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Abstract

Planning and Model Checking are similar in concept.
They both deal with reaching a goal state from an initial
state by applying specified rules that allow for the transi-
tion from one state to another. Exploring the relationship
between them is an interesting new research area. We are
interested in planning frameworks that combine both plan-
ning and scheduling. For that, we focus our attention on
real time model checking. As a first step, we developed
a mapping from planning domain models into timed au-
tomata. Since timed automata are the representation struc-
ture of real-time model checkers, we are able to exploit what
model checking has to offer for planning domains.

In this paper we present the mapping algorithm, which
involves translating temporal specifications into timed au-
tomata, and list some of the planning domain questions
someone can answer by using model checking.

1 Introduction

Planning and Model Checking are similar in concept.
They both deal with reaching a goal state from an initial
state by applying specified rules that allow for the transition
from one state to another. Exploring the relationship, and
synergies, between them is an interesting new research area.
Related work in this area is in the use of Model Checking to
do Planning [5][6][7] and in the use of Model Checking to
Validate Planning Domain Models[13]. However, none of
these works, to our knowledge, deals with temporal specifi-
cations other than simple sequences. Due to the major role
of temporal specifications in planning domains, specifically
when scheduling is part of it, we see it necessary to include
them in our framework.

Our work is within the context of the HSTS, the plan-
ner and scheduler of the remote agent autonomous control
system deployed in Deep Space One (DS1)[9].

Among existing model checkers, we choose UPPAAL
because it can represent time (section 3), and is compa-
rable to HSTS in terms of representation and search since
they are both constraint-based systems. Furthermore, UP-
PAAL has been successfully used to model scheduling
problems [3][4]. These problems are related to ours but
they differ in having no planning component and dealing
with point-based, rather than interval-based, temporal spec-
ifications.

Thus, the significance of our work is in the inclusion of
temporal specifications when applying model checking to
assist in validating the domain specifications as well as the
planning engine. For the purpose of this paper, we focus
our attention on the mapping from HSTS temporal specifi-
cations into UPPAAL timed automata. The challenge is in
mappinginterval-basedtemporal relations intopoint-based
temporal model.

We start by giving a description of the HSTS temporal
specifications and UPPAAL timed automata. After that, we
introduce the algorithm for mapping HSTS domain models
into UPPAAL models and we present samples of properties
one may want to verify.

2 HSTS

HSTS, Heuristic Scheduling Testbed System, is a gen-
eral constraint-based planner and scheduler. It is also one
of four components that constitutes the Remote Agent Au-
tonomous system which was used for the Remote Agent Ex-
periment (RAX), in May of 1999, for autonomous control
of the Deep Space 1 spacecraft [9].

HSTS consists of a planning engine that takes a domain
model, in addition to a goal, as input and produces a com-
plete plan. A planning domain model is a description of the
planning domain given as a set of objects and constraints.



The produced plan achieves the specified goal and satisfies
the constraints in the domain model [12].

2.1 HSTS Model

An HSTS plan model is specified in an object-oriented
language called DDL (Domain Description Language). It
is based on a collection of objects that belong to different
classes. Each object is a collection of state variables (also
known as timelines). At any time, a state variable is in one,
and only, one state that is identified by a predicate. To-
kens are used to represent ”spans”, or intervals, of time over
which a state variable is in a certain state. Predicates may
be associated with durations that indicate a minimum and
a maximum allowed for their token spans (i.e., unary con-
straints).
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Figure 1: HSTS interval-based temporal relations

A set of compatibilities between predicates is specified.
The compatibilities are binary temporal constraints which
may involve durations between end points of predicate
tokens. HSTS allows for 17 temporal relations to be used
in specifying compatibilities (see Figure 1). These are
interval-based relations and, although different, they are
adopted from Allen’s 13 relations [1]. Each compatibility
is defined in the form of a master, the constrained predicate,
and servers, the constraining predicates. For example,
”pred1 meets pred2” indicates that the end of any token for
the master pred1 should coincide with the start of a token
for the server pred2; and ”pred1 before[3,5] pred3” indi-
cates that the end of any token for pred1 should precede the
start of a token for pred3 with a temporal distance between
3 and 5. In addition, compatibilities may be structured
in hierarchical form using AND/OR trees where a leaf is
one of the basic temporal relations illustrated above. For
example, ”pred1 AND (meets pred2) (before[3,5] pred3)”

State Variables:Rover, Rock
Rover predicates:atS, gotoRock, getRock, gotoS
Rock predicates:atL, withRover

Compats:
1. Rover.getRock dur[3; 9]

AND
met by Rover.gotoRock
meets Rock.withRover
OR

meets Rover.gotoS
meets Rover.gotoRock

2. Rover.atS dur[0; 10]
AND

met by Rover.gotoS
meets Rover.gotoRock

3. Rover.gotoRock dur[5; 20]
AND

OR
met by Rover.atS
met by Rover.getRock

meets Rover.getRock
4. Rover.gotoS

AND
met by Rover.getRock
meets Rover.atS

5. Rock.atL
meets Rock.withRover

6. Rock.withRover
met by Rover.getRock

Figure 2: DDL Model for the Rover and Rock Example

indicates that both relations should be satisfied while
”pred1 OR (meets pred2) (before[3,5] pred3)” indicates
that at least one of the relations has to be satisfied. The
following example will be used for illustration throughout
the paper.

Example (Rover and Rock) Figure 2 shows an HSTS
domain model, in abstract syntax, that describes the domain
of a Rover that is to collect samples of Rocks. In this
example, there are two objects, the Rover and the Rock,
each of which consists of a single state variable. The
Rover’s state variable has a value domain of size 4 which
includes atS, gotoRock, getRock, and gotoS (where “S”
stands for Spacecraft). The Rock’s state variable has a value
domain of size 2 which includes atL and withRover (“L” is
assumed to be the location of the Rock). Each predicate is
associated with a set of compatibilities (constraints). We
choose to explain the compatibilities on Rover.getRock,
for the purpose of illustration. A token representing the



predicate Rover.getRock should have a duration no less
than 3 and no more than 9. It also have to be preceded
immediately by Rover.gotoRock and followed immediately
by Rock.withRover. The last compatibility indicates that
Rover.getRock should be followed immediately by either
Rover.gotoS or Rover.gotoRock (to pickup another rock).

Rover

Rock

atS gotoRock getRock gotoS

atL withRover

0 0-10 5-30 8-39

8-390

same time
  compatibility

TIME

Figure 3: An HSTS plan for the goal of Rock.withRover given the ini-
tial state (Rover.atS,Rock,atL). Dashed lines indicate token
boundaries. The numbers at boundaries indicated ranges of
earliest and latest execution times. A constraint link is at-
tached between the end of Rover.getRock and the start of
Rock.withRover to insure the satisfaction of their equality
constraint.

Figure 3 shows a plan generated by HSTS for a given
goal. In this example, the initial state is: Rover.atS and
Rock.atL and the goal is to have Rock.withRover. The
returned plan for Rover is the sequence atS, gotoRock,
getRock, and gotoS where the allowed span for each of
these tokens is as specified in the duration constraints of
their compatibility (e.g., getRock token is between 3 and 9
time units). As a result, the goal of Rock.withRover may be
satisfied (executed) in 8 to 39 time units.

3 UPPAAL

UPPAAL, an acronym based on the joined work of UP-
Psala and AALborg universities, is a tool box for modeling,
simulation, and verification of real-time systems. The simu-
lator is used for interactive analysis of system behavior dur-
ing early design stages while the verifier, which is a model-
checker, covers the exhaustive dynamic behavior of the sys-
tem for proving safety and bounded liveness properties. The
verifier, which is a symbolic model checker, is implemented
using sophisticated constraint-solving techniques where ef-
ficiency and optimization are emphasized. Space reduction
is accomplished by both local and global reduction. The
local reduction involves reducing the amount of space a
symbolic state occupies and is accomplished by the com-
pact representation of Difference Bounded Matrix (DBM)
for clock constraints. The global reduction involves reduc-
ing the number of states to remember during a course of
reachability analysis [14, 10, 11].

A UPPAAL model consists of a set of timed automata, a
set of clocks, global variables, and synchronizing channels.

A node in an automaton may be associated with an invari-
ant, which is a set of clock constraints given in the form of
inequalities that should be true while at the node, for en-
forcing transitions out of the node. An arc may be associ-
ated with guards, which are constraints on clocks and global
variables that have to be true for enabling the transition, for
controlling when this transition can be taken. On any tran-
sition, local clocks may get reset and global variables may
get re-assigned. A trace in UPPAAL is a sequence of states,
each of which containing a complete specification of a node
from each automata, such that each state is the result of a
valid transition from the previous state. More details on
timed-automata may be found in [2] and more details on
UPPAAL basics may be found in [10].

4 UPPAAL for HSTS

Figure 4 shows the overall structures of UPPAAL (repre-
sented as Model Checking) and HSTS (represented as Plan-
ning). There is an apparent similarity between their compo-

Model Checking Planning

PlanSatisfaction status
and diagnosis trace

TA model

Model Checker Planner

Property Goal

DDL model
1?

2?

3?

Figure 4: Model Checking and Planning Structures. The dotted arrows
represent possible component mappings.

nents. Model checking takes a domain model and a property
as input and produces the truth value of the property in ad-
dition to a diagnosis trace. Planning takes a domain model
and a goal as input and produces a complete plan that satis-
fies the goal. On the other hand, the representation and rea-
soning techniques for their components are different. Due
to structural similarity of UPPAAL and HSTS, a cross fer-
tilization among their components may be possible. Also,
due to the differences in their implemented techniques, this
may be fruitful. Our research at this time is to investigate
the benefit of using UPPAAL reasoning engine to validate
HSTS domain models as well as validating HSTS reasoning
engine. The first step, which is the focus of this paper, is to
find a mapping from HSTS domain models into UPPAAL
(Figure 4, dotted line with label 1?, right to left). Then, a set
of properties should be carefully constructed and checked.
Since model checking formalisms cannot easily represent
all aspects of HSTS domain models, we restrict our map-
ping to a subsetof the HSTS Domain Description Lan-



DDL2UPPAAL main()
1. Build Init Automata() ;

for each State Variable,
add an Automaton with a dedicated local clock

for each predicate,
add a node in the corresponding automaton

for each node,
reset the local clock on the outgoing arc

2. Add Compatibilities();
for each compatibility on the predicate corresponding

to a node P,
for max duration constraint,

add invariant on P
for min duration constraint,

add a guard on the outgoing arc from P
Process the AND/OR compatibility tree

if (root = ”AND”) process AND-subtree(root)
elseif (root = ”OR”) process OR-subtree(root)
else process simple-Temporal-Relation(root)

Figure 5: ddl2uppaal: An algorithm for mapping HSTS domain models
into UPPAAL

guage. Nevertheless, this subset is representative enough
for our current research and to be extended as needed.

4.1 Mapping HSTS models into UPPAAL

An algorithm for mapping HSTS plan models into UP-
PAAL models, which is called ddl2uppaal, is presented in
Figure 5. Each state variable is represented as a UPPAAL
automaton where each value (predicate) of the state variable
is represented as a node. Transitions of an automaton rep-
resent value ordering constraints of the corresponding state
variable which are specified using themeetandmetby rela-
tions. Duration constraints are translated into invariants and
guards of local clocks. Temporal relation constraints are
implemented through communication channels. In general,
constraints on the starting point of a predicate are mapped
into a chain of conditionalincomingarcs into its node. Sim-
ilarly, constraints on the end point of a predicate are mapped
into a chain of conditionaloutgoingarcs from its node. The
nodes separating these conditional arcs are declared to be
committed, which means they have zero durations.

Before we present the details of handling general tem-
poral specifications, we will illustrate how the mapping al-
gorithm works on a complete example that contains only
simple, non-durational, point-based temporal compatibili-
ties. This is for the purpose of giving the reader the feel
for a complete mapping and results. For that, we apply
ddl2uppaal on the the Rover and Rock specification and
show the results in Figure 6. Studying Rover.getRock node,

we find the duration constraint represented as the c1<=9
invariant and the c1>= 3 guard on the outgoing arc. The
constraint of metby Rover.gotoRock is represented by the
incoming arc. The constraint of (meets Rover.gotoSOR
meets Rover.gotoRock) is represented by branching outgo-
ing arc. Finally, the constraint of meets Rock.withRover is
expressed via the label ’ch1?’ on its outgoing arc, which
indicates a need for synchronization with a transition la-
beled with ’ch1!’1. This transition is the incoming arc to
Rock.withRover. In the following, we give details on map-

Rover Rock

atS

gotoRock getRock

gotoS atL

withRover

c1<=9

c1<=10

c1<=20

{c1>=3, ch1?,  c1:=0}

c1 := 0 }{

 {c1>=5,c1:=0}

{c1:=0} {ch1!, c2:=0}

Figure 6: UPPAAL model of the Rover and Rock example. c1 is the
local clock of Rover and c2 is the local clock of Rock.

ping durations and AND/OR connectors. We will, however,
omit details related to distinguishing betweenmastersand
servantsin the temporal specifications as this is beyond the
scope of this paper.

4.1.1 Mapping durations of temporal relations

p1

rest

... ...s1?

s1!, c1:=0
awake
c1<=5

wait

c1>=3

c1<=5

s2?

... p2...s2!

Figure 7: Mapping “p1 before[3,5] p2” into UPPAAL. Showing: part
of the post conditions of p1, part of the pre-conditions of p2,
and the Timer automaton used to capture the end of p1, wait
for 3 to 5 time units, then capture the start of p2.

Direct synchronizations is suitable for durationless re-
lations as we have demonstrated above for themeetsand
metby relations. However, direct synchronization falls
short for representing relations that involve durations such
asbefore. To handle relations with durations, we have intro-
duced the theTimerswhich are timed automata that play the
role of mediators in the synchronization process. A Timer

1The ’!’ and ’?’ are used to indicate synchronized transitions and their
roles are fully interchangeable. However, there is the convention of using
’!’ to mean ”send” and ’?’ to mean ’receive’. Accordingly, we are asso-
ciating ’!’ with the servant and ’?’ with the master of the corresponding
temporal relations.



receives a signal from the event that is supposed to happen
first, reset its clock, and wait for a signal from the event that
is supposed to happen next within specified time duration.
Figure 7 shows a Timer that is used to support the temporal
relation “p1 before[3,5] p2”.

4.1.2 Mapping doublesided temporal relations

In all the above, we were concentrating on relations that
involve only one pair of end points. For temporal relations
that involves two pairs of end points, such asequalandcon-
tains, we need to handle double synchronizations. For du-
ration less relations, such asequal, direct double synchro-
nization at both ends of the events is needed. For relations
with durations, the Timers are to perform the synchroniza-
tion between the first pair of events, same as for singlepair
relations, followed by performing the synchronization be-
tween the second pair. Figure 8 shows a Timer that is used
to support the temporal relation “p1 contains[3,5][1,6] p2”.

......p1......
s1? s4?

p2 ... .........
s2! s3!

rest1
s1!, c1:=0

awake1 ready1

c1<=5 c1<=5

c1>=3
s2?

awake2 s3?,c1:=0
rest2

c1<=6

s4!

ready2
c1<=6

c1>=1

Figure 8: Mapping “p1 contains[3,5][1,6] p2” into UPPAAL. Showing:
part of the pre and post conditions of p1, part of the pre and
post conditions of p2, and the Timer automaton used to cap-
ture the start of p1, wait for 3 to 5 time units, capture the start
of p2, rest until capturing the end of p2, wait for 1 to 6 time
unites, and then capture the end of p1.

4.1.3 Mapping AND/OR in temporal specifications

The AND for temporal compatibility specifications
means that all conditions have to be satisfied. From the
above, we assume the reader has become familiar with how
simple temporal specification is represented. Represent-
ing the AND of several temporal constraints translates into
chaining all the pre-conditions and post-conditions of all
involved constraints. Figure 9 illustrates how the AND is
mapped. On the other hand, the OR means that at least
one of the conditions has to be satisfied. For that, we
combine all the pre-conditions and the post-conditions of
the involved specifications in a bundle-like, or alternative
branches, pre-condition and post-condition where only one

l1 r1

r2

rnln

l2

cond1

cond2

condn

.

.

...

...

...

...

...

...

el1

el2

eln

er2

er1

ern

Pre-condition Post-condition

l1 ... ... e12/l3 ... eln-1/ln ... eln

AND (cond1,cond2,...condn):
Pre-condition

Post-condition

r1 er1/r2 er2/r3 ern-1/rn ern... ... ... ...

el1/l2

Figure 9: Mapping AND into UPPAAL. Nodes with two names such as
’el1/l2’ indicates a merger of the two corresponding nodes.

OR(cond1,cond2,...condn):

l1 el1

l2 el2

ln

r1 er1

r2 er2

rn ern

ernew

elnewlnew

rnew

...

...

...

...

...

...

.

. .
.

.

.
.
.

Pre-condition

Post-condition

flg:=1

flg:=2

flg:=n

flg==1

flg==2

flg==n

eln

Figure 10: Mapping OR into UPPAAL. This figure builds on the con-
ditional representation of the OR elements given in Fig-
ure 9. Two new nodes are introduced to collect the starts
and ends of each pre-conditional chain. Same for the post-
conditional chains. Flags are added for matching the chosen
pre-condition with its post-condition.

of them has to be followed. Figure 10 illustrates the trans-
lation of the OR. Notice the use of flags that will force a
specific path to be followed on the exit from the concerned
node when its corresponding branch was followed at the en-
trance to this node. This is done by setting the flag value at
the entry to a pre-condition branch to a unique value (e.g.,
flg:=1) and check for the this value at the entry to the corre-
sponding post-condition branch (e.g., flg==1).

4.2 Validation Properties

UPPAAL allows for verifying properties that concern the
validation of both: HSTS domain models and HSTS plan-
ning engine.

For the validation of domain models, we are in search
for properties that are useful for ensuring correctness and



detecting inconsistencies and flaws in the domain speci-
fications. One of the important properties that UPPAAL
is capable of detecting is the violations of mutual exclu-
sion of predicates, which is useful for detecting an in-
complete specification of compatibilities in an HSTS do-
main model. For example, you may check the property
of: (E<>Rover.GetRock and Status.Hazard) which reads
”there exists a trace where at some point in time the rover
is picking a sample rock under hazardous condition”. If the
property is satisfied, then the user might have forgotten to
include the condition that prevents this from happening in
the domain model specifications.

Another useful property is to check for the reachability
of each predicate (from one specific initial state or from
each possible initial state). Finding that certain predicate
is unreachable indicates the possibility of inconsistent spec-
ifications in the HSTS domain model.

For the validation of the HSTS planning engine, we are
interested in checking that the engine works correctly. One
aspect of its correctness is the capability of generating a
plan whenever there is one. We are also interested in check-
ing the quality of generated plans. For this purpose, we
could treat the model checker as an alternative planning en-
gine. We map planning goals into Uppaal properties (Fig-
ure 4, dotted line with label 2?, right to left), map Uppaal
traces into plans (Figure 4, dotted line with label 3?, left
to right), and compare with the plans generated by the the
planning engine. Details on these mappings and compari-
son is beyond the scope of this paper.

5 Summary

Our work tackles the problem of using Model Check-
ing for the purpose of verifying planning systems. We pre-
sented an algorithm that maps plan models into timed au-
tomata. This involves translating interval-based temporal
relations into point-based temporal model where synchro-
nization channels and Timers were used to handle distance
constraints.

After translating a plan model, properties can be checked
for detecting inconsistencies and incompleteness in the
model. In addition, the model checking search engine can
be used as an independent problem solving mechanism for
verifying the planning engine.

Since complete constraint planning models are much too
complex for a complete translation into a model checking
formalism, there is a need for building representative “ab-
stract” models. We will investigate such abstraction in the
near future.

We are currently working on identifying a set of verifica-
tion properties that guarantee a certain degree of coverage
for HSTS models and the Planning engine. We are also
analyzing the benefits, and limitations, of using a model

checker for HSTS verification. In addition, we are extend-
ing the ddl2uppaal algorithm to handle a larger subset of
DDL.
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