

Automata-Based Verification of Temporal
Properties on Running Programs

Dimitra Giannakopoulou
Klaus Havelund

RIACS Technical Report 01.21

August 2001

Presented at the 16th IEEE International Conference on Automated
Software Engineering, San Diego, 2001

 Automata-Based Verification of Temporal
Properties on Running Programs

Dimitra Giannakopoulou, RIACS
Klaus Havelund, Kestrel Technologies

RIACS Technical Report 01.21

August 2001

Presented at the 16th IEEE International Conference on Automated
Software Engineering, San Diego, 2001

This paper presents an approach to checking a running program against its Linear Temporal
Logic (LTL) specifications. LTL is a widely used logic for expressing properties of
programs viewed as sets of executions. Our approach consists of translating LTL formulae
to finite-state automata, which are used as observers of the program behavior. The
translation algorithm we propose modifies standard LTL to Büchi automata conversion
techniques to generate automata that check finite program traces. The algorithm has been
implemented in a tool, which has been integrated with the generic JPaX framework for
runtime analysis of Java programs.

This work was supported in part by the National Aeronautics and Space Administration
under Cooperative Agreement NCC 2-1006 with the Universities Space Research
Association (USRA).

This report is available online at http://www.riacs.edu/trs/

1

Automata-Based Verification of Temporal Properties on Running Programs

1 Introduction

Computer program correctness has, for decades,

concerned industry and been studied in academia. The
formal methods research community, in particular, has
studied how formal logic can be applied in the analysis of
computer programs and their designs. Most
effort has been spent on the development of
semantic frameworks for formalizing logics and
developing systems that can formally prove that a
software artifact satisfies a formula in some logic. Model
checking and theorem proving are examples of such
attempts to mechanize proofs of correctness. Such heavy-
weight formal methods, however, still remain to reach a
state where they can be used in practice without
considerable manual effort. A recent research direction is
to apply model checking directly to programs written in
standard programming languages such as Java and C [1,
2].

Although we find this work of great interest, and in
fact have been involved in this from early on in this
recent trend [1, 3], we believe that more light-weight use
of formal techniques will be useful as well as more
practically feasible in the shorter term. A light-weight
formal method is here defined as a method that is
completely automatic, irrespective of the size of the
examined program. Hence, the main concern is
scalability: the technique should be practically applicable
to large systems consisting of hundreds of thousands of
lines of code.

An example of such a light-weight technique is what is
often referred to as program monitoring. Here, the idea is
to monitor the execution of a program against a formal
specification written in some formal specification logic.
This kind of technique is practically feasible since only
one trace is examined, and it is useful since the logic
allows stating more complex properties than is normally
possible in standard testing environments.

In this paper, we describe an effort to develop such a
technique for monitoring program executions against
high-level requirement specifications written in Linear
Temporal Logic (LTL). LTL has mostly been used in the
past as the logic in model checking environments, such as
SPIN [4]. Such environments typically convert
(automatically) the negation of an LTL requirement into a
Büchi automaton that accepts all infinite words that
violate this requirement (Büchi automata are finite
automata on infinite words). Model checking consists of
detecting accepting cycles in the synchronous product of

the model/program to be checked with the automaton.
The state-space of this product typically needs to be
stored, which gives rise to the infamous state-explosion
problem [5].

Büchi automata are designed to operate on infinite
execution traces. So the question naturally arises whether
Büchi automata can also be used to efficiently monitor
finite traces of executing programs (since, either the
program will terminate, or it will be interrupted at some
stage). A typical way to check a finite trace with Büchi
automata is to extend the trace by repeating the last state
indefinitely. This approach would still require storing the
combined state-space of the automaton and the particular
program trace, in order to check for cycles.

The work presented in this paper is the result of trying
to provide a more efficient alternative based on the same
(and extensively polished over years of research)
principles. It presents an algorithm, based on standard
LTL to Büchi automata construction techniques, which
generates traditional finite-state automata that can be used
to monitor LTL formulae on finite program traces.

The algorithm we present has been implemented in
Trace analyZer (TaZ), an observer generator tool written
in Java. TaZ has been integrated in Java PathExplorer
(JPaX), which is a generic tool for monitoring Java
programs [6]. The result is an environment that can
automatically check, on-the-fly, whether the current run
of a Java program conforms to an LTL formula.

The remainder of this paper is organized as follows.
Section 2 discusses background and related work, and
introduces the JPaX runtime analysis tool – the context of
the work presented here – under development at NASA
Ames. Section 3 sets the theoretical grounds for Section
4, which presents our algorithm for generating LTL
runtime observers. Section 5 proposes optimizations to
the basic algorithm. We discuss the implementation of
TaZ and some performance issues in Section 6. Finally,
Section 7 closes the paper with discussion and
conclusions.

2 Program monitoring

The algorithm that we are presenting in this paper has

been implemented in the internally developed runtime-
monitoring tool Java PathExplorer (JPaX). JPaX is a
general environment for monitoring the execution of Java
programs. It consists of an instrumentation module, and
an observer module. The instrumentation module
performs a script-driven automated instrumentation of the

2

program to be observed. The instrumented program, when
run, will emit relevant events to the observer. The
observer may run on a different computer, in which case
the events are transmitted over a socket.

The instrumentation is performed on the basis of an
instrumentation script, given by the user that specifies
which variables in the program shall be monitored. The
automated instrumentation will then insert event-
transmitting code after all updates to these variables. The
updates are collected in an image state separate from the
executing program state. The instrumentation script also
defines a collection of Boolean valued proposition
variables and an association between these and predicates
over the observed program variables. When an image
state change occurs, the propositional variables are re-
evaluated, and what is sent to the observer is changes in
these propositional variables. The Java byte code
instrumentation is performed using the powerful Jtrek
Java byte code-engineering tool [7] from Compaq. Jtrek
makes it possible to easily read Java class files (byte code
files), and traverse them as abstract syntax trees while
examining their contents, and inserting new code.

 Program monitoring against specifications expressed
in various logics has been investigated by several
researchers. In [8], for example, the authors describe an
algorithm for generating test oracles from specifications
written in GIL, a graphical interval logic. Similarly to our
approach, the oracles are based on automata. The
generation is performed in two phases. During the first
phase, a hierarchical non-deterministic automaton is
computed, which, during the second phase, is turned into
a classical deterministic finite automaton. The authors do
not mention the application of minimization techniques to
the resulting automata. The automata that they generate
are typically larger than the ones that our algorithm
computes. The reason is that they do not attempt to
collapse equivalent states during generation.

An approach based on rewriting logic is presented in
[9]. The authors have implemented in Maude [10] (an
efficient rewriting logic system), 8 rules that describe
how an LTL formula is transformed by a new state
encountered in the program, and how to decide, when the
end of a trace occurs, whether the specification was
satisfied or not. Naturally, their algorithm also detects if a
property is satisfied or violated before the end of the trace
occurs, in which case the analysis does not need to
proceed. Maude is, in general, a very powerful
prototyping tool, since it allows to easily define
alternative types of logics. The authors have used it to
also support past-time logics, for example [6].

The Temporal Rover (TR) [11] is a commercial tool
for program monitoring based on temporal logic
specifications. TR allows users to specify future time
temporal formulae as comments in programs, which are

then translated into appropriate Java code before
compilation.

3 Preliminaries

This section describes the syntax of both the infinite-

(standard) and finite-trace semantics of Linear Temporal
Logic (LTL). It also defines finite-state automata as used
for runtime verification.

Note that, in the context of this paper, we are only
interested in the next-free variant of LTL, namely LTL-X.
This is typical in model checking, because LTL-X is
guaranteed to be insensitive to stuttering [5]. This
property is important because it avoids the notion of an
absolute next state. The next time operator (X) is
misleading, because users naturally tend to assume some
level of abstraction on the state of a running program.
Additionally, it is not straightforward what the desired
meaning of a next time formula would be at the last state
of a program trace.

In the rest of this paper, the next-free variant of LTL is
implied whenever we refer to LTL.

3.1 LTL – standard semantics

The set of well-formed LTL formulae is constructed

from a set of atomic propositions, the standard Boolean
operators, and the temporal operator U. Given a finite set
of atomic propositions ℘, formulas are constructed
inductively as follows:

PROPOSITIONS: Every φ where (φ ∈ ℘) is a formula.
BOOLEAN OPERATORS: If φ and ψ are formulas, then so

are !φ (logical not), φ∧ψ (logical and), φ∨ψ (logical or).
Also, φ→ψ (logical implication) is an abbreviation for
!φ∨ψ, TRUE for φ∨!φ, and FALSE for !TRUE.

TEMPORAL OPERATORS: If φ and ψ are formulas, then so is
φUψ (strong until). The following abbreviations are
used: <>φ (eventually) for TRUEUφ, and []φ (always)
for !<>!φ. Finally, we also use the temporal operator V
which is defined as the dual of U, i.e.: φVψ = !(!φU !ψ).

An interpretation of an LTL formula is an infinite word
w=x0x1…over 2℘(sets of propositions), where at some
time point i∈N, a proposition p is true iff (if and only if)
p∈xi. We write wi for the suffix of w starting at i. The
semantics of LTL is defined as follows:

PROPOSITIONS: For φ∈℘, w |= φ iff φ∈x0.
BOOLEAN OPERATORS:

• w |= !φ iff not w |= φ;
• w |= φ∧ψ iff w |= φ and w |= ψ;
• w |= φ∨ψ iff w |= φ or w |= ψ.

3

TEMPORAL OPERATORS:
• w |= φUψ iff there exists i∈N such that wi |= ψ

and for all 0 ≤ j < i , wj |= φ.

3.2 LTL – finite-trace semantics

An executing program defines a sequence of states; an

infinite execution can therefore be viewed as an LTL
interpretation, which assigns to each moment in time the
set of propositions that are true at the particular program
state. Model checking [5] detects infinite executions of
finite-state systems through cycles in their state graphs.
Runtime verification does not store the entire state-space
of a program. Rather, it only observes finite program
executions, on which we also need to interpret LTL
formulae. We only need to modify the semantics of the
temporal operators to accommodate this difference.

Every LTL formula may contain either a safety part, or
an eventuality part (or both). The safety/eventuality part
requires that something bad-never/good-eventually
happens in an execution. We modify the safety
requirement to mean that, in the portion of the execution
that we have observed, nothing bad happens.
Eventualities are similarly required to be satisfied in the
portion of the execution observed. Otherwise they will
have “not yet” been satisfied. We define the semantics of
the temporal operators accordingly.

Let w=x0…xn be a finite interpretation of an LTL
formula over 2℘. Then:

Temporal operators:

• w |= φUψ iff there exists 0≤ i ≤ n such that wi |=
ψ and for all 0 ≤ j < i , wj |= φ.

3.3 Finite automata on finite words

A finite automaton FA is a 5-tuple (S, A, ∆, s0, F),

where S is a finite set of states, A is a finite set of labels
which we call the alphabet of the automaton, ∆⊆ S×A×S
is a transition function, s0∈S is the initial state, and F⊆S
is a set of accepting states.

An execution of FA is a finite sequence σ = s0 a0 s1 …
an-1 sn, such that (si ai si+1)∈∆ for each 0≤ i <n. An
execution σ of FA is accepting if sn∈F. Finally, FA
accepts a finite word w=x0…xn-1 over A, if there exists an
accepting execution σ = s0 x0 s1 … xn-1 sn of FA.

In the context of this paper, automata labels will be
sequences of Boolean values of propositions. A label
<false, false, true> (or 001) for sequence <a, b, c> will
represent, for example, that a and b are false, and c is
true. Equivalently, we will sometimes write !a!bc.
Finally, for an automaton with propositions <a, b, c>, a
transition between s1 and s2 labeled with a!b is an
abbreviation for two transitions between s1 and s2, one

labeled with a!bc, and one labeled with a!b!c. In other
words, the transition can be fired when a is true and b is
false, irrespective of the value of c.

4 Algorithm

Our goal is to construct a finite-state automaton that

accepts exactly those finite words that satisfy a given
LTL formula φ. Our algorithm is based on an efficient
tableau-like LTL to Büchi automata translation presented
in [12]. We will briefly describe the intuition behind this
construction, and then explain the modifications that our
algorithm introduces in order to capture the finite-trace
LTL semantics introduced in the previous section.

4.1 LTL to Büchi automata

The LTL formulas that we deal with are in negation

normal form. This simply means that all negations are
pushed inside until they precede only propositional
variables. For example, the negation normal form of
formula ![]φ is formula <>!φ.

The core of the algorithm is based on expanding a
graph node. A graph node is a data structure that contains
the following fields:

NAME: a unique name for the node.
INCOMING: the set of nodes that lead to this node, i.e.,

which have incoming edges to this node.
NEW: the set of LTL formulae that must hold on the

current state but have not yet been processed.
OLD: the set of LTL formulae that have already been

processed. Each formula in NEW that gets processed is
transferred to OLD.

NEXT: the set of LTL formulae that must hold at all
immediate successors of this node.

Table 1: Formula expansions used in Node splitting

f NEW1(f) NEXT1 (f) NEW2 (f)
ϕ U ψ {ϕ} {ϕ U ψ} {ψ}
ϕ V ψ {ψ} {ϕ V ψ} {ϕ, ψ}
ϕ ∨ ψ {ϕ} ∅ {ψ}

The automaton states that we construct are stored in
STATES, which is a set of graph nodes.

Field NEW in a graph node represents all the formulae
that the node must make true. The idea of the expansion
algorithm is to remove formulae in NEW one by one by
processing them in the following way. Each formula is
broken down until we get to the literals (propositions or
negated propositions) that must hold to make it true. For
example, φ∧ψ is broken down by adding both φ and ψ to
the NEW field of the node. If there are alternative ways to
make a formula true (if it is an ∨ or U formula, for

4

example) the node is split in two nodes, where each of
these nodes represents one way of making the formula
true. For example, to make φ∨ψ true, we split the node
into a node that needs to make φ true, and one that needs
to make φ true.

To satisfy temporal operator formulae, a node needs to
also push obligations to its immediate successors. These
obligations are added to the NEXT field of a node. The
way obligations are moved to successors is based on the
following identities:

• φUψ ≡ ψ ∨ (φ ∧ X (φUψ))
• φVψ ≡ ψ ∧ (φ ∨ X (φVψ))

Table 1 illustrates, for the types of formulas f that cause a
node to split, the formulas that are added to various fields
of the resulting nodes. The two resulting nodes contain
the same INCOMING and OLD fields as the original node,
whereas their NEW and NEXT fields are the union of the
ones of the original node with the fields illustrated in
Table 1 (where 1 and 2 refer to the two resulting nodes).

Note that, the old field of a node cannot contain
contradicting formulae (e.g. both φ and !φ). If
contradictions are obtained during processing, then the
node is discarded.

The algorithm starts with a node, which contains the
LTL formula f (for which an automaton is being build), in
its NEW field, INIT in its INCOMING field, and all other
fields are empty. INIT represents the initial node, a node
that has all its fields empty, and which represents the
initial state of the automaton. It is the only node that is
initially in STATES.

When all formulae of a node NC have been processed
(i.e., the NEW field becomes empty), the node represents a
node of the automaton. Before, however, we add NC to
STATES, we check whether an equivalent node is already
contained there. An equivalent node is one that has the
same OLD and NEXT fields as the one that has just been
processed. If an equivalent node N exists in STATES, then
the INCOMING field of NC is added (by set union) to the
INCOMING field of N. If no equivalent node exists in
states, then NC is added to STATES, and a new node NN is
added to the ones that need to be processed. NN represents
the immediate successors of NC. Its INCOMING field is set
to NC, and its NEW field is set to the NEXT field of NC. All
other fields are initially empty.

When this process is completed, an automaton can be
built from the nodes in STATES in the following fashion.
Each node represents a state of the automaton. Edges are
defined by the INCOMING fields of the nodes. The initial
node is the one that has no incoming edges (INIT). All
edges that lead into a node N, are labeled with the literals
that must hold at N, i.e. the literals that belong to the OLD
field of N. We do not discuss accepting states here,

because our algorithm assigns these in a completely
different fashion.

4.2 Applying finite-trace semantics

The main aspect of the LTL to Büchi automata

construction algorithm that we modify is the selection of
accepting conditions. Any infinite execution of an
automaton generated for a formula f as described in
Section 4.1 satisfies the safety conditions of f. As
mentioned in [12], this is guaranteed by construction of
the automaton. Accepting conditions have then got to be
imposed, to make sure that eventualities are also satisfied.
More precisely, we need to make sure that whenever
some node contains φUψ, some successor node will
contain ψ.

Given the modified semantics presented in Section 3.2,
we similarly need to impose accepting conditions to make
sure that any accepting finite execution of the automaton
(since we deal with finite traces) satisfies all the required
eventualities. The eventualities that remain to be satisfied
after any finite execution of the automata we generate, are
reflected by the formulae contained in the NEXT field of
the last state of this execution. This means that, unless
there exist U formulae in the next field of the state, then
this state has satisfied its potential eventuality
requirements (as can be seen in Table 1, if the right-hand
formula of an U operator is added to the NEW field of a
state, then no formula is added to its NEXT field).

The initial state is non-accepting. Therefore, our
construction assumes that automata will only accept
traces that contain at least one state (since the initial state
is non-accepting). In the optimizations section (Section 5)
we discuss how to raise this assumption in order to
simplify the automata we obtain, in some cases.

It can be seen from our construction, that field OLD is
used by our algorithm only to generate the labels of the
automaton, but plays no role in the identification of
accepting conditions. Therefore, two states are basically
equivalent when they have the same NEXT fields.
Although the original construction would still generate
correct automata, we can make our construction more
efficient based on this observation.

To allow for more equivalent states to be collapsed
during construction, when the algorithm compares a
newly expanded node to the nodes that have already been
entered in STATES, we only compare the NEXT fields of
the nodes. This, of course, does not make the OLD field
redundant; the literals contained in it are needed in order
to determine labels of the automata edges. Therefore, we
decide to store in old only literals, during construction.

One needs to be careful during the process of
collapsing equivalent nodes. If two nodes are collapsed,
the resulting node must record the information of each
component’s INCOMING field and its associated OLD field.

5

This is for it to remember that it is obtained from
alternative parent nodes by different sets of literals. In the
simple case where the literals in the OLD fields are the
same, the OLD field of the resulting node is the same as
the corresponding field of either of its components, and
its INCOMING field is obtained as the union of their
corresponding INCOMING fields.

N2

N4

N1-3

ϕ

! ϕ

Figure 1: Collapsing nodes with different OLD fields

For example, assume that a node N1 with OLD={ϕ}
(where ϕ is a proposition) and INCOMING={N2}, is
collapsed with node N3 with OLD={!ϕ}, and
INCOMING={N4). Let us call the resulting node N1-3. This
information is kept appropriately in node N1-3, so that in
the generated automaton, it will look as in Figure 1.

4.3 Proof of correctness

We briefly sketch the proof of correctness of the

algorithm presented here. Our proof is based on the
corresponding proof of the [12] algorithm, so the
interested reader is referred to that paper for details.

What we need to show additionally is that indeed, our
accepting conditions guarantee that a finite sequence (of
length ≥1) is accepted iff it satisfies the LTL formula for
which the automaton was built. Intuitively, the
construction that we follow ensures that. The reason is
that, when a node is processed, all the possibilities of
making its requirements true are examined.

As far as eventualities are concerned (derived from U
formulae) our construction ensures that any U formula
that must be satisfied remains in the next field of the
corresponding node and all of its successors, until its
right-hand side formula becomes true. Therefore, the
existence of a U formula in the next field of a node
reflects the fact that, in the path followed to this node,
there are eventualities that remain to be checked.

5 Optimizations

DETERMINISTIC MINIMAL AUTOMATA. The automata we
generate are finite automata on finite words. We can
therefore, with standard algorithms, both make them
deterministic, and minimize them. A finite automaton on
finite words can be made deterministic by using the

subset construction [13]. The algorithm is theoretically
exponential in the number of states of the automaton, but
works well in practice for the sizes of automata typically
needed for verification. Efficient (O(n log(n)), where n is
the number of states in the automaton) minimization
algorithms also exist for finite automata [14, 15].

Before we apply these algorithms to the automata we
generate, we need to make their labels typical of such
automata. We perform this by applying the following
transformation to the labels of the automata we generate.

Assume that A = {a1…an} is the set of propositions in
the alphabet of an automaton. Then the labels of the
transformed automaton will be arrays of length n, where
position i contains the value that ai needs to have to make
a transition. We therefore transform the transitions in our
original automata into transitions labeled with such
arrays.

 a ∨ b

0 1 true true

10 ∨ 11 ∨ 01

0 1

00 ∨ 01 ∨ 10 ∨ 11 00 ∨ 01 ∨ 10 ∨ 11

10 ∨ 11 ∨ 01

00 ∨ 01 ∨ 10 ∨ 11 00
0 01

a ∨ (!a ∧ b)

true

!a ∧ !b
0 1

Figure 2: Creating deterministic, minimal automata

We illustrate this procedure with an example. The
automaton generated by our algorithm for LTL formula
<>(a∨b) is the first automaton illustrated in Figure 2. By
transforming the labels of that automaton as described
above, we obtain the second automaton illustrated in the
same figure. For example, label a∨b (this is how we
represent two transitions from state 0 to state 1, one
labeled with a, and one labeled with b) is transformed

6

into label 10∨11∨01, where the first/second number of
each sub-label represents the value that a/b must have for
this transition to be triggered. The third automaton results
from applying subset construction to the second one.
Minimization of this automaton does not result in fewer
states.

The last automaton returns the labels to their original
form. In performing this, optimizations that concern the
simplification of edge terms in Büchi automata [16] can
be applied. Formulae on label edges can thus be
simplified based on propositional logic rules that are
standard; we will therefore not elaborate further on those.

TRUE LOOP. A true loop around an accepting state means
that, as soon as a prefix of any trace reaches that state, the
property is satisfied by that trace. Any outgoing edges
from such a state can therefore be removed. Moreover,
this state can bear a label that indicates the fact that, when
it is reached, there is no need for further exploration.

INITIAL STATE. Our approach to dealing with the initial
state of the automata we generate reflects the fact that we
do not design our automata to deal with empty traces.
Although this assumption makes sense, we have ways of
raising it in some cases. The solutions we propose here
are only partial, that is, they deal with empty traces only
in specific cases. In all other cases, they simply do not
accept empty traces. This is obviously not a problem in
practice, since we do not expect users to wish to test
empty traces of their programs.

If the formula for which we generate an automaton
contains no U sub-formulas, then the initial state of the
automaton is set to accepting. This expresses the fact that,
purely safety properties are trivially satisfied by empty
traces (along the lines of the fact that any program that
does nothing is safe…).

true

0 1 a true

true 0

Figure 3: Dealing with the initial state

Similarly, if an accepting state is reachable from the
initial state with a true transition, then we can safely set
the initial state to accepting. This is best applied after the
“determinization” phase of the construction, and before
minimization (this may increase the reduction achieved).
For example, the first automaton illustrated in Figure 3

represents formula (aUtrue). The initial state is non-
accepting, but, through the procedure just described, can
be set to accepting. The deterministic minimal automaton
thus obtained is depicted by the second automaton
illustrated in the same figure.

6 Implementation

We have developed a tool, the trace analyser (TaZ),

which receives as input an LTL formula, and generates an
observer for traces of running programs, using the
algorithm presented.

6.1 Automata generation

 TaZ does not yet implement the algorithms for

making the automata generated deterministic and
minimal. These features will be implemented in the near
future. In addition to generating observers, TaZ currently
outputs the corresponding automata in FSP, the input
language of the LTSA model-checking tool [17], in order
to allow their graphical illustration. LTSA also supports
determinization and minimization, which we can apply to
the automata generated for experimental purposes.

In TaZ, any string can be used to represent a
proposition, and the operators are entered as follows: [],
<>, U, V, !, /\, \/, ->. As an example, assume that TaZ is
given as input the LTL formula [](a→ <>b). The FSP
output it produces is the following, and the automaton
depicted by the LTSA tool is as illustrated in Figure 4
(note that the LTSA tool always names states with
integers):

RES = S0,
S0=(true->S2 |b->S7 |na -> S7),
S2=(true->S2|na->S2 |b->S7 |b_AND_na->S7),
S7 @ =(true -> S2|b -> S7 |na -> S7).

true

{b, na} true

{@RES, b, na} {na, true}

{b, b_AND_na}

0 1 2

Figure 4: Automaton for property [](a → <>b)

The “@” character is used to denote the accepting state
in FSP, which is converted by the tool in a looping

7

transition labeled with “@automaton_name” [18] (so
state 1 is the accepting state in the automaton of Figure
4). Moreover, {a, b} is used to denote “a∨b”. We use the
feature of the tool that supports labeling of transitions
with sets to redefine transition labels in order to make the
automaton deterministic. The deterministic version
obtained is illustrated in Figure 5.

a_AND_nb

{a_AND_b, na} a_AND_nb

{@RES, a_AND_b, na} nb

b

0 1 2

Figure 5: Deterministic automaton for [](a→ <>b)

We have used TaZ to generate automata for large
formulae (more than 20 operators, mostly U, V and \/s,
which cause nodes to split), and it produces results
instantaneously.

6.2 Using the automata for runtime analysis

TaZ turns any automaton that it generates into an

observer of program traces. An observer is a data
structure that consists of the following fields:

• The automaton for the formula to be checked.
• The current states of the automaton. These may be

multiple if the automaton is non-deterministic
(this is the case with our current implementation).
Initially, the automaton is in its initial state.

• A hash-table that records the values, at the
program state that is being verified, of the
propositions involved in the formula;

Our observer class implements the following interface,
required by PaX:

interface LTL{
 void init(STATEINIT init);
 void next(STATECHANGE change);
 void end();
}

Method init is called by JPaX to pass the observer the
values of propositions at the initial program state. Then,
each time the proposition values change, JPaX calls the
next method of the observer to pass it information about

the state change. This is provided as a list of propositions
that have changed value since the previous state.

Every time next is called, the observer performs the
following steps. It updates the values of propositions in
its local hash-table of the program state. It then checks
which transitions rooting at its current states are enabled.
To do this, it checks if the state of the program is
compatible with the literals labelling these transitions. If,
for example, !a labels a transition trans, and a is false in
the current program state, then trans is enabled. The
current states of the automaton are then updated to be the
set of states that are reached through enabled transitions.
If this set is empty, it means that the automaton cannot
make a step, which reflects the fact that the property is
violated by the specific trace of the program. This
information is reported, which concludes the observer’s
job.

When the program is stopped, and if the observer is
still running (i.e. it did not yet detect a violation or the
fact that the property is satisfied), the program calls the
end method of the observer. At this stage, the observer
checks its set of current states. If there exists/does not
exist at least one accepting state within this set, then the
observer reports the fact that the property is
satisfied/violated by the specific program trace,
respectively.

Stuttering: As mentioned, the LTL-X variant of LTL is
insensitive to stuttering. Therefore, the observer only
needs to be notified whenever propositions in its alphabet
change value. This can be implemented by the observer
initially informing JPaX about the particular state
attributes it is interested in observing.

Experimental results: Checking program traces with the
observers we generate is very efficient; it is linear in the
program trace.

We have applied our tools to artificially generated
traces for early testing purposes. For properties that
require checking the entire trace before a result is
produced (e.g. <>[]φ), it takes our approach less than 5
minutes on a Pentium 4, 1.3 GHz processor, to process a
trace 100 Million state changes long. We expect that
when we produce deterministic and minimal automata,
this performance will be further improved.

Another issue that we are interested in is ways of
minimizing the effort required to compute enabled
transitions. When observers are based on deterministic
automata, an obvious improvement would be that, when
an enabled transition is discovered, other possibilities do
not need to be checked (since a single transition can be
enabled at a time). Another optimization example would
be the following. When the proposition values that two
transitions depend on overlap, we should need to check
those only once.

8

An exponential but useful in practice algorithm has
been developed, which is briefly discussed in [6], but will
be fully documented in the near future.

7 Conclusions

We presented an approach to generate deterministic

and minimal finite-state automata used to check running
programs against LTL specifications. The core of the
algorithm modifies standard LTL to Büchi automata
construction techniques. These techniques have been
polished for efficiency over years of research. It has
therefore been important for us to use these as a
foundation. Moreover, we have been able to exploit
standard algorithms for determinization and minimization
of the automata we generate.

This approach is clearly more efficient than using
Büchi automata for the same purpose. A benefit of our
approach is that it does not require the detection of cycles
in the product of the automaton with the program trace.
Rather, all that is needed in terms of storage is the current
state of the program, and the current state of the
automaton. There are, therefore, no scalability issues
involved. Additionally, we are able to generate minimal
deterministic automata. Büchi automata provide full
expressiveness only when they are non-deterministic.
Moreover, finding the optimal (or approximately optimal)
sized automaton for an LTL formula is PSPACE-hard
[16].

An issue that occurs is whether LTL is the most
appropriate language for expressing properties of running
programs. LTL is a logic that has been widely used for
expressing properties of reactive systems. This is
particularly so in the domain of model checking. We
believe that runtime monitoring and model checking will
form components of extended debugging environments. It
is therefore crucial to allow users to specify properties
that are supported by both approaches.

From our experiments, the generation of observers is
very efficient. So is their behavior during runtime
analysis; specifications are checked in time linear in the
length of the program trace that is examined. The core of
our future research will therefore concentrate on how to
improve the interaction of the running program with the
observer so as to allow maximal independence between
the two, but minimal disruption to the running program.

Another topic that this research will involve is the
specification of the relationship between program
attributes and propositions involved in the formulae, and
the instrumentation of a program to emit the relevant
information for use by its observers.

8 References

[1] Visser, W., Havelund, K., Brat, G., and Park, S. "Model
Checking Programs", in Proc. of the 15th IEEE
International Conference on Automated Software
Engineering (ASE'2000). 11-15 September 2000, Grenoble,
France. IEEE Computer Society, pp. 3-11. Y. Ledru, P.
Alexander, and P. Flener, Eds.

[2] Holzmann, G.J. and Smith, M.H., Software model checking
- Extracting verification models from source code. Formal
Methods for Protocol Engineering and Distributed
Systems, Kluwer Academic Publishers, October 1999: pp.
481-497.

[3] Havelund, K. and Pressburger, T., Model Checking Java
Programs Using Java PathFinder. International Journal on
Software Tools for Technology Transfer (STTT), Vol.
2(4), April 2000.

[4] Holzmann, G.J., The Model Checker SPIN. IEEE
Transactions on Software Engineering, Vol. 23(5), May
1997: pp. 279-295.

[5] Clarke, E.M., Grumberg, O., and Peled, S.A., Model
Checking: The MIT press, 1999.

[6] Havelund, K. and Rosu, G. "Monitoring Java Programs
with Java PathExplorer", in Proc. of the First Workshop on
Runtime Verification (RV'01). 23 July 2001, Paris, France,
Electronic Notes in Theoretical Computer Science 55(2).

[7] Cohen, S., http://www.compaq.com/java/download/jtrek.
[8] O'Malley, T.O., Richardson, D.J., and Dillon, L.K.

"Efficient Specification-Based Test Oracles", in Proc. of
the Second California Software Symposium (CSS'96). April
1996.

[9] Havelund, K. and Rosu, G., “Testing Linear Temporal
Logic Formulae on Finite Execution Traces”, RIACS
Technical Report TR 01-08, May 2001.

[10] Clavel, M., et al. "The Maude system", in Proc. of the 10th
International Conference on Rewriting Techniques and
Applications (RTA'99). July 1999, Trento, Italy. Springer-
Verlag, Lecture Notes in Computer Science 1631, pp. 240-
243.

[11] Drusinsky, D. "The Temporal Rover and the ATG Rover",
in Proc. of the 7th International SPIN Workshop on SPIN
Model Checking and Software Verification.
August/September 2000, Stanford, CA. Springer, Lecture
Notes in Computer Science 1885, pp. 323-330. K.
Havelund, J. Penix, and W. Visser, Eds.

[12] Gerth, R., Peled, D., Vardi, M.Y., and Wolper, P. "Simple
On-the-fly Automatic Verification of Linear Temporal
Logic", in Proc. of the 15th IFIP/WG6.1 Symposium on
Protocol Specification, Testing and Verification (PSTV'95).
June 1995, Warsaw, Poland, pp. 3-18.

[13] Hopcroft, J.E. and Ullman, J.D., Introduction to Automata
Theory, Languages, and Computation: Addison-Wesley,
1979.

[14] Hopcroft, J. "An nlogn algorithm for minimizing states in a
finite automaton", in Proc. of the Theory of Machines and

9

Computations. 1971, New York. Academic Press, pp. 189-
196. Z. Kohavi, Ed.

[15] Paige, R. and Tarjan, R.E., Three Partition Refinement
Algorithms. SIAM Journal of Computing, Vol. 16(6), 1987:
pp. 973-989.

[16] Etessami, K. and Holzmann, G. "Optimizing Buchi
automata", in Proc. of the 11th International Conference
on Concurrency Theory (CONCUR'2000). August 2000,
Pennsylvania, USA, LNCS (Lecture Notes in Computer
Science) 1877, pp. 153-167.

[17] Magee, J. and Kramer, J., Concurrency: State Models &
Java Programs: John Wiley & Sons, 1999.

[18] Cheung, S.C., Giannakopoulou, D., and Kramer, J.
"Verification of Liveness Properties using Compositional
Reachability Analysis", in Proc. of the 6th European
Software Engineering Conference held jointly with the 5th
ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE'97). September 1997,
Zurich, Switzerland. Springer, Lecture Notes in Computer
Science 1301, pp. 227-243. M. Jazayeri and H. Schauer,
Eds.

