Towards a Unified View of
Modeling and Programming

Manfred Broy', Klaus Havelund?", and Rahul Kumar®

! Technische Universitéit Miinchen, Germany
2 Jet Propulsion Laboratory, California Inst. of Technology, USA
3 Microsoft Research, USA

Abstract. In this paper we argue that there is a value in providing a
unified view of modeling and programming. Models are meant to de-
scribe a system at a high level of abstraction for the purpose of human
understanding and analysis. Programs, on the other hand, are meant for
execution. However, programming languages are becoming increasingly
higher-level, with convenient notation for concepts that in the past would
only be reserved formal specification languages. This leads to the obser-
vation, that programming languages could be used for modeling, if only
appropriate modifications were made to these languages. At the same
time, model-based engineering formalisms such as UML and SysML are
highly popular in engineering communities due to their graphical nature.
However, these communities are, due to the complex nature of these for-
malisms, struggling to find grounds in textual formalisms with proper
semantics. A unified view of modeling and programming may provide a
common ground. The paper illustrates these points with selected exam-
ples comparing models and programs.

1 Introduction

Over the last several decades we have observed the development of a large collec-
tion of specification and modeling languages and associated methodologies, and
tools. Their purpose is to support formulation of requirements and high-level
designs before programming is initiated. Agile approaches advocate to avoid ex-
plicit modeling entirely and suggest to go directly to coding. Other approaches
advocate avoiding manual coding in a programming language entirely and sug-
gest instead the generation of code directly from the models. This way modeling
languages replace programming languages. We can divide modeling languages
into formal specification languages (formal methods), usually focusing on textual
languages based on mathematical logic and set theory, and associated proof tools
(theorem provers, model checkers, etc.), and on the other hand model-based en-
gineering languages (UML, SysML, Modelica, Mathematica, ...), focusing more

" The research performed by this author was carried out at Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.

on visual descriptions, code generation, and simulation. Many of these languages
have similarities with programming languages.

In parallel, and frankly seemingly independent, we have seen the development
of numerous new programming languages. Few languages have had the success
of C, which still today is the main programming language for embedded systems.
The success is so outstanding that nearly no progress wrt. praxis has been made
in this domain (embedded programming) since the 1970ties, although some richer
languages appeared soon after C in this domain, such as C++, Ada, and Eiffel.
These later languages for example all have module systems, which C does not.
We have seen several high-level languages appear that target the softer side
of software engineering (such as web-programming, user interfaces, scripting),
including languages such as Java, JavaScript, Ruby, Python and Scala. More
academic languages include Haskell and the ML family, including OCaml.

There is seemingly a strict difference between a modeling language and a
programing language. For a programming language we always assume a notion
of executability and computability. Programming languages are restricted to con-
cepts that can be executed. Put differently, programming languages put emphasis
on the “how”, the algorithms for solving problems. A specification and modeling
language in principle should rather focus on the “what”. A mathematical way
of phrasing this is that specifications should ideally be predicates on solutions
(executions for example). Intuitively, one may also argue that there are modeling
tasks which do not directly aim at programing, for instance if we model a busi-
ness process independent of the question which parts should be carried out by
machines. This is modeling, which seems far away from programming. It might
be interesting to bring it into a form which is closer to programming if we want
to simulate or automatically analyze such models. But here there seems to be
a boundary. Programming means computability. Modeling can be more general.
Finally, at a more technical level, in programming, at least when we work in
general purpose programming languages, we have to deal with non termination
and the concept of undefined [15]. In a number of modeling approaches such
concepts like undefined are avoided. Here again there is an interesting challenge
in a unifying view of modeling and programming. We would have to manage to
introduce the concepts of undefined into modeling, representing nonterminating
expressions in programming. Some attempts have been made in this direction
though, for example 3-valued logic as found in VDM [31].

In spite of these perceived differences, the similarities between modeling lan-
guages and programming languages are obvious, which suggests a unifying view.
For example, many logics support the notions of local variables with bounded
scopes and syntactic expressions similar to programming languages. Many mod-
eling languages even offer programming constructs, such as mutable variables,
assignment statements, and looping (while) statements, and of course recursion.
Furthermore, some of the modeling languages, such as UML, are deeply influ-
enced by programming languages wrt. how models are structured. In particular,
the idea of object-oriented modeling is taken from the concept of object-oriented
programming. It is even considered one of the strong sides of object-orientation,

that one can have a unified view of object-oriented specification, object-oriented
design, and object-oriented programming. In summary, the concepts that are
used in modeling and the concepts that are used in programming are so closely
related that it is beneficial to attempt a unified view.

In this paper we attempt to argue for such a unified view of modeling and
programming. This view can in the extreme be considered a call for a single
universal formalism for modeling and programming any form of system. This
is done by high-lighting some trends in modeling and programming, and by
programming some example models in the Scala programming language, a high-
level formalism suited for this purpose. However, we fully understand that such
a unification faces many obstacles, some of which are non-technical. What we
intend is to fuel an effort to at least consider merging efforts to the extent feasible.
We believe that the model-based engineering community can learn from the
formal methods and programming language communities, and vice versa. Note
that even if a single formalism would appear, there will always be alternatives,
just like there are multiple programming languages (evolution continues).

The paper is organized as follows. In Section 2 we give a brief overview of
some of the trends in modeling and programming, that we consider important.
In Section 3 we illustrate with examples how modeling can be perceived as
programming. Finally Section 4 outlines brief discussion points to be reflected
on when considering a unified approach, as well as a conclusion.

2 Trends in Modeling and Programming

In this section we briefly survey some trends in the fields of formal methods,
model-based engineering, and programming, that we find worthwhile highlight-
ing.

2.1 Formal Methods

Early work on formal methods include the work of John McCarthy (Recursive
Functions of Symbolic Expressions and Their Computation by Machines [341] and
Towards a Mathematical Science of Computation [35]), Robert Floyd (Assigning
Meanings to Programs [19]), Edsger Dijkstra (A Discipline of Programming [10]),
Tony Hoare (An Aziomatic Basis for Computer Programming [29]), and Dana
Scott and Christopher Strachey (Towards a Mathematical Semantics for Com-
puter Languages [36]), to mention a few. These ideas were theoretic in nature and
deeply influential. They brought us the ideas of annotating programs with asser-
tions, such as pre- and post-conditions, and invariants, correct by construction
development (refinement), and giving semantics to programming languages.
These ideas were subsequently the basis for several, what we could call, sec-
ond generation formal specification languages such as VDM [13,14,31], VDMt
[18], Z [37], B and Event-B [12], CIP [38], TLA [32], RAISE [22], and OBJ [21],
to mention just a few. Each of these languages are full specification languages,
most with rich type systems and detailed rules (grammars) for what constitutes

a valid specification. These languages were ahead of their time wrt. language
features in the sense that many of these features have found their way into mod-
ern programming languages of today. A particular example of this is collections
(sets, lists, and maps).

The VDM language for example is a wide-spectrum specification language
offering a combination of high-level specification constructs and low level pro-
gramming like constructs. The methodology consists in part, as in CIP, of refining
a high-level specification into a low-level program like specification in a stepwise
manner. The language offers concepts such as the combination of imperative
(procedural and later object-oriented in VDM™ ") and functional programming;
exceptions; algebraic data types and pattern matching; functions as values and
lambda abstractions; built-in collection types such as sets, lists and maps, with
mathematical notation for creating values of these types, such as for example
set comprehension; design-by-contract through pre- and post conditions and in-
variants; predicate subtypes (so one for example can define natural numbers
as a subset of the integers); and predicate logic including universal and exis-
tential quantification over any type as Boolean expressions. VDM and Z are
so-called model oriented specification languages, meaning that a specification is
an example model of the desired system. This means that such specifications are
somewhat close to high-level programs. This is in contrast to so-called property
oriented (algebraic) specification languages, such as OBJ, where a specification
denotes a set of models?.

A different branch of formal methods includes theorem proving and model
checking. In theorem proving we have seen specification languages, which re-
semble functional programming languages, including for example Isabelle [10],
PVS [11], and Coq [9]. In model checking, early work, such as Spin [30], focused
on modeling notations. However, recent research has focused on software model
checking, where the target of model checking is code, as for example seen in the
Java PathFinder model checker (JPF) [27,28], and in Modex [30] (for C). JPF
was created due to the observation that a powerful programming language might
be a more convenient modeling language than the traditional model checker in-
put languages. Numerous model checkers now target C.

As can be seen from the above discussion, formal specification languages have
for a long time been flirting with programming language like notations, and vice
versa. However, the two classes of languages have by tradition been considered as
belonging to strictly separate categories. VDM for example was always, and still
is, considered a specification language, albeit with code generation capabilities.
It has never, in spite of the possibility, been named a programming language,
which one may consider being as one of the reasons it is not more wide spread.
Writing specifications in VDM and generating code in Java, for example, has not
become popular. Programmers feel uncomfortable working with two languages
(a specification language and a programming language) when the two languages

4 This characteristic of the difference is somewhat simplified since a VDM specification
in fact also can denote more than one model.

are too similar. This is an argument for merging the concepts into a specification,
design and implementation language.

2.2 Model-based Engineering

Model-based engineering includes modeling frameworks that are usually visual /-
graphical of nature. One of the main contributions in this field is UML [8] for
software development, and its derivatives, such as SysML [7] for systems devel-
opment. The graphical nature of the UML family of languages has caused it to
become rather popular and wide-spread in engineering communities. Engineers
are more willing to work with graphical notations, such as class diagrams and
state machines, than they are working with sets, lists and maps and function
definitions. It seems clearly more accepted than formal methods as described in
the previous section.

One of the important notations in UML/SysML is class diagrams. Class di-
agrams are, just like E/R-diagrams, really a simple way of defining data, an
alternative to working with sets, lists and maps as found in VDM and modern
programming languages. For example, to state that a person can own zero or
more cars one draws a box for Person, and a box for Car, and draws a line be-
tween them. It is an idea that quickly can be picked up by a systems engineer,
quicker than learning to use programming language data structures. Another
notation is that of state machines, a concept that interestingly enough has not
found its way into programming languages, in spite of its usefulness in espe-
cially embedded programming. UML and SysML also support requirements (as
special comments), a concept that usually is not embedded as a first citizen in
programming.

The above observations are rather positive. However, UML and SysML are
very complexly and weakly defined formalisms. For example, the (human unread-
able) abstract syntax for UML (including OCL, in a different document) is 11605
lines of XML, whereas the typical (human readable) concrete syntax (grammar)
for a programming language is between 500 and 2500 lines. The UML/SysML
standards are long and complex documents. Furthermore, the connection be-
tween models and code is fragile, relying on the correctness of translators from
for example UML state machines to code. Finally, a discussion about semantics
(what do two boxes with a line in between mean?) can turn a project meeting
into chaos.

2.3 Programming

Several new programming languages have emerged over the last decades, which
include abstraction mechanisms known from the formal specification languages
mentioned above. Such languages include SPARK Ada, Eiffel, Java, Python,
Scala, Julia, Fortress, C#, Spec#, F#, D, RUST, Swift, Go, Dafny, and Agda.
Some languages support design-by-contract with pre-post conditions, and in
some cases with invariants. These languages include for example SPARK Ada,
Eiffel, Spec#, Dafny, and to some limited extent Scala. Java supports contracts

through JML, which, however, is not integrated with Java, but an add-on com-
ment language (JML specifications are comments in a Java program). Most of
the languages above support abstract collections such as sets, lists and maps.
It is interesting to observe that SUNs Fortress language (which unfortunately
was not finished due to lack of funding) supports a mathematical notation for
collections very similar to VDM. The systems Dafny and Why3 are amongst
the newest branches of work, interesting since these languages are developed
specifically with verification in mind.

A trend on the rise is the combination of object-oriented and functional pro-
gramming, as seen perhaps most prominently in Scala, but also in the earlier
Python, and now in Java which got closures in version 1.8. Ocaml is a similar ear-
lier attempt to integrate object-oriented and functional programming, although
in a layered manner, and not integrated with the standard module system. As
in many other aspects, Lisp was early out with this combination with the Com-
mon Lisp Object System (CLOS). Some interesting new directions of research
include dependent types as found in Agda (to some extent related to predicate
subtypes in VDM) and session types. Session types are temporal patterns that
can be checked at compile time. They are much related to temporal logic as
used within the formal methods community to express properties of concurrent
programs. At the same time there are also attempts to move away from C, but
without losing too much efficiency. Examples include the languages Go, D and
RUST. However, as stated earlier, C has an impressive staying power, and none
of such attempts have yet become main stream.

3 Modeling as Programming

In this section we shall attempt to explore the argument that modeling can be
perceived as programming. We will do this through a small collection of exam-
ples, illustrating how what is normally considered as modeling can be perceived
as programming. Models are encoded in the Scala programming language, which
is sufficiently high-level to illustrate the point. We start with class diagrams, as
found in UML and SysML, then move on to a classical formal specification lan-
guage such as VDM and finally discuss Domain-Specific Languages (DSLs).

3.1 Modeling of Class Diagrams

A commonly used part of UML and SysML is the class diagram. The class
diagram is a visualization of data structures as nodes and edges. Nodes represent
data elements and edges represent the relationships between data elements. To
take an example, consider the class diagram in Figure 1 (the example is adopted
from [0]). This diagram models libraries of books. In this diagram a box (node)
denotes a type, a set of objects of that type. Hence for example the top node
| Library| (references to text, for example names, in models are enclosed in |...|)
denotes the type of libraries: a set of library objects each representing a library.
A library has a name, which is a string. Note that such data of primitive types

(strings, integers, reals, Booleans, ...) are represented as so-called attributes and
are declared inside the boxes instead of as edges, although in principle they can
be perceived edges to boxes representing primitive types®. A library consists of
(left arrow) a collection of books (zero or more represented by the multiplicity
0..%), reachable from a library object via the field | books|. In the other direction:
a book is related to zero or one (0..1) libraries. Similarly, a library (right arrow)
has associated a collection of members. Books and members have names. In
addition each book has as attribute the number of books on shelf. Finally, a
loan is a connection between a book and a member, and a library has associated
a collection of (current) loans.

library E Library 0..1
0.1 = name : EString library
0..* | books 0..* |loans 0..* | members
H Book book g Loan member H Member
© name : EString o date : EDate = name : EString
© copies : EBignteger | 0--1 0.1

Fig. 1. The book library (from [6])

— Book
name : seq CHAR
copies : 2

copies > 0

Fig. 2. Z model of books in a library

In many modeling situations such diagrams form the core of the modeling
effort. Constraints can be added to such diagrams. For example one constraint
could be that the number of copies of a book should be positive. Such a constraint
(not shown) can be added inside a special constraint box on the diagram in
Figure 1, attached to the |Book] box with a dotted line. It is interesting to

5 This is an example of a discussion about semantics that can throw a project meeting
off its course.

note, that a box with an associated constraint (written in another box and
linked with a line) conceptually is very similar to the idea of a Z schema [37],
as shown in Figure 2°. This schema represents the fundamental concept of a
model: a signature (the declaration of |name| and |copies| above the line with
their types) and then zero or more axioms (below the line). Attempts have been
made to provide textual versions of UML and SysML diagrams. An example
is the K specification language [20], that was developed at JPL. The expression
language of K as well as Z (what is written in constraints) is predicate logic. Both
languages support datatypes such as sets, including advanced set expressions
such as set comprehension. K is object-oriented and is inspired by Z, as well as
by other languages, such as VDM [13,14,31,18] and RAISE [22].

Another textual notation coming out of the model-based engineering commu-
nity itself is OCLInEcore [5], which is an attempt to define a textual language
combining the structure oriented Ecore meta-model of the Eclipse Modeling
Framework (EMF) [2] with the OCL constraint language (Object Constraint
Language) [1]. OCL is a declarative expression language that is now part of
the UML standard. OCL descended from Z, but is based on chained method
calls read from left to right, starting from finite collections, in contrast to pred-
icate logic. For example OCL does not have general universal and existential
quantification over infinite sets. In predicate logic we would write a universal
quantification over a set/type S as follows: Vz : S e P(z), meaning: for all z in
the set S, P(x) is true. In OCL one would write this as: |S— forAll(x | P(x))].
However, OCL requires S to be finite, in contrast to predicate logic, where S can
be infinite. This is the major distinction between OCL and predicate logic, in
addition to the alternative syntax. OCL is executable, given a model instance.

In order to illustrate OCLInEcore we expand our example by adding the
following requirement: “The number of loans that a book is part of should be
less than or equal to the number of copies of the book”. The OCLInEcore model
in Figure 3 formalizes this requirement. For this purpose, in addition to the
two attributes |name| and |copies|, two properties are defined. In contrast to
an attribute, which has a primitive type, a property is linked to one or more
objects of another user-defined type (those drawn as boxes in class diagrams).
The property | library | links a book to the library it is part of, and is the “opposite
property” of the |books| property of the |Library| (expressed using the |#]-
notation), meaning that if a book is in the |books| set (technically a bag) of a
library, then the library is also in the | library | of the book. The ¢|?|’ represents
0or 1.

The property |loans| denotes a collection of |Loan]| objects and is derived
(meaning its value depends on other values), with the formula defining its value
provided as an OCL expression. The expression reads as follows: from this book
(referred to as |self| later in the expression), retrieve the library it is part of,
retrieve the loans of this library, and select those for which the book is equal
to | self|. For a given collection |S|, the notation |S— M(...)| means calling the

5 Note that the constraint can actually be avoided in Z by defining the type of | copies |
to be N1, the natural numbers starting from 1.

class Book {
attribute name : String;
attribute copies : Integer;

property library#books : Library[?];

property loans : Loan[+] { derived }

{

derivation: library.loans— select(book=self);

}

operation isAvailable() : Boolean|[?]

body: loans— size() < copies;

}

invariant CopiesPositive:
copies > 0;

invariant SufficientCopies:
loans— size() < copies;

Fig. 3. OCLInEcore model of books in a library (from [6], modified)

method |M] on the set |S|. Hence in this case the |select(predicate)| method
is defined on sets and returns the subset of elements of the set satisfying the
predicate. The two invariants can now be formulated, and their explanation
should at this point be straight forward. The operation |isAvailable | is defined
to illustrate that one can also define such, here with an OCL expression as
body. One can also define operations with side-effects specified with pre/post
conditions. No code with side-effects, however, is allowed in bodies of operations,
which seems to be a limitation, and a sign of an attempt to move towards a
programming language, but not all the way.

The main point we are trying to make here is that the OCLInEcore model,
which in reality is very similar to a Z specification (signature + axioms), can
(for the most part) be elegantly expressed in the Scala programming language.
This is shown in Figure 4. The class |Book| extends the class |Model|, which
we have programmed to offer various methods for writing models, including the
| invariant | method used to define invariants. What in the OCLInEcore model
was the property |loans| and the operation |isAvailable |, are here modeled as
methods (using the |def| keyword). Multiplicities such as | Loan[x]| are modeled
using Scala’s collection libraries, in this case [Set[Loan]|. The Scala definitions
should be somewhat obvious. It is clear that Scala in this case can model this
problem in a manner comparable to OCLInEcore. In addition, Scala offers so
much more than OCLInEcore, such as an actual programming language.

trait Book extends Model {
var name: String
var copies: Int
var library: Library

def loans: Set[Loan] =
library .loans. filter (-.book eq this)

def isAvailable (): Boolean =
loans. size < copies

invariant ("CopiesPositive") {
copies > 0

}

invariant ("SufficientCopies™") {
loans. size <= copies

}
}

Fig. 4. Scala program modeling books in a library

The only code that has to be written to provide support for writing class
invariants is the definition of the class |Model|, which is shown in Figure 5.
Without going into details, the class defines a method |invariant |, which as
argument takes a Boolean call-by-name argument. The argument is not evaluated
before the method body is executed, rather, it is only evaluated whenever referred
to. In this case it is stored, still unevaluated, in a list of invariants, all of which
can then be verified on an object of this class with a call of | verify |. Note that
such invariants (specifications) in addition can be the target of more formal
analysis, just as they can in a formal specification language.

3.2 VDM™T Specifications

As another example, we shall consider a chemical plant alarm management sys-
tem, first modeled in VDM™* in [18] and also later modeled in Scala in [23],
which goes into further detail comparing VDM*+ and Scala. We show here a
slight modification of the VDM™™ specification as well as the corresponding
Scala program. In [18] the example specification was associated with a corre-
sponding UML class diagram to illustrate how the two techniques can co-exist.
Here we shall put emphasis on VDM and its relationship to Scala.

The system shall manage the calling out of experts to deal with opera-
tional faults discovered in a chemical plant. Two operations must be provided.
| ExpertToPage|: Upon detection of a faulty condition, an alarm is raised, and
this operation must find an expert on duty able to handle the alarm. Each alarm
is associated with a specific qualification required to fix the causing problem, and

10

trait Model {
type Constraint = Unit = Boolean

var constraints: List [(String, Constraint)] = Nil

def invariant (name: String)(c: = Boolean) {
constraints ::= (name, (Unit = c))

}

def verify () {
for ((n, ¢) <— constraints) assert(c (), n)

}
}

Fig. 5. Support for defining invariants in Scala

each expert is associated with a set of qualifications. Upon an alarm, an expert
must be found, and paged, that is on duty during the corresponding period and
with the right qualification. | ExpertlsOnDuty |: returns the periods during which
an expert is on duty. In addition to providing these two operations, the state
of the system must satisfy the following invariant: (i) There must be experts
on duty during all periods allocated in the system. (ii) For any alarm and for
any period, there should exist an expert assigned to that period that has the
qualification required to fix the source problem of the alarm.

The VDM™T class |Plant] in Figure 6 is part of the model of this system
(other classes/types shown in [18] have been left out here: |Alarm], |Period],
and |Expert]). The body of this class is divided into three sections: instance
variables (mutable variables), functions (with no side-effects), and operations
(with side-effects). An invariant defined by the function |PlantInv| is imposed
on the instance variables. The corresponding Scala program modeling the plant is
shown in Figure 7. We shall not go into the further details, except for mentioning
the use of the |suchthat| method in the Scala program, defined in the |Model]
class, which from a finite set selects an element satisfying a predicate provided
as argument.

3.3 Domain-Specific Languages

We consider the ability to define domain-specific languages (DSLs) an essential
part of a modeling/programming framework. This form of activity is supported
within the UML/SysML community through meta-modeling and profiles. Pro-
gramming languages have been slower to pick up this concept, although an early
language such as Lisp supported macros from its birth. A modern programming
language such as Scala supports definition of so-called internal DSLs with a col-
lection of a few elegant language features. In this section we shall illustrate this
with an example DSL for monitoring event sequences. The example was also

11

class Plant
instance variables
alarms : set of Alarm;
schedule : map Period to set of Expert;

inv PlantInv(alarms,schedule);

functions
PlantInv: set of Alarm % map Period to set of Expert — bool
PlantInv(as,sch) ==
(forall p in set dom sch & sch(p) <> {})
and
(forall a in set as &
forall p in set dom sch &
exists expert in set sch(p) &
a.GetReqQuali() in set expert.GetQuali());

operations
public ExpertToPage: Alarm * Period =Expert
ExpertToPage(a, p) ==
let expert in set schedule(p) be st
a.GetReqQuali() in set expert.GetQuali()
in
return expert
pre a in set alarms and p in set dom schedule
post let expert = RESULT in
expert in set schedule(p) and
a.GetReqQuali() in set expert.GetQuali();

public ExpertIsOnDuty: Expert =set of Period
ExpertIsOnDuty(ex) ==
return {p | p in set dom schedule & ex in set schedule(p)};
end Plant

Fig. 6. VDM'" model of plant

12

trait Plant extends Model {
var alarms: Set[Alarm]
var schedule: Map[Period, Set[Expert]]

invariant { PlantInv(alarms, schedule)}

def PlantInv(alarms: Set[Alarm], schedule: Map[Period, Set[Expert]]): Boolean =
(schedule.keySet forall {p = schedule(p) != Set()})
&&
(alarms forall { a =
schedule.keySet forall { p =
schedule(p) exists { expert =
a.reqQuali in expert.quali

}
}
)

def ExpertToPage(a: Alarm, p: Period): Expert = {
require ((a in alarms) && (p in schedule.keySet))
schedule(p) suchthat { expert =
a.reqQuali in expert.quali

} ensuring { expert =
(a.reqQuali in expert.quali) &&
(expert in schedule(p))
}

def ExpertIsOnDuty(ex: Expert): Set[Period] =
schedule.keySet filter { p = ex in schedule(p) }

Fig. 7. Scala program modeling plant

13

listed in [25]. An internal DSL is an extension of the programming language, in
this case effectively an API, however, expressed in such a way that use of this
API has the flavor of new syntax added to the language.

class NoLockCycles extends Monitor {

"r1" —— ’acquire(’t,’l) |—> "Locked(’t,’1)

"r2" —— "Locked(’t,’l) & ’release (’t,’1) |—> remove(’Locked)

"r3" —— ’Locked(’t,’ll) & ’acquire(’t,’12) |—> ’Edge(’11,’12)

'ran —— "Bdge(’11,12) & 'Edge(’12,'13) & not('Edge(’11,'13)) |—> "Edge(’11,'13)
"r5" —— "Edge(’11,12) |—> { if (get C11) == get(’12)) fail () }

Fig. 8. Scala program written in the rule DSL, monitoring lock operations

The DSL illustrated here is LogFire [24], created for rule-based programming,
and specifically for writing temporal trace properties. We shall not go into the
details of LogFire (the reader is referred to [24]), but only show a model written
in this DSL, and briefly explain how the DSL is defined. A monitor is specified
as a set of rules, each of the form:

name —— condition; & . ..& condition,, —— action

A rule consists of a left-hand side: a list of conditions, and a right-hand side:
an action. The rules operate on a set of facts, the fact memory (implemented as
a Rete network [20]) where conditions check the presence or absence of cer-
tain facts, and the action adds or deletes facts, or executes any Scala code
inserted as part of the action. Figure 8 illustrates a monitor, which monitors
acquire(thread, lock) and release(thread, lock) events emitted from an instru-
mented multi-threaded application, that uses locks to protect against data races.
The monitor attempts to determine whether any group of threads access locks
in a cyclic manner, which potentially can lead to deadlocks (the classical dining
philosopher problem). A cycle is detected if for any lock [there is an edge from
[back to itself.

The class contains five rules. Beyond the monitored events |acquire| and
| release |, the monitor adds and deletes |Locked(thread,lock)| facts (the thread
holds the lock), and adds |Edge(lockl,lock2)] facts, representing that there is
an edge from |lockl| to |lock2], indicating that a thread holds |lockl| while
acquiring |lock2]. The class extends the |Monitor| class which contains the DSL
definitions that allow us to write rules in this manner. Specifically the functions:
|——], [&], [|->], [remove], and | fail |.

The implementation of this DSL relies on Scala’s (1) allowance for methods
having symbol names, such as |——] and [|->], (2) allowance for method calls of
the form |obj.method(arg) | to be written as |obj method arg], and (3) automated
insertion (by the compiler) of user-defined implicit functions that can lift a value

14

of one type to a value of another type in places where the compiler’s type checker
fails to type check an expression. For example part of the DSL implementation
are the definitions shown in Figure 9. The implicit function |liftRuleName| gets
invoked by the compiler automatically when a string is followed by the symbol
|——]. It lifts the string (rule name) to an anonymous object, which provides
the method |——], which when applied to a condition returns an |RuleDef| ob-
ject, which provides the methods |&| and ||—>]. This way method calls can be
chained together.

implicit def liftRuleName(name: String) =
new {
def ——(c: Condition) = new RuleDef(name, List(c))

}

class RuleDef(name: String, conditions: List [Condition]) {
def &(c: Condition) = new RuleDef(name, ¢ :: conditions)

def |—>(stmt: = Unit) {
addRule(Rule(name, conditions.reverse, Action((x: Unit) = stmt)))

}
}

Fig. 9. Scala rule DSL implementation

We do notice, however, some drawbacks of the Scala DSL. Notice the quoted
names: |’acquire], | 'Locked], | 't], etc. These are Scala symbols (elements of the
type |Symbol]). It is not possible in this form of DSL to avoid these quotes.
Likewise, the name of the rule is a string. Furthermore, a monitor in this DSL
cannot be type checked without actually running the monitor. That is to say,
Scala’s DSL defining features are not optimal, although they do make defining
internal DSLs somewhat easier.

4 Discussion and Conclusion

A unified modeling and programming framework has to satisfy quite different
and contradicting goals. First of all, it has to represent the concepts of the ap-
plication domain at an adequate level of abstraction such that the specialities
of the applications are directly represented and not covered by awkward imple-
mentation concepts. Second it has to address the structuring of algorithms and
data structures in a way such that programs stay understandable, modular and
support the most important methods of structured program development. And
finally it has to allow addressing specific implementation properties of execution
machines including their operating systems, such that it can be controlled how
the implementation uses resources and exploits the possibilities of the execution

15

platform and its hardware. An obvious problem here of course is to what extent
the particular application domain influences the programming language, and to
what extent this is true for the execution platform and efficiency concerns as
well. In the following we shall briefly mention some of the elements to consider
when imagining a unified approach to modeling and programming,.

Target domains: We can observe three major domains of interest, namely model-
ing; programming of non-embedded systems, such as web applications, including
scripting; and finally programming of embedded and cyber-physical systems. It
is clear that these three domains till date have been addressed by different com-
munities and different languages. The question is to what extent these quite
different domains could be targeted with the same formalism. Note that the dif-
ferent modeling and programming languages used on different targets have an
overwhelming number of language constructs in common, to an extent where
this question at least needs to be answered in a scientific manner rather than in
an opinionated emotional manner.

Predicate specifications: A formalism must generally support specifying proper-
ties as predicates rather than only as algorithms. Predicate-oriented techniques
include design-by-contract, including pre- and post-conditions, as well as state
invariants. Such can for example be found in Eiffel as well as in SPARK. This
concept can be carried further to for example include behavioral sequence spec-
ification, such as temporal logics, sequence diagrams, etc. Note, however, that
many models are very operational in nature, and hence can very well best be
formulated as state machines, or programs (data structures and algorithms).

Programming in the large: A formalism must support programming in the large,
and in general provide good modularization and component-based development.
One cannot discuss components without discussing concurrency. Concurrency is
an essential part of modern programming, especially considering the emergence
of multi-core computers. However, concurrency is important at the modeling
level as well, where it can serve as a natural way to describe interacting agents.
Important concepts include agent systems, message passing based communica-
tion, parallel data structures (programming concurrent without knowing it), and
distributed programming.

High-level programming: A formalism must support high-level programming as
found in modern programming languages. The elegance of functional program-
ming has been praised many times. Nevertheless its breakthrough is only recent.
In contrast, object-oriented programming, which in particular addresses encap-
sulation and reuse, has been very popular for decades now. A language such as
Scala integrates the two paradigms nicely, as even early versions of Lisp (CLOS)
did. Functional programming means for example functions as values (lambda ab-
stractions) and pattern matching, and of course reliance on recursion. Functional
programming is by some considered the best approach to use multi-core systems
due to no shared state updates. A key feature of VDM was the introduction

16

of elegant syntax for collections, such as sets, lists and maps. These days such
concepts are introduced in languages mostly as libraries. Fortress has built-in
syntax for these very similar to VDM. There should be easy ways of iterating
through collections to avoid indexing problems, as well as support for parallel
computation over such. A formalism should be statically typed, although with
type inference, and with allowance for going type less in clearly defined regions
to support scripting. Decades of experience in strong type systems should be
harvested, including more recent topics such as dependent types, session types,
and units.

Low-level programming: A formalism must support low-level programming. Em-
bedded programing often means: no dynamic memory allocation after initial-
ization, no garbage collection, some knowledge of memory layout, even to the
point where computation with addresses is used to improve speed. This again
means use of low level programming languages such as C. C, however, allows for
memory errors and makes programmers less effective as they would otherwise
be were they allowed to program in higher-level languages. We need to satisfy
the needs encountered by typical C programmers, including offering compara-
ble speed and memory control. This includes support for hardware control and
targeting specific execution platforms

Continuous mathematics: A formalism can support modeling of cyber-physical
systems. That is: physical systems controlled by computer programs. To model
(not program) a cyber-physical system, there is a need for describing contin-
uous behavior using continuous mathematics, including for example differen-
tial equations, as supported by for example Modelica [17,4] and Mathematica
[3]. Modelica is an object-oriented language for modeling systems containing
mechanical, electrical, electronic, hydraulic, thermal, control, electric power or
process-oriented subcomponents. Models can be simulated. Mathematica is a
more broadly scoped symbolic mathematical computation program. A closely
related continuous mathematics topic is real-time analysis, as for example per-
formed by real-time model checkers such as UPPAAL [33]. Whether continuous
mathematics should be part of a programming solution is a controversial topic.

Domain-specific languages: A formalism must support definition of domain-
specific languages. A key to modeling and programming is to capture the relevant
concepts of the application domain. UML for example supports meta-modeling
and profiles, used for defining (graphical) domain-specific languages. The pro-
gramming language community is still somewhat behind in this respect. It should
be easy for developers to define new domain-specific languages, either external
stand-alone, or internal extending the modeling/programming formalism.

Visualization: A formalism must be visualizable. Visualization is of extreme
importance, as demonstrated by the relative success of formalisms such as UML
and SysML in the engineering community, when compared to formal methods
textual notations. People generally are more at ease looking at a two-dimensional

17

illustration when they encounter a problem specification for the first time, and
it eases communication. Whether visualization is useful as well for entering and
maintaining specifications is another matter. We do believe that visualization
and text should match up, such that modification of one leads to immediate
change in the other. Visualization is normally static, rendering static models
as pictures. However, visualization can also be dynamic, of program executions,
illustrating how behavior evolves.

Analysis: A formalism must be analyzable. A key concept in a combined mod-
eling and programming environment is the support for advanced analysis of
models/programs, including, but also beyond, what is normally supported in
standard programming environments. This ranges from basic built-in support
for unit testing, over advanced testing capabilities, including test input genera-
tion and monitoring, to concepts such as static analysis, model checking, theorem
proving and symbolic execution. A core requirement, however, must be the prac-
ticality of these solutions. The main emphasis should be put on automation. The
average user should be able to benefit from automated verification, without hav-
ing to do manual proofs. However, support for manual theorem proving should
also be possible, for example for core critical algorithms. Integration of static
and dynamic analysis will be desirable: verify what is practically feasible, and
test (monitor) the remaining proof obligations.

What modelers do that programmers don’t: A central question is how a mod-
el/program is represented. Within the formal methods and programming com-
munities this is simple: specifications/programs are represented as text, exactly
as typed in by a user. Any tools such as analyzers and compilers read in the
text and produce results. The specification language or programming language
is defined by a grammar, which succinctly formalizes what is the language of
syntax correct texts. In the case of a compiler it produces binary code/byte
code, which of course can be stored and used by other programs. However, at
the core, the program text is the main reference, from which other formats can
be generated. A compiler will produce an abstract syntax tree (AST) from the
text, but it only lives as long as the compiler runs. The situation is different in
the model-based engineering community. Here the syntax is mostly graphical,
and it is not the main representation (and not of main importance). Instead,
abstract syntax is the key representation, often stored in XML, from which ev-
erything else is generated. In support of collaborative environments there is even
a push for storing models in databases, which can be accessed by multiple users
simultaneously, hence a more sophisticated approach than the text-based source
code repositories often used by programmers. Modelers furthermore have the
habits if querying models, transforming models, and generally consider models
as data, in contrast to the programming community where data usually are sep-
arated from programs. That is, from within a program one can usually not get
access to the entire AST of the program itself, although often limited forms of
reflection are possible. These different views of representations are worthwhile
investigating.

18

Conclusion We have in this paper outlined some views on the potential in
combining modeling and programming, supported by analysis capabilities such
as static analysis, model checking, theorem proving, monitoring, and testing. We
believe that the time is right for the formal methods/modeling and programming
language communities to join forces. To some extent this is already happening
in the small. However, we believe that we are standing in front of a major
wave of research creating a united foundation for modeling, programming and
verification. A cynical argument is that this is all obvious, which may very well

be true.

References

1. Documents associated with Object Constraint Language (OCL), Version 2.4.

. Accessed: 2016-06-29.

2. EMF. . Accessed: 2016-07-6.

3. Mathematica. . Accessed: 2016-06-
29.

4. Modelica - A Unified Object-Oriented Language for Systems Modeling. Lan-

10.
11.
12.
13.
14.

15.

16.
17.

18.

guage Specification Version 3.3.
. Accessed: 2016-06-29.

OCLInEcore. . Accessed:
2016-06-28.

OCLInEcore online tutorial. . Accessed: 2016-06-28.
OMG Systems Modeling Language (SysML). . Ac-

cessed: 2016-07-12.
OMG Unified Modeling Language (UML).
Accessed: 2016-07-12.

The Coq Theorem Prover. . Accessed: 2016-07-12.
The Isabelle Theorem Prover. . Accessed: 2016-
07-12.

The PVS Theorem prover. . Accessed: 2016-07-12.
J.-R. Abrial. Modeling in Event-B. Cambridge University Press, 2010.

D. Bjgrner and C. B. Jones, editors. The Vienna Development Method: The Meta-
Language, volume 61 of LNCS. Springer, 1978.

D. Bjgrner and C. B. Jones. Formal Specification and Software Development.
Prentice Hall International, 1982. ISBN 0-13-880733-7.

M. Broy. From chaos to undefinedness. In K. Futatsugi, J. Jouannaud, and
J. Meseguer, editors, Algebra, Meaning, and Computation: Essays dedicated to
Joseph A. Goguen on the Occasion of his 65th Birthday, volume 4060 of LNCS,
pages 476-496. Springer, 2006.

E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

H. Elmqvist, M. Otter, D. Henriksson, B. Thiele, and S. E. Mattsson. Modelica for
embedded systems. In Proceedings of the 7th Modelica Conference, Como, Italy,
pages 354-363, September 2009.

J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef. Validated
Designs For Object-oriented Systems. Springer-Verlag TELOS, Santa Clara, CA,
USA, 2005.

19

http://www.omg.org/spec/OCL/2.4
http://www.eclipse.org/modeling/emf/
https://www.wolfram.com/mathematica
https://www.modelica.org/documents/ModelicaSpec33.pdf
https://www.modelica.org/documents/ModelicaSpec33.pdf
https://wiki.eclipse.org/OCL/OCLinEcore
http://goo.gl/wR2HvP
http://www.omgsysml.org
http://www.omg.org/spec/UML
https://coq.inria.fr
https://isabelle.in.tum.de
http://pvs.csl.sri.com

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

R. W. Floyd. Assigning meanings to programs. In J. Schwartz, editor, Mathe-
matical Aspects of Computer Science, Proc. of Symp. in Applied Math. American
Mathematical Society, Rhode Island, USA, pages 19-32, 1967.

C. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence, 19:17-37, 1982.

K. Futatsugi, J. A. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles of OBJ2.
In POPL, 1985.

C. George, P. Haff, K. Havelund, A. Haxthausen, R. Milne, C. B. Nielsen, S. Prehn,
and K. R. Wagner. The RAISE Specification Language. The BCS Practitioner
Series, Prentice-Hall, Hemel Hampstead, England, 1992.

K. Havelund. Closing the gap between specification and programming: VDM*+
and Scala. In M. Korovina and A. Voronkov, editors, HOWARD-60: Higher-Order
Workshop on Automated Runtime Verification and Debugging, volume 1 of Fasy-
Chair Proceedings, December 2011. Manchester, UK.

K. Havelund. Rule-based runtime verification revisited. Software Tools for Tech-
nology Transfer (STTT), 17:143-170, 2015.

K. Havelund and R. Joshi. Experience with rule-based analysis of spacecraft logs.
In C. Artho and C. P. Olveczky, editors, Formal Techniques for Safety-Critical Sys-
tems: Third International Workshop (FTSCS 2014), November 2014, Luxembourg,
volume 476 of Communications in Computer and Information Science, pages 1-16.
Springer International Publishing, April 2015.

K. Havelund, R. Kumar, C. Delp, and B. Clement. K: A wide spectrum language
for modeling, programming and analysis. In Proceedings of the 4th International
Conference on Model-Driven Engineering and Software Development (MODEL-
SWARD), Rome, Italy, pages 111-122. Scitepress digital library, February 2016.
K. Havelund and T. Pressburger. Model checking Java programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer,
STTT, 2(4), April 2000.

K. Havelund and W. Visser. Program model checking as a new trend. STTT,
4(1):8-20, 2002.

C. A. R. Hoare. An axiomatic basis of computer programming. Communications
of the ACM, 12:567-583, October 1969.

G. J. Holzmann. The Spin Model Checker — Primer and Reference Manual.
Addison-Wesley, 2004.

C. B. Jones. Systematic Software Development using VDM. Prentice Hall, 1990.
ISBN 0-13-880733-7.

L. Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst.,
16:872-923, 1994.

K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. STTT, 1:134-152,
1997.

J. McCarthy. Recursive functions of symbolic expressions and their computation
by machines, part I. Communications of the ACM, 3:184-195, 1960.

J. McCarthy. Towards a mathematical science of computation. In C. Popplewell,
editor, IFIP World Congress Proceedings, pages 21-28, 1962.

D. Scott and C. Strachey. Towards a mathematical semantics for computer lan-
guages. Computers and Automata, Microwave Research Inst. Symposia, 21:19-46,
1971.

J. M. Spivey. The Z Notation - a Reference Manual. International Series in Com-
puter Science (2nd ed.). Prentice Hall, 1992.

The CIP Language Group. The Munich Project CIP Volume I: The Wide Spectrum
Language CIP-L. Springer, 1985. Volume 183 of LNCS.

20

	Towards a Unified View of Modeling and Programming

