
Implementing Runtime Monitors?

Klaus Havelund

Jet Propulsion Laboratory, California Institute of Technology, USA

Runtime Verification (RV) consists in part of checking program executions
against formalized requirements. The field has within the last decade specifically
focused on various notions of state machines, temporal logics such as future and
past time Ltl (Linear Temporal Logic), regular expressions, grammars, and rule-
based systems. Using the high-level JVM-based Scala programming language
[12], which combines object-oriented and functional programming, we will illus-
trate how some of these systems can be implemented in an elegant manner. The
logics differ in expressiveness as well as in ease of use. Some implementation
schemes are more efficient than others, whereas some are easier to implement
and therefore easier to adapt to changing user requirements.

1 Rewriting Systems versus Automata

Temporal logic can be executed for runtime verification purposes as a rewriting
system, on an event-by-event manner [6]. Consider for example the until operator
p U q (p until q) in Linear Temporal Logic (Ltl) [11]. The formula p U q means:
q must eventually be true and until then p must be true. The operator satisfies
the following recursive equation:

p U q ≡ q ∨ (p ∧©(p U q))

reading: p U q is true now if q is true now or: p is true now and in the next step
p U q is true (©ψ means ψ is true in the next step). This equation can form
the basis of an implementation based on rewriting. That is, given a formula
and a new incoming event, the formula can be rewritten into a new formula
that has to hold in the next state. A special case of rewriting is alternating
automata [13] where the target of a labelled transition from a single state can be
a formula constructed from conjunctions and disjunctions of states. In general, a
more efficient approach is to translate Ltl to non-deterministic or deterministic
automata [7]. See also [9] for an account on teaching such concepts. However,
interestingly, rule-based systems, such as Ruler [2], which are based on a form of
rewriting, seem of real practical interest and will be discussed in the presentation.

2 Propositional versus Data Parameterized Logics

Very early monitoring systems supported monitoring of propositional specifica-
tions. For example properties such as the following (for a martian rover):

? Part of the work to be covered in this presentation was carried out at Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.



�(open→ ¬send U close)

reading: it is always the case, that when a file is opened, it should eventually
be closed, and it should not be sent to ground before then. However, more
recent monitoring systems handle data parameterization, allowing formulas to
be specific about data parameters to formulas. A data parameterized version of
the above formula could for example be the following, stating that for all files
f , if f is opened then eventually it should be closed and not sent before then:

∀f : File • �(open(f)→ ¬send(f) U close(f))

We shall present two implementations of parameterized logics, one based on
rewriting and one based on automata. The rewriting solution is implemented
in the TraceContract system [1], which is an internal DSL extending the
Scala programming language with linear temporal logic and state machines.
The automata solution is an abstract representation of the Mop system [3]. A
characteristic difference between the two systems is that in TraceContract
data and control are merged into the same representation, whereas in Mop
data are handled separately from the temporal logic. This makes Mop more
efficient and allows Mop to provide a parameterization solution for any kind of
propositional logic. A logic becomes a plugin in other words. We shall outline
the advantages and disadvantages of the two approaches.

3 External versus Internal DSLs

We can consider a logic for runtime verification as a DSL (Domain Specific
Language) [5]. One distinction that we shall emphasize is that of external DSLs
versus internal DSLs. An external DSL is a specialized language focusing only
on the specific task it is meant to handle, in this case trace analysis. An internal
DSL (or embedded DSL as it is sometimes referred to) is an extension of a
general purpose programming language, in this case we consider an extension
of Scala. An external DSL is usually very convenient for expressing solutions
to typical problems, and is usually very efficiently implemented. An internal
DSL may, however, deliver the expressiveness needed for special case problems
that go beyond the typical case. In the extreme, an internal DSL offers the
underlying programming language in case this is needed, whereas the added
DSL layer can be used only for those situations where it is appropriate. An
internal DSL is usually easier to implement due to the re-use of language concepts
provided by the underlying programming language, and due to the avoidance of a
parser. An internal DSL, on the other hand, might be less suited for automated
analysis, such as for example DSL specific type checking. A separate issue is
that an external DSL might be easier to learn for users not familiar with the
underlying programming language, whereas an internal DSL might be preferred
by programmers.



4 Code Instrumentation versus Design by Contract

A runtime monitor is typically developed with the purpose to monitor an execut-
ing program. Part of an RV environment is therefore traditionally an automated
method to instrument code to emit events or states to the runtime monitor.
We will briefly outline how Aspect-Oriented Programming (AOP) can be used
to instrument software programs for monitoring, specifically with examples in
using AspectJ [8] for instrumenting Java programs.

Usually monitors are written in separate files or modules, very similar to
how aspects are written in separate aspect modules in AOP. Runtime verifica-
tion can, however, be more tightly integrated with programming. The classical
paradigm of design by contract suggests that methods/functions are developed
with contracts in the form of pre/post conditions and invariants. This paradigm
is supported by various programming languages, such as Eiffel [4]. One can
easily imagine such contracts being extended with trace contracts stating tem-
poral properties about interfaces, for example stating policies about the ordering
of method calls. We shall illustrate how design by contracts in Scala as outlined
in [10] can be extended with such trace contracts.

References

1. H. Barringer and K. Havelund. TraceContract: A Scala DSL for trace analysis.
In 17th International Symposium on Formal Methods (FM’11), Limerick, Ireland,
June 20-24, 2011. Proceedings, volume 6664 of LNCS, pages 57–72. Springer, 2011.

2. H. Barringer, D. E. Rydeheard, and K. Havelund. Rule systems for run-time
monitoring: from Eagle to RuleR. J. Log. Comput., 20(3):675–706, 2010.

3. F. Chen and G. Roşu. Parametric trace slicing and monitoring. In Proceedings of
the 15th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’09), volume 5505 of LNCS, pages 246–261, 2009.

4. Eiffel. http://www.eiffel.com.
5. M. Fowler and R. Parsons. Domain-Specific Languages. Addison-Wesley, 2010.
6. K. Havelund and G. Rosu. Monitoring programs using rewriting. In 16th ASE

conference, San Diego, CA, USA, pages 135–143, 2001.
7. G. J. Holzmann. The Spin Model Checker – Primer and Reference Manual.

Addison-Wesley, 2004.
8. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.

An overview of AspectJ. In European Conference on Object-oriented Programming,
volume 2072 of LNCS, pages 327–353. Springer, 2001.

9. M. Leucker. Teaching runtime verification. In Runtime Verification - Second Int.
Conference, RV’11, San Francisco, California, USA, September 27-30, 2011. Pro-
ceedings, volume TBD of LNCS. Springer, 2011.

10. M. Odersky. Contracts for Scala. In Runtime Verification - First Int. Conference,
RV’10, St. Julians, Malta, November 1-4, 2010. Proceedings, volume 6418 of LNCS,
pages 51–57. Springer, 2010.

11. A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foun-
dations of Computer Science, pages 46–57. IEEE Computer Society, 1977.

12. Scala. http://www.scala-lang.org.
13. M. Y. Vardi. Alternating automata and program verification. In Computer Science

Today. Proceedings, volume 1000 of LNCS, pages 47–485. Springer, 1995.


