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Abstract

Data races are a common problem in concurrent and multi-threaded programming. Experience shows that

the classical notion of data race is not powerful enough to capture certain types of inconsistencies occurring in

practice. This paper investigates data races on a higher abstraction layer. This enables detection of inconsistent

uses of shared variables, even if no classical race condition occurs. For example, a data structure representing

a coordinate pair may have to be treated atomically. By lifting the meaning of a data race to a higher level, such

problems can now be covered. The paper defines the concepts view and view consistency to give a notation

for this novel kind of property. It describes what kinds of errors can be detected with this new definition,

and where its limitations are. It also gives a formal guideline for using data structures in a multi-threaded

environment.

1 Introduction

Multi-threaded, or concurrent, programming is becoming increasingly popular in enterprise applications and

information systems [AB01, Sun02]. The Java programming language [AG96] explicitly supports this paradigm

[Lea97]. Multi-threaded programming, however, provides a potential for introducing intermittent concurrency

errors that are hard to find using traditional testing. The main source of this problem is that a multi-threaded

program may execute differently from one run to another due to the apparent randomness in the way threads are

scheduled. Since testing typically cannot explore all schedules, some bad schedules may never be discovered.

One kind of error that often occurs in multi-threaded programs is adata race, as defined below. This paper shall

go beyond the traditional notion of what shall be referred to as low-level data races, and introduce high-level

data races, together with an algorithm for detecting them. Low-level as well as high-level data races can be

characterized as occurring when two or more threads access a shared region simultaneously, the definition of

region being dependent on what kind of data race is referred to.

Data races are very hard to detect with traditional testing techniques. Not only does a simultaneous access

from two or more threads to a particular region have to occur, but this should additionally result in corrupted

data, which violate some user-provided assertion. They are usually harder to detect than deadlocks, which often

cause some visible activity to halt. The suggested algorithm, first presented in [AHB03], analyzes a single

execution trace obtained by running an instrumented version of the program. In this context, single execution

means the program is run once. While running, it emits a series of events which consitute the exection trace.



The analysis algorithm which analyzes the execution trace is, for practical purposes, mostly independent of the

thread interleavings during program execution. Hence the program only needs to be run once.

The algorithm requires no user-provided requirement specification, and hence is in line with the Eraser

algorithm [SBN+97] for detecting low-level data races. This means that the algorithm is totally automated,

requiring no user guidance at all beyond normal input. The algorithm looks for certain patterns in the execution

trace, and raises a warning in case such are detected. A data race does not have to occur in the run that

generated the execution trace, which is why the algorithm is more powerful than traditional testing techniques.

The algorithm is neither sound, nor complete, and may yield false positives (false warnings) and false negatives

(missed errors). However, it is our opinion that the increased probability of detecting errors strongly out-

balances this, in particular considering that it is fully automated. In addition, practice seems to support that the

rates of false positives as well as false negatives are low.

The algorithm has been implemented in the Java PathExplorer (JPaX) tool [HR01, GH03, BH03], which

provides a general framework for instrumenting Java programs, and for monitoring and analyzing execution

traces. In particular JPaX contains algorithms for detecting problems in multi-threaded programs, such as data

races and deadlocks [BH03]. Although JPaX analyzes Java programs, the principles and theory presented here

are universal and apply in full to concurrent programs written in languages like C and C++ as well [NBF98].

1.1 Low-level Data Races

The traditional definition of a data race is as follows [SBN+97]:

A data race can occur when two concurrent threads access a shared variable and when at least one

access is a write, and the threads use no explicit mechanism to prevent the accesses from being

simultaneous.

Consider for example two threads, that both access a shared object containing a counter variablex, and assume

that both threads call anincrease()method on the object, which increasesx by 1. Theincrease()method is

compiled into a sequence of bytecode instructions (loadx to the operand stack, add 1, write back the result).

The Java Virtual Machine (JVM) executes this sequence non-atomically. Suppose the two threads callincrease()

at nearly the same time and that each of the threads execute theload instruction first, which loads the value ofx

to the thread-local operand stack. Then they will both add 1 to the original value, which results in a combined

increment of 1 instead of 2. This traditional notion of data race shall be referred to as alow-level data race,

since it focuses on a single variable.

The standard way to avoid low-level data races on a variable is to protect the variable with a lock: all

accessing threads must acquire this lock before accessing the variable, and release it again after. In Java,

methods can be defined assynchronized which causes a call to such a method to lock the current ob-

ject instance. Return from the method will release the lock. Java also provides an explicit statement form

synchronized( obj) {stmt}, for taking a lock on the objectobj, and executing statementstmtprotected un-

der that lock. If the above mentionedincrease()method is declaredsynchronized , the low-level data race

cannot occur.

Several algorithms and tools have been developed for analyzing multi-threaded programs for low-level data

races. The Eraser algorithm [SBN+97], which has been implemented in the Visual Threads tool [Har00] to

analyze C and C++ programs, is an example of a dynamic algorithm that examines a program execution trace



for locking patterns and variable accesses in order to predict potential data races. The Eraser algorithm maintains

a lock setfor eachvariable, which is the set of locks that have been owned by all threads accessing the variable

in the past. Each new access causes a refinement of the lock set to the intersection of the lock set with the set

of locks currently owned by the accessing thread. The set is initialized to the set of locks owned by the first

accessing thread. If the set ever becomes empty, a data race is possible. JPaX implements the Eraser algorithm

[HR01, Hav00]. Another commercial tool performing low-level data race analysis is JProbe [Sit00].

1.2 High-level Data Races

A program may contain a potential for concurrency errors, even when it is free of low-level data races and dead-

locks. Low-level data races concern unprotected accesses to shared fields. The notion of high-level data races

refers to sequences in a program where each access to shared data is protected by a lock, but the program still

behaves incorrectly because operations that should be carried out atomically can be interleaved with conflicting

operations.

A problem that was detected in NASA’sRemote Agentspace craft controller [PGK+97] shall serve as a

realistic example of a high-level data race situation. The problem was originally detected using model checking

[HLP01]. The error was very subtle, and was originally regarded hard to find without actually exploring all

execution traces as done by a model checker. Because only very particular thread interleavings result in a data

race and hence corrupted data, a single execution trace does usually not exhibit this error. As it turns out, it is an

example of a high-level data race, and can therefore be detected with the low-complexity algorithm presented

in this paper.

The Remote Agent is an artificial-intelligence-based software system for generating and executing plans on

board a space craft. A plan essentially specifies a set of tasks to be executed within certain time constraints.

The plan execution is performed by theExecutive. A sub-component of the Executive, thetask manager, is

responsible for managing the execution of tasks, once the tasks have been activated. The data structures used

by the task manager are illustrated in Fig. 1.

The state of the spacecraft (at any particular point) can be considered as consisting of a set of properties,

each being an assignment of a value to a variable corresponding to a component on board the space craft. The

values of variables are continuously read by sensors and recorded in asystem state. A task running on board the

space craft may require that specific properties hold during its execution, and it notifies the task manager about

such requirements before start. That is, upon the start of the task, it first tries to lock those properties it requires

in a lock table, telling the task manager that its execution is only safe if they hold throughout the execution.

For example, a task may requireB to beON (assuming thatB is some system variable). Now other threads

cannot requestB to beOFF as long as the property is locked in the lock table. Next, the task tries to achieve

this property (changing the state of the space craft, and thereby the system state through sensor readings), and

when it is achieved, the task sets a flagachieved, associated with that variable, totrue in the lock table. This

flag is true whenever the system state is expected to contain the property. These flags are initially set to false

at system initialization, are set to true in the just described scenario, and are set back to false once the task no

longer requires the property to hold.

A Daemonconstantly monitors that the system state is consistent with the lock table in the sense that

properties that are required to hold, as stated in the lock table, are actually also contained in the system state.

That is, it checks that:if a task has locked a value to some variable, and the corresponding flagachievedis
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Figure 1: The Remote Agent Executive

true, then it must be a true property of the space craft, and hence true in the system state. Violations of this

property may occur by unexpected events on board the space craft, which cause the system state to be updated.

The daemon wakes up whenever events occur, such as when the lock table or the system state are modified. In

case an inconsistency is detected, the involved tasks are interrupted.

Task Daemon

synchronized(table) {
  table[N].value = V;
}

/* achieve property */

synchronized(table) {
  table[N].achieved = true;
}

synchronized(table) {
  if (table[N].achieved &&
    system_state[N] != table[N].value) {
    issueWarning();
  }
}

Figure 2: The synchronization inconsistency between a task and the daemon.

The relevant code from the task and the daemon is illustrated in Fig. 2, using Java syntax (The Remote

Agent was coded in LISP). The task contains two separate accesses to the lock table, one where it updates the

value and one where it updates flagachieved. The daemon on the other hand accesses all these fields in one

atomic block. This can be described as an inconsistency in lock views, as described below, and actually presents

an error potential.

The error scenario is as follows: suppose the task has just achieved the property, and is about to execute

the second synchronized block, setting flagachievedto true. Suppose now however, that suddenly, due to



unpredicted events, the property is destroyed on board the space craft, and hence in the system state, and that

the daemon wakes up, and performs all checks. Since flagachievedis false, the daemon reasons incorrectly

that the property is not supposed to hold in the system state, and hence it does not detect any inconsistency with

the lock table (although conceptually now there is one). Only then the task continues, and sets flagachievedto

true. The result is that the violation has been missed by the daemon. The nature of this error can be described

as follows:

The daemon accesses the value and flagachievedin one atomic block, while the task accesses them

in two different blocks. These two different ways of accessing tuple{value, achieved}, atomically

and as a compound operation, is a inconsistency calledview inconsistency.

The seriousness of the error scenario depends on the frequency with which the daemon gets activated. If events

updating the lock table or the system state occur often, the daemon will just detect the problem later, and hope-

fully soon enough. However, if such events are far apart, the task may execute for a while without its required

property holding. In the above example the view inconsistency is in itself not an error, but a symptom that if

pointed out may direct the programmer’s attention to the real problem, that property achievement and setting

the flagachievedare not done in one atomic block. More formal and generic definitions of view inconsistency

are presented in Sec. 2 and 3. Note that repairing this situation is non-trivial since achieving properties may

take several clock cycles, and it is therefore not desirable to hold the lock on the table during this process.

Detecting this error using normal testing is very hard since it requires not only to execute the just described

interleaving (or a similar one), but it also requires the formulation of a correctness property that can be tested

for, and which is violated in the above scenario. However, regarding this as a view inconsistency problem makes

it possible to find the error without actually executing this particular interleaving, and without a requirement

specification.

Both aspects are very important. The success of the Eraser algorithm [SBN+97] confirms this. Data races,

both low-level or high-level ones, occur only rarely in a concrete run, because they only appear under a certain

schedule. This makes them very hard to observe using traditional testing. Therefore one tries to observe the

locking behavior of a program and infer potential errors from that. The locking behavior of each thread does

not change across different schedules (it is only dependent on the input, which can be automated), and therefore

it is a reliable base for fault-finding algorithms.

Requiring no annotations is not only important when it comes to the usability of a tool. Tools like ESC/Java

suffered from having a high initial overhead due to the required annotations in a program [DRL+98]. Algo-

rithms that do not require annotations are also more interesting from a research point of view: It is attempted to

extract as much information as possible from the program itself rather than having the user specify (possibly in-

correct or redundant) information. Of course such approaches are sometimes inherently more limited than ones

requiring annotations. The goal is to find algorithms that still capture the underlying problems with sufficient

precision.

The algorithm presented in this paper achieves this to a high degree. In the Eraser algorithm [SBN+97]

for detecting low-level data races, the set of locks protecting a single variable, referred to as thelock set, is

considered. In this paper this idea is turned upside down. Thevariable setassociated to alock is now of interest.

This notion makes it possible to detect what shall be referred to ashigh-level data races. The inspiration for this

problem was originally due to a small example provided by Doug Lea [Lea00]. It is presented in modified form

in Sec. 2. It defines a simple class representing a coordinate pair with two componentsx andy. All accesses



are protected by synchronization onthis , usingsynchronized methods. Therefore, data race conditions

on a low level are not possible. As this example will illustrate, there can, however, still be data races on a

higher level, and this can be detected as inconsistencies in the granularity ofvariable setsassociated to locks

in different threads. The algorithm for detecting high-level data races is a dynamic execution trace analysis

algorithm like the Eraser algorithm [SBN+97].

1.3 Outline

The paper is organized as follows. Sec. 2 introduces the problem of high-level data races. A formal definition

of high-level data races is given in Sec. 3. Sec. 4 describes the JPaX framework for analyzing Java programs.

Experiments carried out are described in Sec. 5. Sec. 6 gives an overview of related work. Sec. 7 outlines future

work and Sec. 8 concludes the paper.

2 Informal Definition of High-level Data Races

Consistent lock protection for a shared field ensures that no concurrent modification is possible. However, this

only refers to low-level access to the fields, not their entire use or their use in conjunction with other fields. The

remainder of this paper assumes detection of low-level data races is covered by the Eraser algorithm [SBN+97],

which can be applied in conjunction with the analysis described in this paper. This section introduces a more

precise definition of high-level data races. First a very basic example is presented, followed by more pathologi-

cal ones, which at first sight may appear as high-level data races, but which shall not be classified as such.

2.1 Basic Definition

Fig. 3 shows a class implementing a two-dimensional coordinate pair with two fieldsx, y, which are guarded

by a single lock.

class Coord {
  double x, y;
  public Coord(double px, double py) { x = px; y = py; }
  synchronized double getX() { return x; }
  synchronized double getY() { return y; }
  synchronized Coord getXY() { return new Coord(x, y); }
  synchronized void setX(double px) { x = px; }
  synchronized void setY(double py) { y = py; }
  synchronized void setXY(Coord c) { x = c.x; y = c.y; }
}

Figure 3: TheCoord class encapsulating points with x and y coordinates.

If only getXY , setXY , and the constructor are used by any thread, the pair is treated atomically by all accessing

threads. However, the versatility offered by the other accessor (get /set ) methods is dangerous: if one thread

only usesgetXY andsetXY and relies on complete atomicity of these operations, other threads using the other

accessor methods (getX , setX , getY , setY ) may falsify this assumption.

Imagine for example a case where one thread,tr, reads both coordinates while another thread,tw, sets them

to zero. Assume thattr reads the variables withgetXY , but thattw ’s write operation occurs in two phases,



setX andsetY . The threadtr may then read anintermediate resultwhich contains the value ofx already

set to zero bytw but still the originaly value (not zeroed yet bytw). This is clearly an undesired and often

unexpected behavior. In this paper, the termhigh-level data racewill describe this kind of scenario:

A high-level data race can occur when two concurrent threads access a setV of shared variables,

which should be accessed atomically, but at least one of the threads does not access the variables in

V atomically.

In the coordinate pair example above, the setV is {x, y}, and threadtw violates the atomicity requirement. Of

course, a main question is how one determines whether a set of variables are to be treated atomically, assuming

that the user does not specify that explicitly. For now it is assumed that an oracle determines this. In Sec. 3 an

approximation to this oracle will be suggested, which does not require any kind of specification to be provided

by the user. Of course it is an undecidable problem in practice, and furthermore requires a specification of the

expected behavior of the program. For instance, in the above coordinate pair example, atomicity might not be

required at all if the reader only wants to sample anx value and ay value without them being related.

2.2 Refinement of Basic Definition

Although the definition above may be useful, it yields false positives (false warnings). Using the coordinate

example, any use of the methodsgetX , setX , getY , andsetY will cause a high-level data race. However,

there exist scenarios where some of these access methods are allowed without the occurence of high-level data

races. Hence the notion of high-level data race needs to be refined. This is analog to the refinement in Eraser

[SBN+97] of the notion of low-level data races in order to reduce the number of false positives.

The refinement of the definition will be motivated with the example in Fig. 4, which shows four threads

working in parallel on a shared coordinate pairc. Threadt1 writes toc (and is similar totw from Subsec. 2.1)

while the other threadst2, t3 andt4 read fromc (t3 is similar totr from Subsec. 2.1). The threads use local

variablesxi andyi of typedouble anddi of typeCoord , wherei identifies the thread.

Threadt1 Threadt2 Threadt3 Threadt4

d1 = new Coord(1,2);
c.setXY(d1);

x2 = c.getX();
use(x2);

x3 = c.getX();
y3 = c.getY();
use(x3,y3);

x4 = c.getX();
use(x4);
d4 = c.getXY();
x4 = d4.getX();
y4 = d4.getY();
use(x4,y4);

Figure 4: One thread updating a pair of fields and three other threads reading fields individually.

Initially, only threadst1 andt3 are considered, the situation already described in Sec. 2.1. Inconsistencies might

arise with threadt3, which readsx in one operation andy in another operation, releasing the lock in between.

Hence, threadt1 may write tox andy in between, andt3 may therefore obtain inconsistent values corresponding

to twodifferentglobal states.

Now consider the two threadst1 and t2. It is not trivial to see whether an access conflict occurs or not.

However, this situation is safe. As long ast2 does not usey as well, it does not violate the first thread’s



assumption that the coordinates are treated atomically. Even thought1 accesses the entire pair{x, y} atomically

andt2 does not, the access tox alone int2 can be seen as a partial read. That is, the read access tox may be

interpreted as reading{x, y} and discardingy. So both threadst1 andt2 behave in a consistent manner. Each

thread is allowed to use only a part of the coordinates, as long as that use is consistent.

The difficulty in analyzing such inconsistencies lies in the wish to still allow such partial accesses to sets of

fields, like the access tox of threadt2. The situation betweent1 andt4 serves as another, more complicated,

example of a situation which at first sight appears to provide a conflict, but which shall be regarded as safe.

Regard threadt4 as consisting of two operations: the first consisting of the first two statements, including

use(x4) , and the second operation consisiting of the remaining four statements. The second operation is

completely self-contained, and accesses in addition toy everything the first operation accesses (namelyx).

Consequently, the first operation int4 likely represents an operation that does not needy. Therefore, the two

operations are unrelated and can be interleaved with the atomic update statement int1 without interfering with

the operations oft4 on x andy. On a more formal basis,t4 is safe because the set of variables accessed in the

first operation oft4 is a subset of the set of variables accessed in its second operation; the variable sets form a

chain. When they do not form a chain, theydiverge. On the basis of this example, the definition of high-level

data races can be refined as follows:

A high-level data race can occur when two concurrent threads access a setV of shared variables,

which should be accessed atomically, but at least one of the threads accessesV partially several

times such that those partial accesses diverge.

This definition is adopted for the remainder of the paper. It can, however, still lead to false positives and false

negatives as is described in Sec. 3.4.

The algorithm presented in the remainder of this paper does not distinguish between read and write accesses.

This abstraction is sufficiently precise because view consistency is independent of the whether the access is a

read or a write: A non-atomic read access may result in inconsistent values among the tuple read, because other

threads may update the tuple between reads. A write access that is carried out non-atomically allows other

threads to read partial updates between write operations. Note that it is assumed that at least one write access

occurs; constant values can be ignored in this analysis.

3 Formal Definition of High-Level Data Races

This section definesview consistency.It lifts the common notion of a data race on a single shared variable to a

higher level, covering sets of shared variables and their uses. This definition assumes that the specification of

what fields have to be treated atomically is not provided by the user. It is instead extracted by program analysis.

This analysis turns the problem of high-level data races into a testable property, using view consistency. The

definition of this analysis is precise but allows for false positives and false negatives. This is discussed at the

end of this section.

3.1 Views

A lock guardsa shared field if it is held during an access to that field. The same lock may guard several shared

fields. Views express what fields are guarded by a lock. LetI be the set of object instances generated by a



particular run of a Java program. ThenF is the set of all fields of all instances inI.

A viewv ∈ P(F ) is a subset ofF . Let l be a lock,t a thread, andB(t, l) the set of allsynchronized

blocks using lockl executed by threadt. For b ∈ B(t, l), a viewgenerated byt with respect tol, is defined as

the set of fields accessed inb by t. Theset of generated viewsV (t) ⊆ P(F ) of a threadt is the set of all views

v generated byt. In the previous example in Fig. 4, threadt1 using both coordinates atomically generates view

v1 = {x, y} under lockl = c. Threadt2 only accessesx alone underl, having viewv2 = {x}. Threadt3

generates two views:V (t3) = {{x}, {y}}. Threadt4 also generates two views:V (t4) = {{x}, {x, y}}.

3.2 Views in Different Threads

A view vm generated by a threadt is amaximal view, iff it is maximal with respect to set inclusion inV (t):

∀v ∈ V (t) [vm ⊆ v → vm = v]

Let M(t) denote the set of all maximal views of threadt. Only two views which have fields in common can

be responsible for a conflict. This observation is the motivation for the following definition. Given a set of

viewsV (t) generated byt and a viewv′ generated by another thread, theoverlapping viewsof t with v′ are all

non-empty intersections of views inV (t) with v′:

overlap(t, v′) ≡ {v′ ∩ v | (v ∈ V (t)) ∧ (v ∩ v′ 6= ∅)}

A set of viewsV (t) is compatiblewith the maximal viewvm of another thread iff all overlapping views oft

with vm form a chain:

compatible(t, vm) iff ∀v1, v2 ∈ overlap(t, vm) [v1 ⊆ v2 ∨ v2 ⊆ v1]

View consistencyis defined as mutual compatibility between all threads: A thread is only allowed to use views

that are compatible with the maximal views of all other threads.

∀t1 6= t2, vm ∈ M(t1) [compatible(t2, vm)]

In the example in Fig. 4, the views were

V (t1) = M(t1) = {{x, y}}

V (t2) = M(t2) = {{x}}

V (t3) = M(t3) = {{x}, {y}}

V (t4) = {{x}, {x, y}}

M(t4) = {{x, y}}

There is a conflict betweent1andt3 as stated, since{x, y} ∈ M(t1) intersects with the elements inV (t3) to

{x} and{y}, which do not form a chain. A similar conflict exists betweent3 andt4.

The above definition ofview consistencyuses three concepts: the notion ofmaximal views, the notion of

overlaps, and finally thecompatiblenotion, also referred to as thechainproperty. The chain property is the core



# Threadta Threadtb Incompatible views

1
ViewsV (t) {x}, {y} {x}, {y}

none
Maximal viewsM(t) {x}, {y} {x}, {y}

2
ViewsV (t) {x, y} {x}, {y} {x} = {x, y} ∩ {x} ∈ M(ta) ∩ V (tb)
Maximal viewsM(t) {x, y} {x}, {y} {y} = {x, y} ∩ {y} ∈ M(ta) ∩ V (tb)

3
ViewsV (t) {x, y}, {x}, {y} {x}, {y} {x} = {x, y} ∩ {x} ∈ M(ta) ∩ V (tb)
Maximal viewsM(t) {x, y} {x}, {y} {y} = {x, y} ∩ {y} ∈ M(ta) ∩ V (tb)

4
ViewsV (t) {x, y, z} {x, y}, {x}

none
Maximal viewsM(t) {x, y, z} {x, y}

Table 1: Examples withtwo threads illustrating the principle of view consistency.

# Threadtc Threadtd Threadte Incompatible views

5
V (t) {x, y} {x} {x}, {y} {x} = {x, y} ∩ {x} ∈ M(tc) ∩ V (te)
M(t) {x, y} {x} {x}, {y} {y} = {x, y} ∩ {y} ∈ M(tc) ∩ V (te)

6
V (t) {x, y} {x} {y}

none
M(t) {x, y} {x} {y}

7
V (t) {x, y}, {x}, {y} {y, z}, {y}, {z} {z, x}, {z}, {x}

none
M(t) {x, y} {y, z} {z, x}

8
V (t) {x, y}, {x}, {y, z} {y, z}, {y}, {z} {z, x}, {z}, {x} {y} = {y, z} ∩ {y} ∈ M(tc) ∩ V (td)
M(t) {x, y}, {y, z} {y, z} {z, x} {z} = {y, z} ∩ {z} ∈ M(tc) ∩ V (td)

Table 2: Examples withthreethreads illustrating the principle of view consistency.

concept. Maximal views do not really contribute to the solution other than to make it more efficient to calculate

and reduce the number of warnings if a violation is found. The notion of overlaps is used to filter out irrelevant

variables.

3.3 Examples

A few examples help to illustrate the concept. Table 1 contains examples involving two threads. Note that the

outermost brackets for the set of sets are omitted for better readability. Example 1 is the trivial case where no

thread treats the two fields{x} and{y} atomically. Therefore there is no inconsistency. However, if threadta

treats{x, y} as a pair, and threadtb does not, there is a conflict as shown in example 2. This even holds if the

first thread itself uses partial accesses on{x} or {y}, since this does not change its maximal view. Example 3

shows that case. Finally, example 4 illustrates the case where threadta uses a three-dimensional coordinate set

atomically and threadtb reads or updates different subsets of it. Since the subsets are compatible as defined in

Sec. 3.2, there is no inconsistency.

Table 2 shows four cases with three threads. The first entry, example 5, corresponds to the first three threads

in Fig. 4. There, threadte violates the assumption oftc about the atomicity of{x, y}. Example 6 shows

a “fixed” version, wherete does not access{x}. More complex circular dependencies can occur with three

threads. Such a case is shown in example 7. Out of three fields, each thread only uses two, but these two fields

are used atomically. Because the accesses of any thread only overlap in one field with each other thread, there is

no inconsistency. This example only requires a minor change, shown in example 8, to make it faulty: Assume

the third view oftc were{y, z} instead of{y}. This would contribute another maximal view{y, z}, which



conflicts with the views{y} and{z} of td.

3.4 Soundness and Completeness

Essentially, this approach tries to infer what the developer intended when writing the multi-threaded code, by

collecting views. The sets of shared fields which must be accessed atomically are not available in the program

code. Therefore views are used to detect the most likely candidates, or maximal views. View consistency is

used to detect violations of accesses to these sets. The underlying assumption behind the algorithm is that an

atomic access to a set of shared fields is an indication of atomicity. Under this assumption, a view consistency

violation indicates a high-level data race.

However, sets of fields may be used atomically even if there is no requirement for atomic access. Therefore,

an inconsistency may not automatically imply a fault in the software. An inconsistency that does not correspond

to a fault is referred to as afalse positive(spurious warning). Similarly, lack of a reported inconsistency does

not automatically imply lack of a fault. Such a missing inconsistency report for an existing fault is referred to

as afalse negative(missed fault).

False positives are possible if a thread uses a coarser locking than actually required by operation semantics.

This may be used to make the code shorter or faster, since locking and unlocking can be expensive. Releasing

the lock between two independent operations requires splitting onesynchronized block into two blocks.

False negatives are possible if all views are consistent, but locking is still insufficient. Assume a set of

fields that must be accessed atomically, but is only accessed one element at a time by every thread. Then no

view of any thread includes all variables as one set, and the view consistency approach cannot find the problem.

Another source of false negatives is the fact that a particular (random) run through the program may not reveal

the inconsistent views, if the corresponding code sections are not executed even once.

The fact that false positives are possible means that the solution is not sound. Similarly, the possibility of

false negatives means that the solution neither is complete. This may seem surprising, but actually also char-

acterizes the Eraser low-level data race detection algorithm [SBN+97] implemented in the commercial Visual

Threads tool [Har00], as well as the deadlock detection algorithm also implemented in the same tool. The same

holds for the similar algorithms implemented in JPaX. For Eraser, it is very hard to determine automatically

whether a warning is a false positive or a false negative [Bur00]. Furthermore, it is an unsolved problem to

prove soundness and completeness properties about the Eraser algorithm. In real software programs, there are

always situations where having program threads use inconsistent values is acceptable. For example, a moni-

toring thread may just “sample” a value at a given time; it is not crucial that this value is obtained with proper

synchronization, because it does not have to be up-to-date.

The reason for the usefulness of such algorithms is that they still have a much higher chance of detecting an

error than if one relies on actually executing the particular interleaving that leads to an error, without requiring

much computational resource. These algorithms are essentially based on turning the property to be verified (in

this case: no high-level data races) into a more testable property (view consistency). This aspect is discussed in

more detail in [BH03] in relation to deadlock detection.



4 Implementation

For detecting high-level data races in software, a program analysis algorithm that extracts the views generated

by all threads has to be implemented. This analysis can be static, analyzing the code, or dynamic, analyzing

an execution trace. The implementation used in the experiments is a dynamic analysis. The experiments were

carried out with JPaX [HR01, GH03], a run-time verification tool consisting of two parts: an instrumentation

module and an observer module. The instrumentation module produces an instrumented version of the program,

which when executed, generates an event log with the information for the observer to determine the correctness

of examined properties. Fig. 5 illustrates the situation.

program
Instrumented Event

Interpretation
analysis

Events

Observer

Figure 5: Structure of the run-time analysis.

The observation of events generated by the instrumented program is divided into two stages: an event

analysis and an interpretation of events. The former reconstructs the context required for the event interpretation,

while the latter contains the actual observation algorithms. The observer used here only checks for high-level

data races. For these experiments, a new and yet totally un-optimized version of JPaX was used. It instruments

every field access, regardless of whether it can be statically proven to be thread-safe. This is the reason why

some data-intensive applications created log files which grew prohibitively large (> 0.5 GB) and could not be

analyzed.

4.1 Java Bytecode Instrumentation

Part of JPaX is a very general and powerful instrumentation package for instrumenting Java bytecode [GH03].

The requirements of the instrumentation package include power, flexibility, ease of use, portability, and effi-

ciency. Alternative approaches were rejected, such as instrumenting Java source code, using the debugging

interface, and modifying the Java Virtual Machine because they violated one or another of these requirements.

It is essential to minimize the impact of the instrumentation on program execution. This is especially the

case for real time applications, which may particularly benefit from this approach. Low-impact instrumentation

may require careful trade-offs between the local computation of the instrumentation and the amount of data

transmitted to the observer. The instrumentation package allows such trades to be made by allowing seamless

insertion of Java code at any program point.

Code is instrumented based on aninstrument specificationconsisting of a collection of predicate-action

rules. A predicate is a filter on source code statements. These predicates are conjunctions of atomic predicates

including predicates that distinguish statement types, presence of method invocations, pattern-matched refer-

ences to fields and local variables, etc. The actions are specifications describing the inserted instrumentation

code. Actions are inserted where predicates evaluate to true. The actions include reporting the program point

(method, and source statement number), a time stamp, the executing thread, the statement type, the value of

variables or an expression, and invocation of auxiliary methods. Values of primitive types are recorded in the

event log. If the value is an object, a unique integer descriptor of the object is recorded.



The instrumentation has been implemented using Jtrek [Coh99], a Java API that provides lower-level instru-

mentation functionality. In general, use of bytecode instrumentation, and use of Jtrek in particular, has worked

out well, but there are some remaining challenges with respect to instrumenting the concurrency aspects of

program execution.

4.2 Event Stream Format

All operations in the instrumented application which write to the event log have to be as fast as possible. Among

other factors, light-weight locking, incurring as little lock contention as possible, helps achieving this goal.

When several pieces of information are logged by the instrumentation, they are therefore recorded separately,

not atomically. As a result of this, one event can generate several log entries. Log entries of different threads

may therefore be interleaved.

In order to allow a faithful reconstruction of the events, each log entry includes the hash code of the active

thread creating the log entry. Therefore the events can all be assigned to the original threads. The contextual

information in events includes thread names, code locations, and reentrant acquisitions of locks (lock counts).

The event analysis package maintains a database with the full context of the event log.

4.3 Observer Architecture

As described above, run-time analysis is divided into two parts: instrumenting and running the instrumented

program, which produces a series of events, and observing these events. The second part, event observation,

can be split into two stages: event analysis, which reads the events and reconstructs the run-time context, and

event interpretation (see Fig. 6). Note that there may be many event interpreters.

Instrumented
program

Event
analysis

Interpretation

Events
Observable events

Internal events

Event analysis

F
ilt

er
in

g

Result

Model

Context

Interpretation

Events

Observer

Figure 6: The observer architecture.

Reusing the context reconstruction module allows for writing simpler event interpreters, which can subscribe



to particular event types made accessible through an observer interface [GHJV95] and which are completely

decoupled from each other.

Each event interpreter builds its own model of the event trace, which may consist of dependency graphs or

other data structures. It is up to the event interpreter to record all relevant information for keeping a history of

events, since the context maintained by the event analysis changes dynamically with the event evaluation. Any

information that needs to be kept for the final output, in addition to context information, needs to be stored by

the event interpreter. If an analysis detects violations of its rules in the model, it can then show the results using

stored data.

Besides clearly separating two aspects of event evaluation, this approach has other advantages: Many algo-

rithms dealing with multi-threading problems require very similar information, namely lock and field accesses.

If a log generated by an instrumented program includes at least this information, then several analysis algorithms

can share the same events. Furthermore, splitting event observation into two steps also allows writing an event

analysis front-end for event logs generated by tools other than JPaX, reusing the back-end, event interpretation.

5 Experiments

Before analyzing applications, the implementation of the algorithm was tested using ten hand-crafted programs

exhibiting different combinations of tuple accesses, such as the ones shown in Sec. 3.3. The test set included

applications which contain high-level data races and others that do not. The primary purpose of this test set

was to test the implementation of the view consistency algorithm. Furthermore, the tests served to fine-tune the

output so it is presented in an easily readable manner. This makes evaluation of warnings fairly easy, as long as

the semantics of fields used in conflicting views is known and it can be inferred whether these fields have to be

used as an atomic tuple or not.

Once these tests ran successfully, four real applications were analyzed. Those applications include a

discrete-event elevator simulator, and two task-parallel applications: SOR (Successive Over-Relaxation over

a 2D grid), and a Travelling Salesman Problem (TSP) application [vPG01]. The latter two use worker threads

[Lea97] to solve the global problem. In addition, a Java model of a NASA planetary rover controller, named

K9, was analyzed. The original code is written in C++ and contains about 35,000 lines of code, while the Java

model is a heavily abstracted version with 7,000 lines. Nevertheless, it still includes the original, very complex,

synchronization patterns. Note that all Java foundation classes were excluded from the analysis. This would

have increased the overlapping sets to a point where the analysis would have produced too many warnings: Ev-

ery print statement usingSystem.out would have resulted in overlapping sets with any other view containing

an access toSystem.out .

Table 3 summarizes the results of the experiments. All experiments were run on a Pentium III with a clock

frequency of 750 MHz using Sun’s Java 1.4 Virtual Machine, given 1 GB of memory. Only applications which

could complete without running out of memory were considered. It should be noted that the overhead of the

built-in Just-In-Time (JIT) compiler amounts to 0.4 s, so a run time of 0.6 s actually means only about 0.2 s

were used for executing the Java application. The Rover application could not be executed on the same machine

where the other tests were run, so no time is given there.

It is obvious that certain applications using large data sets incurred a disproportionately high overhead in

their instrumented version. Many examples passed the view consistency checks without any warnings reported.



Application Size Number Run time [s], Run time [s], Log size Warnings
[LOC] of classes uninstrumented instrumented [MB] issued

Elevator 500 5 16.7 17.5 1.9 2
SOR 250 3 0.8 343.2 123.5 0
TSP, very small run (4 cities)

700 4
0.6 1.8 0.2 0

TSP, larger run (10 cities) 0.6 28.1 2.3 0
NASA’s K9 Rover controller 7000 82 − − − 1

Table 3: Analysis results for the given example applications.

For the elevator example, two false warnings referred to two symmetrical cases. In both cases, three fields

were involved in the conflict. In threadt1, the viewsV (t1) = {{1, 3}, {3}, {2, 3}} were inconsistent with

the maximal viewvm = {1, 2, 3} of t2. While this looks like a simple case, the interesting aspect is that one

method int1 included aconditionalaccess to field1. If that branch had been executed, the view{2, 3} would

actually have been{1, 2, 3}, and there would have been no inconsistency reported. Since not executing the

branch corresponds to reading data and discarding the result, both warnings are false positives.

One warning was also reported for the NASA K9 rover code. It concerned six fields which were accessed

by two threads in three methods. The responsible developer explained the large scope of the maximal view with

six fields as an optimization, and hence it was not considered an error. The Remote Agent space craft controller

was only available in LISP, so it could not be directly tested. However, the tool used was successfully applied

to test cases reflecting different constellations including that particular high-level data race.

So far, experiments indicate that experienced programmers intuitively adhere to the principle of view con-

sistency. Violations can be found, but are not very common, as shown in the experiments. Some optimizations

produce warnings that constitute no error. Finally, the two false positives from the elevator example show that

the definition of view consistency still needs some refinement.

6 Related Work

As described in Sec. 1, view consistency was partially inspired by the Eraser algorithm [SBN+97]. Beyond this

algorithm, related work does not only exist in software analysis, but also in database and hardware concurrency

theory.

6.1 Static Analysis and Model Checking

Beyond Eraser, several static analysis tools exist that examine a program for low-level data races. The Jlint

tool [AB01] is such an example. The ESC [DRL+98] tool is also based on static analysis, or more generally

on theorem proving. It, however, requires annotation of the program, and does not appear to be as efficient as

the Eraser algorithm in finding low-level data races. Dynamic tools have the advantage of having more precise

information available in the execution trace. More heavyweight dynamic approaches include model checking,

which explores all possible schedules in a program. Recently, model checkers have been developed that ap-

ply directly to programs (instead of just on models thereof). For example, the Java PathFinder system (JPF)

developed by NASA [HP00, VHBP00], and similar systems [God97, CDH+00, HS99, BPR01, Sto00]. Such



systems, however, suffer from the state space explosion problem. An extension of Java PathFinder performs

low-level data race analysis (and deadlock analysis) in simulation mode, whereafter the model checker is used to

demonstrate whether the data race (deadlock) warnings are real or not [Hav00]. However, a data race, low-level

as well as high-level, can be hard to find with model checking since it typically needs to cause a violation of

some explicitly stated property.

High-level data races cover inconsistencies in value accesses. Another kind of fault that is closely related

to high-level data races is the idea ofatomicityof sequences of operations, such as an entire method [FQ03].

High-level data races do not cover such atomicity violations, although it is possible that an atomicity violation

can lead to a high-level data race. Figure 7 shows a possible scenario where reading the value, performing an

operation using it, and writing the result back are not carried out atomically. The result will be based on a

possibly outdated value, because other threads may have updated the shared field,x, in the meantime. Because

view consistency deals with sets of values, it cannot capture this kind of error, as shown by Wang and Stoller

[WS03]. Only full knowledge about the desired atomicity can achieve this. A static analysis algorithm checking

an implementation against an atomicity specification is presented in [FQ03]. Recently von Praun has shown

that an extension of view consistency can be used to detect similar faults [vPG03]. It uses amethod viewwhich

assumes that all shared fields accessed within the scope of a method should be used atomically.

synchronized(lock) {
  tmp = x.getValue();
}
tmp++;
synchronized(lock) {
  x.setValue(tmp);
}

Figure 7: A non-atomic operation that does not violate view consistency.

6.2 Database Concurrency

In database theory, shared data is stored in a database and accessed by different processes. Each process per-

forms transactions, sequences of read and write operations, on the data. A sequence of these operations cor-

responding to several transaction is called ahistory. Based on this history, it can be inferred whether each

transaction isserializable, i.e., whether its outcome corresponds to having run that transaction in isolation

[Pap79, BHG87]. Database accesses try to avoid conflicts by construction, by structuring operations into trans-

actions. The view consistency approach attempts to analyze behavior patterns in multi-threaded programs and

to verify a similar behavior in an existing program.

There are several parallels to multi-threaded programs, which share their data in memory instead of in a

database. Data races on shared fields in a multi-threaded program can be be mapped to database access conflicts

on shared records. Lock protection in a multi-threaded program corresponds to an encapsulation of read and

write accesses in a transaction. The key problem addressed by this paper, having intermediate states accessible

when writing non-atomically a set of fields, maps to theinconsistent retrievalproblem in databases. In such

a history, one transaction reads some data items in between another transaction’s updates on these items. A

correcttransaction schedulerwill prevent such an access conflict, as long as the accesses of each process are



correctly encapsulated in transactions.

High-level data races concern accesses to sets of fields, where different accesses use different sets. Similar

problems may be seen in databases, if the programmer incorrectly defines transactions which are too fine-

grained. For example, assume a system consists of a global database and an application using reading and

writing threads. The writing threads use two transactions to update the database, the reading threads access

everything in a single transaction. Here, the reader’s view is inconsistent, since it may read an intermediate

state of the system. If the writer uses a single transaction, the fault is corrected. It is likely that the abstraction

provided by database query languages such as SQL [CB76] prevents some of these problems occurring.

Furthermore, concurrency theory as used for databases and transaction systems is moving towards richer

semantics and more general operations, calledactivities [SABS02]. Activities are atomic events in such a

system. Like in classical transactions, low-level access conflicts are prevented by a scheduler which orders

these operations.

Finally, database theory also uses the termviewunder different meanings. Specifically, the two termsview

equivalenceandview serializabilityare used [BHG87]. These two terms are independent of view consistency

as defined in this paper.

So far, only single database systems have been covered. Indistributed databases, thevirtual partitioning

algorithm exhibits a problem very similar to the view consistency problem presented here: Each transaction

on an item operates on aset of entries, the set of all database entries for a single item, which is distributed on

different sites. Aviewin this context is the set of sites with which a transaction is able to communicate [BHG87].

Ideally, a transaction has a view including all sites, so all updates are “atomic” on a global scale. However,

communication delays and failures prevent this from being a practical solution. The virtual partitioning protocol

[ASC85] ensures that all transactions have the same view of the copies of data that are functioning and those

that are unavailable. Whereas a view in a distributed database corresponds to one data item which should be

accessed atomically, a view as described in this paper encompasses sets of distinct data items. The applicability

of ideas from this protocol to the view consistency model in the multi-threading domain looks promising.

6.3 Hardware Concurrency

In hardware design and compiler construction, Lamport has made a major step towards correct shared memory

architectures for multiprocessors [Lam79]. He usessequential consistencyas a criterion for ensuring correctness

of interleaved operations. It requires all data operations to appear to have executed atomically. The order in

which these operations execute has to be consistent with the order seen by individual processes.

Herlihy and Wing use a different correctness condition calledlinearizability [HW90]. It provides the illusion

that each operation applied by concurrent processes takes effect instantaneously at some point between its

invocation and response. Linearizability is a stronger property than sequential consistency and has the advantage

that it preserves real-time ordering of operations. Although the theory is very general, it is geared towards

hardware and compiler construction because it allows exploiting special properties of concurrent objects where

transactions would be too restrictive. However, it is not directly applicable to multi-valued objects and seems to

be incapable of capturing such high-level problems.

Lamport’s notion of sequential consistency is rather restrictive and can be relaxed such that processors are

allowed to read older copies of data as long as the observed behavior is indistinguishable from a conventional

shared memory system [ABM93]. Mittal and Garg extended this work and Herlihy’s linearizability [HW90]



to multi-object operations, such as double-register compare and swap operations [MG98]. Problems occurring

with such multi-object operations are very much alike to high-level data races. Unlike the approach shown in

this paper, which deals with access patterns, their approach is concerned with the interleaving of operations and

based on histories as known in database literature.

7 Future Work

The most urgent problem is to make the run-time analysis more scalable. The instrumentation in the run-time

analysis tool JPaX has to be optimized with respect to statically provable thread-safety. For instance, read-only

or thread-local variables do not have to be monitored. Of course such an optimization has to be conservative

and take possible aliasing of references into account. Another optimization is to execute logging instructions

only a few times, instead of every time they are reached. A few executions of each instruction (one by each

involved thread) are often enough to detect a problem.

Apart from that, the observer analysis could run on-the-fly without event logging. This would certainly

eliminate most scalability problems. In addition to that, the current version reports the same conflict for different

instances of the same object class. This results in a large error log, which contains redundant information.

On the theoretical side, it is not yet fully understood how to properly deal with nested locks. The views of the

inner locks cause conflicts with the larger views of outer locks. These conflicts are spurious. The elevator case

study has shown that a control-flow independent definition of view consistency is needed. Furthermore, data

flow between field accesses has to be considered to refine the notion of high-level data races. A combination of

static and dynamic analysis may be better suited to check such a revised definition. Finally, there is a need to

study the relationship to database concurrency and hardware concurrency theory in more detail.

8 Conclusions

Data races denote concurrent access to shared variables with insufficient lock protection, leading to a corrupted

program state. Classical, or low-level, data races concern accesses to single fields. The notion of high-level data

races deals with accesses to sets of related fields which should be accessed atomically.

View consistency is a novel concept considering the association of variable sets to locks. This permits

detecting high-level data races that can lead to an inconsistent program state, similar to classical low-level data

races. Experiments on a small set of applications have shown that developers seem to follow the guideline of

view consistency to a surprisingly large extent. Thus view consistency captures an important idea in multi-

threading design.
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