
Towards a Unified View of
Modeling and Programming

(Track Summary)

Manfred Broy1, Klaus Havelund2?, Rahul Kumar3, and Bernhard Steffen4

1 Technische Universität München, Germany
2 Jet Propulsion Laboratory, California Inst. of Technology, USA

3 Microsoft Research, USA
4 TU Dortmund University, Germany.

1 Motivation and Goals

Since the 1960s we have seen tremendous amount of scientific and methodological
work in the fields of specification, design, and programming languages. In spite
of the very high value of this work, however, this effort has found its limitation
by the fact that we do not have a sufficient integration of these languages, as
well as tools that support the development engineer in applying the correspond-
ing methods and techniques. A tighter integration between specification and
verification logics, graphical modeling notations, and programming languages is
needed.

In a (possibly over) simplified view, as an attempt to impose some structure
on this work, we can distinguish between three lines of work: formal methods,
model-based engineering, and programming languages. Formal methods include,
usually textual, formalisms such as VDM, CIP, Z, B, Event-B, ASM, TLA+, Al-
loy, and RAISE, but also more or less automated theorem proving systems such
as Coq, Isabelle, and PVS. Such formalisms are usually based on mathematical
concepts, such as functions, relations, set theory, etc. A specification typically
consists of a signature, i.e. a collection of names and their types, and axioms
over the signature, constraining the values that the names can denote. A spec-
ification as such denotes a set of models, each providing a binding of values to
the names, satisfying the axioms. Such formal methods usually come equipped
with proof systems, such that one can prove properties of the specifications, for
example consistency of axioms, or that certain theorems are consequences of
the axioms. A common characteristic of these formalisms is their representation
as text, defined by context-free grammars, and their formalization in terms of
semantics and/or logical proof systems. In parallel one has seen several model
checkers appearing, such as SPIN, SMV, FDR, and UPPAAL. These usually

? The research performed by this author was carried out at Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.



prioritize efficient verification algorithms over expressive and convenient specifi-
cation languages. Exceptions are more recent model checkers for programming
languages, including for example Java PathFinder (JPF).

Starting later in the 1980s, the model-based engineering community devel-
oped graphical formalisms, most prominently represented by UML and later
SysML. These formalisms offer graphical notation for defining data structures
as “nodes and edge” diagrams, and behavioral diagrams such as state machines
and message sequence diagrams. These formalisms specifically address the ease of
adoption amongst engineers. It is clear that these techniques have become more
popular in industry than formal methods, in part likely due to the graphical
nature of these languages. However, these formalisms are complex (the stan-
dard defining UML is much larger than the definition of any formal method or
programming language), are incomplete (the UML standard for example has no
expression-language, although OCL is a recommended add-on), and they lack
commonly agreed up semantics. This is not too surprising as UML has been
designed on the basis of an intuitive understanding of the semantics of its indi-
vidual parts and concepts, and not under the perspective of a potential formal
semantics ideally covering the entire UML. This leaves users some freedom of
interpretation, in particular concerning the conceptual interplay of individual
model types and often leads to misunderstandings, but it has still been suffi-
cient in practice in order to support tool-based system development, even by
providing, e.g., partial code generation. On the other hand, it is also responsible
for the only very partial successes of the decades of attempts to provide formal
semantics to UML. One may, therefore, argue that (the abstract syntax and in-
tuitive semantics of) UML, as it stands, is not adequately designed to support
a foundation in terms of a formal semantics. It would therefore be interesting
to reconsider the design of UML with the dedicated goal to provide a formal
semantics and thereby reach a next level of maturity.

Finally, programming languages have evolved over time, starting with nu-
merical machine code, then assembly languages, and transitioning to higher-level
languages with FORTRAN in the late 1950s. Numerous programming languages
have been developed since then. The C programming language has since its cre-
ation in the early 1970s conquered the embedded software world in an impressive
manner. Later efforts, however, have attempted to create even higher-level lan-
guages. These include language such as Java and Python, in which collections
such as sets, lists and maps are built-in, either as constructs or as systems li-
braries. Especially the academic community has experimented with functional
programming languages, such as ML, OCaml, and Haskell, and more recently
the integration of object-oriented programming and functional programming, as
in for example Scala.

Each of the formalisms mentioned above have advantageous features not
owned by other formalisms. However, what is perhaps more important is that
these formalisms have many language constructs in common, and to such an
extent that one can ask the controversial question: Should we strive towards a
unified view of modeling and programming? It is the goal of the meeting to discuss



the relationship between modeling and programming, with the possible objective
of achieving an agreement of what a unification of these concepts would mean
at an abstract level, and what it would bring as benefits on the practical level.
What are the trends in the three domains: formal specification and verification,
model-based engineering, and programming, which can be considered to support
a unification of these domains. We want to discuss whether the time is ripe for
another attempt to bring things closer together.

2 Contributions

The paper contributions in this track are introduced below. The papers are or-
dered according to the sessions of the track: (1) opinions, (2) more concrete, (3)
meta-level considerations, (4) domain-specific approaches, (5) tools and frame-
works view, and (6) panel. Within each track the papers are ordered to provide
a natural flow of presentations.

2.1 Opinions

Selic [16] (Programming ⊂ Modeling ⊂ Engineering) takes the position that mod-
els and modeling have a much broader set of purposes than just programming. It
points out that there is a direct conflict between modeling and programming, as
modeling is based on abstracting away irrelevant details whereas programming
requires full implementation oriented details. In the end, the paper investigates
the question of the complex relationship between modeling and programming.
Finally it comes up with the question of whether modelers can become program-
mers, and it concludes that it has to deal with the question whether high level
modeling languages can be used as implementation languages.

Seidewitz [15] (On a Unified View of Modeling and Programming – Position
Paper) considers a unified view of modeling and programming. Seidewitz takes
the position that some software models specify behavior precisely enough that
they can be executed, and that all programs can be considered models, at least
of the execution they specify. He concludes that modeling and programming are
actually not so different after all, and there might be conversions. He claims
that the language design legacy of UML is largely grounded on the old view of
sharply separating models and programs, complicating their future convergence,
and that it is perhaps time to move forward in the direction of new generations
of unified modeling and programming languages.

Haxthausen and Peleska [5] (On the Feasibility of a Unified Modelling and
Programming Paradigm) argue that we should not expect there to be a single
“best” unified modeling, programming and verification paradigm in the future.
They, on the contrary, argue that a multi-formalism approach is more realistic
and useful. Amongst the reasons mentioned is that multiple stake holders will
not be able to agree on a formalism. The multi-formalism approach requires to
translate verification artifacts between different representations. It is illustrated
by means of a case study from the railway domain, how this can be achieved,
using concepts from the theory of institutions, formalized in category theory.



2.2 More Concrete

Elaasar and Badreddin [3] (Modeling Meets Programming: A Comparative Study
in Model Driven Engineering Action Languages) compare two approaches, Alf
and Umple, where modeling meets programming. They start from the remark
that modeling and programming have often been considered two different do-
mains. They point out, that this is true when modeling is primarily meant for
human communication, but is not the case when modeling is meant for execution.
In their paper they discuss two approaches that specifically address execution.
In particular they consider the language Alf, that has evolved from the modeling
community to make models executable, and Umple, that has evolved from the
academic community to introduce abstractions of modeling into programming
languages. The paper discusses critical differences, and ideas for future evolution
of model oriented programming languages.

Lattmann, Kecskés, Meijer, Karsai, Völgyesi, and Lédeczi [8] (Abstractions
for Modeling Complex Systems) present three abstraction methods for improving
the scalability of the modeling process and the system models themselves. The
abstractions, crosscuts, model libraries, and mixins, are part of the WebGME
framework, and the paper describes how these abstractions are incorporated into
this framework.

Leavens, Naumann, Rajan, and Aotani [9] (Specifying and Verifying Ad-
vanced Control Features) discuss the problem of verifying programs that are
written with design patterns such as higher-order functions, advice, and con-
text dependence. Such concepts allow for greater modularity and programming
convenience, but tend to be harder to verify. They propose the use of Greybox
specifications and techniques for verification of such programs.

2.3 Meta-Level Considerations

Rouquette [13] (Simplifying OMG MOF-based Metamodeling) discusses the com-
plexity of UML, the meta-model MOF used to define it, and the XML Metadata
Interchange (XMI) standard used for serializing UML models. He alternatively
suggests to define the abstract syntax of a modeling language as a normalized
relational schema, and to consider a particular model as tabular instance of that
schema. He finally suggests leveraging recent advances in functional program-
ming languages, such as Scala, in order to modernize the traditional practice of
model-based programming with the Object Constraint Language (OCL) and the
Query/View/Transformation (QVT) standards.

Prinz, Møller-Pedersen, and Joachim Fischer [12] (Modelling and Testing of
Real Systems) elaborate on OMG-style modeling conventions, in particular by
introducing the distinction between description and prescription in order to deal
with partially realized systems. Whereas the former is intended for capturing
already existing parts of a foreseen system, the latter specifies to be realized
parts. This distinction is also used in their testing approach which reminds of
hardware in the loop or back-to-back testing, where real and simulated parts are
simultaneously used. The power of this approach depends on the executability



level of the underlying (modeling) languages, which ranges from mere presenta-
tion to dual executability as required for fully exploiting the presented testing
approach. In this sense, the corresponding 5-level hierarchy can be regarded as
a specific top-level view for merging the modeling and programming landscapes.

Kugler [6] (Unifying Modelling and Programming: A Systems Biology Per-
spective) suggests to explore the topic of unifying modeling and programming in
the context of computational systems biology, which is a field in its early stages,
and therefore potentially more receptive to new ideas. Here, for example cells
can be effectively described as biological programs. Software and system devel-
opment share several of the main challenges that computational systems biology
is facing : making models amendable to formal and scalable reasoning, using vi-
sual languages, combining different programming languages, rapid prototyping,
and program synthesis.

2.4 Domain-Specific Approaches

Berry [1] (Formally Unifying Modeling and Design for Embedded Systems - a
Personal View) shows the direct and formal connection between model-based
design and programming in the synchronous languages framework, which is tai-
lored for the embedded system domain. In this setting higher-level models can
comfortably be designed, verified, and subsequently transformed to high qual-
ity system code. That this actually works as described has been witnessed in
the past, and it is the foundation for the Kieler framework, where the design
of hardware circuits is targeted. On the one hand, Berry’s work impressively
demonstrates the synergies between modeling and programming. On the other
hand, the author explicitly admits that the success of his overall framework is
domain-specific, and cannot easily be generalized.

Rybicki, Smyth, Motika, Schulz-Rosengarten, and Hanxleden [14] (Interac-
tive Model-Based Compilation Continued Incremental Hardware Synthesis for
SCCharts) present an extension of the Kieler development framework, which
further strengthens its meta-modeling based approach for stepwise translating
high level descriptions to hardware. Remarkable is its user-orientation: not only
can the effect of the (M2M) transformations steps be controlled via sophisticated
graphical visualization, but also subsequent simulation runs can be followed at
each of the intermediate levels. Thus Kieler can be regarded as a framework
where models are “morphed” to programs and even hardware by automatic
transformation. At the practical side this illustrates the maturity of Eclipse’s
meta-modeling facilities, which, in the meantime, can effectively be used to in-
tegrate domain-specific languages into a development framework.

Larsen, Fitzgerald, Woodcock, Nilsson, Gamble, and Foster [7] (Towards Se-
mantically Integrated Models and Tools for Cyber-Physical Systems Design) ar-
gue that the modeling of specifically embedded cyber-physical systems best can
be done using multiple formalisms. A case study of a small unmanned aerial vehi-
cle is used to demonstrate the need for multiple formalisms, namely a formalism
for defining control, in this case VDM-RT, and a formalism for continuous be-
havior defined by differential equations, in this case 20-sim. The integration is



founded in the semantic framework of Unifying Theories of Programming (UTP).
Combined systems are suggested simulated via a co-simulation framework.

2.5 Tools and Frameworks View

Lethbridge, Abdelzad, Orabi, Orabi, and Adesina [10] (Merging Modeling and
Programming using Umple) present Umple, a programming and modeling lan-
guage that has been created by introducing modeling constructs in programming
and vice-versa. Umple aims at maintaining model-code and text-diagram duality.
Several examples and uses of Umple are provided with a broad discussion.

Elmqvist, Henningsson, and Otter [4] (Systems Modeling and Programming
in a Unified Environment based on Julia) present a new methodology for model-
ing cyber physical systems using a Modelica-like extension of the powerful Julia
programming language – a language extension they call Modia. A good discus-
sion is provided by the authors regarding the needs of a Model Based Systems
Engineering approach, along with a strong description of the features and imple-
mentation of the Modia language. Examples and illustrations are also provided
in great detail.

Naujokat, Neubauer, Margaria, and Steffen [11] (Meta-Level Reuse for Mas-
tering Domain Specialization) reflect on the distinction between modeling and
programming in terms of what and how, and emphasize the importance of
perspectives: what is a model (a what) for the one, may well be a program
(a how) for the other. In fact, attempts to pinpoint technical criteria like exe-
cutability or abstraction for clearly separating modeling from programming seem
not to survive modern technical developments. Rather, the underlying concep-
tual cores continuously converge. What remains is the distinction of what and
how, separating true purpose from its realization, i.e. providing the possibil-
ity of formulating the primary intent without being forced to over-specify. The
paper argues that no unified general-purpose language can adequately support
this distinction in general, and propose a meta-level framework for mastering
the wealth of required domain-specific languages.

2.6 Panel

The panel section started with a presentation by Broy, Havelund, and Kumar [2]
(Towards a Unified View of Modeling and Programming), who present an argu-
ment for unifying modeling and programming in one formalism. They highlight
relevant developments in the fields of formal methods, model-based engineering,
and programming languages. They subsequently illustrate how modeling can be
perceived as programing via examples in the Scala programming language. The
paper concludes with a summary of issues considered important to reflect on in
any attempt to unify modeling and programming. They specifically highlight the
need to combine textual and visual languages, the need for allowing definition
of domain-specific languages, and the need for analysis support.



References

1. G. Berry. Formally unifying modeling and design for embedded systems – a per-
sonal view. In T. Margaria and B. Steffen, editors, 7th International Symposium
On Leveraging Applications of Formal Methods, Verification and Validation, ISoLA
2016, Corfu, Greece, October 10-14, LNCS. Springer, 2016. These proceedings.

2. M. Broy, K. Havelund, and R. Kumar. Towards a unified view of modeling and
programming. In T. Margaria and B. Steffen, editors, 7th International Symposium
On Leveraging Applications of Formal Methods, Verification and Validation, ISoLA
2016, Corfu, Greece, October 10-14, LNCS. Springer, 2016. These proceedings.

3. M. Elaasar and O. Badreddin. Modeling meets programming: A comparative study
in model driven engineering action languages. In T. Margaria and B. Steffen, edi-
tors, 7th International Symposium On Leveraging Applications of Formal Methods,
Verification and Validation, ISoLA 2016, Corfu, Greece, October 10-14, LNCS.
Springer, 2016. These proceedings.

4. H. Elmqvist, T. Henningsson, and M. Otter. Systems modeling and programming
in a unified environment based on Julia. In T. Margaria and B. Steffen, editors, 7th
International Symposium On Leveraging Applications of Formal Methods, Verifica-
tion and Validation, ISoLA 2016, Corfu, Greece, October 10-14, LNCS. Springer,
2016. These proceedings.

5. A. E. Haxthausen and J. Peleska. On the feasibility of a unified modelling and
programming paradigm. In T. Margaria and B. Steffen, editors, 7th International
Symposium On Leveraging Applications of Formal Methods, Verification and Val-
idation, ISoLA 2016, Corfu, Greece, October 10-14, LNCS. Springer, 2016. These
proceedings.

6. H. Kugler. Unifying modelling and programming: A systems biology perspective.
In T. Margaria and B. Steffen, editors, 7th International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation, ISoLA 2016, Corfu,
Greece, October 10-14, LNCS. Springer, 2016. These proceedings.

7. P. G. Larsen, J. Fitzgerald, J. Woodcock, R. Nilsson, C. Gamble, and S. Foster.
Towards semantically integrated models and tools for cyber-physical systems de-
sign. In T. Margaria and B. Steffen, editors, 7th International Symposium On
Leveraging Applications of Formal Methods, Verification and Validation, ISoLA
2016, Corfu, Greece, October 10-14, LNCS. Springer, 2016. These proceedings.

8. Z. Lattmann, T. Kecskés, P. Meijer, G. Karsai, P. Völgyesi, and Ákos Lédeczi.
Abstractions for modeling complex systems. In T. Margaria and B. Steffen, edi-
tors, 7th International Symposium On Leveraging Applications of Formal Methods,
Verification and Validation, ISoLA 2016, Corfu, Greece, October 10-14, LNCS.
Springer, 2016. These proceedings.

9. G. T. Leavens, D. Naumann, H. Rajan, and T. Aotani. Specifying and verifying
advanced control features. In T. Margaria and B. Steffen, editors, 7th International
Symposium On Leveraging Applications of Formal Methods, Verification and Val-
idation, ISoLA 2016, Corfu, Greece, October 10-14, LNCS. Springer, 2016. These
proceedings.

10. T. C. Lethbridge, V. Abdelzad, M. H. Orabi, A. H. Orabi, and O. Adesina. Merg-
ing modeling and programming using Umple. In T. Margaria and B. Steffen,
editors, 7th International Symposium On Leveraging Applications of Formal Meth-
ods, Verification and Validation, ISoLA 2016, Corfu, Greece, October 10-14, LNCS.
Springer, 2016. These proceedings.



11. S. Naujokat, J. Neubauer, T. Margaria, and B. Steffen. Meta-level reuse for master-
ing domain specialization. In T. Margaria and B. Steffen, editors, 7th International
Symposium On Leveraging Applications of Formal Methods, Verification and Val-
idation, ISoLA 2016, Corfu, Greece, October 10-14, LNCS. Springer, 2016. These
proceedings.

12. A. Prinz, B. Møller-Pedersen, and J. Fischer. Modelling and testing of real systems.
In T. Margaria and B. Steffen, editors, 7th International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation, ISoLA 2016, Corfu,
Greece, October 10-14, LNCS. Springer, 2016. These proceedings.

13. N. F. Rouquette. Simplifying OMG MOF-based metamodeling. In T. Margaria
and B. Steffen, editors, 7th International Symposium On Leveraging Applications of
Formal Methods, Verification and Validation, ISoLA 2016, Corfu, Greece, October
10-14, LNCS. Springer, 2016. These proceedings.

14. F. Rybicki, S. Smyth, C. Motika, A. Schulz-Rosengarten, and R. von Hanxleden.
Interactive model-based compilation continued – incremental hardware synthesis
for SCCharts. In T. Margaria and B. Steffen, editors, 7th International Symposium
On Leveraging Applications of Formal Methods, Verification and Validation, ISoLA
2016, Corfu, Greece, October 10-14, LNCS. Springer, 2016. These proceedings.

15. E. Seidewitz. On a unified view of modeling and programming – position paper. In
T. Margaria and B. Steffen, editors, 7th International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation, ISoLA 2016, Corfu,
Greece, October 10-14, LNCS. Springer, 2016. These proceedings.

16. B. Selic. Programming ⊂ modeling ⊂ engineering. In T. Margaria and B. Stef-
fen, editors, 7th International Symposium On Leveraging Applications of Formal
Methods, Verification and Validation, ISoLA 2016, Corfu, Greece, October 10-14,
LNCS. Springer, 2016. These proceedings.


