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Automata-Based Verification of Temporal Properties on Running Programs 
 
 
 

     
1 Introduction 

 
Computer program correctness has, for decades, 

concerned industry and been studied in academia. The 
formal methods research community, in particular, has 
studied how formal logic can be applied in the analysis of 
computer programs and their designs. Most 
effort has been spent on the development of 
semantic frameworks for formalizing logics and 
developing systems that can formally prove that a 
software artifact satisfies a formula in some logic. Model 
checking and theorem proving are examples of such 
attempts to mechanize proofs of correctness. Such heavy-
weight formal methods, however, still remain to reach a 
state where they can be used in practice without 
considerable manual effort. A recent research direction is 
to apply model checking directly to programs written in 
standard programming languages such as Java and C [1, 
2]. 

Although we find this work of great interest, and in 
fact have been involved in this from early on in this 
recent trend [1, 3], we believe that more light-weight use 
of formal techniques will be useful as well as more 
practically feasible in the shorter term. A light-weight 
formal method is here defined as a method that is 
completely automatic, irrespective of the size of the 
examined program. Hence, the main concern is 
scalability:  the technique should be practically applicable 
to large systems consisting of hundreds of thousands of 
lines of code. 

An example of such a light-weight technique is what is 
often referred to as program monitoring. Here, the idea is 
to monitor the execution of a program against a formal 
specification written in some formal specification logic. 
This kind of technique is practically feasible since only 
one trace is examined, and it is useful since the logic 
allows stating more complex properties than is normally 
possible in standard testing environments.  

In this paper, we describe an effort to develop such a 
technique for monitoring program executions against 
high-level requirement specifications written in Linear 
Temporal Logic (LTL). LTL has mostly been used in the 
past as the logic in model checking environments, such as 
SPIN [4]. Such environments typically convert 
(automatically) the negation of an LTL requirement into a 
Büchi automaton that accepts all infinite words that 
violate this requirement (Büchi automata are finite 
automata on infinite words). Model checking consists of 
detecting accepting cycles in the synchronous product of 

the model/program to be checked with the automaton. 
The state-space of this product typically needs to be 
stored, which gives rise to the infamous state-explosion 
problem [5].  

Büchi automata are designed to operate on infinite 
execution traces. So the question naturally arises whether 
Büchi automata can also be used to efficiently monitor 
finite traces of executing programs (since, either the 
program will terminate, or it will be interrupted at some 
stage). A typical way to check a finite trace with Büchi 
automata is to extend the trace by repeating the last state 
indefinitely. This approach would still require storing the 
combined state-space of the automaton and the particular 
program trace, in order to check for cycles.  

The work presented in this paper is the result of trying 
to provide a more efficient alternative based on the same 
(and extensively polished over years of research) 
principles. It presents an algorithm, based on standard 
LTL to Büchi automata construction techniques, which 
generates traditional finite-state automata that can be used 
to monitor LTL formulae on finite program traces.  

The algorithm we present has been implemented in 
Trace analyZer (TaZ), an observer generator tool written 
in Java. TaZ has been integrated in Java PathExplorer  
(JPaX), which is a generic tool for monitoring Java 
programs [6]. The result is an environment that can 
automatically check, on-the-fly, whether the current run 
of a Java program conforms to an LTL formula. 

The remainder of this paper is organized as follows. 
Section 2 discusses background and related work, and 
introduces the JPaX runtime analysis tool – the context of 
the work presented here – under development at NASA 
Ames. Section 3 sets the theoretical grounds for Section 
4, which presents our algorithm for generating LTL 
runtime observers. Section 5 proposes optimizations to 
the basic algorithm. We discuss the implementation of 
TaZ and some performance issues in Section 6. Finally, 
Section 7 closes the paper with discussion and 
conclusions. 

 
2 Program monitoring 

 
The algorithm that we are presenting in this paper has 

been implemented in the internally developed runtime-
monitoring tool Java PathExplorer (JPaX). JPaX is a 
general environment for monitoring the execution of Java 
programs. It consists of an instrumentation module, and 
an observer module. The instrumentation module   
performs a script-driven automated instrumentation of the 
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program to be observed. The instrumented program, when 
run, will emit relevant events to the observer. The 
observer may run on a different computer, in which case 
the events are transmitted over a socket.  

The instrumentation is performed on the basis of an 
instrumentation script, given by the user that specifies 
which variables in the program shall be monitored. The 
automated instrumentation will then insert event-
transmitting code after all updates to these variables. The 
updates are collected in an image state separate from the 
executing program state. The instrumentation script also 
defines a collection of Boolean valued proposition 
variables and an association between these and predicates 
over the observed program variables. When an image 
state change occurs, the propositional variables are re-
evaluated, and what is sent to the observer is changes in 
these propositional variables. The Java byte code 
instrumentation is performed using the powerful Jtrek 
Java byte code-engineering tool [7] from Compaq.  Jtrek 
makes it possible to easily read Java class files (byte code 
files), and traverse them as abstract syntax trees while 
examining their contents, and inserting new code. 

  Program monitoring against specifications expressed 
in various logics has been investigated by several 
researchers. In [8], for example, the authors describe an 
algorithm for generating test oracles from specifications 
written in GIL, a graphical interval logic. Similarly to our 
approach, the oracles are based on automata. The 
generation is performed in two phases. During the first 
phase, a hierarchical non-deterministic automaton is 
computed, which, during the second phase, is turned into 
a classical deterministic finite automaton. The authors do 
not mention the application of minimization techniques to 
the resulting automata. The automata that they generate 
are typically larger than the ones that our algorithm 
computes. The reason is that they do not attempt to 
collapse equivalent states during generation.    

An approach based on rewriting logic is presented in 
[9]. The authors have implemented in Maude [10] (an 
efficient rewriting logic system), 8 rules that describe 
how an LTL formula is transformed by a new state 
encountered in the program, and how to decide, when the 
end of a trace occurs, whether the specification was 
satisfied or not. Naturally, their algorithm also detects if a 
property is satisfied or violated before the end of the trace 
occurs, in which case the analysis does not need to 
proceed. Maude is, in general, a very powerful 
prototyping tool, since it allows to easily define 
alternative types of logics. The authors have used it to 
also support past-time logics, for example [6].  

The Temporal Rover (TR) [11] is a commercial tool 
for program monitoring based on temporal logic 
specifications. TR allows users to specify future time 
temporal formulae as comments in programs, which are 

then translated into appropriate Java code before 
compilation. 

 
3 Preliminaries 

 
This section describes the syntax of both the infinite- 

(standard) and finite-trace semantics of Linear Temporal 
Logic (LTL). It also defines finite-state automata as used 
for runtime verification.  

Note that, in the context of this paper, we are only 
interested in the next-free variant of LTL, namely LTL-X. 
This is typical in model checking, because LTL-X is 
guaranteed to be insensitive to stuttering [5].  This 
property is important because it avoids the notion of an 
absolute next state. The next time operator (X) is 
misleading, because users naturally tend to assume some 
level of abstraction on the state of a running program. 
Additionally, it is not straightforward what the desired 
meaning of a next time formula would be at the last state 
of a program trace.  

In the rest of this paper, the next-free variant of LTL is 
implied whenever we refer to LTL. 

  
3.1 LTL – standard semantics 

 
The set of well-formed LTL formulae is constructed 

from a set of atomic propositions, the standard Boolean 
operators, and the temporal operator U. Given a finite set 
of atomic propositions ℘, formulas are constructed 
inductively as follows: 

 
PROPOSITIONS: Every φ where (φ ∈ ℘) is a formula. 
BOOLEAN OPERATORS: If φ and ψ are formulas, then so 

are !φ (logical not), φ∧ψ (logical and), φ∨ψ (logical or). 
Also, φ→ψ (logical implication) is an abbreviation for 
!φ∨ψ, TRUE for φ∨!φ, and FALSE for !TRUE.  

TEMPORAL OPERATORS: If φ and ψ are formulas, then so is 
φUψ (strong until). The following abbreviations are 
used: <>φ (eventually) for TRUEUφ, and []φ (always) 
for !<>!φ. Finally, we also use the temporal operator V 
which is defined as the dual of U, i.e.: φVψ = !(!φU !ψ).   

 
An interpretation of an LTL formula is an infinite word 
w=x0x1…over 2℘(sets of propositions), where at some 
time point i∈N, a proposition p is true iff (if and only if) 
p∈xi. We write wi for the suffix of w starting at i. The 
semantics of LTL is defined as follows: 

 
PROPOSITIONS: For φ∈℘, w |= φ iff φ∈x0.  
BOOLEAN OPERATORS:  

• w |= !φ iff not w |= φ; 
• w |= φ∧ψ iff w |= φ and w |= ψ; 
• w |= φ∨ψ iff w |= φ or w |= ψ.  
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TEMPORAL OPERATORS:  
• w |= φUψ iff there exists i∈N such that wi |= ψ 

and for all  0 ≤ j < i , wj |= φ.  
 
3.2 LTL – finite-trace semantics 

    
An executing program defines a sequence of states; an 

infinite execution can therefore be viewed as an LTL 
interpretation, which assigns to each moment in time the 
set of propositions that are true at the particular program 
state. Model checking [5] detects infinite executions of 
finite-state systems through cycles in their state graphs. 
Runtime verification does not store the entire state-space 
of a program. Rather, it only observes finite program 
executions, on which we also need to interpret LTL 
formulae. We only need to modify the semantics of the 
temporal operators to accommodate this difference. 

Every LTL formula may contain either a safety part, or 
an eventuality part (or both). The safety/eventuality part 
requires that something bad-never/good-eventually 
happens in an execution. We modify the safety 
requirement to mean that, in the portion of the execution 
that we have observed, nothing bad happens. 
Eventualities are similarly required to be satisfied in the 
portion of the execution observed. Otherwise they will 
have “not yet” been satisfied. We define the semantics of 
the temporal operators accordingly.  

Let w=x0…xn be a finite interpretation of an LTL 
formula over 2℘. Then: 

  
Temporal operators:  

• w |= φUψ iff there exists 0≤ i ≤ n such that wi |= 
ψ and for all  0 ≤ j < i , wj |= φ.  

 
3.3 Finite automata on finite words 

 
A finite automaton FA is a 5-tuple (S, A, ∆, s0, F), 

where S is a finite set of states, A is a finite set of labels 
which we call the alphabet of the automaton, ∆⊆ S×A×S 
is a transition function, s0∈S is the initial state, and F⊆S 
is a set of accepting states.  

An execution of FA is a finite sequence σ = s0 a0 s1 … 
an-1 sn, such that (si ai si+1)∈∆ for each 0≤ i <n. An 
execution σ of FA is accepting if sn∈F. Finally, FA 
accepts a finite word w=x0…xn-1 over A, if there exists an 
accepting execution σ = s0 x0 s1 … xn-1 sn of FA.  

In the context of this paper, automata labels will be 
sequences of Boolean values of propositions. A label 
<false, false, true> (or 001) for sequence <a, b, c> will 
represent, for example, that a and b are false, and c is 
true. Equivalently, we will sometimes write !a!bc. 
Finally, for an automaton with propositions <a, b, c>, a 
transition between s1 and s2 labeled with a!b is an 
abbreviation for two transitions between s1 and s2, one 

labeled with a!bc, and one labeled with a!b!c. In other 
words, the transition can be fired when a is true and b is 
false, irrespective of the value of c.       

 
4 Algorithm 

 
Our goal is to construct a finite-state automaton that 

accepts exactly those finite words that satisfy a given 
LTL formula φ. Our algorithm is based on an efficient 
tableau-like LTL to Büchi automata translation presented 
in [12]. We will briefly describe the intuition behind this 
construction, and then explain the modifications that our 
algorithm introduces in order to capture the finite-trace 
LTL semantics introduced in the previous section. 

 
4.1 LTL to Büchi automata 

 
The LTL formulas that we deal with are in negation 

normal form. This simply means that all negations are 
pushed inside until they precede only propositional 
variables. For example, the negation normal form of 
formula ![]φ is formula <>!φ.     

The core of the algorithm is based on expanding a 
graph node. A graph node is a data structure that contains 
the following fields:  

NAME: a unique name for the node. 
INCOMING: the set of nodes that lead to this node, i.e., 

which have incoming edges to this node. 
NEW: the set of LTL formulae that must hold on the 

current state but have not yet been processed. 
OLD: the set of LTL formulae that have already been 

processed. Each formula in NEW that gets processed is 
transferred to OLD. 

NEXT: the set of LTL formulae that must hold at all 
immediate successors of this node. 

Table 1: Formula expansions used in Node splitting 

f NEW1(f ) NEXT1 (f ) NEW2 (f ) 
ϕ U ψ  {ϕ} {ϕ U ψ} {ψ} 
ϕ V ψ  {ψ} {ϕ V ψ} {ϕ, ψ} 
ϕ ∨ ψ  {ϕ} ∅ {ψ} 

 
The automaton states that we construct are stored in 
STATES, which is a set of graph nodes.   

Field NEW in a graph node represents all the formulae 
that the node must make true. The idea of the expansion 
algorithm is to remove formulae in NEW one by one by 
processing them in the following way. Each formula is 
broken down until we get to the literals (propositions or 
negated propositions) that must hold to make it true. For 
example, φ∧ψ is broken down by adding both φ and ψ to 
the NEW field of the node. If there are alternative ways to 
make a formula true (if it is an ∨ or U formula, for 
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example) the node is split in two nodes, where each of 
these nodes represents one way of making the formula 
true. For example, to make φ∨ψ true, we split the node 
into a node that needs to make φ true, and one that needs 
to make φ true. 

To satisfy temporal operator formulae, a node needs to 
also push obligations to its immediate successors. These 
obligations are added to the NEXT field of a node. The 
way obligations are moved to successors is based on the 
following identities: 

• φUψ ≡ ψ ∨ (φ ∧ X (φUψ)) 
• φVψ ≡ ψ ∧ (φ ∨ X (φVψ)) 

 
Table 1 illustrates, for the types of formulas f that cause a 
node to split, the formulas that are added to various fields 
of the resulting nodes. The two resulting nodes contain 
the same INCOMING and OLD fields as the original node, 
whereas their NEW and NEXT fields are the union of the 
ones of the original node with the fields illustrated in 
Table 1 (where 1 and 2 refer to the two resulting nodes).  

Note that, the old field of a node cannot contain 
contradicting formulae (e.g. both φ and !φ). If 
contradictions are obtained during processing, then the 
node is discarded.  

The algorithm starts with a node, which contains the 
LTL formula f (for which an automaton is being build), in 
its NEW field, INIT in its INCOMING field, and all other 
fields are empty. INIT represents the initial node, a node 
that has all its fields empty, and which represents the 
initial state of the automaton. It is the only node that is 
initially in STATES.  

When all formulae of a node NC have been processed 
(i.e., the NEW field becomes empty), the node represents a 
node of the automaton. Before, however, we add NC to 
STATES, we check whether an equivalent node is already 
contained there. An equivalent node is one that has the 
same OLD and NEXT fields as the one that has just been 
processed. If an equivalent node N exists in STATES, then 
the INCOMING field of NC is added (by set union) to the 
INCOMING field of N. If no equivalent node exists in 
states, then NC is added to STATES, and a new node NN is 
added to the ones that need to be processed. NN represents 
the immediate successors of NC. Its INCOMING field is set 
to NC, and its NEW field is set to the NEXT field of NC. All 
other fields are initially empty. 

When this process is completed, an automaton can be 
built from the nodes in STATES in the following fashion. 
Each node represents a state of the automaton. Edges are 
defined by the INCOMING fields of the nodes. The initial 
node is the one that has no incoming edges (INIT). All 
edges that lead into a node N, are labeled with the literals 
that must hold at N, i.e. the literals that belong to the OLD 
field of N. We do not discuss accepting states here, 

because our algorithm assigns these in a completely 
different fashion. 

 
4.2 Applying finite-trace semantics 

 
The main aspect of the LTL to Büchi automata 

construction algorithm that we modify is the selection of 
accepting conditions. Any infinite execution of an 
automaton generated for a formula f as described in 
Section 4.1 satisfies the safety conditions of f. As 
mentioned in [12], this is guaranteed by construction of 
the automaton. Accepting conditions have then got to be 
imposed, to make sure that eventualities are also satisfied. 
More precisely, we need to make sure that whenever 
some node contains φUψ, some successor node will 
contain ψ.  

Given the modified semantics presented in Section 3.2, 
we similarly need to impose accepting conditions to make 
sure that any accepting finite execution of the automaton 
(since we deal with finite traces) satisfies all the required 
eventualities. The eventualities that remain to be satisfied 
after any finite execution of the automata we generate, are 
reflected by the formulae contained in the NEXT field of 
the last state of this execution. This means that, unless 
there exist U formulae in the next field of the state, then 
this state has satisfied its potential eventuality 
requirements (as can be seen in Table 1, if the right-hand 
formula of an U operator is added to the NEW field of a 
state, then no formula is added to its NEXT field).  

The initial state is non-accepting. Therefore, our 
construction assumes that automata will only accept 
traces that contain at least one state (since the initial state 
is non-accepting). In the optimizations section (Section 5) 
we discuss how to raise this assumption in order to 
simplify the automata we obtain, in some cases.   

It can be seen from our construction, that field OLD is 
used by our algorithm only to generate the labels of the 
automaton, but plays no role in the identification of 
accepting conditions. Therefore, two states are basically 
equivalent when they have the same NEXT fields. 
Although the original construction would still generate 
correct automata, we can make our construction more 
efficient based on this observation. 

To allow for more equivalent states to be collapsed 
during construction, when the algorithm compares a 
newly expanded node to the nodes that have already been 
entered in STATES, we only compare the NEXT fields of 
the nodes. This, of course, does not make the OLD field 
redundant; the literals contained in it are needed in order 
to determine labels of the automata edges. Therefore, we 
decide to store in old only literals, during construction.  

One needs to be careful during the process of 
collapsing equivalent nodes. If two nodes are collapsed, 
the resulting node must record the information of each 
component’s INCOMING field and its associated OLD field. 
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This is for it to remember that it is obtained from 
alternative parent nodes by different sets of literals. In the 
simple case where the literals in the OLD fields are the 
same, the OLD field of the resulting node is the same as 
the corresponding field of either of its components, and 
its INCOMING field is obtained as the union of their 
corresponding INCOMING fields.   

 
N2 

N4 

N1-3 

ϕ 

! ϕ 

 
Figure 1: Collapsing nodes with different OLD fields 

For example, assume that a node N1 with OLD={ϕ} 
(where ϕ is a proposition) and INCOMING={N2}, is 
collapsed with node N3 with OLD={!ϕ}, and 
INCOMING={N4). Let us call the resulting node N1-3. This 
information is kept appropriately in node N1-3, so that in 
the generated automaton, it will look as in Figure 1. 

 
4.3 Proof of correctness 

 
We briefly sketch the proof of correctness of the 

algorithm presented here. Our proof is based on the 
corresponding proof of the [12] algorithm, so the 
interested reader is referred to that paper for details. 

What we need to show additionally is that indeed, our 
accepting conditions guarantee that a finite sequence (of 
length ≥1) is accepted iff it satisfies the LTL formula for 
which the automaton was built. Intuitively, the 
construction that we follow ensures that. The reason is 
that, when a node is processed, all the possibilities of 
making its requirements true are examined.  

As far as eventualities are concerned (derived from U 
formulae) our construction ensures that any U formula 
that must be satisfied remains in the next field of the 
corresponding node and all of its successors, until its 
right-hand side formula becomes true. Therefore, the 
existence of a U formula in the next field of a node 
reflects the fact that, in the path followed to this node, 
there are eventualities that remain to be checked.  

 
5 Optimizations 

 
DETERMINISTIC MINIMAL AUTOMATA. The automata we 
generate are finite automata on finite words. We can 
therefore, with standard algorithms, both make them 
deterministic, and minimize them. A finite automaton on 
finite words can be made deterministic by using the 

subset construction [13]. The algorithm is theoretically 
exponential in the number of states of the automaton, but 
works well in practice for the sizes of automata typically 
needed for verification. Efficient (O(n log(n)), where n is 
the number of states in the automaton) minimization 
algorithms also exist for finite automata [14, 15]. 

Before we apply these algorithms to the automata we 
generate, we need to make their labels typical of such 
automata. We perform this by applying the following 
transformation to the labels of the automata we generate. 

Assume that A = {a1…an} is the set of propositions in 
the alphabet of an automaton. Then the labels of the 
transformed automaton will be arrays of length n, where 
position i contains the value that ai needs to have to make 
a transition. We therefore transform the transitions in our 
original automata into transitions labeled with such 
arrays. 

 
 a ∨ b 

0 1 true true 

10 ∨ 11 ∨ 01 

0 1 

00 ∨ 01 ∨ 10 ∨ 11 00 ∨ 01 ∨ 10 ∨ 11 

10 ∨ 11 ∨ 01 

00 ∨ 01 ∨ 10 ∨ 11  00 
0 01 

a ∨ (!a ∧ b)  

true  

!a ∧ !b 
0 1 

 

Figure 2: Creating deterministic, minimal automata 

We illustrate this procedure with an example. The 
automaton generated by our algorithm for LTL formula 
<>(a∨b) is the first automaton illustrated in Figure 2. By 
transforming the labels of that automaton as described 
above, we obtain the second automaton illustrated in the 
same figure. For example, label a∨b (this is how we 
represent two transitions from state 0 to state 1, one 
labeled with a, and one labeled with b) is transformed 
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into label 10∨11∨01, where the first/second number of 
each sub-label represents the value that a/b must have for 
this transition to be triggered. The third automaton results 
from applying subset construction to the second one. 
Minimization of this automaton does not result in fewer 
states.  

The last automaton returns the labels to their original 
form. In performing this, optimizations that concern the 
simplification of edge terms in Büchi automata [16] can 
be applied. Formulae on label edges can thus be 
simplified based on propositional logic rules that are 
standard; we will therefore not elaborate further on those.  

 
TRUE LOOP. A true loop around an accepting state means 
that, as soon as a prefix of any trace reaches that state, the 
property is satisfied by that trace. Any outgoing edges 
from such a state can therefore be removed. Moreover, 
this state can bear a label that indicates the fact that, when 
it is reached, there is no need for further exploration.   
 
INITIAL STATE. Our approach to dealing with the initial 
state of the automata we generate reflects the fact that we 
do not design our automata to deal with empty traces. 
Although this assumption makes sense, we have ways of 
raising it in some cases. The solutions we propose here 
are only partial, that is, they deal with empty traces only 
in specific cases. In all other cases, they simply do not 
accept empty traces. This is obviously not a problem in 
practice, since we do not expect users to wish to test 
empty traces of their programs.  

If the formula for which we generate an automaton 
contains no U sub-formulas, then the initial state of the 
automaton is set to accepting. This expresses the fact that, 
purely safety properties are trivially satisfied by empty 
traces (along the lines of the fact that any program that 
does nothing is safe…). 

 
 

true 

0 1 a true 

true  0 

 
Figure 3: Dealing with the initial state 

Similarly, if an accepting state is reachable from the 
initial state with a true transition, then we can safely set 
the initial state to accepting. This is best applied after the 
“determinization” phase of the construction, and before 
minimization (this may increase the reduction achieved). 
For example, the first automaton illustrated in Figure 3 

represents formula (aUtrue). The initial state is non-
accepting, but, through the procedure just described, can 
be set to accepting. The deterministic minimal automaton 
thus obtained is depicted by the second automaton 
illustrated in the same figure. 

 
6 Implementation 

 
We have developed a tool, the trace analyser (TaZ), 

which receives as input an LTL formula, and generates an 
observer for traces of running programs, using the 
algorithm presented.  

 
6.1 Automata generation 

 
 TaZ does not yet implement the algorithms for 

making the automata generated deterministic and 
minimal. These features will be implemented in the near 
future. In addition to generating observers, TaZ currently 
outputs the corresponding automata in FSP, the input 
language of the LTSA model-checking tool [17], in order 
to allow their graphical illustration. LTSA also supports 
determinization and minimization, which we can apply to 
the automata generated for experimental purposes.  

In TaZ, any string can be used to represent a 
proposition, and the operators are entered as follows: [], 
<>, U, V, !, /\, \/, ->. As an example, assume that TaZ is 
given as input the LTL formula [](a→ <>b). The FSP 
output it produces is the following, and the automaton 
depicted by the LTSA tool is as illustrated in Figure 4 
(note that the LTSA tool always names states with 
integers): 
 
RES = S0,  
S0=(true->S2 |b->S7 |na -> S7),  
S2=(true->S2|na->S2 |b->S7 |b_AND_na->S7),  
S7 @ =(true -> S2|b -> S7 |na -> S7). 

 
 

true

{b, na} true

{@RES, b, na} {na, true}

{b, b_AND_na}

0 1 2

 
Figure 4: Automaton for property [](a → <>b) 

The “@” character is used to denote the accepting state 
in FSP, which is converted by the tool in a looping 
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transition labeled with “@automaton_name” [18] (so 
state 1 is the accepting state in the automaton of Figure 
4). Moreover, {a, b} is used to denote “a∨b”. We use the 
feature of the tool that supports labeling of transitions 
with sets to redefine transition labels in order to make the 
automaton deterministic. The deterministic version 
obtained is illustrated in Figure 5. 

a_AND_nb

{a_AND_b, na} a_AND_nb

{@RES, a_AND_b, na} nb

b

0 1 2

 
Figure 5: Deterministic automaton for [](a→ <>b) 

We have used TaZ to generate automata for large 
formulae (more than 20 operators, mostly U, V and \/s, 
which cause nodes to split), and it produces results 
instantaneously.  

 
6.2 Using the automata for runtime analysis 

 
TaZ turns any automaton that it generates into an 

observer of program traces. An observer is a data 
structure that consists of the following fields: 

 
• The automaton for the formula to be checked. 
• The current states of the automaton. These may be 

multiple if the automaton is non-deterministic 
(this is the case with our current implementation). 
Initially, the automaton is in its initial state. 

• A hash-table that records the values, at the 
program state that is being verified, of the 
propositions involved in the formula; 

  
Our observer class implements the following interface, 
required by PaX: 

 
interface LTL{ 
  void init(STATEINIT init); 
  void next(STATECHANGE change); 
  void end(); 
} 

 
Method init is called by JPaX to pass the observer the 
values of propositions at the initial program state. Then, 
each time the proposition values change, JPaX calls the 
next method of the observer to pass it information about 

the state change. This is provided as a list of propositions 
that have changed value since the previous state. 

Every time next is called, the observer performs the 
following steps. It updates the values of propositions in 
its local hash-table of the program state. It then checks 
which transitions rooting at its current states are enabled. 
To do this, it checks if the state of the program is 
compatible with the literals labelling these transitions. If, 
for example, !a labels a transition trans, and a is false in 
the current program state, then trans is enabled. The 
current states of the automaton are then updated to be the 
set of states that are reached through enabled transitions. 
If this set is empty, it means that the automaton cannot 
make a step, which reflects the fact that the property is 
violated by the specific trace of the program. This 
information is reported, which concludes the observer’s 
job. 

When the program is stopped, and if the observer is 
still running (i.e. it did not yet detect a violation or the 
fact that the property is satisfied), the program calls the 
end method of the observer. At this stage, the observer 
checks its set of current states. If there exists/does not 
exist at least one accepting state within this set, then the 
observer reports the fact that the property is 
satisfied/violated by the specific program trace, 
respectively.  

 
Stuttering: As mentioned, the LTL-X variant of LTL is 
insensitive to stuttering. Therefore, the observer only 
needs to be notified whenever propositions in its alphabet 
change value. This can be implemented by the observer 
initially informing JPaX about the particular state 
attributes it is interested in observing. 

 
Experimental results: Checking program traces with the 
observers we generate is very efficient; it is linear in the 
program trace.  

We have applied our tools to artificially generated 
traces for early testing purposes. For properties that 
require checking the entire trace before a result is 
produced (e.g. <>[]φ), it takes our approach less than 5 
minutes on a Pentium 4, 1.3 GHz processor, to process a 
trace 100 Million state changes long. We expect that 
when we produce deterministic and minimal automata, 
this performance will be further improved. 

Another issue that we are interested in is ways of 
minimizing the effort required to compute enabled 
transitions. When observers are based on deterministic 
automata, an obvious improvement would be that, when 
an enabled transition is discovered, other possibilities do 
not need to be checked (since a single transition can be 
enabled at a time). Another optimization example would 
be the following. When the proposition values that two 
transitions depend on overlap, we should need to check 
those only once.  
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An exponential but useful in practice algorithm has 
been developed, which is briefly discussed in [6], but will 
be fully documented in the near future.  
 
7 Conclusions 

 
We presented an approach to generate deterministic 

and minimal finite-state automata used to check running 
programs against LTL specifications. The core of the 
algorithm modifies standard LTL to Büchi automata 
construction techniques. These techniques have been 
polished for efficiency over years of research. It has 
therefore been important for us to use these as a 
foundation. Moreover, we have been able to exploit 
standard algorithms for determinization and minimization 
of the automata we generate. 

This approach is clearly more efficient than using 
Büchi automata for the same purpose. A benefit of our 
approach is that it does not require the detection of cycles 
in the product of the automaton with the program trace. 
Rather, all that is needed in terms of storage is the current 
state of the program, and the current state of the 
automaton. There are, therefore, no scalability issues 
involved. Additionally, we are able to generate minimal 
deterministic automata. Büchi automata provide full 
expressiveness only when they are non-deterministic. 
Moreover, finding the optimal (or approximately optimal) 
sized automaton for an LTL formula is PSPACE-hard 
[16].  

An issue that occurs is whether LTL is the most 
appropriate language for expressing properties of running 
programs. LTL is a logic that has been widely used for 
expressing properties of reactive systems. This is 
particularly so in the domain of model checking. We 
believe that runtime monitoring and model checking will 
form components of extended debugging environments. It 
is therefore crucial to allow users to specify properties 
that are supported by both approaches. 

From our experiments, the generation of observers is 
very efficient. So is their behavior during runtime 
analysis; specifications are checked in time linear in the 
length of the program trace that is examined. The core of 
our future research will therefore concentrate on how to 
improve the interaction of the running program with the 
observer so as to allow maximal independence between 
the two, but minimal disruption to the running program.  

Another topic that this research will involve is the 
specification of the relationship between program 
attributes and propositions involved in the formulae, and 
the instrumentation of a program to emit the relevant 
information for use by its observers.  
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