leak). A monitor can, however, appropriately
clean its own data structures to prevent this, which can speed up monitoring.
One way to do this in Java is to use reference identity in combination with weak



references. Alternatively, one can represent the monitored object by some new
object with the same semantic identity, and use semantic identity on this new
object thereafter.

9 Conclusion

We have presented two monitoring logics, qea, which is automaton-based, and
LogFire, which is rule-based. These logics can be used for writing monitors di-
rectly, or they can be the target of translations from temporal logics. The logics
are comparable. However, the distinguishing features of qea are that it allows
existential as well as universal quantification, arbitrarily mixed, as well as vari-
ables that are local to slices. The distinguishing features of LogFire are its rule
system, where rule conditions can refer to multiple facts and their negations,
and where a repeated fixed point evaluation strategy allows for rules to compute
the transitive closure, useful for expressing certain reachability properties. qea
is an external DSL whereas LogFire is an internal DSL (and API in Scala).
We showed the application of the two logics to the specification of properties ob-
tained from the 1st international runtime verification competition. Future work
includes fully understanding how the two monitoring algorithms relate to each
other; improvements on the notations; as well as merging these respective logics
with temporal logic.
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